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Abstract— Caching popular contents in advance is an impor-
tant technique to achieve low latency and reduced backhaul
congestion in future wireless communication systems. In this
article, a multi-cell massive multi-input-multi-output system is
considered, where locations of base stations are distributed as a
Poisson point process. Assuming probabilistic caching, average
success probability (ASP) of the system is derived for a known
content popularity (CP) profile, which in practice is time-varying
and unknown in advance. Further, modeling CP variations across
time as a Markov process, reinforcement Q-learning is employed
to learn the optimal content placement strategy to optimize the
long-term-discounted ASP and average cache refresh rate. In the
Q-learning, the number of Q-updates are large and proportional
to the number of states and actions. To reduce the space com-
plexity and update requirements towards scalable Q-learning,
two novel (linear and non-linear) function approximations-based
Q-learning approaches are proposed, where only a constant
(4 and 3 respectively) number of variables need updation,
irrespective of the number of states and actions. Convergence of
these approximation-based approaches are analyzed. Simulations
verify that these approaches converge and successfully learn
the similar best content placement, which shows the success-
ful applicability and scalability of the proposed approximated
Q-learning schemes.

Index Terms— Linear function approximation, massive MIMO,
non-linear function approximation, Poisson point process,
Q-learning, wireless edge caching.

I. INTRODUCTION

W ITH the continuous development of various intelligent
devices such as smart vehicles, smart home appliances,
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mobile devices, and various sized innovative applications
such as news updates, high quality video feeds and software
updates, wireless mobile communications has been experienc-
ing an unprecedented surge in traffic with a lot of redundant
and repeated information, which limits the capacity of the
fronthaul and backhaul links [1], [2]. To reduce the redundant
traffic, caching has emerged as an effective solution for reduc-
ing the peak data rates by prefetching the most popular con-
tents in the local cache storage of the base stations (BS). In the
recent years, caching at the BS is actively feasible due to the
reduced cost and size of the memory [3]. In wireless networks
such as cache enabled macro-cell networks, heterogeneous
networks, D2D networks, etc. [3], for a given set of content
library and the respective content popularity (CP) profile,
content placement and delivery have been investigated in order
to optimize the various performance measures like backhaul
latency delay [4], server load [5] and cache miss rate [6], [7].
With the known CP profile, in [6], [7], the content placement
in cellular networks is optimized to maximize the cache
hit rate, while authors in [8], [9] obtain optimal placement
policy to maximize the success probability and area spectral
efficiency. On a similar note, the approaches in [10], [11] relies
on minimizing cache miss probability to get caching policy.
However, in practice, CP profile is not known in advance
and needs to be estimated from the past observations of the
content requests. Deep learning based prediction are effective;
however, require huge training data in [12], [13]. In [14], auto
regressive (AR) prediction is used to predict the number of
requests in the time series, whereas linear prediction approach
is investigated for video segments in [15]. Transfer learning
methods are used in [16] by leveraging content correlation
and information transfer between time periods. To learn CP
independently across contents, online policies are presented
for cache-awareness in [17], low complexity video caching
in [2], [18], user preference learning in [19], etc.

In the literature [6], [7], [10], considering the network as
a whole, geographical caching in the Poisson point process
(PPP) network is employed for multi-cell system to maximize
cache hit rate with respect to the content placement proba-
bilities (CPPs), which represent availability of contents at the
BSs. Similarly, in [8], the area success probability and area
spectral efficiency are maximized for CPPs. In these works,
PPP has been a useful tool to assess the performance of a given
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network [20], [21]. Therefore, it is important to understand
the caching performance variations with respect to time [22].
Since the CP changes dynamically in both time and space
due to randomness of the user requests, placement strate-
gies needs to be updated accordingly. Recently, Q-learning
based solutions [23]–[26] provide active caching solutions to
dynamically changing content placements via modeling the
popularity profile in different time slots as a Markov process.
Therefore, in context of PPP analysis, the timely updation of
CPPs for time-varying CPs need to be investigated for future
wireless systems such as massive-MIMO.

A. Motivation and Contributions

In this article, a multi-cell massive-MIMO system is con-
sidered, where the locations of both the BS and the users
are distributed as homogeneous PPPs. In this system, content
requests are characterized using a global CP profile, while
cache placements are defined via CPPs. Each BS is assumed
to simultaneously communicate with multiple users, which
makes the success probability more difficult to analyze as
compared to the analysis for the case of single antenna BS
with single user in [27]. Towards that, first, we derive the
success probability, followed by the average success proba-
bility (ASP) as a function of CPs and CPPs. For interference
limited system, it is shown that the ASP is independent of
the density of BSs, since transmissions from BSs depend on
the cached contents. If the density of BSs is increased while
keeping caching probability fixed, then both the desired and
interference signals get stronger, resulting in minor change
in the SINR (signal to interference plus noise ratio) and
the ASP. Further, since CP is time varying, CP is modeled
as a Markov process and the cache placement problem is
formulated in terms of conventional Q-learning framework,
where the number of Q-updates are proportional to the number
of states and actions, incurring large space time complexity for
updation. To reduce the computation and updation require-
ments of Q-learning and to make it scalable with the content
library and sizes of state and action sets, two Q-learning
approaches are proposed based on linear and non-linear func-
tion approximations. In these approaches, only a few variables
needs to be updated instead of whole Q-matrix. Furthermore,
the convergence of these proposed approaches are analyzed
and verified via simulations. The contributions of this article
can be summarized as follows.

1) ASP Analysis: For a PPP based multi-cell multi-user
massive MIMO system, the ASP expression is derived using
stochastic geometric tools. For interference limited systems,
it is found that ASP does not depend on the density of BSs.
These observations are verified via simulations.

2) Q-Learning Framework: For time-varying CPs, the prob-
lem of dynamically learning the content placement strategies
is formulated in terms of Q-learning framework, where the
objective is to maximize the long-term discounted ASP and
cache refresh rate. The drawback of Q-learning is the update
requirement of a large number of variables proportional to the
number of states and actions, which is not feasible and scalable
in practice.

Fig. 1. BSs and users distributed as independent homogeneous PPPs. Users
color indicate the requesting content. Voronoi region is based on BSs with
the requesting file cached (red points).

3) Function Approximation Based Q-Learning: To improve
the Q-learning, Q-function is approximated such that only
a few variables needs to be updated. The linear function
approximation requires four variables, while the non-linear
one needs three. Moreover, we analyze the convergence of
the linear and non-linear approximated approaches, and verify
their performances through simulations.

Organization: This article is organized as follows:
Section II describes the system model. In Section III, ASP
has been derived. Section IV describes the framework of
Q-learning, while Section V presents the proposed Q-learning
approaches with function approximations. Simulation results
are provided in Section VI. Section VII concludes this
article.

II. SYSTEM MODEL

We consider a cache-enabled multi-cell system, where
each BS, equipped with an array of large number of anten-
nas M , serves multiple single antenna users. The locations of
BSs and users are independently distributed as homogeneous
PPPs ΦBS and Φu, with the corresponding densities λBS and
λu respectively as shown in Figure 1.

A. Caching Model

We consider a time slotted model [26], where the structure
of each time slot is depicted in Figure 2. At the beginning
of the time slot, the content placement takes place, which is
based on the content popularity and cache information in the
previous time slot. The next phase pertains to content delivery,
where the cached content is delivered as users’ requests arrive.
Subsequently, in the information exchange phase, each BS
shares the local content requests information to a central
station or a designated BS, which forwards back the global
popularity profile, computed based on simple averaging or
weighted averaging.
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Fig. 2. A typical time slot structure in edge caching (CD: Content Delivery,
CPL: Content placement, IE: Information Exchange) [26].

Each BS is equipped with a cache storage Lt of L units
at time t, which is filled in the placement phase with a
subset of the content library F = {1, 2, . . . , f, . . . , F}. For
simplicity, we assume each content has the same size of one
unit [19]. In the information exchange phase of time slot t,
based on the number of user requests, the revealed popularity
profile is denoted by pT

t = [p1,t, . . . , pF,t] with pf,t ≥ 0
and

�
f∈F pf,t = 1. Let qf,t = Pr (f ∈ Lt) denote the

cache placement probability of the f th content in the tth

time slot, which represents the probability of the f th content
being cached at a typical BS using the probabilistic caching
as in [6]. These caching probabilities qT

t = [q1,t, . . . , qF,t]
satisfy the cache constraint

�
f∈F qf,t ≤ L. In the following

to derive the ASP, we temporarily drop subscript t and resume
in Section IV.

B. Received Signal Model

From the Slivanyak-Mecke theorem, for stationary and
homogeneity of PPPs, we consider a typical user at the origin
o for evaluating the performance. A typical user connects to
the nearest BS who has the desired content. If the requested
content is not available in any of the caches at the BSs, it is
considered as a failure and the required file must be fetched
from the content server via the backhaul link. Let the kth BS
serves Kk users indexed by Kk ⊆ Φu. The received signal at
the typical user requesting the f th content from the kth BS
can be given as

yfk = h̄T
oksk +

�
j∈ΦBS\{k}

h̄T
ojsj + nfk, (1)

where h̄T
ok = R

−α/2
ok hT

ok; Rok and hok are distance and the
CSI vector from the kth BS to the typical user; α is the path
loss exponent; sk = Wkxk =

�
u∈Kk

wukxuk is the pre-
coded transmitted signal of the kth BS with E

�
xjxH

j

�
= IKj ;

and nfk ∼ CN (0, σ2) is additive white Gaussian noise. The
first term in the above equation corresponds to the desired
signal with intra-cell interference, the second term pertains to
the inter-cell interference from the other BSs that may have
the f th content transmitting to other users.

Transmit Power Constraint: Assuming the total transmit
power constraint PT , we can write E

�
sksH

k

�
= �Wk�2

F =�
u∈Kk

�wuk�2
2 ≤ PT . Let puk denote the per user allocated

power. Then, �wuk�2
2 = puk and

�
u∈Kk

puk ≤ PT .
Thinning of BSs: Based on the f th content availability,

the PPP for BSs can be divided into two PPPs: ΦBS(f)
with density qfλBS , and Φc

BS(f) with density (1 − qf )λBS .

The BSs with the f th content, indexed by ΦBS(f) \ {k},
are located at distance Roj > Rok, ∀j 	= k with Rok being
the distance of the connected kth BS to the typical user,
while the BSs in Φc

BS(f) have distance Roj > 0, ∀j ∈ ΦBS

from the typical user. Thus, the summation in the inter-cell
interference can be divided as

ΦBS \ {k} = {ΦBS(f) \ {k}} ∪ Φc
BS(f).

SINR Expression: The downlink SINR for the typical user
can be obtained as

Γfk =
E

���h̄T
okwok

��2�
�

l∈Kk\{o} E

���h̄T
okwlk

��2�+ Ifk + Ic
f + σ2

, (2)

where in the denominator, the first term, Ifk =�
j∈ΦBS(f)\{k} E

�		h̄T
ojWj

		2

2

�
and Ic

f =
�

j∈Φc
BS(f)

E

�		h̄T
ojWj

		2

2

�
correspond to the intra-cell interference and

the inter-cell interference strengths from the BSs based on the
presence of the f th content respectively. The value of these
interferences are decided by the BS’s transmission strategy.

Maximal Ratio Transmission (MRT): Let Hk = [hk,1, . . . ,
hk,Kk

] be the concatenated channel vectors for Kk users
connected to the kth BS. The presence of massive MIMO
BSs allows to utilize the channel hardening effect [28],
1
M HH

k Hk → IKk
, which acts like the expectation operator

i.e. E
�
HH

k Hk

�
= MIKk

. Utilizing MRT, the precoder at

the kth BS can be written as Wk = 1√
M

HkP
1/2
k , that

is, wuk = huk



puk

M , where Pk = D (p1k, . . . , pKkk) is a
diagonal power allocation matrix such that E

��wik�2
�

= pik.
From (2), the respective downlink SINR can be simplified as1

ΓMRT
fk =

R−α
ok pokM

R−α
ok

�
l∈Kk\{o} plk + PT

�
j∈ΦBS\{k} R−α

oj + σ2

(3)

=
R−α

ok
pok

PT
M

R−α
ok

�
1 − pok

PT

�
+
�

j∈ΦBS\{k} R−α
oj + σ2

PT

. (4)

Zero Forcing (ZF) Based Transmission: Optional to MRT,
to mitigate the intra-cell interference with ZF precoding,
we compute Wk =

√
MHk


HT

k Hk

�−1
P1/2

k such that

wuk = Hk


HT

k Hk

�−1
eupuk

√
M and E

�
wH

okwok

�
=

E

�
eT

o


HT

k Hk

�−1
eo

�
Mpok = pok, where eu is a uth

column of identity matrix. Thus, the resultant SINR can be

1SINR terms for MRT precoding are simplified as E

���h̄T
okwok

��2� =

R−α
ok

pok
M

E

�
�hok�4

�
= R−α

ok
pok
M

�
M2 + M

� ≈ R−α
ok pokM ,

E

���h̄T
okwlk

��2� = R−α
ok

plk
M

E

���hT
okhlk

��2� = R−α
ok plk and

E

����h̄T
ojWj

���2

2

�
=

	
u∈Kj

E

����h̄T
ojwuj

���2
�

= R−α
oj

	
u∈Kj

puj =

R−α
oj PT .
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written as2

ΓZF
fk =

R−α
ok

pok

PT
M�

j∈ΦBS\{k} R−α
oj + σ2

PT

. (5)

It can be seen that the SINR expression for MRT in (4)
is more general than that for ZF in above. Thus, MRT based
SINR will be analyzed which can also provide insights about
ZF based SINR.

III. SUCCESS PROBABILITY ANALYSIS

In this section, considering MRT based SINR expression,
success probability is derived, followed by different use cases.

Due to concurrent transmissions, the interference at the
typical user becomes a dominant factor. From the user’s
perspective, to maintain a quality of service and to evaluate
the caching performance, the success probability measure is
considered and is defined as the probability that the achievable
rate of a typical user exceeds the rate threshold R0 for the f th

content in a typical time slot as

g(qf ) = Ek∈ΦBS {Pr (W log2 (1 + Γfk) ≥ R0)} , (6)

with W being the transmission bandwidth. For the whole
content set F , the ASP can be written as

P (p,q) = Ef {g(qf )} =
�
f∈F

pfg(qf ). (7)

Since the success probability is difficult to analyze with
respect to the PPP of BSs ΦBS and the SINR model in (4),
we focus on analyzing another point process with a more
tractable SINR model as long as both the point processes have
statistically equivalency, which is defined as follows.

Definition 1: Two stochastic point processes Φ1 and Φ2

with SINR models Γ1 and Γ2 are said to be statistically
equivalent if the SINR distribution at the typical user is same
for both the processes, i.e. Pr (Γ1 > T ) = Pr (Γ2 > T ) [29].

Since the evaluation of success probability is not straight-
forward with ΦBS for the SINR model in (4), we focus on
analyzing another PPP for a tractable SINR model as long as
both the PPPs are equivalent.

Lemma 2: The 2D-homogeneous PPP ΦBS and SINR
model in (4), is statistically equivalent to another 1D-point
process Φeq with density function λeq(d) = Cd, where C =
2πλBS

Γ(1+ 2
α ) . The equivalent SINR model for Φeq is given as

ΓMRT
fk,eq =

ξokd−α
ok

pok

PT
M

ξokd−α
ok

�
1 − pok

PT

�
+ Ifk + Ic

f + σ̄2
, (8)

where Ifk + Ic
f =

�
j∈ΦBS\{k} ξojd

−α
oj and σ̄2 = σ2

PT
.

Proof: Please refer to Appendix-A.
The above result transforms the homogeneous PPP into an
inhomogeneous PPP, along with the transformation of SINR

2For ZF precoding, SINR terms are given as E{|h̄T
okwok|2} =

R−α
ok pokME{|hT

okHk(HT
k Hk)−1eo|2} = R−α

ok
pok
M

E{|hT
okHkeo|2} =

R−α
ok

pok
M

E{�hok�4} ≈ R−α
ok pokM and E{�h̄T

ojWj�2
2} =

	
u∈Kj

E

{|h̄T
ojwuj |2} = R−α

oj

	
u∈Kj

pujM E{|hT
ojHk(HT

k Hk)−1el|2} =

R−α
oj

	
u∈Kj

puj

M
E{|hT

ojHkel|2} = R−α
oj PT .

expression from (4) to (8) with a planar distance path loss,
multiplied by auxiliary random variables, representing the
small scale fading. In the following, it will be shown that
the above statistical equivalent transformation can significantly
simplify the analysis of success probability, owing to exponen-
tially distributed auxiliary random variables ξoj .

Remark (Equivalent thinning based on caching): Based on
the f th content availability, the equivalent point process Φeq

can also be divided into two processes Φeq(f) and Φc
eq(f)

with densities qfλeq and (1 − qf )λeq .
Nearest BS Distribution: The cumulative density function

of the random distance dok, which represents the distance to
the closest BS having f th file, can be obtained from [30]

Pr(dok ≤ d) = exp

�
−
� d

0

qfλeq(z)dz

�
, (9)

yielding the probability density function of dok as

fdok
(z) = qfCz exp

�
−qfC

z2

2

�
. (10)

Remark (Inactive Probability): For a typical BS, the inactive
probability is the probability that it has no users scheduled and
is inversely proportional to the relative density of the users per
BS [31]. We assume the inactive probability to be negligible,
since the relative density is considered to be large.

Based on the statistical equivalent SINR model in (8), the
success probability of a typical user is given in the following
result.

Theorem 3: For the MRT transmission, the success proba-
bility at a typical user for the f th file can be expressed as

g(qf ) = Edok∈Φeq

�
exp

−d2
okwf − Tokdα

okσ̄2
��

, (11)

where wf = C (qfA + (1 − qf )B), A = α−1T
2/α
ok I(0), B =

α−1T
2/α
ok I(T−1

ok ), Tok = TPT

Mpok
· 1

1− T
M

�
PT
pok

−1
� , T = 2

R0
W − 1

and I(x) =
�∛

x
c2/α−1dc

1+c .
Proof: Proof is given in Appendix-B. For ZF based

transmission, Tok = TPT

Mpok
.

Corollary 4 (Path Loss Exponent Case): When α = 2,
the value of success probability reduces to

g(qf)

�����
α=2

= Edok∈Φeq

�
exp

−d2
ok


wf + Tokσ̄2

���
(12)

=
qf

2B + qf (2A − 2B + 1) + Tokσ̄2
. (13)

Corollary 5 (Linear Approximation): With exponential
approximation (e−x ≈ 1 − x), the success probability is
reduced to

g(qf ) ≈ 1 − Edok∈Φeq

�
d2

okwf + Tokdα
okσ̄2

�
(14)

= 1 − 2Γ(2)
qfC

wf − TokΓ(1 + α/2)
�

2
qfC

�α/2

σ̄2.

(15)



2308 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 69, NO. 4, APRIL 2021

The above approximation yields the resultant ASP as

P (p,q) ≈ 1 − 2A + 2B − 2B
�

f

pf

qf

−Tok
Γ(1 + α/2)
(0.5C)α/2

σ̄2
�

f

pfq
−α/2
f . (16)

Corollary 6 (Interference Limited Case): For the interfer-
ence limited case (σ2 → 0), the success probability is
computed as3

g0(qf ) = g(qf )

�����
σ2→0

= Edok∈Φeq

�
exp

−d2
okwf

��
(17)

=
qf

2B + qf (2A − 2B + 1)
. (18)

From the above equation, it can be seen that for interference
limited regime, the success probability is independent of the
density of BSs and users, and dependent on the caching
probabilities and the threshold. The reason behind is that the
power of both desired and interference signals increase with
the increase in the density of BSs, causing minor change in
the signal-to-interference ratio for interference limited system
and yielding the density-independent ASP. Further, for the
f th content, to maximize the success probability, caching
probability qf should be chosen according to the popularity,
the threshold and the cache size. For interference limited
networks, the resulting ASP for the content library F can be
written as

P0(p,q) = Ef {g0(qf )} =
�
f∈F

pfg0(qf ). (19)

In practice, the popularity is not known in advance. Based
on the CP profile in the previous time slots, content is cached
ahead of time, when needed i.e. requested by a user. To achieve
that, Q-learning approaches are presented in the next sections.

IV. Q-LEARNING

In this section, we first describe in brief about the dynamics
of the Q-learning system, followed by defining the elements
of Q-learning. Thereafter, using Bellman’s equations, the algo-
rithm for Q-learning is presented.

A. Dynamics

At the first content placement phase of the time slot t as
shown in Figure 2, the content is placed in BS caches via
caching action based on the information in the previous time
slot. After content delivery phase takes place, it is followed
by the information exchange phase, where the next state of
the system is revealed in terms of the CP pt. This observation
is used to compute the reward, which is used to update the
Q-values, and the next state is updated before the end of the
time slot t. Note that caching action is taken, before pt is
observed.

3g0(qf ) =

∞
0 exp(−z2wf )fdok

(z)dz = qfC

∞
0 z exp(−z2wf −

qfC · z2

2
)dz =

qf C

2wf +qf C


∞
0

exp(−t)dt =
qf

2(qf A+(1−qf )B)+qf
.

B. System States, Actions and Reward

1) States: At time slot t, the state of the system can be
captured in terms of the popularity in the tth time slot, and
the content status in the cache. Thus, the state in IE phase of
the time slot t is revealed as

st = (pt,qt) ∈
��

p
q

�
∈ [0, 1]2F :

pT 1 = 1
qT 1 = L

�
, (20)

where 1 is a column vector of ones, and qt denotes the content
placement decided based on pt−1. Therefore, the state contains
one length history, defining the present state of the system at
the end of time slot t.

2) Actions: A caching action is taken at the beginning of
the time slot t, and is defined as the content placement qt,

at = (qt) ∈
�
q ∈ [0, 1]F×1 : qT1 = L

�
. (21)

In state st, the action at+1 is decided. In other words, the
action qt+1 is selected based on the history (pt,pt−1), since
qt (in st) was chosen based on pt−1 in the similar way.

3) Transition Probability: The probability of transition from
states st to st+1 via the action at+1 can be defined as

Pr(st+1|st, at+1) = Pr
��

pt+1

qt+1

� ��� �pt

qt

�
,qt+1

�

= Pr(pt+1

���pt,qt) = Pr(pt+1

���pt),

where the last equality is obtained from the fact that the
popularity varies as a Markov process i.e. the popularity at
time t depends on that of time t−1. Since qt is chosen based
on pt−1, pt+1 is independent of qt.

4) Reward: Our objective is to maximize the long term
discounted ASP and the cache refresh rate. After observing
the popularity pt+1, the reward in the IE phase of the time
slot t is defined as a function of ASP and cache refresh rate
as

r (st, at+1, st+1) = P (pt+1,qt+1) − νqT
t+1 (1 − qt) , (22)

where ν is the weight controlling the preferred objective. It can
be noted that the next state is random. Thus, the average
reward per state can be computed as

R (st, at+1) = Es {r (st, at+1, s) |st, at+1}
= Ep {P (p,qt+1) |pt} − νqT

t+1 (1 − qt)

= g (qt+1)
T

Ep {p|pt} − νqT
t+1 (1 − qt) ,

where gT (q) = [g(q1), . . . , g(qF )]. The above reward is
composed of two terms. The first term is the ASP, which
has been considered as a measure of caching. The better
is the content placement, the better is the ASP and the reward.
In the second term, (1−qf,t) denotes the not-cached portion of
the f th content among BSs, while qf,t+1 denotes the portion
being cached in the next time slot. Thus, (1 − qf,t) qf,t+1

implies the portion of the f th content being updated, and so,
the term qT

t+1 (1 − qt) represents the average cache refresh
rate.

In the above, the term Ep {p|pt} represents the conditional
mean estimate of the popularity at time t+1, given the previous
CP information pt. In other words, it suggests that the caching
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problem can also be solved using one-step prediction methods
for Markov popularities, when ASP is the only objective.
However, cache refresh rate depends on the choice of actions
in the previous time slot, and hence cannot be optimized via
prediction methods.

C. Value Functions

For the above model with the long term expected discounted
reward, the state-value function can be written as

V ({at} , s) = E{st}

� ∛�
t=0

γtR (st, at+1)
���s0 = s

�
(23)

= E{pt}

� ∛�
t=0

γtg (qt+1)
T

Ep

�
p
���pt

� ���p0 = p

�

+ ν

∛�
t=0

γtqT
t+1 (1 − qt) (24)

The above value function can be maximized with respect to
the actions {at} as

V ∗ (s)
= max

{at}
V ({at} , s) (25)

= max
{at,t>0}

E{st}

�
R (s0, a1) +

∛�
t=1

γtR (st, at+1)
���s0 = s

�

= max
{a1,at,t>1}

R (s, a1) + γE{st}

� ∛�
t=1

γt−1R (st, at+1)
���s
�

= max
a1

R (s, a1) + γ max
{at,t>1}

Es1|sE{st,t≥1}

� ∛�
t=1

γt−1R (st, at+1)
���s1, s0 = s

�

= max
a1

R (s, a1) + γ max
{at,t>1}

Es1|s [V ({at} , s1)] (26)

= max
a1

R (s, a1) + γEs1|s [V ∗ (s1)] , (27)

which is known as the Bellman’s equation. Similarly, the opti-
mal state-action Q-function is defined as

Q∗ (s, a) = R (s, a) + γEs1|s [V ∗ (s1)] , (28)

representing the expected total discounted reward along a
trajectory starting at state s, obtained by choosing a as the
first action and following the optimal trajectory afterwards.
The optimal action set can thus be obtained as

a∗
t+1 = arg max

a
Q∗ (st, a) , (29)

which is optimal in the sense that V
�

a∗
t+1

�
, st

�
= V ∗ (st)

and it leads to a mapping π∗ : S → A, known as the
optimal policy, determining the optimal decision rule for a
given Markov process.

D. Update in Q-Learning

A Markov policy is any mapping πt defined over S × A
generating an action process {at} such that πt (st, at+1) =
Pr (at+1|st). A policy πt is stationary if it does not depend
on t and deterministic if it assigns probability 1 to a single

action is each state. Notice that the optimal policy can be
obtained from Q∗ by an iterative method such as fixed
point iteration [32]. However, it has two requirements. First,
the transition probabilities should be known. Second, for large
number of states and actions, Q∗ is a huge sized matrix, which
has large storage and computation requirements. To solve the
first problem, Watkins and Dayan [33] proposed Q-learning
algorithm, which proceeds as follows. Consider the Markov
process tuple M = (S,A, PT , r, γ) and let {st} be an infinite
sample trajectory of the underlying Markov chain obtained
with a policy πt, yielding actions {at} and rewards {rt}.
Given any initial estimate Q0, Q-learning successively updates
this estimate using the rule

Qt+1 (st, at+1) = Qt (st, at+1) + βtΔt, (30)

where {βt} is a step-size sequence and Δt is the temporal
difference at time t,

Δt =
�
rt + γ max

a�
Qt (st+1, a

�)
�
− γQt (st, at+1) , (31)

with rt = r(st, at+1, st+1) being the instantaneous reward in
time slot t.

If both S and A are finite sets, each estimate Qt is simply
|S| × |A| matrix. In that case, the convergence of Q-learning
and several other related algorithms has been thoroughly
studied in [34]. However, if either S or A are infinite or very
large sets, explicitly representing each element of Qt becomes
infeasible to compute, update and store, and thus, some form
of compact representation is needed. In this work, we present
the function approximation with Q-learning, which also attains
convergence.

V. Q-LEARNING WITH FUNCTION APPROXIMATION

In this section, first Q-function is linearly approximated and
then non-linear based approximation is presented, along with
the corresponding convergence analysis.

A. Linear Function Approximation (LFA)

Linear function approximation is a popular method for
making Q-learning applicable to real-world settings [26].
A linear approximation in our setup is inspired by the additive
form of the instantaneous costs in the ASP approximation
in (16). Specifically, we propose to approximate instantaneous
Q(st, at+1) to Qθ(st, at+1) in the time slot t + 1 as

Qθ(st, at+1)

= θ1 (1 − 2A + 2B) − 2θ2B
�

f

pf,t

qf,t+1

− θ3Tok
Γ(1 + α/2)
(0.5C)α/2

σ̄2
�

f

pf,tq
−α/2
f,t+1 − θ4νqT

t+1 (1 − qt)

(32)

=
4�

i=1

ui (st, at+1) θi = uT (st, at+1)θ. (33)

where θT = [θ1, . . . , θ4] are the coefficients and uT =
[u1, . . . , u4]. Note that four linear coefficients comes from the
fact that there are four terms in the ASP expression in (16).
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Similar to Q-updates, in the approximation settings,
the underlying idea is to apply the gradient descent to obtain
the update rule for the approximated Q-learning

θt+1 = θt + αt∇θQθ (st, at+1)Δt (34)

= θt + αtu (st, at+1)Δt, (35)

where Δt is the same temporal difference as defined in (31)
with Q replaced by Qθ according to (32).

To establish the convergence of the algorithm (35), the
arguments based on an ODE (ordinary differential equation)
is adopted [35], establishing the trajectories of the algorithm
to closely follow those of an associated ODE with a globally
asymptotically stable equilibrium point.

B. Convergence of Q-Learning With LFA

Here, we identify the conditions that ensure the convergence
of Q-learning with linear function approximation as described
in (35). To proceed, we first provide some definitions.

Given an MDP M = (S,A, PT , r, γ) with compact state
space S ⊂ R

2F . Let (S, Pπ) be the Markov chain induced by
a fixed policy π. We assume the chain (S, Pπ) to be uniformly
ergodic with invariant probability measure μS and policy π
to verify π (s, a) > 0, ∀a ∈ A and μS-almost all s ∈ S.
We denote μπ as the probability measure defined for each
measurable set S ⊂ S and each action a ∈ A as

μπ (S × {a}) =
�

S

π (s, a)μS (ds) . (36)

Since the functions ui are bounded and linearly independent,
we define the covariance matrix

Σπ = Eπ

�
u (s, a)uT (s, a)

�
=
�
S×A

uuT dμπ . (37)

For fixed θ and s, let the set of maximizing actions be denoted
as

As,θ =
�
a∗

θ

��θTu (s, a∗
θ) = max

a
θTu (s, a)

�
, (38)

which is also called the set of greedy actions. The correspond-
ing θ-dependent covariance matrix can be written as

Σ∗
θ = Eπ

�
u (s, a∗

θ)uT (s, a∗
θ)
�

. (39)

It can be noted that the difference between Σπ and Σ∗
θ is that

the former selects actions according to π, while the latter select
greedy policy depending on θ. With that, the convergence
result is stated in the following.

Lemma 7: Given M, π and u with finite state space, if ∀θ,
Σπ � γ2Σ∗

θ and the step size sequence verifies
�

t βt = ∞
and

�
t β2

t < ∞, then the algorithm (35) based on linear
approximation converges w.p. 1.

Proof: Proof is based on a standard ODE argument [36,
Th. 17] and can be found in [35].
To satisfy the condition on the step size sequence, βt is
updated as βt = βt−1 (1 − �β), where �β < 1 is the decay
factor, as presented in the Algorithm 1. The condition Σπ �
γ2Σ∗

θ is quite restrictive, especially when γ is close to 1.

Algorithm 1 Conventional, LFA and NLFA Based Q-Learning
Algorithms

Input: Q(s, a) = 0, ∀(s, a), β0, �0
Output: Q∗(s, a) for optimum policy.
1: for e = 1, 2, . . . , max_episodes do
2: for t = 1, 2, . . . , max_steps do
3: Take �-greedy action selection:

at+1 =

�
U {1, . . . , |A|} , U(0, 1) < �t,

arg max
b

Q(st, b), otherwise.

4: Observe next state st+1 = (pt+1,qt+1).
5: Obtain reward rt = r(st, at+1, st+1).
6: For Q-learning, update Q-values via (30).
7: For Q-learning with LFA, update θ’s by (35).
8: For Q-learning with NLFA, update via (41).
9: end for

10: Update �t = �t−1 (1 − �δ) and βt = βt−1 (1 − �β).
11: end for

This condition essentially requires that for every θ and for
state s, we should have

max
a∈A

uT (s, a)θ ≈ Eπ

�
uT (s, a)θ

�
.

Therefore, such condition implies that the learning policy π
is close to the policy that the algorithm is meant to compute.
In other words, the maximization above yields a policy close
to the policy used during learning. To satisfy this condition,
the authors in [35] update the policy for taking actions at every
iteration. In the proposed approach, we explore and update
policy based on �-greedy actions, where the exploration factor
is updated at each epsiode, in turn updating the policy. The
exploration factor is updated as �t = �t−1 (1 − �δ) , where �δ is
the exploration decay rate. It means as the iterations progress,
the policy is close to optimum and less exploration is needed.

C. Non-Linear Function Approximation (NLFA)

Although LFA is popular, many real world applications
cannot be modeled with linear functions. Here, inspired by
the ASP for interference limited system in (18), we propose
to approximate the instantaneous Q(st, at+1) to Qθ(st, at+1)
in time slot t + 1 as

Qθ(st, at+1) =
�
f∈F

pf,t

�
θ1qf,t+1

2B + qf,t+1 (2A − 2B + 1) θ2

−θ3νqf,t+1 (1 − qf,t)

�
, (40)

where θT = [θ1, . . . , θ3] are the coefficients. Each of the
coefficient is associated with the action qf,t+1. In these set-
tings, the update rule for the NLFA approximated Q-learning
is changed to

θt+1 = θt + αt∇θQθ (st, at+1)Δt (41)
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where Δt is the same temporal difference as defined in (31)
according to (32). The gradient can be calculated as

∂Qθ

∂θ1
=
�
f∈F

pf,t+1
qf,t+1

2B + qf,t+1 (2A − 2B + 1) θ2

∂Qθ

∂θ2
= −

�
f∈F

pf,t+1

θ1q
2
f,t+1 (2A − 2B + 1)

(2B + qf,t+1 (2A − 2B + 1) θ2)
2

∂Qθ

∂θ3
= −ν

�
f∈F

pf,t+1qf,t+1 (1 − qf,t) .

To establish the convergence of the algorithm (41), a similar
type of approach is adopted as in [35], establishing the trajec-
tories of the algorithm to closely follow those of an associated
ODE with a globally asymptotically stable equilibrium point.
This convergence result is given as follows.

Lemma 8: Given M, π and {A, B} with finite state space,
if the step size sequence verifies

�
t βt = ∞,

�
t β2

t < ∞,
and the following conditions are satisfied

Eπ {b1 (b∗1γ − b1)} < 0, (42)

Eπ {b1 (b∗1γ − b1)} · Eπ {b3 (b∗3γ − b3)}
−Eπ {b1 (b∗3γ − b3)} · Eπ {b3 (b∗1γ − b1)} < 0, (43)

Eπ {b1 (c∗γ − c)} < 0, (44)

Eπ {b3 (c∗γ − c)} < 0, (45)

where4 b1 = 1
2B

�
f∈F pfqf , b3 = −ν

�
f∈F pfqf

�
1 − q�f

�
,

c = −�f∈F pfq2
f

2A−2B+1
4B2 , then the algorithm (41) based

on non-linear approximation converges w.p. 1.
Proof: Proof is given in Appendix-C.

The above conditions essentially implies that at convergence,
the variables b1, b3, c should be closed to the corresponding
optimum values. Similar to the case in LFA, these conditions
are satisfied by properly choosing γ and the exploration factors
�β and �δ as mentioned in the Algorithm 1.

VI. SIMULATION RESULTS

In simulations for ASP, we assume M = 256 antennas
for channel hardening, qf = 0.2 for moderately popular files,
λBS = 20, cT = 0.6, SNR σ̄−2 = 30dB and α = 3. Each of
Q-learning algorithms is run for interference-limited systems
with threshold value fixed to 0.01. Q-learning algorithm is
run for finite states finite policies (FSFP) scenarios with the
parameters given as follows: number of popularity profiles
in the finite set {p ∈ P}, |P| = 8, the cardinality of the
set of caching probabilities |A| = 32, content library size
F = 1024, cache size L = 32, decay factor �β = 0.1, learning
rate β1 = 0.7, the number of steps per episode is 103 and
maximum number of episodes is 100. Note that each algorithm
is initialized with the same random seed. Since the refresh rate
is much higher that the ASP, we choose ν = 0.005.

A. ASP Versus Threshold and BS’s Density

Figure 3 shows the variations of the success probability with
the threshold for a fixed value of λBS in (a), and for different

4Also note that the variables b1, b3, c are a function of (s, a). To avoid
cumbersome notations, these notations have been shortened.

Fig. 3. Success probability versus T for a fixed value λBS = 20 in (a),
and for different value of λBS in (b).

values of λBS in (b). It can be observed that as the threshold
is increased, the success probability decreases, while verifying
the theoretical results. As compared to MRT, ZF provides
better ASP at all thresholds, although the difference in ASP
is negligible at lower thresholds. From the second sub-figure,
it can be seen that the success probability is independent of
the density of BSs. It happens due to the fact that both the
signal and interference powers are increased for an increase
in the density of BSs, causing very small changes in SINRs
and keeping the ASP unchanged with respect to λBS .

B. Convergence Plots

1) With Single Q-Entry Updation: Figure 4(a) plots the
episodic progress of average rewards (on the left axis) and
average ASPs (on the right axis) for three different approaches,
namely conventional Q-learning, and the Q-learning with
LFA and NLFA with single entry updates as in conventional
Q-learning. The approach with LFA (or NLFA) with single
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Fig. 4. Convergence of average reward and average ASP versus number of episodes for single-entry update based RL algorithms for a library size F = 1024
and cache size L = 32 with 256 states and 32 actions in (a), and with 1024 states and 64 actions in (b).

Fig. 5. Convergence of average reward and average ASP versus number
of episodes for single-entry update based RL algorithms for a library size
F = 1024 and cache size L = 32 with 256 states and 32 actions.

entry update is like approximated conventional Q-learning,
where the Q-matrix is maintained and one entry is updated
per step observation. It can be observed that as episodes
progress, these Q-learning approaches achieve convergence
around 40 episodes, and the achieved stable point is approxi-
mately same along with the approximately similar convergence
path. A similar trend is observed as in Figure 4(b) for the larger
set of states and actions with |P| = 16 and |A| = 64. These
results demonstrate successful applicability of the proposed
linear and non-linear approximations for the present scenario
with finite set of states and actions.

Figure 5 shows the plot for the averaged mean squared
error (Δ2

t ) for the same algorithms with single entry update.
It can be observed that Q-values reaches a better convergence
when the approximation is used. This is due to the fact
that the θ-variables are updated in each step, in contrast to

the occasional entry updates in the conventional Q-learning.
In other words, each single Q-value is updated based on all
the previous experiences of other Q-values, since θ-variables
are common for all the states and actions. Next, we show the
results, when all the necessary required entries are updated in
each step.

2) With All Necessary Q-Entries Updates: Figure 6(a) plots
progress of the averaged reward per episode, while the aver-
aged mean squared error (Δ2

t ) with respect the number of
episodes is given in (b). As compared to single entry Q-update,
the first notable fact observed from (a) is that LFA/NLFA
starts giving better rewards, just after few episodes, while
Q-learning needs many observation with many episodes. Note
that the whole Q-matrix needn’t require updation in each
step; only the necessary Q-values can be computed by the
updated θ-variables for the action selection by the agent in
the next step. Further, it can be seen that all the three methods
show convergent behavior, and the NLFA-based Q-learning
provides the best value. Also, the LFA-based learning also
provides better performance than the conventional Q-learning.
The reason behind is the number of variables that needs to be
updated or learned. In the conventional RL, the number of
learning variables are huge, while in function approximated
ones, the number of these variables is small. Further, better
performance of NLFA than that of LFA is observed due to
the fact that NLFA is able to better approximate the ASP
than the linear expression in LFA. Although the converged
mean squared errors for three methods are different, Figures 4
demonstrate the approximately similar reward performances,
which is due to the fact that the actions depends on the relative
Q-values, rather than the individual values. Thus, if the order
of some of those values matches, approximately similar results
can be obtained.

C. ASP Versus Cache Size

Figure 7 depicts the average ASP at convergence with
respect to the cache size, while keeping library size fixed.
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Fig. 6. Progress of average reward per episode versus the number of steps in
(a) and average mean squared error versus episodes in (b) for whole Q-update
based RL algorithms for F = 1024 and L = 32 with 256 states and 32
actions.

Fig. 7. Average ASP with respect to cache size for F = 1024 with 256
states and 32 actions.

It can be seen that as the cache storage is increased,
the ASP improves. For lower cache sizes, NLFA provides the

better ASP than that of LFA, which reflects the limitations
of LFA.

VII. CONCLUSION

In this article, for a PPP network with massive-MIMO
base stations, two function approximation based reinforcement
learning approaches are proposed for ASP maximization and
cache refresh rate minimization. We first derive the ASP for
multi-user massive MIMO systems and conclude that for inter-
ference limited systems, the resulting ASP gets independent of
the densities. Further, global content popularities are modeled
using a Markov chain. Given a set of caching probabilities,
conventional Q-learning and function approximation based
Q-learning methods converge and yield the similar optimal
content placement policy. The function approximated learning
requires only a constant number of parameters to be updated,
while the recent Q-learning model [26] in caching context
requiring parameters updates proportional to number of states
and actions. Using the synthetic dataset, simulations verify
the equivalent performance of the approximated Q-learning
approaches with the Q-learning approach without approxima-
tion, albeit with much lower time and space computational
complexity.

APPENDIX

A. Proof of Lemma 2

Since SINR model of interest is a function of the distance
between the typical and the BS only, but not a function of
the azimuth angles. Thus, ΦBS is statistically equivalent to
another 1D-inhomogeneous PPP Φeq1 = {ri, i ∈ N} with
density function λeq1(r) =

� 2π

0 λBSrdθ = 2πλBSr. The
SINR model for Φeq1 is the same as the one for ΦBS . Let
us define R−α = ξd−α ∈ Φeq . Then, dα = ξRα and
dα−1dd = ξRα−1dR =⇒ dd = dR−1dR = ξ1/αdR. It can
be equated to another PPP Φeq as

EΦeq1

⎡
⎣ �

r∈Φeq1

1[r,r̄] (r)

⎤
⎦

= Eξ,Φeq

⎡
⎣ �

d∈Φeq

1[d,d̄] (d)

⎤
⎦

� r̄

r

λeq1(r)dr = Eξ

�� d̄

d

λeq(d)dd

�

= Eξ

�� r̄

r

λeq(ξ1/αr)ξ1/αdr

�

=
� r̄

r

�� ∛

0

a
�
ξ1/αr

�b

ξ1/α exp(−ξ)dξ

�
dr

= a

� r̄

r

rb

�� ∛

0

ξ(b+1)/α exp(−ξ)dξ

�
dr

� r̄

r

2πλBSrdr = aΓ
�

1 +
b + 1

α

�� r̄

r

rbdr,

where λeq(d) = Cdb is assumed. Equating both sides yields
b = 1 and C = 2πλBS

Γ(1+ 2
α ) = πλBSα

Γ( 2
α ) .
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B. Proof of Theorem 7

Based on the statistical equivalence, the success probability
can be computed for T = 2

R0
W − 1 as

g(qf ) = Pr

ΓMRT

fk > T
�

= Pr

ΓMRT

fk,eq > T
�

(46)

= Pr

⎡
⎣ ξokd−α

ok
pok

PT
M

ξokd−α
ok

�
1 − pok

PT

�
+ Ifk + Ic

f + σ̄2
> T

⎤
⎦ (47)

= Eξ,Φeq

�
Pr

�
ξok > Tokdα

ok


Ifk + Ic

f + σ̄2
� �����dok

��

(48)

= Eξ,Φeq

"
exp

−Tokdα
ok


Ifk + Ic

f + σ̄2
��#

, (49)

where the last step is obtained from the exponential dis-
tribution of ξok, and Tok = T

M
pok
PT

−T
�
1− pok

PT

� = TPT

Mpok
·

1

1− T
M

�
PT
pok

−1
� . For equal power allocation pok = PT

Kk
,

the effective threshold Tok = TKk

M · 1
1− T

M (Kk−1)
changes with

the number of users. On the other hand, if per user power
allocation is constant pok = cT PT i.e. the total transmit
power budget is increased with the increase in number of
users, Tok = T

McT
· 1

1− T
M (c−1

T −1) = T̄ is a constant. For ZF,

Tok = TPT

Mpok
.

Further, since the terms in Ifk+Ic
f are independent, the first

term in the above equation can be simplified as

Eξ,Φeq

�
exp

−Tokdα
okIfk

��
(50)

= EΦeq

⎧⎨
⎩

'
j∈Φeq(f)\{k}

Eξ

�
exp

−ξd−α
oj Tokdα

ok

��⎫⎬⎭ (51)

= EΦeq

⎡
⎣ '

j∈Φeq(f)\{k}

1
1 + d−α

oj Tokdα
ok

⎤
⎦ (52)

(a)
= exp

�
−
� ∛

0

�
1 − 1

1 + d−αTokdα
ok

�
qfλeq(d)dd

�

= exp
�
−
� ∛

0

�
qfCd

1 + dαT−1
ok d−α

ok

�
dd

�
(53)

(b)
= exp

�
−Cqfα−1T

2/α
ok d2

ok

� ∛

0

t2/α−1dt

1 + t

�
(54)

(c)
= exp

"−CqfAd2
ok

#
(55)

where in (a), Campbell’s theorem is invoked; in (b),
by change of variables t = dαT−1

ok d−α
ok , we get dt = dd ·

αdα−1T−1
ok d−α

ok = dd ·αd−1t = dd ·αt

T−1

ok d−α
ok t−1

�1/α
and

d · dd = α−1d2t−1dt = α−1T
2/α
ok d2

okt2/α−1dt; (c) follows
from letting A = α−1T

2/α
ok I(0) and I(x) =

�∛
x

c2/α−1dc
1+c .

Similarly, the other term of (49) can be written as

Eξ,Φeq

�
exp

−Tokd
α
okIc

f

��
= exp

"−(1 − qf )CBd2
ok

#
,

(56)

where B = α−1T
2/α
ok I(T−1

ok ). Substituting (55) and (56)
into (49) gives the required expression in (11).

C. Proof of Lemma 8

To prove the convergence of non-linear function approxima-
tion based Q-learning algorithm, we leverage the Taylor series
approximation for Q-function as

Qθ(s, a) ≈ bT θ + θT Cθ,

where bT = ∇T
θ Qθ

���
θ=0

= [b1, 0, b3] =�
1

2B

�
f∈F pfqf , 0,−ν

�
f∈F pfqf

�
1 − q�f

��
and C =

∇θ∇T
θ Qθ

���
θ=0

=

⎡
⎣ 0 c 0

c 0 0
0 0 0

⎤
⎦ with c = −�f∈F pfq2

f
2A−2B+1

4B2 .

Let maxa Q(s, a) = bT
θ θ + θTCθθ. The proof is established

via a standard ODE argument. The assumptions on the chain
(M, π), the function u and μX -almost every x ∈ X ensure
the applicability of the result in [36, Th. 17, p239]. Therefore,
the convergence of the algorithm can be analyzed in terms
of the stability of the equilibrium points of the associated
ODE

θ̇ = Eπ {∇θE} , (57)

where E = (r(s, a, s�) + γ maxb Qθ(s, b) − Qθ(s, a))2 and

Eπ {∇θE} = Eπ

�
∂E
∂Qθ

∇θQθ

�

= Eπ

�
r(s, a, s�) + γ

�
bT

θ θ + θTCθθ
�

−
�
bT θ + θT Cθ

� �
(b + Cθ)

�
.

If the ODE in (57) has a global asymptotically stable point,
the algorithm θt+1 = θt + βt∇θE converges w.p. 1 [36]. Let
θ1 and θ2 be two trajectories of ODE starting at different
initializations, and let θ̃ = θ1 − θ2. From (57), we get

∂

∂t
�θ̃�2

2 = 2θ̃
T
�
θ̇1 − θ̇2

�
= 2θ̃

T
Eπ

�
γ (b + Cθ1) (bθ1 + Cθ1θ1)

T
θ1

− (b + Cθ1) (b + Cθ1)
T

θ1

− γ (b + Cθ2) (bθ2 + Cθ2θ2)
T

θ2

+ (b + Cθ2) (b + Cθ2)
T θ2

�
.

To get ∂
∂t�θ̃�2

2 < 0, we need to have the following inequalities
as

γθ̃
T

Eπ

�
b

bT

θ1
θ1 − bT

θ2
θ2

��
< θ̃

T
Eπ

�
bbT

�
θ̃, (58)

γθ̃
T

Eπ

�
Cθ1θ

T
1 bθ1 − Cθ2θ

T
2 bθ2

�
< Eπ

�
tr
�
bθ̃

T
Cθ1θ

T
1

�
− tr

�
bθ̃

T
Cθ2θ

T
2

��
, (59)

γEπ

�
θ̃

T
b tr

�
Cθ1θ1θ

T
1 − Cθ2θ2θ

T
2

��
< Eπ

�
θ̃

T
b tr

�
Cθ1θ

T
1 − Cθ2θ

T
2

��
, (60)

γθ̃
T

Eπ

�
Cθ1θ

T
1 Cθ1θ1 − Cθ2θ

T
2 Cθ2θ2

�
< θ̃

T
Eπ

�
Cθ1θ

T
1 Cθ1 − Cθ2θ

T
2 Cθ2

�
. (61)
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If bT
θ1

θ2 ≤ bT
θ2

θ2, the first inequality in (58) reduces to

θ̃
T

Eπ

�
bbT

θ1

�
θ̃γ < θ̃

T
Eπ

�
bbT

�
θ̃, yielding

Eπ

�
bbT

θ1

�
γ ≺ Eπ

�
bbT

�
. (62)

Similarly, the second inequality is satisfied, if above condition
is followed. The third inequality is satisfied if

Eπ

�
bV(Cθ1)

T
�

γ < Eπ

�
bV(C)T

�
, (63)

where V(·) denotes the vectorization operation. This inequality
implies Cθ1γ ≺ C for most of (s, a) in the expectation, which
leads to the forth inequality satisfied. This means, θ̃ converges
asymptotically to the origin i.e. the ODE in (57) is globally
asymptotically stable. Since the ODE is time-invariant, there
exists one globally asymptotically stable point for the ODE.

The conditions can be simplified as follows.
Eπ

�
b (bθ1γ − b)T

�
=
�

a π (s, a)b (bθ1γ − b)T .

Eπb (bθ1γ − b)T

= Eπ

⎡
⎣ b1

0
b3

⎤
⎦
⎡
⎣ b∗1γ − b1

0
b∗3γ − b3

⎤
⎦

T

=

⎡
⎣Eπb1 (b∗1γ − b1) 0 Eπb1 (b∗3γ − b3)

0 0 0
Eπb3 (b∗1γ − b1) 0 Eπb3 (b∗3γ − b3)

⎤
⎦ ≺ 0

if Eπb1 (b∗1γ − b1) > 0 and Eπb1 (b∗1γ − b1) ·
Eπb3 (b∗3γ − b3) − Eπb1 (b∗3γ − b3) · Eπb3 (b∗1γ − b1) < 0.
Further, the second condition reduces to

Eπ

�
bV(Cθ1)

T γ − bV(C)T
�

=

⎡
⎣0,

Eπb1 (c∗γ − c) 0 Eπb1 (c∗γ − c)
0 0 0

Eπb3 (c∗γ − c) 0 Eπb3 (c∗γ − c)
,0

⎤
⎦ < 0,

which leads to Eπb1 (c∗γ − c) < 0 and Eπb3 (c∗γ − c) < 0.
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