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Abstract— Caching popular contents in advance is an impor-
tant technique to achieve low latency and reduce the backhaul
costs in future wireless communications. Considering a network
with base stations distributed as a Poisson point process, optimal
content placement caching probabilities are obtained to maximize
the average success probability (ASP) for a known content
popularity (CP) profile, which in practice is time-varying and
unknown in advance. In this paper, we first propose two online
prediction (OP) methods for forecasting CP viz., popularity
prediction model (PPM) and Grassmannian prediction model
(GPM), where the unconstrained coefficients for linear prediction
are obtained by solving constrained non-negative least squares.
To reduce the higher computational complexity per online round,
two online learning (OL) approaches viz., weighted-follow-the-
leader and weighted-follow-the-regularized-leader are proposed,
inspired by the OP models. In OP, ASP difference (i.e, the gap
between the ASP achieved by prediction and that by known
content popularity) is bounded, while in OL, sub-linear MSE
regret and linear ASP regret bounds are obtained. With Movie-
Lens dataset, simulations verify that OP methods are better for
MSE and ASP difference minimization, while the OL approaches
perform well for the minimization of the MSE and ASP regrets.

Index Terms— Linear prediction, caching, Poisson point
process (PPP), online learning.

I. INTRODUCTION

W ITH the continuous development of various intelligent
devices such as smart vehicles, smart home appliances,

mobile devices, etc, and various sized innovative application
services such as news updates, high quality video feeds,
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software updates, etc., wireless mobile communications has
been experiencing an unprecedented traffic surge with a lot of
redundant and repeated information, which limits the capacity
of the fronthaul and backhaul links [1]. To lower the redundant
traffic, caching has emerged as an effective solution for
reducing the peak data rates by pre-fetching the most popular
contents in the local cache storage of the base stations (BS).
In the recent years, caching at the BS is actively feasible
due to the reduced cost and size of the memory [2]. In the
cache enabled macro-cell networks, heterogeneous networks,
D2D networks, etc [2], given a set of a content library and the
respective content popularity (CP) profile, content placement
and delivery have been investigated in order to optimize the
various performance measures like backhaul latency delay [3],
server load [4], cache miss rate [5], [6], etc. With the known
CP profile, reinforcement learning approach [7] is presented
for learning the content placement matrix. In [3], femto-
caching is modeled as disjoint set cover problem. However, in
practice, CP profile is time-varying and not known in advance,
therefore, it needs to be estimated from the past observations
of the content requests. Deep learning based prediction is
employed with huge training data in [8], [9]. In [10], auto
regressive (AR) prediction cache is used to predict the number
of requests in the time series. Linear prediction approach
is investigated for video segments in [11]. Transfer learning
methods are used in [12] by leveraging content correlation
and information transfer between time periods. To learn
CP independently across contents, online policies are pre-
sented for cache-awareness in [13], low complexity video
caching in [1], [14], user preference learning in [15], etc.
These works are employed for a particular system with the
fixed number of BSs and users, i.e., the statistical performance
of the network as whole is lacking with respect to content
delivery in the physical layer.

Parallelly, in the literature [5], [6], [16], geographical
caching in the Poisson point process (PPP) network is
employed for multi-cell system to maximize cache hit rate with
respect to the content placement probabilities (CPPs), which
represent availability of the contents at the BSs. Similarly,
in [17], the area success probability and area spectral efficiency
are maximized for CPPs. In these works, PPP has been a useful
tool to assess the performance of a given network. Therefore,
it is important to understand the caching performance varia-
tions with respect to time [18]. The above existing works with
PPP assume the CP profile to be known or unchanged over
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time. In practical scenarios, the CP changes dynamically in
both time and space dimensions owing to randomness of user
requests, and needs to be predicted for the efficient caching
placements. Therefore, in addition to PPP analysis, we inves-
tigate the CP prediction models under dynamic scenarios, and
its effect on the caching, which have not been investigated in
this context to the best of the authors’ knowledge.

A. Motivation and Contributions

In this paper, for the PPP network where both the BS and
users are distributed as homogeneous PPP and content requests
are characterized using a global CP profile, we compute
the average success probability (ASP) caching measure as a
function of CPs and CPPs. ASP is the probability of successful
transmission of the content in the physical layer. From caching
perspective, it is a measure for content placement as well
as content delivery. Further, to optimize ASP for a given
CP profile, an algorithm is proposed, which reduces the ASP
maximization with respect to CP and CPPs to the prediction
of CPs only. To optimize ASP for the future time slots,
online prediction (OP) and online learning (OL) methods
are investigated for the prediction of CP profile for the
next time slot. The prediction performance is measured by
mean squared error (MSE), while caching is evaluated via
ASP. Therefore, the challenge is to investigate the prediction
approach to maximize the ASP. It is shown at the end of
section III that the joint optimization of ASP and MSE is
non-convex and leads to a fixed MSE reduction. Therefore,
separate prediction approaches based on MSE are carried out.
Towards that, for OP methods, linear popularity prediction
model (PPM) and non-linear Grassmannian prediction model
(GPM) are proposed, and the respective prediction MSEs
and ASP differences are analyzed. The motivation behind
using linear prediction is that the parameters controlling the
popularity change (such as location, time, etc.) can be modeled
using linear predictors [19], and are already present in the
past observations. However, a constrained non-negative least
squares (CNNLS) optimization is required to solve per online
round. Therefore, to reduce the computational complexity,
OL methods are investigated which are inspired by
PPM and GPM. In OL methods, weighted follow-the-leader
(FTL) and weighted follow-the-regularized-leader (FoReL)
are presented and the corresponding MSE and ASP regret
bounds are analyzed. The difference between OP and OL
is that OP yields a linear sum of recent past observations
for prediction, whereas OL provides a convex sum of all the
past ones. In simulations, considering MovieLens dataset [20],
the MSE, ASP and the respective regrets are verified for both
OP and OL methods. It shows that OP methods are suitable
when MSE and ASP difference are minimized, while for the
regret minimization, OL approaches provide better results. The
contribution of this paper is summarized as follows:

• For a network with PPP distributed BSs and users, we find
the optimum CPPs to maximize the ASP, when the
popularity distribution is known. It shows that there are
three kinds of contents viz., most popular, mid-popular
and least popular. To maximize the ASP, most popular
content is placed in each cache, and the least popular ones

should be omitted, while the mid-popular content needs
strategic placement proportional to square-root of content
popularity (SCP). We provide the method to find the
indices of the contents of these three kinds.

• For a given CP profile, the ASP maximization with
respect to CP and CPPs is reduced to the predic-
tion of CPs only. Therefore, we start with an intuitive
PPM approach. However, the novel use of uncon-
strained coefficients which enables to the predict any
positive/negative change in CP, leads to CNNLS with
additional sum constraint. This CNNLS is solved by
modifying the existing fast-NNLS algorithm, which does
not deal with additional constraints except non-negativity.
Further, to improve the ASP whose optimum value is
proportional to SCP, GPM is proposed to predict SCP.

• Since the OP methods require to solve an optimization
problem per online round, to reduce the computational
complexity, OL methods (weighted-FTL and weighted-
FoReL) are presented in order to minimize the MSE and
ASP regrets respectively. These methods are inspired by
PPM and GPM respectively.

• In OP, the bounds on the ASP difference are derived
which is minimized when CPs (for mid-popular contents)
are close to uniform. The analysis for regret bounds
show that they achieve sub-linear MSE regret and linear
ASP regrets.

• These analysis for both OP and OL methods are verified
via simulations for the MovieLens dataset. ASP and
ASP-regret are better for GPM and weighted-FoReL
respectively, whereas for MSE and MSE-regret, PPM and
weighted-FTL respectively provides better performance.

B. Organization

The organization of the paper is as follows: section II
describes the system model. In section III, ASP has been
maximized. For time-varying popularities, the next section IV
explains the online prediction methods, while the following
section V presents the online learning approaches. Simulation
results are provided in section VI. Section VII concludes the
paper.

C. Notations

Scalars, vectors, matrices and sets are represented by lower
case (a), lower case bold face (a), upper case bold face (A)
and calligraphic A letters respectively. Transpose and Her-
mitian transpose product of matrices are denoted by (·)T and
(·)† respectively. The notations � · �2 or � · �, and � · �F
denote the l2 norm and Frobenious norm. D(Ai) denotes a
block diagonal matrix with matrices Ai as its block diagonal
components. [N ] and |F| denote the set {1, . . . , N} and the
cardinality of the set. O(·) denotes the big-O notation, i.e.,
f(x) = O(g(x)) iff |f(x)|

g(x) ≤M for all x where M is positive
real.

II. SYSTEM MODEL

We consider the edge caching scenario in a cellular network,
where a large number of BSs with limited cache size are
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Fig. 1. BSs with cache L = 3, and users distributed as PPP. Users color
indicate their requesting content.

spatially distributed according to a two-dimensional (2D)
homogeneous PPP. For example, a dense area with small
cells and moderate user mobility, a park with relatively dense
crowd and high user mobility, or a stadium with ultra-dense
crowd and relatively very low user mobility are the instances
of a typical scenario that can be benefited from the edge
caching [15]. Owing to the variations in the density and the
mobility of users in different scenarios, the popularity of the
contents varies with time.

Let ΦBS denote the positions of base stations which
are distributed as PPP with density λbs > 0 as shown
in Figure 1. These BSs serve the users which are also assumed
to be distributed as PPP. From Slivanyak-Mecke theorem, for
stationary and homogeneity of PPP, we consider a typical user
at the origin for evaluating the performance. Without loss of
generality, it is assumed that each content has the same size.1

and each BS has the equal storage capacity to store up to
L contents from the content libraryF := {1, 2, . . . , f, . . . , N}.
The content library may change over time and is accessed via
backhaul link. Considering the user mobility, the BSs regularly
monitor the users during discrete time periods t = 1, 2, . . . , T ,
where T is the length of finite time horizon. During a discrete
time period, the position of the users remain unchanged. Let
nt,f denote the number of requests of f th file during tth time
period; nt =

�N
f=1 nt,f be the total number of requests; and

pt,f = nt,f

nt
represent the popularity of the f th file. Due to

large number of requests in a time slot, pt,f is assumed to
be the true content popularity unknown in advance and is
obtained by exchanging information among BSs at the end
of time slot t. For convenience, we use pt = [pt,1, . . . , pt,N ]T

to the content popularity profile vector such that pTt 1 = 1
and pt ≥ 0. The cache memory at the BS for tth time

1Contents of different sizes can always be split into data segments of same
size [15], [21].

period is denoted by Lt, which is a subset of F , such that
|Lt| ≤ L. For simplicity, we adopt probabilistic (random)
placement method, where each content f at time t is stored
in the BS is given with the probability qt,f = Pr [f ∈ Lt] ,
∀f ∈ F [5]. The probability that in tth time period, a typical
user finds the desired content in the cache depends on the
distribution of contents in the random set Lt through the one-
set coverage probabilities qt,f , collected in a vector form as
qt = [qt,1, . . . , qt,N ]T . These probabilities satisfy the cache
constraint

�N
f=1 qt,f ≤ L, ∀t.

We consider the association of a BS to a user based on
both the channel state information (CSI) and the cached files
in the BSs. Specifically, when a user requests the f th file,
it associates with the BS that has the required file and the
strongest received power. The chances that the required file at
time t is available in the BS’s cache, is given by qt,f . If a file is
not available in any of the caches at the BSs, it is considered
as a failure event and the required file must be fetched via
backhaul link. Let ΦBS(f) denote the thinned PPP of the BSs
whose cache has the f th file. The associated kth BS transmits
the f th file to the typical user with the power P over the
Rayleigh fading channel, denoted by hi. At the typical user,
the received signal is given as

yf,k[t] =
�
i∈ΦBS

hi[t]P 1/2r
−α/2
i xl,i[t] + w[t] (1)

= hk[t]P 1/2r
−α/2
k xf,k[t] + w[t] (2)

+
�

i∈ΦBS(f)\{k}
hi[t]P 1/2r

−α/2
i xf,i[t]

+
�

i∈Φc
BS(f)

hi[t]P 1/2r
−α/2
i xl,i[t] (3)

where xf,k[t] is the transmitted symbol for f th file from the
kth BS, w[t] ∼ CN (0, σ2) is the additive Gaussian noise,
and α is the path loss exponent. The first term in the above
equation corresponds to the desired signal, the second term
pertains to the interfering transmission from the other BSs
(ΦBS(f) \ {k}) having the f th file transmitting to other users,
and the next term is for the interfering signals from BSs
(ΦcBS(f) = ΦBS \ ΦBS(f)), who do not have f th file in the
cache. For the above received signal model, the downlink
signal to interference plus noise ratio (SINR) at the typical
user can be given as

Γf,k[t] =
|hk[t]|2 Pr−αk

Ifk[t] + Icf [t] + σ2
, (4)

where Ifk[t] =
�

i∈ΦBS(f)\{k} |hi[t]|2 Pr−αi and Icf [t] =�
i∈Φc

BS(f) |hi[t]|2 Pr−αi represents the received interfer-

ence power. Due to the concurrent transmissions in the
PPP network where the interference terms are dominant, it is
essential to ensure the successful reception of the f th file.
Therefore, from the user’s perspective, to maintain a quality
of service and measure the caching performance, we consider
average success probability, which is defined as the probability
that the achievable rate of a typical user exceeds the rate
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requirements R0. The ASP can be written as

P (pt,qt)=
�
f∈F

pt,fEk∈ΦBS Pr{W log2 (1+Γf,k[t])≥R0} ,

(5)

where W is the transmission bandwidth.
In the above formulation, the popularity profile (pt) denotes

the global popularity across all the BSs, and the caching prob-
abilities (qt) represent the probabilistic status of the caches at
the BSs in the network. In practice, the cache placement at
time t+1, which depends on the caching probabilities (qt+1),
is decided by the present content popularity (pt). However,
the success probability in time t + 1 apparently depends on
the popularity in the time period t+1. Therefore, it is essential
to accurately predict the future content popularity in order to
maximize the success probability.

As BSs monitors the mobility of the users and tracks the
popularities, we assume that the future popularity at time t+1
is related to the past ones by the following relation

pt+1 = ψt(p1, . . . ,pt) (6)

where ψt is an unknown function. The corresponding opti-
mum cache placement probabilities can be computed as some
function of present and the past content popularities as

q∗
t+1 = ϕt(pt+1;p1, . . . ,pt). (7)

Our objective in this paper is to maximize the ASP at time
t + 1 with respect to the content popularity profile and the
caching probabilities

(P0) max
ψt,ϕt

P (pt+1,qt+1) (8)

subject to (6), (7),

where at time t+ 1, the above ideal ASP can be determined
using the popularity profile pt+1 and the respective caching
qt+1, if both are known perfectly in advance, which is
not possible in practice. Let p̂t+1 = ψ̂t(p1, . . . ,pt) and
q̂t+1 = ϕt(p̂t+1;p1, . . . ,pt) be the estimated future popular-
ity and the corresponding placement probabilities. Therefore,
we choose to maximize the estimated ASP as

(P1) max
ψ̂t,ϕt

P (p̂t+1, q̂t+1). (9)

In the time t, where the true content popularity is pt,
the achievable ASP can be given as P (pt+1, q̂t+1(p̂t+1)).
To measure the discrepancy in the prediction and the opti-
mization, we define the MSE, the observed and expected
ASP differences respectively as follows

Et(p̂t) = �pt − p̂t�2, (10)

δt(p̂t) = P (pt,qt)− P (pt, q̂t(p̂t)) ≥ 0, (11)

Δt(p̂t) = P (pt,qt)− P (p̂t, q̂t) ≥ 0. (12)

In above, the observed ASP difference is the ASP difference
which is measured with respect to true popularity; while
the expected one is related to predicted ASP. The utility of the
former one is to analyze the caching theoretically, while the
latter is useful for the prediction as well. Since the placement
probabilities are function of the content popularities, in the

following, we first seek the optimum caching probabilities
given the content profile. Subsequently, we focus on the
prediction employing two classes of methods viz., OP and OL.

III. AVERAGE SUCCESS PROBABILITY (ASP)
MAXIMIZATION

In a given time slot, the placement probabilities (qt)
depends on the content popularities (pt). Therefore, for the
given CP profile, we find the optimal placement probabilities
to maximize the ASP. Towards this, the following result
presents the ASP expression in terms of pt and qt. For clarity
of notation, we drop subscript t in this section.

Theorem 1: Average success probability of a typical user
requesting f th file with popularity pf and caching probability
qf is given as

P (p,q) =
N�
f=1

pfg(qf ),

where g(q) = qC
�∞
0 (dr2) exp

�
− (qA+ (1 − q)B + qC) r2

−s0rα
�
σ2

P

� �
, s0 = 2

R0
W − 1, C = πλbs, A = 2πλbs

s
2
α
0

1
α

�∞
1

s0

	
u

2
α

−1

1+u



du, B = 2πλbss

2
α
0

1
α

�∞
0

	
u

2
α

−1

1+u



du.

Proof: Proof is given in Appendix-A.
Since heterogeneous networks are usually interference lim-

ited, it is reasonable to neglect the noise i.e., σ2 = 0. For this
case, the corollary below simplifies the ASP.

Corollary 2: For interference limited case, i.e., σ2 = 0 or at
high SNR, the ASP is simplified as Ps(p,q) =

�
f pfg0(qf ),

where

g0(q) = qC

� ∞

0

exp
�− (qA+ (1 − q)B + qC) r2



(dr2)

=
qC

qA+ (1− q)B + qC
. (13)

Now, given the content popularity profile (p), the next step
is to compute the placement probabilities to maximize the
ASP expression above. The ASP maximization problem can
be expressed as

(P3)max
q

Ps(p,q) (14)

subject to qT1 ≤ L (15)

which is a simplified problem of (8) and (9). The above
problem is convex, however, to be solvable in CVX tool [22],
the above problem can be cast in semi-definite program (SDP)
as

min
qT 1≤L,t

−tTp

s.t.

�
qf (A−B + C) +B 1

1
�
A−B+C
BC tf − 1

B

� � � 0, ∀f
(16)

where qfC
qfA+(1−qf )B+qfC

≥ tf has been simplified using

Schur’s lemma [22]. Analytically, the expression of the solu-
tion is presented in the following theorem.



GARG et al.: ONLINE CP PREDICTION AND LEARNING IN WIRELESS EDGE CACHING 1091

Theorem 3: The solution of the maximization problem
in (14) is given as

q∗f = arg max
qT 1≤L

Ps(p,q) (17)

=

⎧⎪⎪⎨
⎪⎪⎩

1, f ∈ R�
B

A+C−B
� �

ηp̄f

1T p̄P
− 1
�
, f ∈ P

0, f ∈ Z
(18)

where p̄ =
√

p, Z = {i|qi = 0} ,R = {i|qi = 1}, and P =
F \ {Z ∪R} = {i|0 < qi < 1}. The corresponding ASP is
obtained as

Ps(p) = Ps(p,q∗) =
	

C

A+ C −B



p̄T Z̄p̄

= pTa (R,P)−
	

C

A+ C −B

 �

p̄TP1
�2

η
(19)

where aP denotes the sub-vector of a with the entries
given by P , Z̄ = D

�
A+C−B
A+C I|R|,ZP ,0|Z|

�
, ZP =

I|P| − 11T

η , η = |P| + (L − |R|)A−B+C
B , and aT =�

C
A+C 1T|R|,

C
A+C−B1T|P|,0

T
|Z|
�
.

Proof: Proof is given in Appendix-B.
The above expression shows that when the popularity of

the f th content is high (pf → 1) i.e. for most popular
contents, its caching probability is one i.e. f th content should
be stored at each BS’s cache. On the other hand, when the
contents are least popular (pf → 0), it is reasonable not to
cache the content at any of the cache storages. For the mid-
popular contents 0 < pf < 1, the expression of q∗f depends
on the index sets (Z and R), which can be obtained from
KKT conditions in the proof of Theorem 3. The procedure
to get these sets are presented in Algorithm 1. In the first
part of the algorithm, the set R is obtained by individually
checking the f th content popularity for q∗f = 1 in the
decreasing order of popularities, i.e., checking vf > 0, we

have C
B

��
B

A+C

�2

pf − (p̄T
P1)2

η2

�
> 0, =⇒ B

A+C p̄j >
1T p̄P
η .

In the later part, similarly the remaining content popularities in
ascending order for q∗f = 0 yields the set Z , i.e., for wf < 0,

we have C
B pf − C

B

(p̄T
P1)2
η2 > 0, =⇒ p̄f >

p̄T
P1
η . The last set

is obtained as P = F \ {Z ∪R}.
Now, with the caching probabilities obtained for a PPP

network, a random caching strategy is utilized to place the
content in individual caches [5]. Thus, with the caching prob-
abilities known as a function of content popularities, the ideal,
estimated and achievable ASPs can be given as Ps(pt+1) =
Ps(pt+1,qt+1(pt+1)), Ps(p̂t+1) = Ps(p̂t+1, q̂t+1(p̂t+1)),
and Ps(pt+1, q̂t+1(p̂t+1)) respectively. The ASP maximiza-
tion problems (P0) simplifies to Ps(pt+1) as pt+1 is known
in (P0). Similarly, (P1) can be recast as

maxψ̂t
Ps(p̂t+1), (20)

which suggests to maximize the future ASP based on the data
up to the present content popularities. Therefore, it is important
to accurately predict the future CP in order to cache contents in

Algorithm 1 Getting Index sets for ASP maximization
Input: Content popularity p in the descending order
Output: the sets of indices R, Z and P
1: Initialize R = ∅, P = F \ R, j = 0.
2: while B

A+C p̄j >
1T p̄P
η and j ≤ N do

3: R← R∪ {j}, P ← P \ {j}, and j = j + 1
4: end while
5: Initialize Z = ∅, P = F \ {R ∪ Z}, j = N .
6: while p̄j >

1T p̄P
η and j ≥ 1 do

7: Z ← Z ∪ {j}, P ← P \ {j}, and j = j − 1
8: end while

advance. Based on the past content popularities, we employ
two classes of methods to obtain the accurate prediction to
further optimize the ASP. For each of the classes, we propose
two models based on PPM and GPM. The motivation to use
these is as follows. To maximize the ASP, the prediction should
be as close to the ground truth, i.e., the mean squared error of
the popularities should be minimized which leads to PPM.
Further, from the Theorem 3, it can be observed that the
square-root of content popularities maximize the ASP. This
observation leads to GPM, which is presented in details in the
next section.

Remark (Reliability Assumption for analysis): Let Pt+1

and P̂t+1 denote the sets of indices for CPPs, obtained by
maximizing the ASP for the ideal CP pt+1 and the estimated
CP p̂t+1. Under the reliability assumption for analysis,
we assume that ASP maximization under the estimated
CP leads to the same set of indices as with the ideal ASP.
This is a reasonable assumption as with the sufficient past
CP observations and the respective CPPs, the index sets can
be precisely estimated i.e., to cache f th file in t+1 on at least
one of the BSs or not. Therefore, we set Pt+1 = P̂t+1 and
Rt+1 = R̂t+1.

Remark (Feasibility of the ASP and MSE based joint
optimization): The combined optimization problem for maxi-
mizing ASP in edge-caching can be cast in the most favorable
form as

max
ck

Ps

�
d�
k=1

ckpt+1−k

�

s.t.,

�����pi −
d�
k=1

ckpi−k

�����
2

≤ 
,

∀i = t− τ + d+ 1, . . . , t

where the objective function is not convex and cannot be
reduced to a linear matrix inequality (LMI). Moreover, since
pi ≤ 1, the MSE constraint reduces to the correlation con-
straint

�d
k=1 ckp

T
i−kpi ≥ 
� = 1 − �/2∀i, which is linear and

can be solved trivially if sufficient CP observations (τ > d)
are provided. However, the solution ck, which satisfy the
linear constraint with equality, cannot improve the correlation
beyond 
�, or the MSE below the constraint 
. Therefore, due
to these reasons, to maximize the ASP, the separate prediction
approaches are proposed.
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IV. ONLINE PREDICTION MODELS

In this section, two models are presented. First, a linear
model is fitted on the past CP observations and the problem
of obtaining regression coefficients is modeled as constrained
non-negative least squares (CNNLS) with additional sum
constraint. Further, for GPM model, the regression problem
is formulated as a regularized CNNLS. With these models,
the observed and the expected ASP difference are analyzed.

A. Popularity Prediction Model (PPM)

In this model, we approximate the present content popularity
vector at time t to the linear sum of the content popularities
of the past up to time t− 1 as

pt ≈
d�
k=1

ct−1,kpt−k, (21)

where ct,k ∈ R for all k = 1, . . . , d are the prediction
coefficients such that pTt 1 =

�d
k=1 ct,k = 1, and d is the

order of the prediction. Note that the constraint ct,k ∈ R is
essential for the proper and accurate prediction. If ct,k is set
to a non-negative value (ct,k ≥ 0), the equation (21) will be a
convex sum which means that the variations in the f th content
popularity at time t beyond [mini pf,i,maxi pf,i] cannot be
predicted ∀f ∈ F . Therefore, with ct,k ∈ R and the known
τ popularities pf,(t−τ+1), . . . , pf,t, ∀f observations, the future
content popularity estimate can be obtained as

p̂t+1 =
d�
k=1

ct,kpt+1−k (22)

where the coefficients can be given by the least squares
problem subject to non-negativity constraint of the future
estimate as

{ct,k, ∀k} = arg min
ck∈R

t�
i=t−τ+d+1

�����pi −
d�
k=1

ckpi−k

�����
2

(23)

subject to
d�

k=1

ck = 1,
d�
k=1

ckpf,t+1−k≥0, ∀f.

(24)

The above problem is convex and can be numerically
solved using any convex solver such as CVX [22]. However,
in practice, a more efficient solution can be obtained by casting
the above problem as a constrained NNLS and the solution is
given in Appendix-C. NNLS without the constraint has been
solved using active set method via fast NNLS (FNNLS) algo-
rithm in [23], [24]. Therefore, with the constraint, we modify
FNNLS algorithm using the Karush–Kuhn–Tucker (KKT)
conditions. The complexity of the this method is related to
the least squares solution and the number of observations (τ )
i.e. O(d3Nτ).

The above model tries to minimize the MSE of content
popularity based on previous popularity data. However, it does
not contribute actively in the ASP maximization. Therefore,

the observed difference between the ideal ASP and the achiev-
able ASP is expressed as

δt+1(p̂t+1) ≤
	
Cη−11Tpt+1,Pt+1

A+ C −B



×
�

1T ˆ̄pt+1,Pt+1

minf∈Pt+1
ˆ̄pf,t+1

− |Pt+1|
�

(25)

whose proof is given in Appendix-D. In the best case, this
difference is minimized when the distribution over subset
of library (Pt+1) is uniform, i.e.,

ˆ̄pf,t+1

1T ˆ̄pt+1,Pt+1
= 1

|Pt+1| ,

where
ˆ̄pf,t+1

1T ˆ̄pt+1,Pt+1
represents the distribution function over

f ∈ Pt+1. This results Ps(pt+1) − Ps(pt+1, q̂t+1) ≤ 0.
However, Ps(pt+1) ≥ Ps(pt+1, q̂t+1) by definition. Thus,
Ps(pt+1) = Ps(pt+1, q̂t+1), i.e., the estimation of partial
uniform CP (f ∈ Pt+1) achieves the best ASP. In the worst
case, the observed ASP upper bound is large when ˆ̄pf,t+1 → 0
reaches to a small non-zero value.

Let p̂t = pt + et, where et is a random error vector and
pt is defined by (21). Thus, we approximate

ˆ̄pf,t = (pf,t + ef,t)
1/2 = p̄f,t

	
1 +

ef,t
pf,t


1/2

≈ p̄f,t

	
1 +

ef,t
2pf,t



= p̄f,t + ẽf,t,

where ẽf,t = ef,t

2p̄f,t
. Similarly, the expected difference between

the ideal ASP and the estimated ASP can be defined from (19)
as

Δt+1(p̂t+1)=Ps(pt+1)−Ps(p̂t+1)=−eTt+1a (Rt+1,Pt+1)

+
Cη−1

A+ C −B
��

ˆ̄pTt+1,Pt+1
1
�2

−
�
p̄Tt+1,Pt+1

1
�2
�

≈ −eTt+1a (Rt+1,Pt+1)

+
Cη−1ẽTt+1,Pt+1

1

A+ C −B 1T
�
ˆ̄pTt+1,Pt+1

+ p̄t+1,Pt+1

�
. (26)

From the observed and the expected difference above, it can
be observed that the ASP difference for PPM is composed of
the first order prediction error term and the squared difference
term. The first error term which is a random vector with
zero mean, can be minimized by using the sufficient obser-
vations (τ). The second term corresponds to the difference
between squared sum of squared root popularities, which
cannot be reduced to zero with the current model, as PPM is
not tailored to minimize the prediction error between squared
roots. Therefore, we investigate the prediction model which
considers the square root of popularities in the following.

B. Grassmannian Prediction Model (GPM)

From the optimization problem in (18), it can be observed
that the positive square root of the caching probabilities maxi-
mizes ASP. The positive square root of the content popularity
vector (p̄) represents a line in the Grassmannian manifold
GN,1 [25], [26]. Similar to PPM, here, we model the current
SCP vector as a linear sum of the previous d SCP vectors as

p̄t ≈
d�
k=1

zkp̄t−k, (27)
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where zk ∈ R∀k are the coefficients, used to predict the future
estimate of SCP as follows

ˆ̄pt+1 =
d�
k=1

zkp̄n+1−k. (28)

These coefficients can be obtained using the least squares
minimization subject to regularization constraint �p̄t� ≤ 1
as

{zk∀k} = arg min
zk∈R

t�
i=t−τ+d+1

�����p̄i −
d�
k=1

zkp̄i−k

�����
2

2

s.t.

�����
d�
k=1

zkp̄t+1−k

�����
2

≤1, 0≤
d�
k=1

zkp̄f,t+1−k≤1, ∀f,

(29)

which is a convex optimization problem and can be solved
using CVX tool. However, for an efficient solution, the above
problem can be formulated as constrained NNLS as in the
previous subsection and can be solved similarly like in the
Appendix-C. To avoid redundancy of the content, we omit the
details.

In the above, the SCP prediction is intended to maximize
the ASP. It can be seen from the observed ASP difference
in (25) that as the estimation error is improved in the SCP vec-
tors, the ASP difference decreases, i.e., the achievable ASP of
GPM is better than that of PPM. Towards this, let ˆ̄pt = p̄t+ēt
where ēt is a random error vector, and approximate

p̂f,t = (p̄f,t + ēf,t)
2

≈ pf,t + 2ēf,tp̄f,t = pf,t + ẽf,t

with ẽf,t = 2pf,tēf,t. For GPM described by (28), the
expected difference using (26) can be similarly written as

Δt+1(p̂t+1)=Ps(pt+1)−Ps(p̂t+1)≈−ẽTt+1a (Rt+1,Pt+1)

+
Cη−1ēTt+1,Pt+1

1

A+ C −B 1T
�
ˆ̄pTt+1,Pt+1

+ p̄t+1,Pt+1

�
(30)

which consists of two errors terms. Comparing the above
equation with (26) for PPM, it can be observed that in the
first term, ẽf,t is much larger than ef,t, while for the second
term ēf,t is lower than ẽf,t. Together, it concludes that the
GPM improves the ASP over PPM.

Remark: In OP models, each round requires to solve an
independent optimization problem given τ previous obser-
vations, i.e., there is no-learning. Therefore, in each round,
the resultant MSE is approximately similar, i.e., the regret
measure is not essential in this case.

V. ONLINE LEARNING MODELS

In the above OP methods, the least squares optimization
is required to be solved per online round, which can be
computational intensive for large content library. Therefore,
to reduce the cost further, we present OL methods using the
weighted follow-the-leader (FTL) and weighted follow-the-
regularized-leader approaches.

A. Weighted FTL

In the FTL approach, the CP estimate for time t + 1 is
obtained by minimizing the weighted sum of l2-losses up
time t as

p̂t+1 = arg min
p

t�
i=1

wi�p− pi�2, (31)

where wi ≥ 0 for i = 1, . . . , t are the weights such that�t
i=1 wi = 1, ensuring the sum of the predicted CPs to be

one. If all the past CPs are equally important in the learning,
a trivial value can be selected wi = 1

t , 1 ≤ i ≤ t for tth

online round. However, in general, if the recent CPs dominate
the prediction, one can choose wi = κta

t−i, 1 ≤ i ≤ t such
that κt is set to satisfy the sum constraint, κt = 1−a

1−at . This
yields weights at tth round to be wt = 1−a

1−at . With a = 1,
the trivial selection is obtained. The value of 0 < a ≤ 1 can
be set according to the preferences for the recent or the past
observations. The solution of the above optimization leads to
the following prediction

p̂t+1 =
t�
i=1

wipi (32)

= wtpt +

�
t−1�
i=1

wi

�
t−1�
i=1

wi�t−1
i=1 wi

pi (33)

= wtpt + (1− wt) p̂t, (34)

which is a weighted sum of the previously observed CPs. This
prediction at time t consists of a balance between the observed
CP and the predicted CP at time t, i.e, it forms the convex sum.
This is in contrast to OP, where a linear sum is considered.
It means that FTL can only predict what has been observed
in the past.

The step-wise procedure for the CP prediction is listed in
Algorithm 2. In tth round, the prediction is obtained and the
CP is observed.

Algorithm 2 Weighted FTL algorithm.
Input: the value of 0 < a ≤ 1
1: for for t = 1, 2, . . . do
2: set wt = 1−a

1−at

3: predict p̂t+1 = wtpt + (1− wt) p̂t
4: observe pt+1

5: end for

Lemma 4: For the weighted FTL approach with 0 < a < 1,
O(T ) regret bound is obtained, and O(log T ) for a = 1.

Proof: Equation (34) can be rewritten as

p̂t+1 − pt = (1− wt) (p̂t − pt) . (35)

Therefore, the difference with respect to the CP (p) can be
given as

�p̂t − pt�2 − �p− pt�2
(a)

≤ �p̂t − pt�2 − �p̂t+1 − pt�2 (36)
(b)
= �p̂t − pt�2

�
1− (1− wt)2

�
(c)

≤ 2wt�p̂t − pt�2 ≤ 4wt, (37)
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where (a) is from [27, Lem. 2.1]; (b) comes by (35); (c) is
obtained by ignoring −w2

t as wt is small; and considering
�p̂t� = �pt� ≤ 1, the last inequality arises from the triangle
inequality, �p̂t − pt� ≤ 2. We therefore, obtain the upper
bound on the total regret as

RT (p) =
T�
t=1

��p̂t − pt�2 − �p− pt�2



≤ 4
T�
t=1

wt = 4(1− a)
T�
t=1

�
1− at�−1

< 4(1− a)
T�
t=1

�
1 + at

�
= 4(1− a)

	
T + a

1− aT
1− a



where wt = 1−a

1−at is used. When a < 1, the O(T ) regret
bound is obtained. For a = 1 i.e. wt = t−1, we obtain the
regret within O(logT ) as

�T
t=1 t

−1 ≤ logT + 1.
Similarly, for a given CP p, the regret in terms of ASP can

be defined as

RASPT (p) =
T�
t=1

Δt(p̂t)−Δt(p),

which is O(T ) and can be seen as follows. The expected ASP
difference Δt can be approximated with the observed ASP
difference in (25), which can be seen to be independent of t,
i.e. Δt(p) is O(1). Therefore, RASPT (p) is O(T ).

B. Weighted FoReL

Analogous to GPM in OP methods where the difference
between SCPs is minimized, in FoReL approach, we consider
the chordal distance as a loss measure of the prediction error,
since SCP lies on the Grassmannian manifold. The chordal
distance is defined as the principle angle between two unit
norm vectors p̄1 and p̄2, i.e., d2

c(p̄1, p̄2) = sin2 θ12 =

1 −
���p̄†

1p̄2

���2. Minimizing the chordal distance is equivalent
to maximizing the correlation, i.e., cross product cos θ12 =
p̄†

1p̄2 > 0. Therefore, the prediction problem with respect to
the SCP norm constraint (regularization measure in FoReL
terminology) can be expressed as

ˆ̄pt+1 = arg max
�p̄�≤1

t�
i=1

wip̄†p̄i, (38)

=
t�
i=1

wip̄i����t
i=1 wip̄i

��� , (39)

where we choose wi = κta
t−i with a ∈ (0, 1] similar to FTL,

and it leads to the following simplification as

ˆ̄pt+1 =
t�
i=1

w̄i,tp̄i (40)

= w̄t,tp̄t +
w̄t,t
w̄t,t−1

t−1�
i=1

w̄i,t−1p̄i (41)

= w̄t,tp̄t +
w̄t,t
w̄t,t−1

ˆ̄pt, (42)

≥ w̄t,tp̄t + (1− w̄t,t) ˆ̄pt, (43)

with w̄i,t = wi

��t
i=1 wip̄i� , w̄t,t−1

w̄t,t
= ��t

i=1 wip̄i�
��t−1

i=1 wip̄i� ≤ 1 +

w̄t,t−1 using the triangle inequality, and yielding w̄t,t

w̄t,t−1
≥

1 − w̄t,t. To see that the above bound is a convex sum,
the weight w̄t,t should be less than 1. Thus, we write w̄t,t =����t

i=1 a
t−ip̄i

���−1

, which is the inverse of a norm of the
converging sum. In the worst case, the norm has the lowest
value, when p̄i is uniformḟootnoteThe norm minimization
problem can be written as

min
p̄i

�����
t�
i=1

at−ip̄i

�����
2

= min�
f p̄

2
f,t=1∀t

�
f

�����
t�
i=1

aip̄f,i

�����
2

,

which has more unknowns than the known. Relaxing the
norm constraint (since the final vector can be normalized),

the problem reduces to minp̄f,t∀t
����t

i=1 a
ip̄f,i

���2 ∀f , which

shows that p̄f,i ∝ a−i∀f minimizes it. This result after
normalizing gives uniform distribution p̄f,t = 1√

N
∀f , i.e., for

p̄f,t = 1√
N
∀f , we have

lim
t→∞ w̄t,t ≤ lim

t→∞

�
t�
i=1

at−i
���� 1√

N

����
�−1

= lim
t→∞

1− a
1− at = 1− a < 1.

Thus, w̄t,t ≤ 1, where the equality is obtained for t = 1.
The corresponding online learning procedure is presented

in Algorithm 3. In this procedure, two intermediate variables
(kt and p̄�

t+1) are introduced to simplify the computations.
The rest of the process is same as weighted FTL algorithm.
The respective regret is analyzed in the following result.

Algorithm 3 Weighted FoReL Algorithm
Input: the value of 0 < a ≤ 1, κ0 = 0.
1: for t = 1, 2, . . . do
2: set wt = 1−a

1−at

3: predict p̄�
t+1 = wtp̄t + kt−1 ˆ̄pt

4: set kt = �p̄�
t+1� and obtain ˆ̄pt+1 = p̄�

t+1
kt

5: observe p̄t+1

6: end for

Lemma 5: For the weighted FoReL approach with 0<a<1,
O (T ) regret bound is obtained, and O (logT ) for a = 1.

Proof: The CP estimate can be simplified as

ˆ̄pt+1 − p̄t ≥ (1− w̄t,t)
�
ˆ̄pt − p̄t



.

It is used to get the difference with respect to the CP (p) as

�p̂t − pt�2 − �p− pt�2
(a)≈ � ˆ̄pt − p̄t�2 − �p̄− p̄t�2 (44)
(b)

≤ � ˆ̄pt − p̄t�2 − � ˆ̄pt+1 − p̄t�2 (45)
(c)

≤ 2w̄t,t� ˆ̄pt − p̄t�2
(d)

≤ 4w̄t,t, (46)
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Fig. 2. Figure illustrates the average prediction MSE (Et {Et (p̂t)}) and
the expected ASP difference (Et {Δt(p̂t)}).

where in (a), we approximate the regret of CP by the regret
of SCP; in (b), the result from [27, Lem. 2.1] is used; in (c),
−w̄2

t,t is ignored as w̄t,t ≤ 1; in (d), triangle inequality has
been used with � ˆ̄pt� = �p̄t� = 1. The total regret up to
time T can be obtained as

T�
t=1

�� ˆ̄pt − p̄t�2 − �p̄∗ − p̄t�2



(47)

≤ 4
T�
t=1

w̄t,t = 4
T�
t=1

�����
t�
i=1

at−ip̄i

�����
−1

(48)

(a)

≤ 4
T�
t=1

	
1− at
1− a


−1

(49)

(b)≈ 4(1− a)
	
T + a

1− aT
1− a



, (50)

which (a) is obtained for p̄f,t = 1√
N
∀f ; in (b), (1− at)−1 ≈

1 + at. Thus, it yields O (T ) regret. When a = 1, wt = t−1

and w̄t,t =
����t

i=1 p̄i
���−1

≤ 1
t where the equality of the upper

bound on w̄t,t holds for p̄f,t = 1√
N
∀f . This gives O (logT )

regret.
Remark (OP vs OL): The OP methods work via lin-

ear prediction for given τ observations, while OL methods
improves the estimation by the experience. In OP methods,
the predictor coefficients are assumed unconstrained, while
the same assumptions cannot be set for OL methods due
to the objective of weighted MSE minimization. With these
observations, the OP yields a linear sum of the recent past CPs,
while OL provides the convex sum of all the past CPs. These
differentiations suggest that OP can estimate any wide changes
in content popularity, while OL can track the changes in the
CPs within a convex set of past observations.

VI. SIMULATION RESULTS

To evaluate the performance of the proposed prediction
methods with the optimized edge caching policy, we use

Fig. 3. Figure depicts (a) MSE regret (Rt(pt)) versus t and (b) expected
ASP regret

�
RASP

t (pt)
�

versus t for different methods.

MovieLens dataset [20]. In this dataset, we choose the user rat-
ings ofN = 100 movies with IDs 1-100. Using the timestamps
provided, the whole duration is divided into time slots to
simulate the content request process. A movie rating from
users is assumed to be the number of requests of that movie,
while the popularity profile for each time slot is obtained by
normalizing the ratings across the movies. Moreover, for OP
methods, d = 4 and τ = 10 are selected, while for OL, a = 1
is chosen. PPP parameters for computing ASP are as follows:
noise power σ2 = 0, BS density λBS = 200, bandwidth
W = 24kHz, path loss exponent α = 3.5, rate threshold
R0 = 1, BS cache size L = N

2 = 50. Besides, the performance
of OP and OL methods are compared with the request pre-
diction method (OP-AR) [10], and mean guessing [15], [21].
In OP-AR, after modeling the logarithm of the number of
requests using auto-regressive model, we use least squares to
find the coefficients of prediction. In mean guessing, a mean
of previous τ observations is selected as the prediction.
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Fig. 4. Figure shows the expected ASP difference Et {Δt(p̂t)} with respect
to the cache size constraint (L) keeping N = 100 fixed.

The above methods accurately predict the CPs in the order
of 10−2. For comparison, Figure 2 depicts the averaged
prediction MSE and the averaged expected ASP difference
(dASP) for the methods. It can be observed that for both
MSE and ASP, OP-GPM and OP-PPM yield better results
than OP-AR, mean guessing and OL methods. This is because
in each online round of OP-PPM and OP-GPM, the MSE
of CP estimate is minimized to get prediction, while in
others, it is not. Among the OL methods, OL-FTL provides
better MSE while OL-FoReL has better dASP, as OL-FTL
considers CP in the formulation, while OL-FoReL is SCP
based. Also, the plots of mean guessing lie in between OP
and OL methods, which is because mean guess considered
here has similarities to both OP and OL, i.e., in other words,
mean guessing is equivalent to a trivial OP or a sub-optimal
OL-FTL. Note that OP predicts with past τ observations,
while OL utilizes the whole past. Therefore, OP performs well
when the instantaneous MSE is considered, while OL provides
improvements for the cumulative MSE, i.e., regret, which is
shown in the Figure 3. OP-AR for MSE and dASP can be
seen to provide an approximation to OL-GPM.

Figure 3 (a) and (b) show the MSE and dASP regret
respectively. Unlike Figure 2, OL-FTL yields better MSE
regret than OP methods and mean guessing, while OL-FoReL
provides better dASP regret as per construction. The MSE
regret can be seen to be O(log T ), while dASP regret is O(T )
as presented in the previous sections. Mean guessing provides
an approximation between OP and OL methods for both MSE
and dASP, as it is a sub-optimal FTL as well as a trivial OP.
OP-AR approximates OP-GPM as seen in Figure 2.

Figure 4 shows variations of the expected dASP with the
cache size constraint. Here, the MSE remains constant as it is
independent of caching scheme. It can be observed that with
the increase in the cache size, dASP decreases, i.e., the achiev-
able ASP increases. The trend of different methods is similar to
Figure 2, i.e., OP-GPM yields the minimum dASP and so on.
For larger cache size, the dASP gap between different methods

Fig. 5. Figure shows (a) MSE (Et {Et (p̂t)}) and (b) the expected ASP
difference Et {Δt(p̂t)} with respect to the content library size (N) with the
cache constraint L = N/2.

can be seen to be closing i.e., dASP converges to zero as
L→ N . The expected dASP in (25) is inversely proportional
to L (in η) i.e., dASP ∝ L−1 =⇒ log (dASP) ∝ − logL,
which is a negative proportionality as can be seen in Fig. 4.

Figure 5 (a) and (b) depicts variations of the MSE and
expected dASP as the content library size (N) increases,
while the cache size is set proportional to the library size i.e.
L = N/2. It can be observed that both the MSE and dASP
decrease with the size N for all methods, except OP-AR,
which increases because the prediction is done without nor-
malization by N . The trend of the performance curves for
different methods is similar as in Figure 2, where OP-GPM
performs the best in both MSE and ASP measure.

VII. CONCLUSION

In this paper, online prediction (PPM and GPM) and
online learning (weighted-FTL and weighted-FoReL) methods
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have been investigated. First, for the given popularity profile,
caching probabilities have been optimized to maximize ASP
of the PPP based network. In PPM, a linear model is used
to predict the popularities to minimize the MSE and ASP
difference has been analyzed. In GPM, we predict the future
CP via the linear combination of SCP, which has shown to
maximize the ASP. For online learning models, weighted-FTL
and weighted-FoRel are presented to minimize the MSE and
ASP regrets, which are analyzed to be O(log T ) and O(T )
respectively. Simulations for MovieLens dataset verify the
analysis that PPM and GPM achieves the better MSE and
ASP, while FTL and FoReL results into better MSE regret
and ASP regret respectively. ASP difference can be seen to be
inversely proportional to cache constraint.

APPENDIX

A. ASP Derivation

The CCDF of sum rate can be obtained as

g(pl) = Pr (W log2(1 + Γil) ≥ R0) = Pr

⎛
⎝Γil ≥ 2

R0
W − 1� �� �
s0

⎞
⎠

= Ehi,ri,Ii Pr

⎛
⎝ |hi|2P

rα
i

Ii + σ2
≥ s0

⎞
⎠ (51)

= EriIi

�
Ehi Pr

	
|hi|2 ≥ s0rαi

	
Ii
P

+
σ2

P



�
(52)

= Eri

"
EIi exp

�
−s0rαi

	
Ii
P

+
σ2

P


�#
(53)

= Eri exp
�
−s0rαi

	
σ2

P


�

× Ehj ,rj exp

⎡
⎣−s0 �

j∈Φbs\{i}
|hj |2

	
ri
rj


α⎤⎦ (54)

= Eri exp
�
−s0rαi

	
σ2

P


�
(55)

× Erj

⎡
⎣ (
j∈Φbs(l)\{i}

(
j∈Φc

bs(l)\{i}

1

1 + s0

�
ri

rj

�α
⎤
⎦ (56)

Now, the expectation on distance will be taken [28]

Erj

(
j∈Φbs(l)\{i}

�
1 + s0r

α
i r

−α
j

�−1

= exp

⎛
⎝− � ∞

ri

⎛
⎝1− 1

1 + s0

�
ri

rj

�α
⎞
⎠ 2πλbsplrj (drj)

⎞
⎠

= exp

�
−2πλbspl

� ∞

ri

�
s0r

α
i r

−α
j

1 + s0rαi r
−α
j

�
rj (drj)

�
(57)

= exp

⎛
⎝−2πλbspl

� ∞

ri

⎛
⎝ 1

1 +
rα

j

s0rα
i

⎞
⎠ rj (drj)

⎞
⎠ (58)

= exp

⎛
⎜⎜⎜⎜⎜⎝− 2πλbspls

2
α
0 r

2
i

1
α

� ∞

1
s0

�
u

2
α−1

1 + u

�
du

� �� �
=Aplr2i

⎞
⎟⎟⎟⎟⎟⎠ (59)

Erj

(
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�
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α
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−α
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(60)

= exp

⎛
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0

⎛
⎝1− 1
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�
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rj

�α
⎞
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�
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= exp
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α
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1
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2
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�
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where we let u = rα
j

s0rα
i

, rj = (us0)
1/α ri, du =

α
rα−1

j

s0rα
i

(drj) = uα 1
rj

(drj), rj (drj) = dur2j
1
uα =

(us0)
2/α r2i

1
uα = u

2
α−1s

2
α
0 r

2
i

1
α . Therefore, the resultant

expression from (55) can be written as

g(pl) = Eri exp
�
−s0rαi

	
σ2

P



− (plA+ (1− pl)B) r2i

�

=
� ∞

0

exp
�
−s0rαi

	
σ2

P



− (plA+ (1 − pl)B) r2i

�
× exp(−πplλbsr2i )2πplλbsri(dri) (62)

= plC

� ∞

0

exp
�
−s0rαi

	
σ2

P


�
(63)

× exp
�− (plA+ (1 − pl)B + plC) r2i



(dr2i ) (64)

where C = πλbs.

B. Proof of ASP Maximization

Proof: The ASP optimization problem can be recast as

min
q1,...qN

−
�
f

g0(qf )pf (65)

subject to
�
f

qf ≤ L, qf ≤ 1, qf ≥ 0, ∀f. (66)

The corresponding Karush–Kuhn–Tucker (KKT) conditions
can be obtained as

0 = −g�o(qf )pf + λ+ νf − wf = 0, ∀f (67)

0 = λ(
�
f

qf − L), (68)

0 = νf (qf − 1), ∀f (69)

0 = wfqf , ∀f, (70)

where λ ≥ 0, vf ≥ 0, wf ≤ 0, ∀f are the dual variables
and g�(q) = BC

[B+q(A+C−B)]2
. Simplifying above yields

qf =
�

B
A+C−B

��+
C
B
pf

λ�
f
− 1
�

, where λ�f = λ + νf − wf .

Let F = Z ∪ P ∪ R with Z = {f |vf = 0, wf < 0, qf = 0}
P = {f |vf = wf = 0, 0 < qf < 1}, and R =
{f |vf > 0, wf = 0, qf = 1} being the sets of indices of



1098 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 68, NO. 2, FEBRUARY 2020

qf with zero, positive and one values respectively, i.e., for
each set, we have

λ− wf = g�(0)pf =
C

B
pf , ∀f ∈ Z (71)

λ = g�(qf )pf =
C

B

�
p̄TP1

�2
η2

, ∀f ∈ P (72)

λ+ vf = g�(1)pf =
C

B

	
B

A+ C


2

pf , ∀f ∈ R. (73)

Further, the objective function is simplified as�
f

g0(qf )pf =
�
f

λ�f qf
B + qf (A+ C −B)

B
(74)

=
�
f∈P

λqf

,
C

B

pf
λ

+
�
f∈R

λ�f
A+ C

B
(75)

=
	

Bλ

A+ C −B

�
f∈P

-
C

B

pf
λ
−
,
C

B

pf
λ

.
+

C

A+ C

�
f∈R

pf

=
	

C

A+ C −B

⎡⎣�

f∈P
pf − p̄TP1

η

√
pf

⎤
⎦+

C

A+ C
p̄TRp̄R

=
	

C

A+ C −B



p̄TPZP p̄P +
C

A+ C
p̄TRp̄R (76)

= pTa−
	

C

A+ C −B

 �

p̄TP1
�2

η
. (77)

C. Solution of Constrained NNLS Problem

The equation (24) can be written as constrained NNLS
problem as

p̂t+1 = arg min
p≥0

���−→p t −−→P tp
���2

2
(78)

subject to 1Tp = 1, (79)

where −→p t =
�
pTt−τ+d+1, . . . ,p

T
t


T
, p =

�d
k=1 ckpt+1−k,

P�
t =

�−→p t−d, . . .−→p t−1



,
−→
P t = P�

t [pt, . . . ,pt+1−d]
+; A+

stands for the pseudo inverse of A. Further, we modify

Algorithm 4 Constrained NNLS algorithm

Output: x∗ = arg minx≥0 �y −Hx�22 such that 1Tx = 1
Input: Initialize P = ∅, R = {1, . . . , n}, p = 0, v =

HT (y −Hx) and tolerance 

1: while R �= ∅ and maxi vi > 
 do
2: set j = argmaxi vi, add j in P and remove from R
3: set sR = 0 and sP = xP(v),
4: if min sP ≤ 0 then
5: α = −min

�
xP

xP−sP

�
6: if α = 0 then
7: I = {i|xi �= 0} andα = −min

�
xI

xI−sI

�
8: end if
9: x = x + α(s− x)

10: updateP = {i|xi > 0} andR = {i|xi ≤ 0}
11: set sR = 0 and sP = xP(v)
12: end if
13: x = s and v = HT (y −Hx)− λP (v)1
14: end while

FNNLS algorithm to handle constraints using the following
Karush–Kuhn–Tucker (KKT) conditions as

0 =
−→
PT
t

−→
P tp−−→PT

t
−→p t + λ1 + v, (80)

0 = λ(1Tp− 1), (81)

0 = vfpf , ∀f, (82)

where λ �= 0 and v = [v1, . . . , vN ] ≤ 0 are the dual vari-
ables corresponding to sum and the non-negativity constraints
respectively. Solving these equations gives

p(
−→
P t,v) =

�−→
PT
t

−→
P t

�−1 �−→
PT
t
−→p t − λ(

−→
P t,v)1− v

�
,

(83)

λ(
−→
P t,v) =

1T
�−→
PT
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P t

�−1 �−→
PT
t
−→p t − v

�
− 1

1T
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PT
t

−→
P t

�−1

1
. (84)

However, for faster updation in an online round especially
for a large content library, the following modified equations

δt+1(p̂t+1) = Ps(pt+1)− Ps(pt+1, q̂t+1) =
�
f

pf,t+1 [g0(qf (pf,t+1))− g0(qf (p̂f,t+1))] (86)

=
C

A+ C −B
�
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are used (inspired from FNNLS scheme [23], [24])

pP(v) =
�−→
PT
t

−→
P t

�−1

P

��−→
PT
t
−→p t

�
P
− λP(

−→
P t,v)1− v

�
,

λP (v) =
1T
�−→
PT
t

−→
P t

�−1

P

��−→
PT
t
−→p t

�
P
− v
�
− 1

1T
�−→
PT
t

−→
P t

�−1

P
1

, (85)

where AP denotes the sub-matrix of A with the rows-columns
indices defined by P . These equations depends on the dual
variable v, which is acquired by active set method as pre-
sented in the modified NNLS procedure in Algorithm 4. After
initializing v, this method works by computing the positive
set of entries and updating the corresponding v iteratively.
The number of “while” iterations is equal to the number
of non-zero entries in the solution. The difference between
Algorithm 4 from FNNLS algorithm [23], [24] is the presence
of dual variable λ which handles the additional constraint other
than non-negativity.

D. Simplification of ASP Difference

The simplification is given in the equation on the bottom of
the previous page.
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