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Abstract— Performance of the existing physical layer authen-
tication schemes could be severely affected by the imperfect
estimates and variations of the communication link attributes
used. The commonly adopted static hypothesis testing for physical
layer authentication faces significant challenges in time-varying
communication channels due to the changing propagation and
interference conditions, which are typically unknown at the
design stage. To circumvent this impediment, we propose an
adaptive physical layer authentication scheme based on machine-
learning as an intelligent process to learn and utilize the complex
time-varying environment, and hence to improve the reliability
and robustness of physical layer authentication. Explicitly, a phys-
ical layer attribute fusion model based on a kernel machine is
designed for dealing with multiple attributes without requiring
the knowledge of their statistical properties. By modeling the
physical layer authentication as a linear system, the proposed
technique directly reduces the authentication scope from a
combined N -dimensional feature space to a single-dimensional
(scalar) space, hence leading to reduced authentication com-
plexity. By formulating the learning (training) objective of the
physical layer authentication as a convex problem, an adaptive
algorithm based on kernel least mean square is then proposed
as an intelligent process to learn and track the variations of
multiple attributes, and therefore to enhance the authentication
performance. Both the convergence and the authentication per-
formance of the proposed intelligent authentication process are
theoretically analyzed. Our simulations demonstrate that our
solution significantly improves the authentication performance
in time-varying environments.

Index Terms— Intelligent authentication, multiple physical
layer attributes, kernel machine, adaptive algorithm.

I. INTRODUCTION

DUE TO THE open broadcast nature of radio signal
propagation, as well as owing to using standardized
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transmission schemes and intermittent communications, wire-
less communication systems are extremely vulnerable to inter-
ception and spoofing attacks. First of all, the open broadcast
nature of wireless medium facilitates the reception of radio
signals by any illegitimate receiver within the coverage of
the transmitter [1]. Secondly, the standardized transmission
and conventional security schemes of wireless networks make
interception and eavesdropping fairly straightforward [2], [3].
Moreover, the “on-off” and sporadic transmissions of low
cost wireless devices, especially the significantly growing
number of Internet-of-Things (IoT) devices, provide abundant
opportunities to adversaries for spoofing attacks. Therefore,
the enhancement of authentication schemes is of paramount
importance for wireless communication systems, especially in
the light of the ongoing convergence between the wireless
infrastructure and vertical industrial applications enabled by
IoT.

A. Comparison of Conventional and Physical
Authentication Techniques

Although digital key-based cryptographic techniques [4]–[6]
have been widely used both for communication security and
authentication, they may fall short of the desired performance
in many emerging scenarios. One fundamental weakness of
the digital credentials based on conventional cryptography is
that detecting compromised security keys cannot be readily
achieved, since the inherent physical attributes of commu-
nication devices and users are disregarded [1]. Given the
rapidly growing computational capability of low-cost devices,
it is becoming more and more feasible to crack the security
key from the intercepted signals of standardized and static
security protocols. Furthermore, conventional cryptographic
techniques also require appropriate key management proce-
dures to generate, distribute, refresh and revoke digital security
keys, which may result in excessive latencies in large-scale
networks. Indeed, this latency may become intolerable for
delay-sensitive communications, such as networked control
and vehicular communications. The computational overhead
of digital key-based cryptographic methods is also particularly
undesirable for devices, which have limited battery lifetime
and computational capability, such as IoT sensors.

To overcome these challenges, an alternative approach of
authenticating a user (transmitter) is to exploit the physical
layer attributes of communication links. Such analog-domain
attributes are inherently related to the unique imperfec-
tion of communicating devices and to the corresponding
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Fig. 1. Comparison of conventional and physical authentication techniques.

environment, which are hard to impersonate and predict.
These physical layer attributes include the channel impulse
response (CIR) [7], received signal strength indicator
(RSSI) [8], carrier frequency offset (CFO) [9]–[11], in-phase-
quadrature-phase imbalance (IQI) [11], and so on, which
can also be used to generate more unique combinations for
authentication. These diverse physical layer attributes and their
combinations provide new mechanisms in a multi-dimensional
domain for the enhancement of physical layer authentica-
tion. Given its obvious advantages including low computa-
tional requirement, low network overhead and modest energy
consumption, physical layer authentication has been widely
studied [12]–[25]. A detailed comparison of conventional and
physical authentication techniques is given in Fig. 1.

B. Challenges for Physical Layer Authentication

Despite its many advantages, physical layer authentication
also faces several major challenges imposed by the hitherto
less well-explored security mechanisms and owing to the
analog nature of the link attributes used, as seen in Fig. 1.

Imperfect estimates and variations of the physical layer
attributes are inevitable in practical wireless networks. These
constitute challenges for the physical layer authentication,
but beneficially, they provide unique distinguishing features.
Having said that, their adequate estimation often imposes chal-
lenges on physical layer authentication, mainly due to time-
varying channels, dynamic interference conditions, mobility of
devices, non-symmetrical observations at the transmitter and
receiver, as well as owing to the measurement errors, just to
name a few.

To elaborate a little further on the challenges, perfor-
mance of the single-attribute-based physical layer authenti-
cation schemes [12]–[22] remains limited by the imperfect
estimates of the specific attribute used. Moreover, the limited
range of the specific attribute distribution may not be suffi-
ciently wide-spread for differentiating the devices all the time.
These estimations lead to low-reliability and low-robustness
of physical layer authentication in conjunction with only a
single attribute, especially in a hostile time-varying wireless
communication environment.

Hence, multiple physical layer attributes may be
taken into account for improving the authentication
performance [23], [24], since it is more difficult for an
adversary to succeed in predicting or imitating all the
attributes based on the received signal. On the other hand,
when the environment is time-variant, the performance of
physical layer authentication could be severely affected
by the unpredicable variations of attributes due to the
potential decorrelation of the physical layer attributes
observed at different time instants. Although the variations of
attributes provide additional scope for improving the security
mechanisms by increasing the uncertainty for the adversaries,
at the same time also for the legitimate users operating
without discovering and tracking the variations of physical
layer attributes.

In a nutshell, the main challenge is that a multiple varying
attributes-based authentication scheme is capable of achiev-
ing high security in the presence of adversaries, but this
increases the grade of challenge imposed on the legitimate
users as well. More importantly, variations of the physical
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layer attributes are typically unknown at the design stage
and they are hard to predict, thus it is very difficult to pre-
design a static physical layer authentication scheme. Hence
the conception of an adaptive physical layer authentication
scheme is extremely helpful for improving the performance
of physical layer authentication, which can promptly adapt
to the time-varying environment. However, designing near-
instantaneously adaptive physical layer authentication based
on multiple attributes in rapidly time-varying environments is
challenging due to the following reasons:

• C1. Both the computational resources and the time
available for estimating the statistical properties of the
physical layer attributes are limited;

• C2. New authentication schemes based on multiple
attributes result in a large search-space, which may lead
to both excessive complexity and to non-convex search
as well as optimization problems;

• C3. In practical wireless communication, the typical
authentication schemes rely on nonlinear techniques,
as exemplified by the binary hypothesis tests of [12]–[14]
and by the generalized likelihood ratio test of [26];

• C4. Timely detection of time-varying physical layer
attributes and the adaptation of the physical layer
authentication process require sophisticated near-
instantaneously adaptive processing techniques.

In order to overcome these difficulties, the kernel-based
machine learning technique of [27]–[30] is applied for
modeling the authentication problem in this paper, which
is a non-parametric learning method. Although the family
of parametric learning methods has become mature in the
literature [31]–[37], as exemplified by the linear regression
methods of [31] and the polynomial regression methods of
[32] and [33], they usually rely on the assumption of knowing
the distribution of samples (i.e. the estimates of physical
layer attributes) together with the specific form of the training
function (e.g. linear function or polynomial function). When
the assumptions related to the samples’ distribution are correct,
the parametric methods are usually more accurate than the
non-parametric methods. However, once the assumptions con-
cerning the samples’ distribution models become inaccurate,
they have a greater chance of failing. This dramatically limits
the employment of parametric learning methods in practical
dynamic wireless environments when they face challenge C1,
since computing accurate distributions for multiple physi-
cal layer attributes in a complex time-varying environment
becomes time-consuming.

The authors of [36] proposed a logistic regression technique
based authentication scheme assisted by multiple landmarks at
different locations that use multiple antennas to estimate the
RSSI of the transmitter for enhanced authentication perfor-
mance. All the radio nodes are assumed to be static in [36] and
the training data for logistic regression are the signals received
from different transmitters and gleaned from the corresponding
media access control address in similar scenarios. In contrast
to the scheme of [36], we study physical layer authentica-
tion relying on multiple time-varying attributes without the
assistance of any extra device. More importantly, we focus

our attention on modelling the uninterrupted authentication
between a transmitter and its receiver as an intelligent process
without requiring any known system model and without a
pre-designed authentication scheme based on our real-time
learning technique operating in a time-varying environment.

In contrast to parametric learning methods, the non-
parametric methods are not specified a priori, but are deter-
mined from the data available. Hence, the non-parametric
methods are more suitable for tracking dynamically time-
varying environments without requiring any assumptions con-
cerning the attributes’ statistical distributions. Some examples
are constituted by the classic k-nearest neighbors [38] and
the decision tree based solutions [39]. However, these two
non-parametric methods have a limited ability to deal with
challenges C2-C4. To be specific, it is not easy to determine
the most appropriate k-distance in the k-nearest neighbors
method. In the decision tree method, the perturbation of
collected data (e.g. by noise) will result in quite a different
decision tree, thus leading to inaccurate authentication results.

The authors of [40] proposed a physical layer authentica-
tion scheme based on the extreme learning machine concept
for improving the spoofing detection accuracy. However, its
efficiency critically depends more on the training data set
available. Besides, this scheme assumes that all the multiple
physical layer attributes obey the same statistical distribution
functions, such as the Gaussian distributions, thus their success
remains limited in the complex high-dynamic environment
considered in this paper. Furthermore, a few other machine
learning techniques are introduced for authentication in [41],
such as Q-learning and neural network-based techniques,
as well as some well-studied fusion methods, as exemplified
by the Kalman filter of [21], fuzzy logic of [42], and Bayesian
inference techniques of [40]. However, these methods may be
limited in dealing with the challenges C1-C4. To be specific,
the authors of [41] studied the test threshold of authentication
based on the Q-learning technique instead of the variations
of physical layer attributes in the time-varying environment
encountered. The neural network based method of [41] may
improve the model accuracy by increasing the number of
layers and neurons used, but at the cost of a higher complex-
ity, which hence may not be suitable for near-instantaneous
authentication. Moreover, the Kalman filter aided method
of [21] is also model-based, relying on the assumption of
having Gaussian distributed process noise, the fuzzy logic
method of [42] requires tuning of the membership function,
and the Bayesian inference method of [40] also requires a
statistical model of the observed data, which hence have
limited abilities to deal with challenge C1.

To overcome these challenges, a promising alternative
approach of modeling the authentication process is to track
multiple physical layer attributes based on the kernel machine
learning. As a benefit, the kernel machine of [27]–[30] is
capable of reducing the dimensionality of the authentica-
tion problem based on multiple attributes. It models the
authentication problem as a linear system without requiring
the knowledge of the attributes’ statistical properties. More
importantly, the variations of attributes as well as of the
environment may be tracked (learnt) by the kernel machine
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learning. All these compelling benefits motivate us to propose
a novel authentication scheme based on the kernel machine
learning technique as an intelligent process in the face of time-
varying wireless communication scenarios to achieve reliable
authentication through discovering the complex dynamic envi-
ronment encountered and through tracking the variations of
multiple physical layer attributes.

C. Contributions

In this paper, we develop an adaptive authentication scheme
based on an intelligent machine learning-aided process for
discovering the associated time-varying environment, and thus
for improving the physical layer authentication performance.
Firstly, a multiple physical layer attribute fusion model based
on the classic kernel machine is designed for modeling the
authentication problem without requiring the knowledge of
those attributes’ statistical properties, which corresponds to C1
of Section I-B. As for C2 and C3, we cast the authentication
problem from a high-dimensional search space to a single-
dimensional space by using the classic Gaussian kernel, hence
the resultant physical layer authentication can be considered
as a linear system. Then an adaptive algorithm is proposed
for tracking the variations of the physical layer attributes
to achieve a reliable authentication performance, which is a
solution for C4 of Section I-B.

Specifically, the contributions of this paper are summa-
rized as follows:
1) We design a kernel machine-based model for determining
the authentication attributes without requiring the knowledge
of their statistical properties, and cast the authentication system
from a high-dimensional space to a single-dimensional space.
Then the resultant physical layer authentication process can
be considered as a linear system, which is easier to train
based on the estimates of the physical layer attributes and
on the authentication results observed. As a result of this
transformation, the complexity of our multiple physical layer
attribute fusion model can be dramatically reduced, despite
considering a high number of physical layer attributes;
2) The learning (training) objective of the physical layer
authentication based on kernel machine may be formulated as
a convex problem. We then propose an intelligent authentica-
tion process based on kernel least-mean-square for tracking the
variations of the physical layer attributes to achieve a reliable
authentication performance. By deriving the learning rules for
both the system parameters and for the authentication sys-
tem, the proposed intelligent authentication process becomes
capable of adapting to time-varying environments. Therefore,
a timely detection of the physical layer attributes and the
adjustment of the authentication process can be achieved;
3) Our numerical performance and simulations results demon-
strate that a larger number of physical layer attributes leads
to a more pronounced authentication performance improve-
ment without unduly degrading the convergence and training
performance. We also demonstrate the superiority of our
authentication process over its non-adaptive benchmarker.

The rest of this paper is organized as follows. In Section II,
the system model used in this paper is presented. In Section III,

Fig. 2. Adversarial system in a wireless network. The transmissions between
two legitimate devices (i.e. Alice and Bob) suffer from the spoofing attacks
from an attacker, i.e. Eve. Bob should identify the transmitter by using
multiple time-varying and imperfectly estimated physical layer attributes.

we design a multiple physical layer attribute fusion model
based on the kernel machine. An adaptive authentication algo-
rithm is proposed in Section IV. Both the convergence analysis
and our authentication performance analysis are presented in
Section IV. The simulation results are discussed in Section V.
Finally, Section VI concludes the paper.

II. SYSTEM MODEL

As shown in Fig. 2, we consider a wireless network, where
Alice and Bob communicate with each other in the presence
of an eavesdropper, explicitly, Eve, who intends to intercept
and impersonate Alice, and then to send spoofing signals to
obtain illegal advantages. Bob’s main objective is to uniquely
and unambiguously identify the transmitter by physical layer
authentication. The basic physical layer authentication aims
for supporting this pair of legitimate devices by a reciprocal
wireless link, while the device-dependent features can be used
as a unique security signature.

Again, a combination of multiple attributes can be used for
improving the authentication performance, since it is more
difficult for Eve to simultaneously infer multiple attributes
of a large search-space from a received signal. Naturally, the
various combinations of physical layer attributes provide a
high grade of uncertainty for the adversaries and simultane-
ously improve multi-dimensional protection for the legitimate
users. Let us denote the number of physical layer attributes
used for authentication by N and the estimates of multiple
physical layer attributes by H = (H1, H2, . . . , HN )T, where
T represents the transposition of a vector. Again, these physi-
cal layer attributes may include the channel state information
(CSI), carrier frequency offset (CFO), received signal strength
indicator (RSSI), round-trip time (RTT), in-phase-quadrature-
phase imbalance (IQI), and so on. These unique channel
and device features offer security guarantee by physical layer
authentication.

Let us continue by stipulating a few important assumptions
for the authentication scenario considered in this paper, as
follows:
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Assumption 1: The physical signals transmitted between
a pair of legitimate devices rapidly become decorrelated in
space, time and frequency. This implies that it is hard for
the attacker to observe and predict the channel state between
legitimate devices, if the attacker is at a third location, which
is further than a wavelength away from Alice and Bob;

Assumption 2: Both the wireless channels and the interfer-
ence are time-varying, the devices are moving, and hence the
wireless environment is dynamically changing. These all lead
to unpredictable variations of the physical layer attributes;

Assumption 3: The estimates of the physical layer attributes
are imperfect, because the legitimate devices roaming in
different locations also suffer from different interferences,
a dynamic propagation environment, different estimation
errors, and so on.
These assumptions characterize a practical scenario, but natu-
rally, it is more difficult for us to deal with these imperfectly
estimated time-varying physical layer attributes.

The physical layer authentication comprises two phases,
as described below.

Phase I: Alice broadcasts one or more messages to Bob
at time t. From the received signal, Bob infers an imperfect
estimate of the multiple attributes

HI
A[t] = (HI

A1[t], H
I
A2[t], . . . , H

I
AN [t])T, (1)

which are associated with Alice. At the same time, Eve
overhears the transmission.

Phase II: either Alice or Eve transmits a message to Bob
at time t + τ . Then Bob obtains another imperfect estimate

HII [t + τ ] = (HII
1 [t + τ ], HII

2 [t + τ ], . . . , HII
N [t + τ ])T,

(2)

where τ represents the time interval between the two phases.
Bob should compare the estimate HII [t + τ ] to the pre-

vious estimate HI
A[t]. If these two estimates are likely to be

originated from the same channel realization and the same
imperfect hardware, then the message at time t+ τ is deemed
to be coming from Alice.

Remark 1: As we mentioned in the assumptions, the physi-
cal layer attributes are time-variant and imperfectly estimated.
The objective of this paper is to propose an intelligent authen-
tication process relying on these physical layer attributes.
The process proposed aims for achieving reliable and robust
authentication through discovering and learning the complex
operating environment, in the face of limited computational
resources (see C1); our new authentication schemes based on
multiple attributes result in a higher-dimensional search space
(C2); the authentication schemes usually rely on nonlinear
processing (C3); the prompt detection of the time-varying
physical layer attributes and the ensuing adjustment of the
physical layer authentication require new sophisticated adap-
tive processing techniques (C4).

Let us now conceive an intelligent adaptive function F(·),
which is used for fusing N independent physical layer
attributes. Then the authentication process can be formulated

Fig. 3. Kernel machine-based multiple physical layer attribute fusion.

relying on a threshold ν > 0 as{
Φ0 : |F(HI

A − HII)| ≤ ν;

Φ1 : |F(HI
A − HII)| > ν,

(3)

where Φ0 indicates that the signal is from Alice, while Φ1 indi-
cates that it is from Eve. Due to the variations and imperfect
estimates of the physical layer attributes between Alice and
Bob, we may encounter both false alarms and misdetections.
Therefore, the parameters in F(·) should be promptly updated
to achieve low false alarm rate and misdetection rate in a time-
varying environment.

III. KERNEL MACHINE-BASED MULTIPLE PHYSICAL

LAYER ATTRIBUTE FUSION

In order to improve the performance of the authentication
schemes in time-varying environments using multiple physical
layer attributes, which are imperfectly estimated and time-
varying, we propose a kernel machine-based model for fus-
ing multiple physical layer attributes without requiring the
knowledge of their statical properties in the spirit of C1
of Section I-B. Then, the dimension of the search-space is
reduced from N to 1 with the aid of our kernel machine-
based physical layer attribute fusion model and our authen-
tication problem can be modeled by a linear system as
detailed in this section (corresponding to C2 and C3 of
Section I-B). Therefore, the complexity of our multiple phys-
ical layer attribute fusion model can be dramatically reduced,
as well as the trade-off between the authentication false
alarm and misdetection can be improved by utilizing multiple
attributes.

In the kernel machine-based multiple attribute fusion, Bob
will obtain an estimate HII [t + τ ] of (2) at time t + τ .
Then, Bob will compare the estimate HII [t + τ ] to the
previous estimate at time t, namely for HI

A[t] of (1). The
difference between these two estimates is denoted as h =
(h1, h2, . . . , hN)T, where each hn ∈ [an, bn] is formulated as

hn = HI
An[t] − HII

n [t + τ ], n = 1, 2, . . . , N, (4)

with N being the number of physical layer attributes used.
Since the different attributes exhibit quite different ranges

and have different units, the normalization (see Fig. 3) is
required for scaling the attributes having different ranges to the
same range for the ease of analysis and for the design of the
kernel machine-based fusion. In the following, we normalize
the attributes having ranges [an, bn], n = 1, 2, . . . , N, to
[−1, 1] by invoking

h̃n =
2

bn − an
(hn − an + bn

2
), n = 1, 2, . . . , N. (5)
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It can be observed from (4) and (5) that these two equations
are only used for normalizing the estimates of the attributes to
the range of [−1, 1], so that the rather diverse multiple physical
layer attributes can be processed in the same range. In practical
systems, we only have to know the approximate variation
ranges of the attributes, which is reasonable because we can
always have a priori knowledge about the communication
systems and environments before designing the authentication
system. For example, the CFO variation range was measured
to be [−78.125, 78.125) kHz according to [21], while the RSSI
range depends on the pathloss [36].

Let us assume that a set of observations (h̃l, ŷl)L
l=1 ∈

[−1, 1]N × {0, 1} is given, which is used for training the
authentication process, where h̃l = (h̃1l, h̃2l, . . . , h̃Nl)T is the
lth estimate after the normalization, with each element h̃nl

defined in (5), and

ŷl =

{
1 Φ0

0 Φ1.
(6)

As shown in Fig. 3, the normalized estimates h̃l, l =
1, 2, . . . , L, are considered as the inputs of the kernel machine,
and f(h̃l) represent the outputs of the kernel machine with the
corresponding inputs given by h̃l ∈ [−1, 1]N , l = 1, 2, . . . , L.
Note that for the legitimate users, the training data of a
legitimate communication session is relatively straightforward
to obtain.

Our task is then to infer the underlying mapping function
ŷl = f(h̃l) from the training data set (the samples) received
(h̃l, ŷl)L

l=1 ∈ [−1, 1]N×{0, 1}. In other words, the task in this
section is to represent the authentication system ŷl = f(h̃l),
and to model the relationship between the estimates of multiple
attributes and the corresponding authentication results. After
this, we can verify whether a transmitter is that of Alice or of
Eve once a new normalized estimate h = (h1, h2, . . . , hN )T

has been obtained. For example, in a continuous authentication
session as defined in [22], once the transmitter accesses the
system again or sends the messages to Bob continuously, Bob
can infer the estimates of this transmitter’s physical attributes,
and then determine its normalized estimate through (5). This
normalized estimate may be different from the previous nor-
malized estimates h̃l, l = 1, 2, . . . , L, because of the time-
varying environment or channels, which will be treated as
the new normalized estimate of the attributes used. The
authentication is then carried out by using the new normalized
estimate to improve the security.

The kernel machine projects the N -dimensional input vector
h ∈ [−1, 1]N into a potentially infinite-dimensional feature
space H through a mapping ϕ : [−1, 1]N → H. Note that
the transformation from the input space into the feature space
is nonlinear, and the dimensionality of the feature space is
high enough. Since the linear model defined in feature space
H satisfies the universal approximation property of [43],
the authentication system can be expressed as

f(h) = wTϕ(h), (7)

where w is the weight vector in the feature space H.

According to the Representer Theorem of [45], [46],
the authentication system expression of (7) can be rewritten
as

f(h) =
L∑

l=1

αlκ(h̃l, h), (8)

where κ(h̃l, h) is a Mercer kernel [27]. The classic Gaussian
kernel function of [27]–[30] is adopted in this paper, which
has an excellent modelling capability and is numerically
stable. The Gaussian kernel function used in our authentication
scheme is given by

κ(h̃l, h) = exp(
−‖h̃l − h‖2

2σ2
), (9)

where σ is the kernel width and should be chosen by the
users. The popular methods of selecting a suitable kernel
width include the cross-validation, nearest neighbor, penalizing
function and plug-in based methods of [47]. The Gaussian
kernel function of (9) characterizes a similarity between the
observed inputs h̃l and the new normalized estimate h.

An important relationship between (7) and (8) is

κ(h̃l, h) = ϕ(h̃l)Tϕ(h). (10)

Remark 2: We can observe both from the kernel function
of (9) and from the authentication system expression of (8)
that the physical layer attributes are fused without any specific
knowledge of their statistical properties, which corresponds to
C1 of Section I-B. As for C2, the search-space is transformed
from being N -dimensional to single-dimensional by our mul-
tiple physical layer attribute fusion model.

Remark 3: In practical wireless networks, the authentica-
tion systems are usually nonlinear (see C3 of Section I-B).
By contrast, according to the proposed kernel machine-based
physical layer attribute fusion model of (8), the authentication
system is formulated as a linear system, since the expression
of (8) relies on the linear weights αl, l = 1, 2, . . . , L.

As discussed above, the estimates of the multiple physical
layer attributes H are time-variant, which may lead to a low
authentication performance without agile adaptation. There-
fore, in the next section, we focus our attention on propos-
ing adaptive learning procedures for promptly adjusting the
authentication system of (8) and for updating the parameters,
i.e. αl, l = 1, 2, . . . , L, through discovering and learning the
complex time-varying environment encountered, which is the
solution of C4 in Section I-B.

IV. ADAPTIVE AUTHENTICATION AS AN

INTELLIGENT PROCESS

In this section, a learning procedure is proposed for adap-
tive authentication based on the kernel least-mean-square
for promptly updating the parameters. This authentication
process is based on learning from the observed samples
(h̃l, ŷl)L

l=1 ∈ [−1, 1]N × {0, 1}. Explicitly, the proposed
learning procedure can be viewed as an intelligent process of
learning the time-varying environment for updating the system
parameters αl, l = 1, 2, . . . , L, to achieve a reliable and robust
authentication.
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A. Adaptive Authentication Algorithm

Given the samples (h̃l, ŷl)L
l=1 ∈ [−1, 1]N×{0, 1} observed,

we transform the N -dimensional input vector h̃l ∈ [−1, 1]N

into a kernel Hilbert space H through a mapping ϕ :
[−1, 1]N → H according to (7). Therefore, we obtain a pair of
sample sequences {ϕ(h̃1), ϕ(h̃2), . . .} and {ŷ1, ŷ2, . . .}. The
weight vector w in (7) at iteration l should be updated for
minimizing the cost function as follows

min
w

l∑
i=1

[ŷi − wTϕ(h̃i)]2. (11)

Remark 4: We can observe from (11) that the learning
(training) objective of the adaptive authentication process is
formulated as a convex optimization problem.

Then the learning rules conceived for updating the weight
vector α and the authentication system of (8) are given by the
following proposition:

Proposition 1: The learning rule conceived for updating the
weight vector α[l] in our multiple physical layer attribute
fusion model at iteration l can be expressed as

α[l] = μ × (e[1], e[2], . . . , e[l])T, (12)

where μ represents a step-size parameter. Furthermore, e[l] is
the prediction error computed as the difference between the
desired observation of the transmitter and its prediction relying
on the authentication system parameters α[l − 1], which is
expressed as

e[l] = ŷl − f(h̃l)[l − 1], (13)

where we have

f(h̃l)[l − 1] =
l−1∑
i=1

αi[l − 1]κ(h̃i, h̃l). (14)

Furthermore, the learning rule conceived for adjusting the
authentication system at iteration l is given by

f(h)[l] = f(h)[l − 1] + μe[l]κ(h̃l, h). (15)

Proof: See Appendix A.
According to Proposition 1, our intelligent authentication

process based on the kernel least-mean-square is summarized
at a glance in Algorithm 1.

Remark 5: In conclusion, the search space is trans-
formed from being N -dimensional to single-dimensional (see
Remark 2), the authentication is modelled as a linear system
(see Remark 3), and the learning (training) objective of
the authentication is formulated as a convex problem (see
Remark 4). Therefore, the complexity of our physical layer
authentication scheme relying on multiple attributes is dramat-
ically reduced. We can also observe from Algorithm 1 that
the execution-time is on the order of O(L), which makes
Algorithm 1 an attractive solution. In next subsection, we will
discuss the selection of the step-size parameter μ, which
affects the convergence of our authentication process.

Algorithm 1 Intelligent Authentication Process
1. Initialization:

f [0] = 0: initial value of authentication system
e[0] = 0: initial value of prediction error
α[0] = 0: initial value of system parameter α
μ: step-size parameter of learning
σ: kernel width
h̃1: initial input, i.e. the normalized estimate of physical

layer attributes
C = {h̃1}: initial set of input
ŷ1: initial observation of the transmitter with the

corresponding normalized estimate h̃1

2. Iteration:
2.1 while samples (h̃l, ŷl)L

l=1 ∈ [−1, 1]N × {0, 1}
available do

2.2 obtain the output of authentication system f [l − 1]
at iteration l − 1 via (8);

2.3 calculate the prediction error e[l] via (13);
2.4 update weight vector α[l] through (12);
2.5 adjust the authentication system f [l] via (15);
2.6 update the input set as C = C + {h̃l};
2.7 l = l + 1;
2.8 end

B. Convergence Analysis of the Proposed
Authentication Process

The step-size parameter directly affects the convergence of
our authentication process, since increasing the step-size of
learning will reduce the convergence time but may in fact lead
to divergence. Therefore, the step-size parameter μ should be
carefully decided.

Theorem 1: The proposed intelligent authentication process
(see Algorithm 1) converges to a steady-state value, if the step-
size parameter of learning μ satisfies

0 < μ <
L∑L

l=1 κ(h̃l, h̃l)
= 1. (16)

Proof: See Appendix B.
Remark 6: Theorem 1 gives the upper bound of the step-

size parameter μ in Algorithm 1, so that the proposed intelli-
gent authentication process converges to a steady state.

C. Authentication Performance Analysis

Mathematically, the false alarm rate and the misdetection
rate of our intelligent authentication process can be formulated
according to (3), respectively, as

PFA = P (|F(HI
A − HII)| > ν | Φ0) (17)

and

PMD = P (|F(HI
A − HII)| ≤ ν | Φ1), (18)

where F represents our multiple physical layer attribute fusion
model.

According to the proposed authentication system of (8),
the false alarm rate and misdetection rate at instant L can
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be rewritten, respectively, as

PFA = P (|
L−1∑
l=1

αlκ(h̃l, h̃L)| < ν | Φ0) (19)

and

PMD = P (|1 −
L−1∑
l=1

αlκ(h̃l, h̃L)| ≤ ν | Φ1), (20)

where ν ∈ [0, 1).
In the face of the imperfect estimates of time-varying

physical layer attributes, we divide them into two parts: the
time-varying part H that is the real value of physical layer
attributes used, and part �H that is the bias of estimated
attributes. Then the estimates HI

A[l − τl] and HII [l] can be
written, respectively, as

HI
A[l − τl] = H

I

A[l − τl] + �HI
A[l − τl] (21)

and

HII [l] = H
II

[l] + �HII [l], (22)

where τl is the time interval between Phase I and Phase II of
the physical layer authentication at iteration l, l = 1, 2, . . . , L.
Furthermore, υ(τl) = (υ1l, υ2l, . . . , υNl)T represents the vari-
ations of part H

I

A during the time interval τl, which can be
expressed as

υ(τl) = H
II

A [l]− H
I

A[l − τl]. (23)

Given the distributions of part �H of the multiple physical
layer attributes, we can calculate the false alarm rate and
misdetection rate of our scheme as the following theorems.
Note that our intelligent authentication process does not need
the knowledge of their statistical properties in the training
process.

Theorem 2: The false alarm rate expression of our intelli-
gent authentication process at iteration L is given by

PFA = FY1 ∗ FY2 ∗ · · · ∗ FYL−1(ν)
−FY1 ∗ FY2 ∗ · · · ∗ FYL−1(−ν), (24)

where Yl = αl exp(−∑N
n=1(h̃nl − h̃Φ0

nL)2/2σ2), l =
1, 2, . . . , L−1, h̃Φ0

nL is shown in (39), F represents the cumu-
lative distribution function, and ∗ represents the convolution.

Proof: See Appendix C.
Theorem 3: The misdetection rate expression of our intel-

ligent authentication process at iteration L is expressed as

PMD = FZ1 ∗ FZ2 ∗ · · · ∗ FZL−1(ν + 1)
−FZ1 ∗ FZ2 ∗ · · · ∗ FZL−1(1 − ν), (25)

where Zl = αl exp(−∑N
n=1(h̃nl − h̃Φ1

nL)2/2σ2), l =
1, 2, . . . , L − 1, and h̃Φ1

nL is shown in (41).
Proof: See Appendix D.

Remark 7: We can observe from Theorem 2 and Theo-
rem 3 that the false alarm rate and misdetection rate of our
intelligent authentication process depend on both the number
of physical layer attributes N and on the variations of the
attributes υ. Our intelligent authentication process tracks the

variations of the attributes and promptly adjusts the authen-
tication system, so that a compelling false alarm rate vs.
misdetection rate trade-off is achieved.

V. NUMERICAL PERFORMANCE AND

SIMULATION RESULTS

In order to evaluate the performance of our intelligent
authentication process, we provide both numerical and simu-
lation results in this section. Firstly, we implement our authen-
tication process using some specific physical layer attributes,
and characterize the convergence of Algorithm 1. Then its
false alarm rate vs. the misdetection rate trade-off is studied.
Finally, we demonstrate the superiority of our authentication
process over its non-adaptive benchmarker.

First of all, three physical layer attributes, namely the carrier
frequency offset (CFO), channel impulse response (CIR), and
received signal strength indicator (RSSI) are considered in our
simulations to confirm the viability of our intelligent authen-
tication process. Specifically, a communication system having
a measurement center frequency of 2.5 GHz, measurement
bandwidth of 10 MHz, coherence bandwidth of 0.99, normal-
ized time correlation of 0.99 and sampling time of 50 ms
is considered. The transmitted signal is passed through a
randomly generated 12-tap multipath fading channel having an
exponential power delay profile. We assume that the relative
velocity between Alice and Bob is around 20 km/h, and the
initial distance between Alice and Bob is 5 m. Then the CFO
of an individual transmitter can be approximated as a zero-
mean Gaussian variable [21], [48], and the standard deviation
of the CFO variation is �CFO ≈ 2.35 × 10−7. The CFO
estimation range is [−78.125, 78.125) kHz [21]. Furthermore,
according to [26], an autoregressive model of order 1 (AR-1)
is used for characterizing the temporal amplitude fluctuation
Ampk[t] of the kth-tap in our multipath fading channel.
Therefore, the variation of CIR can be given as υCIR =∑12

k=1 Ampk[t] exp(−j4.99πk), and the per-tone signal-to-
noise ratio (SNR) is in the channel measurements range of
[−12.8, 14.2) dB with a median value of 6.4 dB, if the transmit
power is 10 mW [26]. Finally, according to [44], the RSSI can
be given as PL[dB] = 75 + 36.1 log(d/10), where PL is the
path loss, and d represents the direct transmission distance
between the transmitter and Bob. The direct transmission
distance between the transmitter and Bob is assumed to be
in the range of [0, 100] m.

Given 300 samples of the CFO, CIR and RSSI of Alice, i.e.
(h̃l, ŷl)300l=1 ∈ [−1, 1]3×{0, 1}, where ŷl = 1, Fig. 4 shows the
training performance of our intelligent authentication process
(Algorithm 1) relying on the CFO, CIR and RSSI triplet. The
step-size parameter of Algorithm 1 is set to μ = 0.1. We can
observe from Fig. 4 that the mean square errors E[‖e[l]‖2]
of all the strategies are significantly reduced, as the iteration
index increases from 0 to 50. Furthermore, the mean square
error E[‖e[l]‖2] of each strategy reaches its steady-state value
after 30 iterations. We can also observe from Fig. 4 that the
CIR estimation performs better than both the CFO and RSSI
estimation in the training performance at the beginning, but
its training performance becomes the worst after 30 iterations.
The reason for this trend is that the deviation of CIR estimation
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Fig. 4. Training performance of our intelligent authentication process
(Algorithm 1) relying on the CFO, CIR and RSSI triplet.

Fig. 5. Training performance of our intelligent authentication process
(Algorithm 1) relying on 2 attributes (i.e. CFO & CIR, CFO & RSSI, CIR
& RSSI) and 3 attributes (i.e. CFO & CIR & RSSI).

is lower than that of the CFO and RSSI, while its variation of
(23) is the highest.

Fig. 5 characterizes the training performance of our intel-
ligent authentication process (see Algorithm 1) relying on
multiple attributes. We consider four cases, namely the CFO &
CIR, the CFO & RSSI, the CIR & RSSI, and finally the CFO
& CIR & RSSI scenarios. We can observe from Fig. 5 that our
intelligent authentication process relying on the CFO & RSSI
pair has the worst training performance before 30 iterations,
while that relying on the CIR & RSSI pair has the lowest
mean square error. The reason for this trend is that the mean
square error of our intelligent authentication process relying
on the CIR is lower than that of the CFO and RSSI before
30 iterations seen in Fig. 4, which adversely affects the training
performance in this communication scenario. Additionally,
the mean square error of our intelligent authentication process
relying on the CFO & RSSI pair is the lowest after 30 iter-
ations, because both the CFO and RSSI are more reliable
than the CIR in the authentication process. Furthermore, it is

Fig. 6. Authentication performance of our intelligent authentication process
relying on the CFO, CFO & CIR, CFO & RSSI, and CFO & CIR & RSSI
scenarios. In this case, Eve can intercept and imitate the CFO of Alice.

also shown in Fig. 5 that the training performance of our
intelligent authentication process relying on the CFO & CIR
& RSSI triplet is worse than that of the CFO & RSSI pair
after 30 iterations, while it is better than that of the CFO &
CIR pair and CIR & RSSI pair. This is because the training
performance of our intelligent authentication process depends
on both the specific attributes and on the number of physical
layer attributes.

Fig. 6 considers the case that Eve can intercept and imitate
the CFO of Alice, which characterizes the authentication
performance of our intelligent authentication process relying
on the CFO, CFO & CIR, CFO & RSSI, and finally the CFO
& CIR & RSSI scenarios. In other words, Eve intercepts
and impersonates the CFO of Alice to obtain unintended
advantages from Bob in this case. We can observe from
Fig. 6 that our intelligent authentication process relying on the
CFO & CIR & RSSI has the best authentication performance,
while that only relying on the CFO performs worst. The reason
for this trend is that Bob can better identify the transmitter by
using CIR and RSSI, although Eve imitates the CFO of Alice
in the CFO & CIR & RSSI scenario. On the other hand, Bob
suffers from a high misdetection rate in the CFO scenario,
since the CFO of Alice is impersonated by Eve. It is also
shown in Fig. 6 that there is a small difference between the
authentication performance of our intelligent authentication
process relying on the CFO & CIR pair and that of the CFO &
RSSI pair; and the authentication performances of these two
attributes scenarios are better than that of a single-attribute
scenario (i.e. CFO). This is because Bob can identify the
adversary by using CIR or RSSI in the CFO & CIR or the
CFO & RSSI scenarios. Therefore, the increasing number
of physical layer attributes is expected to lead to a higher
authentication performance in our intelligent authentication
process.

Fig. 7 considers the scenario when Eve can intercept and
impersonate both the CFO and CIR of Alice. It is observed
from Fig. 7 that the authentication performance of our intelli-
gent authentication process relying on the CFO & CIR & RSSI
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Fig. 7. Authentication performance of our intelligent authentication process
relying on the CFO & CIR and CFO & CIR & RSSI scenarios. In this case,
Eve can intercept and imitate both the CFO and CIR of Alice.

Fig. 8. Training performance comparison results of our intelligent authen-
tication process with different step-sizes, i.e. μ = 0.05, μ = 0.1, μ = 0.2,
μ = 0.3, and μ = 0.5.

triplet is better than that of the CFO & CIR pair. The reason for
this trend is that Bob can identify the adversary using the RSSI
in the CFO & CIR & RSSI scenario, although Eve imitates
both the CFO and CIR of Alice. Both Fig. 6 and Fig. 7 confirm
that increasing the number of physical layer attributes leads to
a better authentication performance, since it is more difficult
for an adversary to succeed in predicting or imitating all the
attributes based on the received signal.

In Fig. 8, we characterize the training performance of our
intelligent authentication process (see Algorithm 1) parame-
terized by the step-sizes of μ = 0.05, μ = 0.1, μ = 0.2,
μ = 0.3, and μ = 0.5. It can be observed from Fig. 8 that our
intelligent authentication process reaches its steady-state value
in all cases. We can also see from Fig. 8 that our intelligent
authentication process having a higher step-size μ converges
quicker. In other words, increasing the step-size of learning in
a specific range accelerates the convergence. This augments
the convergence analysis of Section IV-B.

Fig. 9 characterizes the mean square error vs. the iteration
index for the step-size parameters of μ = 0.2 and μ = 2. As

Fig. 9. Convergence and divergence of our intelligent authentication process.

Fig. 10. Training performance comparison results of our intelligent authenti-
cation process with different numbers of physical layer attributes, i.e. N = 5,
N = 10 and N = 15.

discussed before, our authentication process associated with
μ = 0.2 converges to a steady-state value, while μ = 2
diverges. This is because μ = 2 is out of the range specified
in Theorem 1.

Fig. 10 quantifies the influence of the number of physical
layer attributes N on the training performance, which shows
the mean square error E[‖e[l]‖2] vs. the iteration index for
different numbers of physical layer attributes, namely for
N = 5, N = 10 and N = 15. The step-size parameter
is set to μ = 0.1. It can be observed that the mean square
error E[‖e[l]‖2] tends to a steady-state value, as the itera-
tion index increases. Moreover, we can also observe from
Fig. 10 that a larger number of attributes only leads to a
slightly slower convergence. Therefore, the explosion of com-
putational complexity upon increasing the number of physical
layer attributes can be readily avoided by our intelligent
authentication process. This validates our analysis provided
in Section III, and supported by Remark 2, 3, 4.

Fig. 11 characterizes the influence of the number of physical
layer attributes N on the authentication performance, which
quantifies the MD rate vs. the threshold of FA rate for different
numbers of physical layer attributes, namely for N = 2,
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Fig. 11. Authentication performance comparison results of our intelligent
authentication process with different numbers of physical layer attributes, i.e.
N = 2, N = 3, N = 4 and N = 5.

Fig. 12. Comparison results between our intelligent process and the process
without updating system parameters relying on CFO & CIR & RSSI.

N = 3, N = 4 and N = 5. It can be observed that the
MD rates are reduced in all cases as the threshold δ of FA
rate increases from 0 to 0.2, because there is an inevitable
FA-and-MD trade-off. One can also observe from Fig. 11 that
a larger number of attributes leads to a more obvious security
performance improvement, without substantially degrading
the convergence performance (see Fig. 10) of our intelligent
authentication process. This trend demonstrates the validity of
our authentication performance analysis in Section IV-C. In a
nutshell, by using more physical layer attributes, our intelligent
authentication process achieves a better authentication per-
formance, indicating the presence of a FA-and-MD trade-off,
because we can readily fuse multiple physical layer attributes
and control the authentication system to track the variations of
multiple attributes. On the same note, the attackers find it more
difficult to predict and imitate a larger number of attributes
from a received signal.

In Fig. 12, let us now impose the variations on the CFO,
CIR and RSSI for comparing our intelligent process and the
process operating without updating the system parameters. The
threshold of the false alarm rate is 0.02. Then we can observe
from Fig. 12 that upon increasing the time between updates,

the MD rate of our intelligent process remains robust, tending
to around 0.035, while that of the process operating without
updating the system parameters increases dramatically from
about 0.035 to almost 0.35. This demonstrates that without
an adaptive scheme, the authentication performance will be
dramatically reduced in time-varying environments. Therefore,
our intelligent process performs better than the authentication
scheme operating without updating the system parameters.

VI. CONCLUSIONS

In this paper, we proposed an intelligent physical layer
authentication technique. A kernel machine-based model was
proposed for combining the multiple physical layer attributes
and for modelling the authentication as a linear system.
Through the kernel machine-based multiple attribute fusion
model, the number of dimensions of the search-space was
reduced from N to 1, and the learning objective was for-
mulated as a convex problem. Therefore, its complexity
was substantially reduced. Then, by conceiving an adaptive
authentication process relying on the kernel machine-based
multiple attribute fusion model, the process advocated readily
accommodated a time-varying environment by discovering and
learning this complex dynamic environment. Both the conver-
gence performance and the authentication performance of our
intelligent authentication process were theoretically analyzed
and numerically validated. The simulation results showed that
the authentication performance can be dramatically improved
by increasing the number of physical layer attributes exploited
by our intelligent authentication process without degrading its
convergence performance. It was also demonstrated that it has
a much better authentication performance in a time-varying
environment than its non-adaptive counterpart.

APPENDIX A
THE PROOF OF PROPOSITION 1

Let

J(w) =
l∑

i=1

[ŷi − wTϕ(h̃i)]2. (26)

By invoking a step-size parameter μ, the learning rule for
the parameter w can be derived by using the gradient. The
partial derivative of the function J(w) with respect to w =
(w1, w2, . . . , wl)T is given by

∂J(w)
∂w

= −2
l∑

i=1

ϕ(h̃i)[ŷi − wTϕ(h̃i)], (27)

and the instantaneous gradient at iteration l is

∂J(w)
∂w

[l] = −ϕ(h̃l)[ŷl − w[l − 1]Tϕ(h̃l)]. (28)

According to the steepest descent algorithm, we have

w[l] = w[l − 1] + μϕ(h̃l)[ŷl − w[l − 1]Tϕ(h̃l)]. (29)

Since e[l] of (13) can also be expressed as

e[l] = ŷl − w[l − 1]Tϕ(h̃l), (30)
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the repeated application of (29) through iterations becomes

w[l] = w[l − 1] + μϕ(h̃l)e[l]

= w[l − 2] + μϕ(h̃l−1)e[l − 1] + μϕ(h̃l)e[l]
= · · ·
=

l∑
i=1

μϕ(h̃i)e[i]; (w[0] = 0). (31)

According to (7), (8) and (9), we can derive the authenti-
cation system as

f(h) =
L∑

l=1

αlκ(h̃l, h) =
L∑

l=1

αlϕ(h̃l)Tϕ(h)

= w[L]Tϕ(h) =
L∑

l=1

μe[l]ϕ(h̃l)Tϕ(h), (32)

then we have

αl[l] = μe[l]. (33)

Therefore, the parameter vector α at iteration l, i.e. α[l] =
(α1[l], α2[l], . . . , αl[l])T, can be updated through (12).

Then the authentication system at iteration l can be formu-
lated as

f(h)[l] =
l∑

i=1

αiκ(h̃i, h) = μ

l∑
i=1

e[i]κ(h̃i, h)

= μ
l−1∑
i=1

e[i]κ(h̃i, h) + μe[l]κ(h̃l, h)

= f(h)[l − 1] + μe[l]κ(h̃l, h). (34)

Therefore, learning rule for adjusting the authentication system
of (8) is expressed as (15).

APPENDIX B
THE PROOF OF THEOREM 1

A practical convergence criterion is the convergence in the
mean square error sense, which is formulated as

E[‖e[l]‖2] → constant, as l → ∞, (35)

where E[·] represents the expectation of ·. It was shown in [43]
and [45] that the least-mean-square criterion based learning is
convergent in the mean square, if μ satisfies

0 < μ <
1

βmax
, (36)

where βmax is the largest eigenvalue of the correlation matrix
Θ[L] given by

Θ[L] = [ϕ(h̃1), ϕ(h̃2), . . . , ϕ(h̃L)]N×L. (37)

Since βmax < tr(Θ[L])/L, where tr(Θ[L]) is the trace of the
matrix Θ[L], we have

0 < μ <
L

tr(Θ[L])
=

L∑L
l=1 κ(h̃l, h̃l)

= 1. (38)

Therefore, the proposed intelligent authentication process (see
Algorithm 1) converges to a steady-state value if the step-size
parameter of learning μ satisfies (16).

APPENDIX C
THE PROOF OF THEOREM 2

According to (5), (21), (22), and (23), we can calculate
h̃L = (h̃1L, h̃2L, . . . , h̃NL)T in case of Φ0 as

h̃Φ0
nL =

2
bn − an

(υn(τL) + �HI
An[L − τL] −�HII

An[L]

−an + bn

2
), n = 1, 2, . . . , N, (39)

where τL is the time interval between Phase I and Phase
II of our physical layer authentication at iteration L. Given
the distributions of �HI

An and �HII
An of each physical

layer attribute, the probability of density function of h̃Φ0
nL can

be obtained. Let Yl = αl exp(−
�N

n=1(
�hnl−�hΦ0

nL)2

2σ2 ), we can
calculate the false alarm rate at iteration L as

PFA = P (|
L−1∑
l=1

αl exp(
−∑N

n=1(h̃nl − h̃Φ0
nL)2

2σ2
)| < ν)

= P (
L−1∑
l=1

Yl < ν) − P (
L−1∑
l=1

Yl ≤ −ν)

= F�L−1
l=1 Yl

(ν) − F�L−1
l=1 Yl

(−ν). (40)

Therefore, the false alarm rate expression of our intelligent
authentication process at iteration L is shown in (24).

APPENDIX D
THE PROOF OF THEOREM 3

According to (5), (21), and (22), h̃L =
(h̃1L, h̃2L, . . . , h̃NL)T in case Φ1 is formulated as

h̃Φ1
nL =

2
bn − an

(H
I

An[L − τL] − H
II

En[L] + �HI
An[L − τL]

−� HII
En[L] − an + bn

2
), n = 1, 2, . . . , N. (41)

Given the distributions of �HI
An and �HII

En of each physical
layer attribute, the probability of density function of h̃Φ1

nL can

be obtained. Upon letting Zl = αl exp(−
�N

n=1(
�hnl−�hΦ1

nL)2

2σ2 ),
the misdetection rate at iteration L yields

PMD = P (|1 −
L−1∑
l=1

αl exp(
−∑N

n=1(h̃nl − h̃Φ1
nL)2

2σ2
)| ≤ ν)

= P (
L−1∑
l=1

Zl ≤ ν + 1) − P (
L−1∑
l=1

Zl < 1 − ν)

= F�L−1
l=1 Zl

(ν + 1) − F�L−1
l=1 Zl

(1 − ν). (42)

Therefore, the misdetection rate expression of our intelligent
authentication process at iteration L is given by (25).

REFERENCES

[1] X. Wang, P. Hao, and L. Hanzo, “Physical-layer authentication for wire-
less security enhancement: current challenges and future developments,”
IEEE Commun. Mag., vol. 54, no. 6, pp. 152–158, Jun. 2016.

[2] Y. Zou, J. Zhu, X. Wang, and L. Hanzo, “A survey on wireless security:
Technical challenges, recent advances, and future trends,” Proc. IEEE,
vol. 104, no. 9, pp. 1727–1765, Sep. 2016.

[3] H. Fang, Li Xu, and X. Wang, “Coordinated multiple-relays based
physical-layer security improvement: A single-leader multiple-followers
Stackelberg game scheme,” IEEE Trans. Inf. Forensics Security, vol. 13,
no. 1, pp. 197–209, Jan. 2018.



2272 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 67, NO. 3, MARCH 2019

[4] M. Iwamoto, K. Ohta, and J. Shikata, “Security formalizations and their
relationships for encryption and key agreement in information-theoretic
cryptography,” IEEE Trans. Inf. Theory, vol. 64, no. 1, pp. 654–685,
Jan. 2018.

[5] Y.-C. Chen, “Fully incrementing visual cryptography from a succinct
non-monotonic structure,” IEEE Trans. Inf. Forensics Security, vol. 12,
no. 5, pp. 1082–1091, May 2017.

[6] Y. Ren, J.-C. Chen, J.-C. Chin, and Y.-C. Tseng, “Design and analysis
of the key management mechanism in evolved multimedia broad-
cast/multicast service,” IEEE Trans. Wireless Commun., vol. 15, no. 12,
pp. 8463–8476, Dec. 2016.

[7] M. Rezaee, P. J. Schreier, M. Guillaud, and B. Clerckx, “A unified
scheme to achieve the degrees-of-freedom region of the mimo inter-
ference channel with delayed channel state information,” IEEE Trans.
Commun., vol. 64, no. 3, pp. 1068–1082, Mar. 2016.

[8] H. Lohrasbipeydeh, T. A. Gulliver, and H. Amindavar, “Unknown
transmit power RSSD based source localization with sensor position
uncertainty,” IEEE Trans. Commun., vol. 63, no. 5, pp. 1784–1797,
May 2015.

[9] P. Cheng, Z. Chen, F. De Hoog, and C. K. Sung, “Sparse blind carrier-
frequency offset estimation for OFDMA uplink,” IEEE Trans. Commun.,
vol. 64, no. 12, pp. 5254–5265, Dec. 2016.

[10] O. H. Salim, A. A. Nasir, H. Mehrpouyan, and W. Xiang, “Multi-relay
communications in the presence of phase noise and carrier frequency
offsets,” IEEE Trans. Commun., vol. 65, no. 1, pp. 79–94, Jan. 2017.

[11] A. A. D’Amico, L. Marchetti, M. Morelli, and M. Moretti, “Frequency
estimation in OFDM direct-conversion receivers using a repeated pream-
ble,” IEEE Trans. Commun., vol. 64, no. 3, pp. 1246–1258, Mar. 2016.

[12] P. Baracca, N. Laurenti, and S. Tomasin, “Physical layer authentication
over MIMO fading wiretap channels,” IEEE Trans. Wireless Commun.,
vol. 11, no. 7, pp. 2564–2573, Jul. 2012.

[13] K. Zeng, K. Govindan, and P. Mohapatra, “Non-cryptographic authen-
tication and identification in wireless networks [security and privacy in
emerging wireless networks],” IEEE Wireless Commun., vol. 17, no. 5,
pp. 56–62, Oct. 2010.

[14] W. Wang, Z. Sun, S. Piao, B. Zhu, and K. Ren, “Wireless physical-
layer identification: Modeling and validation,” IEEE Trans. Inf. Forensics
Security, vol. 11, no. 9, pp. 2091–2106, Sep. 2016.

[15] A. Ferrante, N. Laurenti, C. Masiero, M. Pavon, and S. Tomasin, “On the
error region for channel estimation-based physical layer authentication
over Rayleigh fading,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 5,
pp. 941–952, May 2015.

[16] W. Wang, Y. Chen, and Q. Zhang, “Privacy-preserving location authen-
tication in Wi-Fi networks using fine-grained physical layer signa-
tures,” IEEE Trans. Wireless Commun., vol. 15, no. 2, pp. 1218–1225,
Feb. 2016.

[17] V. Kumar, J.-M. J. Park, and K. Bian, “PHY-layer authentication
using duobinary signaling for spectrum enforcement,” IEEE Trans. Inf.
Forensics Security, vol. 11, no. 5, pp. 1027–1038, May 2016.

[18] F. Zhu, B. Xiao, J. Liu, and Li-J. Chen, “Efficient physical-layer
unknown tag identification in large-scale RFID systems,” IEEE Trans.
Commun., vol. 65, no. 1, pp. 283–295, Jan. 2016.

[19] G. Caparra, M. Centenaro, N. Laurenti, S. Tomasin, and L. Vangelista,
“Energy-based anchor node selection for IoT physical layer authentica-
tion,” in Proc. IEEE Int. Conf. Commun. (ICC), May 2016, pp. 1–6.

[20] X. Wu, Z. Yang, C. Ling, and X.-G. Xia, “Artificial-noise-aided
physical layer phase challenge-response authentication for practical
OFDM transmission,” IEEE Trans. Wireless Commun., vol. 15, no. 10,
pp. 6611–6625, Oct. 2016.

[21] W. Hou, X. Wang, J.-Y. Chouinard, and A. Refaey, “Physical layer
authentication for mobile systems with time-varying carrier frequency
offsets,” IEEE Trans. Commun., vol. 62, no. 5, pp. 1658–1667,
May 2014.

[22] X. Wang, F. J. Liu, D. Fan, H. Tang, and P. C. Mason, “Continuous
physical layer authentication using a novel adaptive OFDM system,” in
Proc. IEEE Int. Conf. Commun. (ICC), Jun. 2011, pp. 1–5.

[23] X. Duan and X. Wang, “Authentication handover and privacy protection
in 5G hetnets using software-defined networking,” IEEE Commun. Mag.,
vol. 53, no. 4, pp. 28–35, Apr. 2015.

[24] J. Liu and X. Wang, “Physical layer authentication enhancement using
two-dimensional channel quantization,” IEEE Trans. Wireless Commun.,
vol. 15, no. 6, pp. 4171–4182, Jun. 2016.

[25] H. Fang, L. Xu, Y. Zou, X. Wang, and K.-K. R. Choo, “Three-
stage Stackelberg game for defending against full-duplex active
eavesdropping attacks in cooperative communication,” IEEE Trans.
Veh. Technol., vol. 67, no. 11, pp. 10788–10799, Nov. 2018, doi:
10.1109/TVT.2018.2868900

[26] L. Xiao, L. J. Greenstein, N. B. Mandayam, and W. Trappe, “Channel-
based spoofing detection in frequency-selective Rayleigh channels,”
IEEE Trans. Wireless Commun., vol. 8, no. 12, pp. 5948–5956,
Dec. 2009.

[27] W. Liu, J. C. Príncipe, and S. Haykin, Kernel Adaptive Filtering:
A Comprehensive Introduction. Hoboken, NJ, USA: Wiley, 2010,
pp. 16–98.

[28] K. Li and J. C. Príncipe, “Transfer learning in adaptive filters: The
nearest instance centroid-estimation kernel least-mean-square algo-
rithm,” IEEE Trans. Signal Process., vol. 65, no. 24, pp. 6520–6535,
Dec. 2017.

[29] R. Boloix-Tortosa, J. J. Murillo-Fuentes, I. Santos, and
F. Pérez-Cruz, “Widely linear complex-valued kernel methods
for regression,” IEEE Trans. Signal Process., vol. 65, no. 19,
pp. 5240–5248, Oct. 2017.

[30] B. Chen, L. Xing, B. Xu, H. Zhao, N. Zheng, and J. C. Príncipe,
“Kernel risk-sensitive loss: Definition, properties and application to
robust adaptive filtering,” IEEE Trans. Signal Process., vol. 65, no. 11,
pp. 2888–2901, Jun. 2017.

[31] J. Liu, P. C. Cosman, and B. D. Rao, “Robust linear regression via �0
regularization,” IEEE Trans. Signal Process., vol. 66, no. 3, pp. 698–713,
Feb. 2018.

[32] G. D. Finlayson, M. Mackiewicz, and A. Hurlbert, “Color correction
using root-polynomial regression,” IEEE Trans. Image Process., vol. 24,
no. 5, pp. 1460–1470, May 2015.

[33] X. Tan, C. Sun, and T. D. Pham, “Edge-aware filtering with local
polynomial approximation and rectangle-based weighting,” IEEE Trans.
Cybern., vol. 46, no. 12, pp. 2693–2705, Dec. 2016.

[34] L. Yang, L. Zhao, G. Bi, and L. Zhang, “SAR ground moving
target imaging algorithm based on parametric and dynamic sparse
Bayesian learning,” IEEE Trans. Geosci. Remote Sens., vol. 54, no. 4,
pp. 2254–2267, Apr. 2016.

[35] Y. Li, W. Dong, X. Xie, G. Shi, J. Wu, and X. Li, “Image
super-resolution with parametric sparse model learning,” IEEE Trans.
Image Process., vol. 27, no. 9, pp. 4638–4650, Sep. 2018, doi:
10.1109/TIP.2018.2837865

[36] L. Xiao, X. Wan, and Z. Han, “PHY-layer authentication with multiple
landmarks with reduced overhead,” IEEE Trans. Wireless Commun.,
vol. 17, no. 3, pp. 1676–1687, Mar. 2018.

[37] X. Shen and Y. Gu, “Nonconvex sparse logistic regression with weakly
convex regularization,” IEEE Trans. Signal Process., vol. 66, no. 12,
pp. 3199–3211, Jun. 2018.

[38] S. Wang, Z. Bao, J. S. Culpepper, T. Sellis, and G. Cong, “Reverse
k nearest neighbor search over trajectories,” IEEE Trans. Knowl. Data
Eng., vol. 30, no. 4, pp. 757–771, Apr. 2018.

[39] Y.-C. Cheng and P.-C. Wang, “Packet classification using dynami-
cally generated decision trees,” IEEE Trans. Comput., vol. 64, no. 2,
pp. 582–586, Feb. 2015.

[40] N. Wang, T. Jiang, S. Lv, and L. Xiao, “Physical-layer authentication
based on extreme learning machine,” IEEE Commun. Lett., vol. 21, no. 7,
pp. 1557–1560, Jul. 2017.

[41] L. Xiao, X. Wan, X. Lu, Y. Zhang, and D. Wu, “IoT security techniques
based on machine learning: How do IoT devices use AI to enhance
security?” IEEE Signal Process. Mag., vol. 35, no. 5, pp. 41–49,
Sep. 2018.

[42] Y. Yi, W. X. Zheng, C. Sun, and L. Guo, “DOB fuzzy controller design
for non-Gaussian stochastic distribution systems using two-step fuzzy
identification,” IEEE Trans. Fuzzy Syst., vol. 24, no. 2, pp. 401–418,
Apr. 2016.

[43] S. S. Haykin, Adaptive Filter Theory, 4th ed. Upper Saddle River, NJ,
USA: Prentice Hall, 2002.

[44] P. Abouzar, D. G. Michelson, and M. Hamdi, “RSSI-based distributed
self-localization for wireless sensor networks used in precision agricul-
ture,” IEEE Trans. Wireless Commun., vol. 15, no. 10, pp. 6638–6650,
Oct. 2016.

[45] W. Wang, Y. Liang, E. P. Xing, and L. Shen, “Nonparametric decen-
tralized detection and sparse sensor selection via weighted kernel,”
IEEE Trans. Signal Process., vol. 64, no. 2, pp. 306–321,
Jan. 2016.

[46] B. Scholkopf and A. J. Smola, Learning With kernels. Cambridge, MA,
USA: MIT Press, 2002.

[47] W. Härdle, Applied Nonparametric Regression. Cambridge, U.K.:
Cambridge Univ. Press, 1992.

[48] Y. Shi and M. A. Jensen, “Improved radiometric identification of
wireless devices using MIMO transmission,” IEEE Trans. Inf. Forensics
Security, vol. 6, no. 4, pp. 1346–1354, Dec. 2011.



FANG et al.: LEARNING-AIDED PHYSICAL LAYER AUTHENTICATION AS AN INTELLIGENT PROCESS 2273

He Fang received the B.Sc. and Ph.D. degrees in
applied mathematics from Fujian Normal Univer-
sity, China, in 2012 and 2018, respectively. She
is currently pursuing the Ph.D. degree with the
Department of Electrical and Computer Engineering,
Western University, Canada. Her research interests
include intelligent security provisioning, machine
learning, distributed optimization, and collaboration
techniques.

One focus of her current research is on the devel-
opment of new machine-learning enabled authenti-

cation schemes through utilization of time-varying wireless environment for
security enhancement. She is also working on distributed security management
in IoT and blockchain systems under practical network constraints.

Xianbin Wang (S’98–M’99–SM’06–F’17) received
the Ph.D. degree in electrical and computer engi-
neering from the National University of Singapore
in 2001. He is currently a Professor and the Tier-I
Canada Research Chair with Western University,
Canada.

He was with the Communications Research Cen-
tre Canada (CRC) as a Research Scientist/Senior
Research Scientist from 2002 to 2007. From 2001 to
2002, he was a System Designer with STMicroelec-
tronics, where he was responsible for the system

design of DSL and Gigabit Ethernet chipsets. His current research inter-
ests include 5G technologies, Internet of Things, communications security,
machine learning, and locationing technologies.He has over 350 peer-reviewed
journal and conference papers, and several standard contributions.

Dr. Wang is a fellow of the Canadian Academy of Engineering and an
IEEE Distinguished Lecturer. He has received many awards and recogni-
tions, including the Canada Research Chair, the CRC President’s Excellence
Award, the Canadian Federal Government Public Service Award, the Ontario
Early Researcher Award, and six IEEE best paper awards. He currently
serves as an Editor/Associate Editor for the IEEE TRANSACTIONS ON
COMMUNICATIONS, the IEEE TRANSACTIONS ON BROADCASTING, and the
IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY. He was an Associate
Editor for the IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
from 2007 to 2011 and the IEEE WIRELESS COMMUNICATIONS LETTERS

from 2011 to 2016. He was involved in many IEEE conferences, including
GLOBECOM, ICC, VTC, PIMRC, WCNC, and CWIT, in different roles such
as the symposium chair, a tutorial instructor, the track chair, the session chair,
and a TPC co-chair.

Lajos Hanzo (M’91–SM’92–F’04) received the
D.Sc. degree in electronics in 1976 and the Ph.D.
in 1983. During his 40-year career in telecommuni-
cations, he has held various research and academic
posts in Hungary, Germany, and U.K. Since 1986,
he has been with the School of Electronics and
Computer Science, University of Southampton, U.K.
He is currently directing a academic research team,
working on a range of research projects in the field
of wireless multimedia communications sponsored
by industry, the Engineering and Physical Sciences

Research Council, U.K., the European Research Council’s Advanced Fellow
Grant, and the Royal Society’s Wolfson Research Merit Award. He is an
enthusiastic supporter of industrial and academic liaison and he offers a range
of industrial courses. He has successfully supervised 112 Ph.D. students, co-
authored 18 John Wiley/IEEE Press books on mobile radio communications
totaling in excess of 10 000 pages, published over 1792 research contributions
at the IEEE Xplore. He is currently directing a 60-strong academic research
team, working on a range of research projects in the field of wireless
multimedia communications sponsored by industry, the Engineering and
Physical Sciences Research Council U.K., the European Research Council’s
Advanced Fellow Grant, and the Royal Society’s Wolfson Research Merit
Award. During 2008–2012, he was the Editor-in-Chief of the IEEE Press and
a Chaired Professor also at Tsinghua University, Beijing. He is also a Governor
of the IEEE ComSoc and VTS. He acted both as the TPC and the General
Chair of the IEEE conferences, presented keynote lectures, and has received
a number of distinctions. For further information on research in progress and
associated publications please refer to http://www-mobile.ecs.soton.ac.uk



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


