
6586 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 12, DECEMBER 2018

Caching Policy for Cache-Enabled D2D
Communications by Learning

User Preference
Binqiang Chen , Student Member, IEEE, and Chenyang Yang , Senior Member, IEEE

Abstract— Prior works in a designing caching policy do not
distinguish content popularity with user preference. In this
paper, we illustrate the caching gain by exploiting individual
user behavior in sending requests. After showing the connection
between the two concepts, we provide a model for synthesizing
user preference from content popularity. We then optimize the
caching policy with the knowledge of user preference and activity
level to maximize the offloading probability for cache-enabled
device-to-device communications, and develop a low-complexity
algorithm to find the solution. In order to learn user preference,
we model the user request behavior resorting to probabilistic
latent semantic analysis, and learn the model parameters by the
expectation maximization algorithm. By analyzing a Movielens
data set, we find that the user preferences are less similar,
and the activity level and topic preference of each user change
slowly over time. Based on this observation, we introduce
a prior knowledge-based learning algorithm for user preference,
which can shorten the learning time. Simulation results show
a remarkable performance gain of the caching policy with user
preference over existing policy with content popularity, both with
realistic data set and synthetic data validated by the real data set.

Index Terms— User preference, content popularity, caching
policy, D2D, machine learning, data analysis.

I. INTRODUCTION

CACHING at the wireless edge can improve network
throughput and energy efficiency as well as user experi-

ence dramatically [2]–[6]. Owing to the small storage size of
each node at the wireless edge, say base station (BS) [2], [4]
or user device [3], caching in a proactive manner is critical
to achieve the performance gain, where future user demand
statistics is exploited [2], [7]. By caching at BSs, backhaul
traffic can be offloaded and backhaul cost can be reduced.
By caching at users, wireless traffic can be further offloaded
from peak time to off-peak time [8]. To boost the cache hit rate
by precaching contents at each user that has very limited cache

Manuscript received January 3, 2018, revised May 28, 2018, and July 22,
2018; accepted July 27, 2018. Date of publication August 6, 2018; date of
current version December 14, 2018. This work was supported by the National
Natural Science Foundation of China (NSFC) under Grants 61731002,
61671036, and 61429101. This paper was presented in part at the IEEE
VTC Spring 2017 [1]. The associate editor coordinating the review of this
paper and approving it for publication was N. Tran. (Corresponding author:
Chenyang Yang.)

The authors are with the School of Electronics and Information Engineering,
Beihang University, Beijing 100191, China (e-mail: chenbq@buaa.edu.cn;
cyyang@buaa.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2018.2863364

size, cache-enabled device-to-device (D2D) communications
and coded-multicast strategy are proposed [2], [5], [8].

To heap the proactive caching gain, various caching policies
have been optimized with diverse objectives for different
networks. Most existing works assume known content popu-
larity, defined as the probability distribution that every content
in a catalog is requested by all users. For example, the policies
for caching at BSs were optimized to minimize average
download delay in [9] and to maximize coverage probability
in [10]. Coded caching policy was optimized to maximize
the average fractional offloaded traffic and average ergodic
rate of small-cell networks in [11]. The policies for caching
at users were optimized to maximize the offloading gain
in [12] and [13] and to minimize the average delay of users
with different group popularity in [14], all for cache-enabled
D2D communications. In these works, every user is assumed
to request files according to content popularity. However,
in practice a user actually sends requests according to its own
preference, which may not be identical to content popularity.

To implement above-mentioned proactive caching policies,
content popularity needs to be predicted [15]. Popularity
prediction has been investigated for diverse applications such
as advertisement, where content popularity is defined as the
accumulated number of requests every content in a catalog
received or the request arrival rate for every content. Numerous
methods have been proposed [16]. By using these predic-
tion methods, the content popularity defined with probability
in [2]–[6], [9]–[14] can be obtained as a ratio of the number of
requests for each file to the number of all requests. In cellular
networks, the number of users in a cell is much less than
that in a region covered by a content server, and a mobile
user may send requests to more than one BS. Since popularity
depends on the group of users who send requests, the local
popularity in a cell may differ from the global popularity
observed at a server. Designing proactive caching policy at
wireless edge with global popularity prediction leads to low
cache hit rate [7].

In [17], local popularity was learned at small BS as the
request arrival rate by a multi-arm bandit algorithm, and the
predicted popularity was used for caching policy optimization.
The prediction is based on the cumulative growth method [16]
and under the assumption that only the requests for already
cached files can be observed, hence the learning rate is
slow. In existing cellular networks, however, the requested
contents from users cannot be observed at BSs, and hence the
local popularity is unable to be learned at the BS. In [18],

0090-6778 © 2018 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but
republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0001-7949-3191
https://orcid.org/0000-0003-0058-0765
https://orcid.org/0000-0001-7949-3191
https://orcid.org/0000-0003-0058-0765
https://orcid.org/0000-0001-7949-3191
https://orcid.org/0000-0003-0058-0765

CHEN AND YANG: CACHING POLICY FOR CACHE-ENABLED D2D COMMUNICATIONS BY LEARNING USER PREFERENCE 6587

the content popularity was predicted with a real dataset
measured at the mobile core network. By converting the
number of requests received at each BS into rating, the local
popularity was predicted by a collaborative filtering technique,
matrix factorization [19], with which the files with largest
ratings are cached.

A. Motivation and Contributions

A large body of priori works for caching at the wireless
edge assume that all users send their requests according to
content popularity, and do not differentiate content popu-
larity from user preference. The following facts, which are
widely recognized in the communities studying recommen-
dation problem and analyzing user behavior with real data,
are largely overlooked in the community of studying caching
at the wireless edge: (i) as a demand statistic of multiple
users, content popularity is not the same as the preference
of each individual user [20], (ii) only a small portion of users
are active in creating traffic [21]. In practice, user preferences
are heterogeneous, although they may exhibit similarity to
a certain extent. The caching policy designed under unreal-
istic assumptions inevitably yields performance loss. While
caching based on local popularity can partially address the user
preference heterogeneity issue [17], [18], in dense cellular
networks with overlapped coverage, local popularity in each
cell depends on the associated users that further depends on
the caching policy.

In this paper, we investigate the gain of optimizing caching
policy by learning user preference and activity level over
content popularity. To this end, we take cache-enabled D2D
communications as an example system and offloading prob-
ability as an example objective. Because there are different
definitions in the domains of computer science and wireless
communications, we first define user preference and activity
level as well as content popularity to be used in this paper.
To show the gain of caching with user preference and analyze
where the gain comes from, we provide a probabilistic model
to synthesize user preference from content popularity by intro-
ducing similarity among user preferences. We then formulate
an optimization problem with known user preference and
activity level to maximize offloading probability. Since the
problem is NP-hard, a local optimal algorithm is proposed to
reduce the complexity, which achieves at least 1/2 optimality.
In order to learn user preference and activity level, we model
user request behavior resorting to probabilistic latent semantic
analysis (pLSA) originally proposed for natural language
processing [22], whose model parameters can be learned by
using approximate inference methods such as expectation
maximization (EM) [23]. With the help of pLSA model to
decompose the user behavior into different components and
inspired by an observation obtained from analyzing a real
dataset (i.e., activity level and topic preference change slowly
over time), we provide a prior knowledge based algorithm,
which can quickly learn user preference.

The major contributions of this paper are summarized as
follows:

• We illustrate the caching gain of exploiting user prefer-
ence and activity level by optimizing a caching policy

for D2D communications, and predict the behavior of
each individual user by estimating model parameters of
pLSA. We introduce a prior knowledge based algorithm
to learn user preference, which shows the potential of
transfer learning.

• We characterize the connection between content popu-
larity and user preference, provide a probabilistic model
for synthesizing user preference from content popu-
larity, and validate the method by the MovieLens 1M
dataset [24]. We analyze the statistics of individual user
behavior in sending reuqests by the real dataset, consid-
ering that caching gain highly depends on practical user
behavior.

• Simulation results with both synthesized data and Movie-
Lens dataset show remarkable performance gain of the
caching policy with user preference over that with local
content popularity, no matter the user demands are
assumed known or learned from historical requests.

B. Related Works

By assuming user preferences as Zipf distributions with
different ranks, caching policies were optimized to minimize
the average delay of cache-enabled D2D communications
in [25] and to maximize the cache hit rate of mobile social
networks in [26]. Both works do not validate the assumption
for user preference, do not show the gain over caching with
popularity, and assume that all users are with identical activity
level. Until now, there exists no method to synthesize user
preference validated by real dataset, and the gain of caching
with user preference is unknown.

There are few works that consider the relation between
content popularity and user preference. In [27], local popu-
larity is computed as a weighted average of preferences for
the users associated with each BS, where the weight is the
number of requests sent by each user and the user preference
was assumed as uniformly distributed. Then, the most popular
files at each BS were cached. Differing from this early work,
we characterize the connection between the collective and the
individual user request behavior in a probabilistic framework,
and illustrate the gain of exploiting user preference over
popularity by optimizing a caching policy.

These priori works assume known user prefere-
nce [25]–[27]. To facilitate proactive caching, user preference
needs to be predicted, which is a key task in recommendation
problem. Collaborative filtering is the most commonly used
technique to predict user preference [19], which can be
mainly classified into memory based method including
user-based and item-based approaches, and model based
method that is based on models with parameters estimated
from historical records [28]. Typical model based methods
employ matrix factorization, latent Dirichlet allocation [29],
and pLSA [30] as models [19]. For recommendation problem,
user preference is defined as the rating that a user gives
for a file, such as 0 ∼ 5 or simply “like” and “dislike”.
Collaborative filtering methods predict the ratings for unrated
contents of each user, which however cannot be used in
optimization for wireless caching, where various metrics are

6588 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 12, DECEMBER 2018

in statistical sense [2]–[6], [9]–[14]. For caching problem,
user preference can be defined as request probability, but
there is no widely-accepted approach to translate the rating
into the request probability. In this paper, we resort to pLSA
to model and predict user preference, which is originally
developed for classification in automatic indexing [22] and
then is applied to predict ratings in [30].

The rest of the paper is organized as follows. Section II
provides the relation between content popularity and user pref-
erence, and a model to synthesize user preference. Section III
optimizes the caching policy with known user preference.
Section IV presents the learning algorithms. Section V
analyzes the statistics of user demands from and validates the
synthetic model by a MovieLens dataset. Section VI provides
simulation results. Section VII concludes the paper.

II. CONTENT POPULARITY AND USER PREFERENCE

In this section, we first define content popularity, user
preference and activity level to be used in the following, show
their connection, and then provide a probabilistic model with
a free parameter to synthesize user preference.

A. Definition and Relationship

Consider a content library F = {f1, f2, . . . , fF } consisting
of F files that K users in an area may request, where ff
denotes the f th file.

Content popularity is defined as the probability distribution
that each file in the library is requested by all users, denoted as
p = [p1, p2, . . . , pF], where pf � P (ff) is the probability that
ff is requested,

∑F
f=1 pf = 1, pf ∈ [0, 1], and 1 ≤ f ≤ F .

If the content popularity is computed from the users from a
sub-area of the considered whole area, then p is called local
popularity.

User preference is defined as the conditional probability
distribution that a user requests a file given that the user sends a
request, denoted as qk = [q1|k, q2|k, . . . , qF |k] for the kth user
(denoted as uk)), where qf |k � P (ff |uk) is the conditional
probability that the kth user requests the f th file when the user
sends a file request,

∑F
f=1 qf |k = 1, qf |k ∈ [0, 1], 1 ≤ f ≤ F

and 1 ≤ k ≤ K . We use a K × F matrix Q = (qf |k)K×F to
denote the preferences of all users.

Activity level is defined as the probability that a request
is sent by a user, denoted as wk � P (uk) for the kth user,
which reflects how active the user is, where

∑K
k=1 wk = 1 and

wk ∈ [0, 1]. Then, the vector w = [w1, w2, . . . , wK] denotes
the activity level distribution of the K users.

Content popularity p reflects the collective request behavior
of a group of users, while qk and wk characterize the
individual request behavior of the kth user. To show their
connection, we consider a K × F user-content matrix
N = (nk,f)K×F [19], where nk,f represents the number of
requests sent by uk for ff during a period. Denote N =
∑K

k=1

∑F
f=1 nk,f as the overall number of requests sent by all

the K users for all the F files, nf =
∑K

k=1 nk,f as the total
number of requests sent by all users for ff (i.e., the sum of all
elements in the f th column of N), and nk =

∑F
f=1 nk,f as the

total number of requests sent by uk for all files (i.e., the sum
of all elements in the kth row of N). Considering that nf , nk,
and nk,f are respectively following multinomial distributions
with F , K , and F parameters, it is not hard to show that
nf/N , nk/N , and nk,f/nk are respectively the maximum
likelihood estimate of pf , wk and qf |k. From their definitions,
we have

∑K
k=1 nk/N

︸ ︷︷ ︸
wk

nk,f/nk
︸ ︷︷ ︸

qf|k

=
∑K

k=1
nk,f

N = nf/N
︸ ︷︷ ︸

pf

, and

hence each element of p can be expressed as the average of
user preferences weighted by their activity levels,

pf =
K∑

k=1

wkqf |k, 1 ≤ f ≤ F. (1)

In practice, qk �= qm, and hence qf |k �= pf , despite that
users may have similar preferences, say for popular contents.
We can use cosine similarity to reflect the similarity of
preferences between two users, which is frequently used in
collaborative filtering [19] and defined as

sim(qk,qm) =

∑F
f=1 qf |mqf |k

√∑F
f=1 q2

f |m
∑F

f=1 q2
f |k

. (2)

To show the similarity among K users, we can define average
cosine similarity as

E[sim(qk,qm)]

=
2

K(K − 1)

∑

k,m

∑F
f=1 qf |kqf |m

√∑F
f=1 q2

f |k
∑F

f=1 q2
f |m

. (3)

B. Modeling and Synthesizing User Preference

Content popularity can be modeled as a Zipf
distribution according to the analyses for many real
datasets [18], [31], [32]. The probability that the f th file is
requested by all users is pf = f−β/

∑F
j=1 j−β, 1 ≤ f ≤ F ,

where the files are indexed in descending order of popularity.
User preference model obtained from real datasets is

unavailable in the literature so far. Inspired by the method
in [7] to synthesize local popularity of a cell from that of
a core network, we represent users and files in a shared
one-dimensional latent space, which bears the same spirit
as the latent factor model widely applied in collabora-
tive filtering [29], [33]. To connect with content popularity,
we model user preference as the following generative process:

• uk is associated with a feature value Xk, which is
randomly selected from [0, 1].

• ff is associated with a feature value Yf , which is again
chosen uniformly from [0, 1].

• The joint probability that the f th file is requested by the
kth user is given by

P (uk, ff) = wkqf |k = pf
g(Xk, Yf)

∑K
k′=1 g(Xk′ , Yf)

, (4)

and then uk’s activity level is wk =
∑

ff∈F P (uk, ff)
and its preference is qf |k = P (uk, ff)/wk , where
g(Xk, Yf) ∈ [0, 1] is a kernel function used to control
the correlation between the kth user and the f th file.

CHEN AND YANG: CACHING POLICY FOR CACHE-ENABLED D2D COMMUNICATIONS BY LEARNING USER PREFERENCE 6589

When g(Xk, Yf) = 0, the f th file will never be requested
by the kth user. When g(Xk, Yf) = 1, the file is a
preferred file of the user.

Intuitively, the value of Xk can be interpreted as the
likelihood that the kth user prefers a topic, and the value
of Yf can be interpreted as the likelihood that the f th file
belongs to a topic. Various kernel function can be applied,
e.g., Gaussian, logarithmic and power kernels. To control the
average similarity among the user preferences by introducing
a parameter α in kernel function, we choose power kernel

with expression g(Xk, Yf) = (1 − |Xk − Yf |)(1
α3 −1) ∈ [0, 1]

(0 < α ≤ 1), which exhibits a nearly linear relation between
E[sim(qk,qm)] and α in a wide range.

Remark 1: When α = 1, g(Xk, Yf) = 1 for ∀k, f . From (4)
we can see that all user preferences are equal to the content
popularity, and from (3) we can obtain E[sim(qk,qm)] = 1.
When α → 0, g(Xk, Yf) → 0 for Xk �= Yf , and
g(Xk, Yf) = 1 only for Xk = Yf . Because Xk and Yf

are uniformly chosen from [0, 1], i.e., P(Xk = Yf) → 0,
we have g(Xk, Yf)g(Xk′ , Yf) → 0, k �= k�. Then, according
to (4) and (3), E[sim(qk,qm)] → 0, i.e., no user has the
same preference. When α is small, g(Xk, Yf) is low, which
implies that uk is interested in a small number of files. Because
each user randomly chooses feature values, the interested file
sets among different users are less overlapped, and hence the
preference similarity is low.

This model will be validated later by a real dataset. It can
be used for synthesizing data of request of each user for
any given content popularity with flexibly controlled user
preference similarity, which differs from pLSA that can be
used for predicting the individual behavior.

III. CACHING POLICY OPTIMIZATION: AN ILLUSTRATION

In this section, we illustrate how to optimize the caching
policy with known request behavior of each individual
user. For comparison, we also provide the corresponding
caching policy optimization problem with known content
popularity, whose solution reflects the existing policy in liter-
ature. To focus on the performance gain brought by distin-
guishing user preference from content popularity, we consider
a simple objective: the offloading gain of D2D communica-
tions. To reduce the time complexity in finding the solution,
we provide a local optimal algorithm.

A. System Model

Multiple BSs in the area are connected to core network via
backhaul to serve the K uniformly distributed users, which
constitutes a set of users U = {u1, u2, . . . , uK} that request
the files in content library F . Assume that each file is with
same file size, but the results are applicable for general case
with different sizes [7] by dividing each file into chunks of
approximately equal size.1 Each single-antenna user has a
local cache to store M files, and can act as a helper to share

1We can also formulate another optimization problem with different file
sizes, which can be shown as a knapsack problem.

Fig. 1. Illustration of D2D communication systems with proactive caching,
where the green arrows represent the procedure for cache-hit requests and the
red arrows are for cache-miss requests.

files via D2D link. To provide high rate transmission with low
energy cost at each user device, we consider a user-centric
D2D communication protocol as in [13]. A helper can serve
as a D2D transmitter and send its cached files to a user only if
their distance is smaller than a collaboration distance rc, which
reflects the coverage of the helper. Each BS is aware of the
cached files at and the locations of the users, and coordinates
the D2D communications.

Proactive caching consists of content delivery and content
placement phases, as shown in Fig. 1. Assume that a central
processor (CP) can identify user requests and record the
requests history of users. The CP needs to be deployed in
mobile core networks, such that the requested contents of
users can be observed and the requests can be recorded.
To determine where to deploy the CP, coverage area and
computational cost also need to be considered.

The procedure for content delivery is as follows. (1) Each
user initiates requests according to its own preference. If a
user can find its requested file in local cache (i.e., fetching
locally), it directly retrieves the file with zero delay. If not,
the user sends the request to BS. (2) The BS reports the request
to the CP, which identifies the requested file and informs the
file index to the BS, and records the requests of every user.
(3) If the BS finds that the file is cached in the local caches
of helpers adjacent to the user, it informs the request to the
closest helper, and assists to establish a D2D link between
the user and the closest helper. Otherwise, the BS fetches
the file via backhaul. (4) For a cache-hit request, the user
fetches the file via the established D2D link. For a cache-miss
request, the BS transmits the file to the user. For simplicity,
both fetching locally and via D2D link are called fetching via
D2D links.

The procedure for content placement is as follows. (1) The
CP learns the user preferences Q and activity levels w from
historical requests records N, and then optimizes the caching
policy and informs the cached files of the users to the BSs.
(2) A BS fetches the files from the server. (3) The BS refreshes

6590 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 12, DECEMBER 2018

the caches at users via unicast or multicast during off-peak
time,2 say every several hours or every day, noticing that traffic
load varies on the timescale of hours as measured by real
cellular data [21].

B. Caching Policy Optimization With
Individual Request Behavior

We consider deterministic caching policy,3 denoted as a
vector ck = [ck,1, ck,2, . . . , ck,F] for the kth user, where
ck,f = 1 if ff is cached at uk, ck,f = 0 otherwise, and
∑F

f=1 ck,f ≤ M . Denote the caching policy for all users as
C = (ck,f)K×F .

We optimize the caching policy to maximize offloading
probability, defined as the probability that a user can fetch the
requested file via D2D links. It reflects the average fraction
of requests able to be offloaded and hence the offloading
gain introduced by cache-enabled D2D communications. The
resulting caching policy is applicable to any transmission
scheme in content delivery phase, but is with different perfor-
mance when different interference management schemes are
employed, as shown via simulations later.

When optimizing caching policy in the content placement
phase, it is hard to know where a mobile user will be located
in the content delivery phase. Therefore, it is hard to know
when and how long the users will contact. Fortunately, data
analysis shows that users always periodically reappear at the
same location with high probability [34]. Consequently, it is
reasonable to assume that the contact probability is known
a priori [26]. Let A = (ai,j)K×K represent the contact
probability among users, where ai,j ∈ [0, 1] is the probability
that the distance between the ith user and the jth user is less
than rc. When all users do not move, ai,j = 0 or 1.

In practice, adjacent helpers may have overlapped coverage.
Since different helpers serve different groups of users, which
depend not only on rc but also on the cached files at the
adjacent helpers, the “local popularity” observed at a helper
differs from that observed at another helper and relies on the
caching policy. As a result, the caching policy can not be
designed based on the “local popularity”.

Denote pd
k,f (A,C) as the probability that the kth user can

fetch the f th file via D2D links given contact probability
A and caching policy C. The complementary probability of
pd

k,f (A,C) is the probability that the f th file is not cached at
any users in proximity to the kth user, which can be derived
as
∏K

m=1(1− ak,mcm,f). Then, we can obtain the offloading

2Multicast transmission can be applied for predownloading files to users in
the content placement phase when some files need to be cached in multiple
users according to the caching policy. For example, user 1 caches files A,
B and C, and user 2 caches files B, C, and D. Then, files B and C can be
placed to the two users via multicast, and files A and D are conveyed via
unicast. Precaching at users consumes wireless resource in this phase. The
required resource for the preference-based caching policy may be higher than
the popularity-based caching policy. We will address this issue via simulations
later.

3We do not consider probabilistic caching policy, which is designed
under the assumption that a group of nodes share the same caching
distribution [9]–[14], and hence is not appropriate for a system with hetero-
geneous user preferences.

probability as

poff(Q,w,A,C)

=
K∑

k=1

wk

F∑

f=1

qf |kpd
k,f (A,C)

=
K∑

k=1

wk

F∑

f=1

qf |k

(

1−
K∏

m=1

(1− ak,mcm,f)

)

. (5)

With known user preference and activity level, the caching
policy can be optimized to maximize the offloading probability
by solving the following problem,

P1 : max
cm,f

poff(Q,w,A,C) (6a)

s.t.
F∑

f=1

cm,f ≤M, cm,f ∈ {0, 1}, (6b)

1 ≤ m ≤ K, 1 ≤ f ≤ F. (6c)

Remark 2: If all users are with equal activity level and equal
preference, then (5) becomes

poff(Q,w,A,C) =
1
K

F∑

f=1

pf

K∑

k=1

pd
k,f (A,C)

� ppop
off (p,A,C). (7)

Remark 3: If the collaboration distance rc → ∞, then
ak,m = 1, and (5) becomes

poff(Q,w,A,C)

=
F∑

f=1

(

1−
K∏

m=1

(1− cm,f)

)
K∑

k=1

wkqf |k

=
F∑

f=1

(

1−
K∏

m=1

(1− cm,f)

)

pf .

It is easy to show that poff(Q,w,A,C) = ppop
off (p,A,C)

in this extreme case where D2D links can be established
between any two users in the area even with heterogeneous
user preferences.

If the assumptions in the two remarks hold, then the “local
popularity” observed at every helper will be identical, which
is equal to the content popularity of the area with the K users.
In practice, the assumptions are not true, hence exploiting user
preference for caching is necessary.

With known content popularity, the caching policy is
optimized by maximizing ppop

off (p,A,C) in (7) under
constraint (6c), called problem P2,4 which is actually a special
case of P1.

By setting the contact probability ai,j as 1 or 0 (i.e., all users
are static), we can obtain a special case of problem P2, which
has the same structure as a NP-hard problem formulated in [9].
Since P2 is a special case of P1, problem P1 is NP-hard.
As a consequence, it is impossible to find its global optimal
solution within polynomial time. By using similar way of the

4Problem P2 slightly differs from the problems in [12] and [13], where the
future user location is exactly known in [12] and completely unknown in [13]
when optimizing caching policy, but the contact probability is known in P2.

CHEN AND YANG: CACHING POLICY FOR CACHE-ENABLED D2D COMMUNICATIONS BY LEARNING USER PREFERENCE 6591

proof in [9], it is not hard to prove that P1 is equivalent to
maximizing a submodular function over matroid constraints.
Thus, we can resort to greedy algorithm, which is commonly
used to provide a solution achieving at least 1

2 optimality for
such type of problem [35].5

The greedy algorithm starts with zero elements for the
caching matrix, i.e., C = (0)K×F . In each step, the value
of one element in C is changed from zero to one with the
maximal incremental caching gain defined as

vC(m, f)
= poff(Q,w,A,C|cm,f=1)− poff(Q,w,A,C)

(a)
=

K∑

k=1

wkqf |k
(
pd

k,f

(
A,C|cm,f=1

)− pd
k,f (A,C)

)
, (8)

where (a) follows by substituting (5), C is the caching
matrix at previous step, and C|cm,f =1 is the matrix by letting
cm,f = 1 in C. The algorithm is summarized in Algorithm 1.

Algorithm 1 Greedy Algorithm

Require: A; w; Q; Initialize: Caching matrix C = (0)K×F ;
Files not cached at the mth user C̄m ← {f1, f2, . . . , fF };
Users with residual storage space U0 ← {u1, u2, . . . , uK};

1: while U0 �= ∅ do
2: [m∗, f∗] = argmaxum∈U0,ff∈C̄m

vC(m, f); C =
C|cm∗,f∗=1; C̄m∗ ← C̄m∗ \ ff∗ ;

3: if |C̄m∗ | = F −M then
4: U0 ← U0 \ um∗ ;
5: end if
6: end while
7: C∗ = C;

Ensure: Caching matrix C∗.

The loops in step 1 of Algorithm 1 take KM iterations,
because there are totally KM files that are possible to be
cached at all users. The step 2 for finding the element in C
that introduces the highest incremental caching gain takes at
most KF iterations. For each time of computing vC(m, f)
in (8), the time complexity is O(K2), and thus computing
all vC(m, f) is O(K3F). Hence the total time complexity for
Algorithm 1 is O(KM(KF +K3F)) = O(K2FM(K2+1)),
which is high especially when the numbers of users K and
files F are large.

C. A Low Complexity Algorithm With 1/2 Optimality
Guarantee

Since the greedy algorithm is with high time complexity,
finding a low-complexity algorithm is worthwhile for practice
use. In what follows, we propose an alternating optimiza-
tion algorithm, which improves the offloading gain at every
iteration and converges to a local optimal solution.

5The best algorithm with polynomial time complexity for such problem can
achieve (1 − 1

e
) optimality guarantee, which is based on continuous greedy

process and pipage rounding techniques [36]. However, when K = 100 and
F = 3000 in the considered setting as detailed later, its complexity is
O((FK)8) = O(6.5 × 1043), which is too complex for our problem.

To be specific, we fix the caching policy at users cm(m �=
k�, 1 ≤ m ≤ K) and optimize ck′ . Then, from problem P1
we obtain the optimization problem with respect to ck′ as

P1� : max
ck′,f

foff(ck′) =
K∑

k=1

wk

F∑

f=1

qf |k(1−
K∏

m �=k′

(1− ak,mcm,f)(1 − ak,k′ck′,f))

s.t.

F∑

f=1

ck′,f ≤M, ck′,f ∈ {0, 1},

1 ≤ f ≤ F. (9)

Proposition 1: P1� can be solved with polynomial time
complexity O(F (K2 + M)).

Proof: See Appendix A.
Based on the proof of Proposition 1, we propose an algo-

rithm to iteratively solve problem P1� by changing k� from
1 to K until convergence. The algorithm starts with a given
initial value of C. In every iteration, by fixing cm(m �= k�,
1 ≤ m ≤ K), it respectively computes the offloading gain
introduced by caching the f th file at the k�th user

bk′,f =
K∑

k=1

wkqf |kak,k′

K∏

m=1,m �=k′
(1 − ak,mcm,f),

1 ≤ f ≤ F, 1 ≤ k� ≤ K. (10)

Then, the algorithm finds the file indices with the maximal M
values of bk′,f to constitute a set Ik′ , and obtain c∗k′ as

c∗k′,f =

{
1, f ∈ Ik′

0, f /∈ Ik′ .
(11)

Algorithm 2 A Low Complexity Algorithm

Require: A; w; Q; Initialize: Random caching c(0)
m (1 ≤

m ≤ K), t← 1;
1: repeat
2: for k� = 1, 2, . . . , K do
3: Based on c(t−1)

m (m �= k�), compute bk′,f by (10),
constitute Ik′ and obtain c∗k′ by (11).

4: c(t)
k′ = c∗k′ ;

5: end for
6: until We obtain the converged result (c(t)

m = c(t−1)
m , 1 ≤

m ≤ K)
Ensure: Caching matrix c(t)

m .

The detailed algorithm is presented in Algorithm 2. The
loops in step 2 take K iterations. Step 3 is with complexity
O(F (K2 + M)) according to Proposition 1. Hence the total
time complexity of Algorithm 2 is O(tA2KF (K2 + M)),
where tA2 is the number of iterations for step 1.

Proposition 2: Algorithm 2 monotonically increases the
objective function of problem P1 and finally converges to
achieve at least 1/2 optimality.

Proof: See Appendix B.
It is noteworthy that Algorithm 1 and Algorithm 2 can also

solve P2 by letting qf |k = pf , ∀k, f in Q. Solutions for P1

6592 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 12, DECEMBER 2018

and P2 obtained with Algorithm 1 are called S1 − A1 and
S2−A1, and solutions using Algorithm 2 for P1 and P2 are
called S1−A2 and S2−A2, respectively.

IV. LEARNING USER PREFERENCE AND ACTIVITY LEVEL

In this section, we first use pLSA to model content request
behavior of an individual user. We then learn the model
parameters by maximizing likelihood function, either without
the pLSA model for comparison or with the model using
the EM algorithm, which is efficient for maximal likeli-
hood (ML) parameter estimation with latent variables [23].
Finally, we present a prior knowledge based algorithm to learn
user preference.

A. Modeling Individual User Behavior
in Requesting Contents

To characterize the request behavior of a user, pLSA asso-
ciates each request with a topic, which may be unobservable
but can be intuitively interpreted as comedy, adventure, etc.

By introducing latent topic set Z = {z1, z2, . . . , zZ} with
cardinality |Z| = Z , pLSA associates each topic zj ∈ Z with
each possible user request, i.e., uk ∈ U requests ff ∈ F .
Specifically, the request of each user can be modeled with
three model parameters using the following steps:

• A request is sent by uk with probability P (uk)
(i.e., activity level),

• uk chooses a topic zj with probability P (zj |uk)
(i.e., topic preference,

∑Z
j=1 P (zj |uk) = 1),

• uk requests ff in topic zj with probability P (ff |zj),∑F
f=1 P (ff |zj) = 1, where conditional independence

assumption is used. In particular, conditioned on a
request being sent by uk who chooses topic zj , uk

chooses ff with probability P (ff |zj , uk) = P (ff |zj),
i.e., P (ff |uk) =

∑
zj∈Z P (ff |zj)P (zj |uk). In other

words, no matter which user sends a request and selects
topic zj , the user will request ff with probability
P (ff |zj).

Then, the joint probability that uk requests ff can be
expressed as

P (uk, ff) = P (uk)P (ff |uk)

= P (uk)
∑

zj∈Z
P (ff |zj)P (zj |uk). (12)

B. Learning Individual User Behavior
in Requesting Contents

According to the ML principle, we can learn
P (uk), P (ff |zj) and P (zj |uk) with the observed number of
requests nk,f by maximizing the following log-likelihood
function [37]

L =
∑

i

log P (uiu , fif) =
∑

uk∈U

∑

ff∈F
nk,f log P (uk, ff)

︸ ︷︷ ︸
(a)

=
∑

uk∈U

∑

ff∈F
nk,f log P (uk)

∑

zj∈Z
P (ff |zj)P (zj |uk)

︸ ︷︷ ︸
(b)

, (13)

where the ith sample corresponding to the event that the
iuth user requests the if th file, and in (b) the pLSA model
is applied.

1) ML Algorithm Without pLSA Model: By maximizing the
log likelihood function in (a) of (13) without the pLSA model,
it is not hard to obtain that

P̂ (uk, ff) =
nk,f

∑K
k′=1

∑F
f=1 nk′,f

. (14)

Then, the activity level and user preference can be learned

as ŵk = P̂ (uk) =
∑F

f=1 P̂ (uk, ff) and q̂f |k = P̂ (uk,ff)

P̂ (uk)
=

P̂ (uk,ff)
�

F
f=1 P̂ (uk,ff)

, respectively. This algorithm is actually a simple

frequency-count prediction, which can serve as a baseline for
learning activity level and user preference.

Remark 4: If we directly predict wk and qf |k using (14),
the number of parameters to estimate is KF . By using the
pLSA as in (b) of (13), the number of parameters is reduced
from KF to K + KZ + ZF = Z(K + F) + K , where K
parameters are for learning activity level, KZ parameters are
for topic preference, and ZF parameters are for P (ff |zj). With
less number of parameters to estimate, a learning algorithm
can converge more quickly.

2) ML Algorithm With pLSA Model: To maximize the
log-likelihood function in (b) of (13), we first rewrite the
function as

L =
∑

uk∈U
nk log P (uk)

︸ ︷︷ ︸
(a)

+
∑

uk∈U

∑

ff∈F
nk,f log

∑

zj∈Z
P (ff |zj)P (zj |uk)

︸ ︷︷ ︸
(b)

, (15)

where nk =
∑

ff∈F nk,f . It is not hard to see that the terms
in (a) and (b) can be independently maximized. The activity
level of uk can be learned by maximizing term (a) in (15) as

ŵk = P̂ (uk) =
nk

∑K
k′=1

∑F
f=1 nk′,f

, (16)

which is the same as that obtained from (14). The other
two model parameters P (ff |zj) and P (zj |uk) can be learned
by maximizing term (b) in (15) using the EM algorithm as
follows [37].

Starting from randomly generated initial values for the
model parameters P (zj |uk) and P (ff |zj), 1 ≤ j ≤ Z ,
1 ≤ f ≤ F and 1 ≤ k ≤ K , the EM algorithm alternates
two steps: expectation (E) step and maximization (M) step.

In the E-step, the posterior probability is computed for latent
variable zj with current estimation of the parameters as

P̂ (zj |uk, ff) =
P̂ (zj |uk)P̂ (ff |zj)

∑
zj′∈Z P̂ (zj′ |uk)P̂ (ff |zj′)

, (17)

which is the probability that ff requested by uk belongs to
topic zj .

CHEN AND YANG: CACHING POLICY FOR CACHE-ENABLED D2D COMMUNICATIONS BY LEARNING USER PREFERENCE 6593

In the M-step, given P̂ (zj |uk, ff) computed by the previous
E-step, the two parameters are updated as

P̂ (ff |zj) =

∑
uk∈U nk,f P̂ (zj |uk, ff)

∑
uk∈U

∑
ff′∈F nk,f ′ P̂ (zj |uk, ff ′)

,

P̂ (zj |uk) =

∑
ff∈F nk,f P̂ (zj |uk, ff)

nk
. (18)

By alternating (17) with (18), the EM algorithm converges
to a local maximum of log-likelihood function. Then, the pref-
erence of the kth user for the f th file can be learned as

q̂f |k = P̂ (ff |uk) =
∑

zj∈Z
P̂ (ff |zj)P̂ (zj |uk). (19)

3) Prior Knowledge Based Algorithm to Learn User
Preference: Video files in real world website always have topic
information, e.g., movies are labeled with comedy, drama and
so on.

Intuitively, the topic preference and activity level of a
user change slowly over time, and hence can be regarded as
invariant. This will be validated later by real dataset. Thanks to
the pLSA model, such intuition naturally yields a prior knowl-
edge based algorithm to learn user preference by exploiting the
activity level and topic preference of a user learned previously
during a much longer time than learning user preference,
with the help of the topic information. This algorithm can
be regarded as a parameter-transfer approach [38]. While the
activity level P (uk) and topic preference P (zj |uk) can never
be learned perfectly, we assume that they are known in order
to show the potential of such transfer learning. Then, the user
preference can be learned by only estimating P (ff |zj), which
can be obtained similarly as in (18),

P̂ (ff |zj) =

⎧
⎪⎨

⎪⎩

∑
uk∈U nk,f P̂ (zj |uk, ff)

∑
uk∈U

∑
ff′∈F nk,f ′P̂ (zj |uk, ff ′)

, ff ∈ Fj

0, ff /∈ Fj ,

(20)

where Fj is the set of files associated with topic
zj(1 ≤ j ≤ Z), which is available on the video website. For
instance, the movie Forrest Gump is associated with topics
comedy, romance and war on the MovieLens.

The algorithm is presented in Algorithm 3. Step 2 takes
KFZ times computation of posterior probability by (17),
where each computation is with complexity O(Z−1) and thus
totally at most O(KFZ(Z − 1)). Step 3 computes (20) with
ZF times, each is with complexity O(K(F +1)). It is not hard
to see that step 4 is with complexity O(KFZ). Hence the total
time complexity for Algorithm 3 is O(tA3KFZ(Z +F +1)),
where tA3 is the number of iterations for step 1.

V. USER REQUEST BEHAVIOR ANALYSIS

WITH MOVIELENS DATASET

The gain from caching highly depends on the user behavior
in requesting contents. In this section, we use a real dataset
to analyze topic preference and user preference, and validate
the intuition in Section IV-B.3 as well as the user preference
model provided in Section II.

Algorithm 3 Learning User Preference With Prior Knowledge

Require: N; Z; Fj , 1 ≤ j ≤ Z; P̂ (zj |uk); Stop condition
0 < ε < 1;
Initialize: P̂ (0)(ff |zj); Step i ← 1; Difference Δ ← ∞;
Log likelihood L(0)← 0;

1: while Δ > ε do
2: Using P̂ (zj |uk) and P̂ (i−1)(ff |zj) to compute

P̂ (i)(zj |uk, ff) by (17);
3: Using P̂ (i)(zj |uk, ff) and Fj to compute P̂ (i)(ff |zj)

by (20);
4: Compute log likelihood L(i) with P̂ (zj |uk) and

P̂ (i)(ff |zj) using term (b) in (15);
5: Δ = |L(i)− L(i− 1)|; i← i + 1;
6: end while
7: q̂f |k ←

∑
zj∈Z P̂ (ff |zj)P̂ (zj |uk) to compute Q̂;

Ensure: Q̂.

A. Statistical Results of User Demands

We use the MovieLens 1M Dataset [24] to reflect the request
behavior, which contains 1000209 ratings for 3952 movies
provided by 6026 users from the year of 2000 to 2003. Each
sample of the dataset consists of user identity (ID), movie
ID, rating and timestamp. Because users typically give ratings
only after watching, we translate the rating record into the
request record, i.e., when a user gives rating for a movie,
we set the movie as requested by once by the user. Except
for the ratings, MovieLens also provides topic information of
movies. Every movie is associated with one, two or more
topics from 18 topics, which include the genre of action,
adventure, animation, children’s, comedy, etc. and are denoted
as z1, . . . , z18. For instance, Forrest Gump is associated with
topics comedy (z5), romance (z14) and war (z17). From the
topic information, we know that if the f th movie is not
associated with the jth topic, users who select the jth topic
will not request the f th file, i.e., we can set P (ff |zj) = 0
in (20).

To analyze temporal evolution of user behavior, we sort all
the 3952 movies according to their released date in ascendant
order and then divide them into two subsets F1 and F2, where
the file request matrices on F1 and F2 are N1 ∈ R

6040×1976

and N2 ∈ R
6040×1976, respectively. N1 and N2 can reflect

user behavior on the previously released file subset F1 and the
subsequently released file subset F2. Specifically, we analyze
the following statistical results:

• Topic preference: Denote the topic preference of
the kth user estimated on subsets F1 and F2 as
p1(Z|uk) = [P1(z1|uk), . . . , P1(zZ|uk)] and p2(Z|uk) =
[P2(z1|uk), . . . , P2(zZ|uk)], respectively. P1(zj|uk), and
P2(zj|uk) are computed using (18) by EM algorithm with
N1 and N2, respectively. To reflect the temporal dynamic
of topic preference for the kth user, we evaluate the cosine
similarity on the two subsets, sim(p1(Z|uk), p2(Z|uk)).

• User preference: qf |k =
∑

zj∈Z P (ff |zj)P (zj |uk) is
obtained by EM algorithm on N1. The result obtained
from N2 or N is similar, and hence is omitted for
conciseness.

6594 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 12, DECEMBER 2018

Fig. 2. Topic preferences of different users and fitted distributions.

• Activity level: P1(uk) and P2(uk) are computed
using (16) with N1 and N2, respectively.

In Fig. 2(a), we show the topic preferences of the 1st, 10th
and 100th users obtained from F1 (the results obtained from
F2 are similar). The labels of x-axis are ranked in descending
order according to p1(Z|u1). The topic preferences of the
10th and 100th users with re-ranked x-axis according to
p1(Z|u10) and p1(Z|u100) are also provided in the inner-
figures. As expected, topic preferences of different users differ.
For example, the most favorite topic is comedy for the 1st and
100th user and drama for the 10th user. The topic preference
of each user is skewed, which indicates that each user has
strong preferences towards specific topics. In fact, we find
that the topic preferences of all users in the dataset are
skewed.

In Fig. 2(b), we show the topic preference of the 1st user and
the fitted distributions in a log-log coordinate, where “Zipf”,
“Exponential” and “Weibull” are with functions f(x) = ax−β ,
f(x) = ae−bx, and f(x) = abxb−1e−axb

, respectively.
To evaluate the goodness of fit, we use the coefficient of
determination (also called R-square) in linear regression,

Fig. 3. Temporal dynamics of topic preferences and user preference of the
1st user.

i.e., R2 = 1−
�S

i=1(yi−f(xi))
2

�S
i=1(yi−ȳ)2

≤ 1, where S is the number of

samples, (xi, yi) is the ith sample, and ȳ =
�S

i=1 yi

S [39].
A large value of R2 indicates a good fitting result. The
parameters a, b and c for each function and R2 are listed
in the legends. We can see that the best fitted distribution
is a Zipf distribution with parameter β = 1.05. We also fit
the distributions for other users, and observe that the best
fitted distributions differ for users, where Zipf distribution
is the best for only 1425 users with parameter β uniformly
distributed in [0.5, 3]. Yet for the most favorite several topics,
Zipf distribution is always the best.

In Fig. 3(a), we show the empirical cumulative distribution
function (CDF) and probability density function (PDF) of the
cosine similarity between topic preferences over time of all
users. We can see that 60% of all users have cosine similarity
larger than 0.8, and almost 90% users among the top 1/3 active
users have cosine similarity larger than 0.8 (i.e., their topic
preferences change slowly in the three years). Considering
that the statistical results for active users with more requests
are with high confidence level, this result indicates that topic

CHEN AND YANG: CACHING POLICY FOR CACHE-ENABLED D2D COMMUNICATIONS BY LEARNING USER PREFERENCE 6595

preferences can be approximated as invariant over time.6

We also analyze the activity levels of users, and find that the
distribution of activity levels is skewed as observed in [41].
Besides, the distribution of activity levels from the two subsets
of data are similar, where the cosine similarity is 0.87, which
indicates that the activity level of a user changes slightly over
time. This validates the intuition in Section IV-B.3. Due to the
space limitation, the results are not shown.

In Fig. 3(b), we show user preference of the 1st user and
the fitted distributions. We find that the preferences of the
1st user (as well as other users) for the top 100 favorite files
are close to Zipf distribution with parameters of β varying
in [0.2, 0.8], and the preferences for less favorite files have a
truncated tail. This is because a user almost does not request
the files belonging to its unfavorable topics. In summary,
the users differ in the file set that they may request, and
the skewness and ranking of their preferences. This is not
consistent with the assumption in [25] and [26] that all user
preferences follow Zipf distributions with same parameter but
with different ranks. Besides, we observe that the average
cosine similarity of preferences among different users on
dataset N1 or N2 is Ek,m[sim(qk,qm)] ≈ 0.4.7 This is mainly
because the interested file sets of different users are less
overlapped, recalling that the topic preferences of users differ.

Since the caching gain highly depends on the library size
F [6], which is related to the number of users K , we also
analyze the average number of files requested by given number
of randomly chosen users from the dataset. The results show
that the F − K relation can be fitted well with power
function f(x) = axb + c, where F increases with K first
quickly and then slowly. For the MovieLens dataset, when
K = 100, F = 3000.

B. Validating Synthetic User Preference Model

Now, we validate the user preference model by comparing
the results obtained from data synthesized by the generative
process in Section II and those from the MovieLens dataset.

In Fig. 4(a), we first show the impact of parameter α
in the kernel function. The inner-figure indicates that the
synthetic user preference model can capture different levels
of similarity among user preferences by adjusting α, while
the Zip parameter β has negligible impact on the average
cosine similarity. This seems counter-intuitive, since a more
skewed popularity distribution seems to imply highly corre-
lated user preferences. However, such an intuition comes from
the implicit assumption that the users send their requests with
equal probability (i.e., with identical activity level), which is
not true in reality. From the figure we can observe that even
when β = 1, α can be as small as 0.1. This is because few
users are very active in sending file requests and have skewed
user preference, who have large impact on content popularity
according to (1). We can see that the distributions of user

6In recommendation problem, it has been shown that user preference varies
over time due to the dynamic of file catalog and the user’s exploration for new
items [40]. However, the topic preference variation has never been analyzed
in the literature.

7We also analyze a real video dataset of Youku in a university campus. The
result shows that Ek,m[sim(qk, qm)] ≈ 0.28.

Fig. 4. Activity level and topic preferences obtained from the requests
generated by the synthetic method, K = 100, F = 3000.

activity level are skewed, which agree well with the results
obtained from the MovieLens dataset. In Fig. 4(b), we show the
topic preference of the 1st, 10th and 100th users. The labels
of x-axis are ranked according to p(Z|u1), as in Fig. 2(a).
We can see that the topic preferences of the users are skewed
and with different distributions, which are consistent with the
results in Fig. 2(a) obtained from the MovieLens dataset.

VI. SIMULATION RESULTS

In this section, we demonstrate the caching gain of
exploiting user preference over content popularity. To provide
ground truth of the request behavior for evaluating the learning
performance, we use simulation results obtained from the
synthetic data using the model in section V-B. To validate the
gain from real data, we also consider the MovieLens dataset.

We consider a square area with side length 500 m, where
K = 100 users are uniformly located. The collaboration
distance rc = 30 m. The file catalog size F = 3000, and
each user can cache M = 5 files (i.e., 1.67 ‰ of all files).

6596 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 12, DECEMBER 2018

α = 0.36 in the kernel function of the synthetic model,
which corresponds to the average cosine similarity 0.4 of
the MovieLens dataset. The parameter of Zipf distribution is
β = 0.6, which is a typical value for a small area, and is
slightly smaller than that is observed at the Web proxy [31].
We divide time into periods, each consisting of a peak time and
an off-peak time. The cached files at each user are updated in
off-peak time. This setup is used in the sequel unless otherwise
specified.

A. Impact of Key Parameters and Interference
Management Schemes

In this subsection, both user preference and content popu-
larity are perfect. By using the caching policy exploiting
individual user behavior in cache-enabled D2D communica-
tions, more wireless traffic in content delivery phase can be
offloaded, but more wireless resources are also consumed in
content placement phase, which may counteract the offloading
gain. To address this concern, we first compare the offloaded
traffic during content delivery and the traffic load generated
by pre-caching the files to users during content placement
with the proposed solution (i.e., S1) and the policy based on
content popularity (i.e., S2, which represents existing caching
policy). Then, we analyze the impact of user mobility,
user preference similarity α, collaboration distance rc, cache
size M , and Zipf parameter β on the offloading probability.
Considering that the gain from caching will reduce in inter-
ference environment [6], we also compare the performance of
S1 and S2 when different interference management schemes
are applied in content delivery phase.

We consider a widely used mobility model, random walk
model, where a user moves from its current location to a new
location with a randomly chosen direction and speed [42].
To compute the contact probability matrix, we consider that
each user moves 100 seconds before changing direction and
speed in two hours during peak time. The users are initially
uniformly distributed, and the speed and direction of each
user are uniformly chosen from [0, vmax] m/s and [0, 2π],
respectively. By computing the duration that the kth and the
mth user can establish D2D links, tdk,m, in the period of Tp = 2

hours, we can obtain the contact probability ak,m =
td
k,m

Tp
.

By increasing vmax, users may move with higher speed, and
when vmax = 0, all users keep fixed.

In Fig. 5(a), we show the “offloaded traffic” (in GBytes,
computed as the total number of requests served by D2D links
multiplied by the file size), and the “placement traffic” load
(in GBytes, computed as the overall amount of data transmitted
by BS for placing the contents to the caches of all users, which
depends on the total number of files to be placed and the file
size). For content placement, both S1 and the popularity-based
caching policy (i.e., S2) can use unicast and multicast. It is
worthy to note that the cached files according to S2 are also
different for users. Due to the coverage overlap of the helpers,
adjacent users tend to cache different files even with S2 in
order to maximize the offloading probability. The content
delivery phase is set as 10 hours, during which the request
arrival rate in the area is 0.4 requests/s. Each file is with size
of 30 MBytes (typical for YouTube videos). The results show

Fig. 5. Impact of the traffic in content placement and user mobility, S1 is
the caching policy with user preference.

that S1 indeed generates more placement traffic than S2 when
user preferences are less similar (and also when the content
popularity is less skewed, not shown due to space limitation)
owing to the reduced multicast opportunity, and when each
user caches more files. Nonetheless, S1 generates much less
traffic in content placement phase than the offloaded traffic in
content delivery phase.

In Fig. 5(b), we show the impact of user mobility.
A1 and A2 in the legend respectively represent the greedy
algorithm and local optimal algorithm, which almost perform
the same. The offloading probabilities decrease slightly with
the growth of vmax, as explained as follows. Owing to the
mobility model, the average number of users that a user can
establish D2D links with at any time does not change with
vmax. Then, the total effective cache size seen by the user
does not change with vmax. On the other hand, every user
can contact with more users in the period with higher vmax.
Then, the caching policy needs to consider the preferences
of more users, which reduces the cache hit ratio due to
heterogeneous user preferences. Since the impact of mobility
is not significant, we only consider vmax = 0 in the sequel.
To obtain the results of A2 in Fig. 5, three iterations of step 1
(i.e., tA2 = 3) is necessary for convergence. According to

CHEN AND YANG: CACHING POLICY FOR CACHE-ENABLED D2D COMMUNICATIONS BY LEARNING USER PREFERENCE 6597

Fig. 6. The impact of α, β, rc and M , S1 and S2 are caching policies with
user preference and content popularity.

analysis in Section III, the time complexity for A1 and A2
are respectively O(K2FM(K2+1)) and O(3KF (K2+M)),
and A2 will be KM(K2+1)

3(K2+M) ≈ 167 times faster than A1 when
K = 100 and M = 5. Since the proposed local optimal
algorithm can achieve the same performance and is faster than
the greedy algorithm, we only use A2 to obtain the caching
policy in the following.

In Fig. 6(a), we show the impact of α and rc. We can see
that the offloading gain of S1 over S2 is high when α is
small. This suggests that optimizing caching policy according
to user preferences is critical when the user preferences are
less correlated. As expected, when α → 1, the performance
of the two policies coincide. The offloading gain is high
for large collaboration distance, but the gain by using S1
reduces as indicated in Remark 3. This is because with the
growth of rc, the number of users whose preferences a helper
should consider for optimizing caching policy increases (when
rc →∞, the number of users equals to K).

In Fig. 6(b), we show the impact of β and M . As expected,
with the growth of the value of M or β, the offloading

Fig. 7. Impact of interference on system performance and user performance,
α = 0.36, β = 0.6, S1 is the proposed solution.

probabilities increase for both S1 and S2. This is because with
a given value of α, the preference of every user becomes more
skewed when β increases.

In Fig. 7, we show the impact of interference on the
performance gain of the proposed solution. We consider both
overlay and underlay modes [43], and in each mode the
D2D links share the bandwidth either with full reuse or with
frequency division multi-access (FDMA). The transmit power
of each user is 23 dBm. The path loss model of D2D
links is 37.6+36.8 logr, where r is the distance between a
transmitter and a receiver. In overlay mode, all active D2D
links transmit over 20 MHz bandwidth with full reuse or share
the 20 MHz bandwidth with FDMA, and the noise power is
−100 dBm. In underlay mode, the D2D links share 40 MHz
bandwidth among each other together with uplink transmission
of cellular users [43] (also with full reuse or FDMA), and the
noise power is −97 dBm. We consider five uniformly-located
cellular users, which corresponds to the arrival rate of at least
0.5 requests/s if each user requests a file of 30 MB and the file
is completely conveyed within 10s. To demonstrate the system
performance, we evaluate the number of requests whose files
can be completely conveyed in an hour. To demonstrate the

6598 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 12, DECEMBER 2018

performance of each user, we evaluate the data rate per user
averaged over large and small scale channels (also averaged
over interference in underlay mode or in overlay mode with
frequency reuse among D2D links). The simulation results
show that the system performance of S1 is superior to S2
consistently in all scenarios, and the gain is large when the
traffic load is heavy. When the D2D links reuse the bandwidth
in both underlay and overlay modes, the user performance
of S1 is very close to S2. When using FDMA, S1 becomes
inferior. This is because each D2D link will be allocated less
bandwidth if more D2D links transmit simultaneously.

B. Offloading Gain With Learned User Preference

To show the gain of caching with user preference over
content popularity, and the gain from learning with the pLSA
model and the priori knowledge, we compare the following
schemes:

1) “S1-perfect”: The proposed caching policy with perfect
user preference and activity level.

2) “S2-perfect”: The existing caching policy optimized
with perfect content popularity, which is the solution
of problem P2 (slightly different from the policies
in [12] and [13]).

3) “S1-EM”: The proposed caching policy with ŵ and Q̂
learned by the EM algorithm.

4) “S2-EM”: The existing caching policy with learned local
popularity of the K users, which is computed with (1)
from the learned user preference by EM algorithm.

5) “S1-prior”: The proposed caching policy with Q̂
learned by Algorithm 3.

6) “S2-prior”: The existing caching policy with learned
local popularity of the K users, which is computed
from the learned user preference by Algorithm 3 as
p̂f =

∑
uk∈U P̂ (uk, ff).

7) “S1-baseline”: The proposed caching policy with
learned user preference, which is obtained by the ML
algorithm without pLSA model.

8) “S2-baseline”: The existing caching policy with learned
local popularity of the K users, which is obtained by
using the traditional frequency-count popularity predic-
tion method in [16]. Such a popularity learning method
is the same as the method used in [17].

In Fig. 8, we show the offloading probability achieved
by these schemes during the learning procedure with the
synthetic data. To compare with the results to be obtained
with realistic dataset in the sequel, we set the x-axis as the
accumulated number of requests. It is shown that using pLSA
and even the priori information do not help accelerate conver-
gence of local popularity, because the simple frequency-count
method already converges rapidly. Compared to the proposed
caching policy with learned user preference (S1-EM, S1-prior
and S1-baseline), S2 with learned local popularity (S2-EM,
S2-prior and S2-baseline) converge to S2 with perfect content
popularity (S2-perfect) more quickly. This is because the
number of requests for each file from each user is much
less than that from all the users in the area. Nonetheless,
the proposed caching policy with learned user preference can

Fig. 8. Convergence performance on synthetic dataset, α = 0.36, rc = 30 m,
Z = 20 for pLSA.

quickly achieve higher offloading probability than S2 with
learned (and even perfect) content popularity. The proposed
caching policy with pLSA (both S1-EM and S1-prior) is
superior to the baseline (S1-baseline), especially when the
cache size at each user M is large. This is because some
unpopular files will be cached with large M . For the unpopular
files, the number of accumulated requests is less and user
preference learning is more difficult. Besides, we can see that
by exploiting prior knowledge of user activity level and topic
preference, S1-prior converges much faster than S1-EM.

In Fig. 9, we show the offloading gain with the MovieLens
dataset. Because S2-EM and S2-prior perform closely to
S2-baseline, we only simulate S2-baseline here. We randomly
choose 100 users from the dataset (which include both active
and inactive users) and the most popular 3000 files. The
timestamps of user requests are shuffled as in [18] to ensure
the training set has the same user demand statistics as the test
set. Compared with Fig. 8(a), we can see that the offloading
probabilities for all methods on the realistic dataset are less
than those with the synthetic data. This is because a user
requests each movie at most once in the realistic dataset

CHEN AND YANG: CACHING POLICY FOR CACHE-ENABLED D2D COMMUNICATIONS BY LEARNING USER PREFERENCE 6599

Fig. 9. Offloading probability on MovieLens dataset, rc = 30 m, M = 5.

translated from rating data, while a user may request a
file more than one time in the synthetic data. In practice,
a user may request a file more than once, e.g., the file is a
favorite song of the user or an educational video. Nonetheless,
we can see that the proposed caching policy with predicted
user preference still achieves much higher offloading gain
than existing scheme. Because the prior knowledge of topic
preferences is learned from realistic dataset rather than known
as in Fig. 8(a), the performance gain of S1-prior over S1-EM is
lower here, which however is still remarkable. Besides, we can
see that S1-baseline always performs the worst, because user
preference for unvisited files is hard to predict by using the ML
algorithm without pLSA model when each user only requests a
file at most once. However, we can still predict user preference
for the unvisited files with both S2-EM and S2-prior, owing
to the pLSA model.

VII. CONCLUSIONS

In this paper, we demonstrated the caching gain by
exploiting learned individual user behavior in sending request.
We first showed the connection between user preference and
content popularity, and provided a probabilistic model to
synthesize user preference from content popularity. We then
formulated an optimization problem with given user prefer-
ence and activity level to maximize the offloading proba-
bility for cache-enabled D2D communications, and proposed
a low-complexity algorithm to solve the problem, which can
achieve at least 1/2 optimality. Next, we modeled the user
request behavior by pLSA, based on which the EM algorithm
was used to learn the user preference and activity level.
We analyzed statistics of user behavior in requesting contents
and validated the synthetical model by a Movielens dataset.
We find that: (i) the preferences for the most favorable files
of each user can be modeled as Zipf distribution, but with
different skewness and over different file sets, (ii) the user
preferences are less similar, and (iii) the activity level and
topic preference of each user change slowly over time, say in
the time scale of year. Based on the 3rd observation from the
real dataset, we introduced a prior knowledge based algorithm

to exploit the activity level and topic preference previously
learned, which shows the potential of transfer learning. Simu-
lation results showed that using pLSA can quickly learn
the individual user behavior, and the prior knowledge based
algorithm converges even faster. Compared to existing caching
policy using content popularity, the offloading performance
can be remarkably improved by the caching policy using user
preferences, both on the synthetic data with parameters fitted
from real dataset and on the MovieLens dataset.

APPENDIX A
PROOF OF PROPOSITION 1

The objective function of problem P1� can be further
derived as

foff(ck′)

=
K∑

k=1

wk

F∑

f=1

qf |k

×
(
1−

K∏

m �=k′
(1− ak,mcm,f)(1 − ak,k′ck′,f)

)

= 1−
F∑

f=1

K∑

k=1

wkqf |k
K∏

m �=k′
(1− ak,mcm,f)

︸ ︷︷ ︸
(a)

+
F∑

f=1

ck′,f

⎛

⎝
K∑

k=1

wkqf |kak,k′

K∏

m �=k′
(1− ak,mcm,f)

⎞

⎠

︸ ︷︷ ︸
(b)

,

(A.1)

where both terms in (a) and (b) are not related to ck′,f .
Then, solving the problem in (9) is equivalent to solving the
following problem

P1� max
ck′,f

F∑

f=1

ck′,f

(K∑

k=1

wkqf |kak,k′

×
K∏

m=1,m �=k′
(1− ak,mcm,f)

)
(a)
=

F∑

f=1

ck′,fbk′,f

s.t.
F∑

f=1

ck′,f ≤M, ck′,f ∈ {0, 1},

1 ≤ f ≤ F, (A.2)

where (a) is obtained by letting bk′,f =
∑K

k=1 wkqf |k
ak,k′

∏K
m=1,m �=k′(1 − ak,mcm,f). By finding file indices of

the maximal M values of bk′,f(1 ≤ f ≤ F) to constitute
the set Ik′ , it is not hard to show that the optimal caching
policy c∗k′,f can be obtained as (11).

To obtain c∗k′,f , we need to compute bk′,f with time
complexity O(K2F) and then choose the maximal M values
of bk′,f with complexity O(FM). Finally, we can prove that
the optimal solution of problem (9) can be obtained with
complexity O(K2F + FM) = O(F (K2 + M)).

6600 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 66, NO. 12, DECEMBER 2018

APPENDIX B
PROOF OF PROPOSITION 2

Denote the caching policy at the k�th user after the
(t−1)th iteration as c(t−1)

k′ . In the tth iteration, the offloading
probability before step 3 of Algorithm 2 is foff(c(t−1)

k′) as
in (A.1). After that step, c(t)

k′ is computed for the k�th user
and the corresponding offloading probability is foff(c(t)

k′).
By subtracting foff(c(t−1)

k′) from foff(c(t)
k′), we can obtain

foff(c(t)
k′)− foff(c(t−1)

k′)

=
K∑

k=1

wk

F∑

f=1

qf |k

(

1−
K∏

m=1,m �=k′
(1− ak,mcm,f)

× (1− ak,k′c
(t)
k′,f)

)

−
K∑

k=1

wk

F∑

f=1

qf |k

(

1

−
K∏

m=1,m �=k′
(1− ak,mcm,f)(1 − ak,k′c

(t−1)
k′,f)

)

(a)
=

F∑

f=1

c
(t)
k′,fbk′,f −

F∑

f=1

c
(t−1)
k′,f bk′,f

(b)
= (max

ck′,f

F∑

f=1

ck′,fbk′,f)−
F∑

f=1

c
(t−1)
k′,f bk′,f ≥ 0,

where (a) is obtained by substituting (10) and (A.1), and (b)
is obtained from (A.2). Thus, the offloading gain is monoton-
ically improved until convergence.

To prove the optimality guarantee of the local optimal
algorithm, we first convert the offloading probability into a
function of a set instead of a matrix (i.e., C). Denoting fkf as
an action that caching the f th file at the kth user. Recall that
ck,f = 1 represents the kth user caching the f th file. Then,
the caching policy for the kth user, ck = [ck,1, ck,2, . . . , ck,F],
can be re-expressed as a set Ck = {fkf |ck,f = 1}, i.e., caching
which files at the kth user. Let C = {C1, C2, . . . , CK}, then
problem P1 is equivalent to the following problem,

max
C

f(C)

=
K∑

k=1

wk

F∑

f=1

qf |k

⎛

⎝1−
∏

fm
f ∈C

(1− ak,m)

⎞

⎠

s.t. |Ck| ≤M, 1 ≤ k ≤ K. (B.1)

By defining a set S = {f11 , f12 , . . . , f1F , . . . , fK1 , fK2 , . . . , fKF },
we can see that C ⊆ S and f(C) : 2S → R is a discrete
set function on subsets of S. Let A,B ⊆ S, A ⊆ B, and
ff

′
k′ ∈ S \ B.

Denote the global optimal caching policy as C∗ =
{C∗1 , C∗2 , . . . , C∗K}, a local optimal caching policy obtained
by Algorithm 2 as CL = {CL

1 , CL
2 , . . . , CL

K}, and
caching policy at users except the kth user as C̄L

k =
{CL

1 , CL
2 , ., CL

k−1, CL
k+1, .., CL

K}. Then, we can obtain

f(C∗)− f(CL)
(a)

≤ f(C∗ ∪ CL)− f(CL)

� fCL(C∗)
(b)

≤
K∑

k=1

fCL(C∗k)

(c)

≤
K∑

k=1

fC̄L
k
(C∗k)

(d)

≤
K∑

k=1

fC̄L
k
(CL

k)

(e)

≤ f(CL
1) +

K∑

k=2

f∪k−1
i=1 CL

i
(CL

k) = f(CL),

(B.2)

where (a) is obtained because offloading probability is a
monotone increasing function, i.e., f(C∗) ≤ f(C∗ ∪ CL),
(b) is obtained by the property that for set A,B, C ⊆ S,
we have fA(B ∪ C) ≤ fA(B) + fA(C), (c) and (e) are
obtained by the property that for set C ⊆ A ⊆ S and
B ⊆ S, fA(B) ≤ fC(B), and (d) is obtained because for
any caching policy at the kth user denoted as Ca

k , we have
fC̄L

k
(CL

k) − fC̄L
k
(Ca

k) = f(CL
k ∪ C̄L

k) − f(Ca
k ∪ C̄L

k) ≥ 0
considering CL is the local optimum of Algorithm 2. Thus,
we have f(CL) ≥ 1

2f(C∗), and Proposition 2 follows.

REFERENCES

[1] B. Chen and C. Yang, “Caching policy optimization for D2D communi-
cations by learning user preference,” in Proc. 8th IEEE VTC, Jun. 2017,
pp. 1–6.

[2] E. Bastug, M. Bennis, and M. Debbah, “Living on the edge: The role
of proactive caching in 5G wireless networks,” IEEE Commun. Mag.,
vol. 52, no. 8, pp. 82–89, Aug. 2014.

[3] K. Wang, Z. Chen, and H. Liu, “Push-based wireless converged
networks for massive multimedia content delivery,” IEEE Trans. Wireless
Commun., vol. 13, no. 5, pp. 2894–2905, May 2014.

[4] D. Liu, B. Chen, C. Yang, and A. F. Molisch, “Caching at the wireless
edge: Design aspects, challenges, and future directions,” IEEE Commun.
Mag., vol. 54, no. 9, pp. 22–28, Sep. 2016.

[5] N. Golrezaei, P. Mansourifard, A. F. Molisch, and A. G. Dimakis, “Base-
station assisted device-to-device communications for high-throughput
wireless video networks,” IEEE Trans. Wireless Commun., vol. 13, no. 7,
pp. 3665–3676, Jul. 2014.

[6] D. Liu and C. Yang, “Energy efficiency of downlink networks with
caching at base stations,” IEEE J. Sel. Areas Commun., vol. 34, no. 4,
pp. 907–922, Apr. 2016.

[7] M. Leconte, G. Paschos, L. Gkatzikis, M. Draief,
S. Vassilaras, and S. Chouvardas, “Placing dynamic content in caches
with small population,” in Proc. IEEE INFOCOM, Apr. 2016, pp. 1–9.

[8] M. A. Maddah-Ali and U. Niesen, “Fundamental limits of
caching,” IEEE Trans. Inf. Theory, vol. 60, no. 5, pp. 2856–2867,
May 2014.

[9] N. Golrezaei, K. Shanmugam, A. G. Dimakis, A. F. Molisch, and
G. Caire, “FemtoCaching: Wireless video content delivery through
distributed caching helpers,” in Proc. IEEE INFOCOM, Mar. 2012,
pp. 1107–1115.

[10] B. Blaszczyszyn and A. Giovanidis, “Optimal geographic caching in
cellular networks,” in Proc. IEEE ICC, Jun. 2015, pp. 3358–3363.

[11] X. Xu and M. Tao, “Modeling, analysis, and optimization of coded
caching in small-cell networks,” IEEE Trans. Commun., vol. 65, no. 8,
pp. 3415–3428, Aug. 2017.

[12] M. Ji, G. Caire, and A. F. Molisch, “Wireless device-to-device caching
networks: Basic principles and system performance,” IEEE J. Sel. Areas
Commun., vol. 34, no. 1, pp. 176–189, Jan. 2016.

[13] B. Chen, C. Yang, and A. F. Molisch, “Cache-enabled device-to-device
communications: Offloading gain and energy cost,” IEEE Trans. Wireless
Commun., vol. 16, no. 7, pp. 4519–4536, Jul. 2017.

[14] Y. Guo, L. Duan, and R. Zhang, “Cooperative local caching under
heterogeneous file preferences,” IEEE Trans. Commun., vol. 65, no. 1,
pp. 444–457, Jan. 2017.

[15] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A provably
efficient online collaborative caching algorithm for multicell-coordinated
systems,” IEEE Trans. Mobile Comput., vol. 15, no. 10, pp. 1863–1876,
Aug. 2016.

[16] A. Tatar, M. D. de Amorim, S. Fdida, and P. Antoniadis, “A survey on
predicting the popularity of Web content,” J. Internet Services Appl.,
vol. 5, no. 1, pp. 1–20, 2014.

CHEN AND YANG: CACHING POLICY FOR CACHE-ENABLED D2D COMMUNICATIONS BY LEARNING USER PREFERENCE 6601

[17] P. Blasco and D. Gündüz, “Learning-based optimization of cache
content in a small cell base station,” in Proc. IEEE ICC, Jun. 2014,
pp. 1897–1903.

[18] E. Baştuǧ et al., “Big data meets telcos: A proactive caching perspec-
tive,” J. Commun. Netw., vol. 17, no. 6, pp. 549–557, Dec. 2015.

[19] M. D. Ekstrand, J. T. Riedl, and J. A. Konstan, “Collaborative filtering
recommender systems,” Found. Trends Hum.-Comput. Interact., vol. 4,
no. 2, pp. 81–173, Feb. 2010.

[20] D. Jannach, P. Resnick, A. Tuzhilin, and M. Zanker, “Recommender
systems–beyond matrix completion,” Commun. ACM, vol. 59, no. 11,
pp. 94–102, 2016.

[21] U. Paul, A. P. Subramanian, M. M. Buddhikot, and S. R. Das,
“Understanding traffic dynamics in cellular data networks,” in Proc.
IEEE INFOCOM, Apr. 2011, pp. 882–890.

[22] T. Hofmann, “Probabilistic latent semantic analysis,” in Proc. 15th Conf.
Uncertainty Artif. Intell., 1999, pp. 289–296.

[23] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the EM algorithm,” J. Roy. Statist. Soc. B
(Methodol.), vol. 39, no. 1, pp. 1–38, 1977.

[24] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Trans. Interact. Intell. Syst., vol. 5, no. 4, p. 19, Jan. 2016.

[25] X. Zhang, Y. Wang, R. Sun, and D. Wang, “Clustered device-to-
device caching based on file preferences,” in Proc. 27th IEEE PIMRC,
Sep. 2016, pp. 1–6.

[26] Y. Wu, S. Yao, Y. Yang, Z. Hu, and C.-X. Wang, “Semigradient-based
cooperative caching algorithm for mobile social networks,” in Proc.
IEEE GLOBECOM, Dec. 2016, pp. 1–6.

[27] E. Baştuǧ, J.-L. Guénégo, and M. Debbah, “Proactive small cell
networks,” in Proc. IEEE ICT, May 2013, pp. 1–5.

[28] Y. Shi, M. Larson, and A. Hanjalic, “Collaborative filtering beyond the
user-item matrix: A survey of the state of the art and future challenges,”
ACM Comput. Surv., vol. 47, no. 1, p. 3, 2014.

[29] D. M. Blei, A. Y. Ng, and M. I. Jordan, “Latent Dirichlet allocation,”
J. Mach. Learn. Res., vol. 3, pp. 993–1022, Mar. 2003.

[30] T. Hofmann, “Latent semantic models for collaborative filtering,” ACM
Trans. Inf. Syst., vol. 22, no. 1, pp. 89–115, Jan. 2004.

[31] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “Youtube traffic charac-
terization: A view from the edge,” in Proc. ACM SIGCOMM, 2007,
pp. 15–28.

[32] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and S. Moon, “I tube,
you tube, everybody tubes: Analyzing the world’s largest user generated
content video system,” in Proc. 7th ACM SIGCOMM, 2007, pp. 1–14.

[33] C. Wang and D. M. Blei, “Collaborative topic modeling for recom-
mending scientific articles,” in Proc. 17th ACM SIGKDD, 2011, pp.
448–456.

[34] W.-J. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling
time-variant user mobility in wireless mobile networks,” in Proc.
IEEE INFOCOM, May 2007, pp. 758–766.

[35] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of
approximations for maximizing submodular set functions—I,” Math.
Program., vol. 14, no. 1, pp. 265–294, 1978.

[36] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
monotone submodular function subject to a matroid constraint,” SIAM
J. Comput., vol. 40, no. 6, pp. 1740–1766, 2011.

[37] T. Hofmann, “Unsupervised learning by probabilistic latent semantic
analysis,” Mach. Learn., vol. 42, no. 1, pp. 177–196, Jan. 2001.

[38] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Trans.
Knowl. Data Eng., vol. 22, no. 10, pp. 1345–1359, Oct. 2010.

[39] K. S. Trivedi, Probability and Statistics With Reliability, Queueing, and
Computer Science Applications. Hoboken, NJ, USA: Wiley, 2002.

[40] D. Rafailidis and A. Nanopoulos, “Modeling users preference dynamics
and side information in recommender systems,” IEEE Trans. Syst., Man,
Cybern. Syst., vol. 46, no. 6, pp. 782–792, Jun. 2016.

[41] F. Benevenuto, A. Pereira, T. Rodrigues, V. Almeida, J. Almeida, and
M. Gonçalves, “Characterization and analysis of user profiles in online
video sharing systems,” J. Inf. Data Manage., vol. 1, no. 2, p. 261, 2010.

[42] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for
ad hoc network research,” Wireless Commun. Mobile Comput., vol. 2,
no. 5, pp. 483–502, Sep. 2002.

[43] H. Min, J. Lee, S. Park, and D. Hong, “Capacity enhancement using
an interference limited area for device-to-device uplink underlaying
cellular networks,” IEEE Trans. Wireless Commun., vol. 10, no. 12,
pp. 3995–4000, Dec. 2011.

Binqiang Chen (S’14) received the B.S. and
Ph.D. degrees in electronics engineering from
the School of Electronics and Information Engi-
neering, Beihang University, in 2012 and 2018,
respectively. His research interests include interfer-
ence management, device-to-device communication,
content-centric networks, and artificial intelligence
in wireless communication. He has served as a
Technical Program Committee Member for the IEEE
VTC Spring 2017.

Chenyang Yang (M’99–SM’08) received the Ph.D.
degree in electrical engineering from Beihang
University in 1997. She has been a Full Professor
with the School of Electronics and Information Engi-
neering, Beihang University, since 1999. Her recent
research interests include wireless edge caching,
mobile artificial intelligence, and URLLC. She was
supported by the 1st Teaching and Research Award
Program for Outstanding Young Teachers of Higher
Education Institutions by the Ministry of Education
of China from 1999 to 2004. She was the Chair of

the IEEE Communications Society Beijing Chapter from 2008 to 2012. She
has served as a TPC member for numerous IEEE conferences and an Associate
Editor or a Guest Editor for several IEEE journals.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

