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Symbol Error Rate Minimization Precoding for
Interference Exploitation

Ka Lung Law, Member, IEEE, and Christos Masouros , Senior Member, IEEE

Abstract— This paper investigates a new beamforming
approach for interference exploitation, which has recently
attracted interest as an alternative to conventional interference-
avoidance beamforming for the downlink of multiple-input
multiple-output systems. Contrary to existing interference
exploitation approaches that focus on signal-to-noise ratio per-
formance, we adopt an approach based on the detection region
of the signal constellation. Focusing on quality of service, we then
formulate the optimization for minimizing the error probability
(EP) for the worst user, subject to power constraints. We do this
by employing the knowledge of channel state information at the
transmitter, along with all downlink users’ data that are readily
available at the base station during downlink transmission.
In this context, we also show that the detection-region-based
beamforming and the worst user EP downlink beamforming are
equivalent problems. Finally, we further propose a sum EPs
approach and provide an analytic bound of average symbol
error rate performance. Our simulations verify that the proposed
techniques provide significantly improved performance over con-
ventional downlink beamforming techniques.

Index Terms— Downlink beamforming, error probability, con-
vex optimization, constructive interference.

I. INTRODUCTION

W ITH the aid of channel state information (CSI) at the
transmitter, downlink beamforming can serve multiple

users at the same time using spatially selective transmission
[2]–[4]. Complementary to the urge for high throughputs under
resource-limited communication systems, quality of service
(QoS) is a vital requirement in modern communications.
Designing the adaptive beamformers to optimize the QoS the
for downlink channel has been extensively studied [4]–[10].
QoS is usually measured as a function of signal to interference
plus noise ratio (SINR).

In addition to the above linear beamforming approaches,
non-linear precoders such as Dirty paper coding (DPC) and
Tomlinson-Harashima Precoding (THP) exploit the symbol
information to pre-cancel potential interference at the trans-
mitter [11]–[13]. Vector perturbation (VP) precoding presents
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a complementary approach that employs a non-linear symbol
perturbation at the transmitter to further improve perfor-
mance [14]–[19]. Nevertheless, both families of techniques
involve non-linear designs, while VP in particular necessi-
tates sophisticated search algorithms with a complexity that
grows exponentially with the number of users [14], [15].
To reduce the complexity, several heuristic approaches have
been studied [13], [20], [21]. However, none of the above
are practical in current communication standards due to their
high computational complexity. On the other hand, the zero-
forcing (ZF) precoding [22], [23] is well known to have the
least complexity amongst multi-user precoding approaches due
to its closed form operation that involves an inversion of
the channel matrix, but it performs far from the optimum
in most scenarios. Accordingly, optimization-based downlink
beamforming problems are considered. One approach is to
minimize the total transmit power subject to the minimum
SINR requirements at each user [5]. The uplink-downlink
duality theory was established in [5] and [6]. Under the duality
theorem, the downlink beamforming problem was efficiently
solved using an iterative algorithm. In [6], an alternative
downlink beamforming problem of maximizing the minimum
SINR subject to a total power constraint was also developed
and can be solved using the similar iterative algorithm. Conic
optimization approaches to solving the downlink beamforming
problem have also been explored [7]–[9]. Using semidefinite
relaxation (SDR) technique [24], the rank-relaxed downlink
beamforming problem becomes a convex optimization, which
can be efficiently solved by contemporary linear or nonlinear
programming methods such as the subgradient projection and
barrier methods to obtain an optimal solution [25]. It is proved
that a rank-one solution exists when the problem is feasible
[7], [8]. In [26] and [27], the authors provided a rank-reduction
algorithm to reduce the rank of the relaxed solution. For
downlink beamforming with additional shaping constraints,
it has been shown in [26] and [27] that if the number of
additional shaping constraints is less than or equal to two, then
rank-one solution can be obtained. A more advanced scheme
was proposed in [28], which combines beamforming with high
dimensional real-value orthogonal space time block coding
(OSTBC) to increase the degrees of freedom in the optimiza-
tion design. The authors in [9] formulated the problem into
a second order cone program (SOCP) which allows the use of
efficient solvers with reduced complexity. The channel robust
worst-case downlink beamforming optimization designed to
resist CSI errors was considered in [7] and [29]–[31]. As a
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further step, outage probability (OP)-constrained downlink
beamforming has been developed and it has been proved that
both the worst channel robust and outage probabilistically
constrained problems are equivalent [31], [32]. In particular,
for a given radius of uncertainty set, one can obtain the
OP such that both problems can be derived to the same
formulation and vice versa.

In the SINR-based downlink problem, beamformers are
designed to guarantee that the SINR constraints are satisfied.
However, the disadvantage of the conventional SINR criteria
that treat interference as harmful is that critical power is
wasted by suppressing, eliminating and avoiding the interfer-
ence. Making use of both the CSI and data information, rather
than mitigating it, one can exploit the constructive part of
interference to enhance the useful signal. The concept of inter-
ference exploitation was introduced in [20] and [33]–[43]. This
is also referred to as a constructive interference precoding.
In [20], [34]–[39], and [44], the closed-form linear and non-
linear precoders were discussed by exploiting the construc-
tive interference to achieve higher SINRs without additional
transmit power. Nevertheless, these precoders are not fully
optimized. In more recent work, the authors in [16], [40],
and [41] developed optimization-based precoders by designing
beamforming which exploits constructive interference and can
further reduce the transmit power. One particular optimization
problem is to minimize the transmit power while guaranteeing
certain signal to noise ratio (SNR) thresholds for all users and
at the same time accommodate constructive interference to
enhance the useful signal. This was first introduced in [16]
as a linear adaptation of VP, and then applied to beam-
forming optimization. A conservative approach was offered
in [41], by restricting the resultant interference to shift the
received symbol in the exact same angle with the intended
symbol, while a relaxed method was developed [40] A related
transmitter-side precoding technique, namely directional mod-
ulation, exploits the constellation formats to achieve physical-
layer security [45]–[47].

In line with the above, this paper is based on the downlink
beamforming optimization by exploiting constructive inter-
ference to enhance the useful signal [40], [41], [48], [49].
In line with the above, we assume a TDD transmission,
and the availability of CSI and instantaneous data at the
transmitter. We investigate different quantitative measures of
QoS as objective functions and optimize these subject to power
constraints. While closed-form sum rate expressions do not
apply to the modulation-dependent concept of interference
exploitation [40], motivated by the error rate comparisons in
the relevant literature [34]– [41], we focus on error rate related
metrics detailed in the sequence. All proposed approaches can
be formulated into convex optimizations. The contributions of
this paper can be summarized as follows:

1) We propose a detection-region based downlink beam-
forming problem in Section IV by introducing a new
geometrical analysis to the optimization problem studied
in [40].

2) We reformulate the optimization to address the worst
user EP downlink beamforming problem in Sections V
and VI and show the detection-region based and

EP-based problems exhibit a one to one correspondence
in Section V.

3) We provide an analytic bound of average symbol error
rate (SER) performance by solving the sum EPs opti-
mization. It is observed in the simulations that the
analytic SER results closely match with the experimental
SER results.

4) Computationally-efficient solver algorithms are devel-
oped for each approach in Sections IV, V, and VI,
respectively.

In the following analysis, we focus on phase-shift keying
(PSK) modulation which offers notational simplicity in the
definition of constructive interference. This is further moti-
vated by the fact that the concept of interference exploitation
is most useful in high-interference scenarios where low order
modulation such as BPSK and QPSK is employed to ensure
the reliability [50]. Nevertheless, our analysis and designs
can be readily extended to other modulation schemes such as
quadrature amplitude modulation (QAM) by trivially applying
the approaches in [38] and [43], [51]–[54], which specifi-
cally treat the topic of interference exploitation for QAM
transmission. Regarding the closest literature on interference
exploitation in [40] we note that the contributions in our paper
involve a) a noise robust downlink beamforming problem by
introducing a geometrical analysis to the optimization problem
studied in [40], b) a new formulation of the optimization to
address the worst user error probability, c) derivation of a tight
analytic bound of average SER performance where previously
no such bounds existed, d) computationally-efficient solver
algorithms developed for each of the proposed approaches.

The remainder of the paper is organized as follows.
Section II introduces the signal model and revisits the con-
ventional downlink beamforming problem. Section III outlines
the constructive interference-based optimization. Section IV
formulates the detection-region based downlink beamforming
problem. Section V develops the worst user EP downlink
beamforming problem. Section VI presents the sum EPs down-
link beamforming problem. Simulation results are provided in
Section VII and conclusions are drawn in Section VIII.

Notation: E(·), Pr(·), | · |, ‖ · ‖, (·)∗ï¼Œ (·)T , denote
statistical expectation, the probability, the absolute value,
the Euclidean norm, the complex conjugate, and the transpose,
respectively. Ij , and aj denotes the j×j identity matrix, j×1
vector of all a, respectively. Re(·) and Im(·) are the real part,
and the imaginary part, respectively. �a� is the smallest integer
greater than or equal to a.

II. SYSTEM MODEL AND CONVENTIONAL

DOWNLINK BEAMFORMING

Consider a downlink scenario, where a single N -antenna
BS transmits signals to K single-antenna users. Assume that
the noise ni at the ith user is circularly symmetric complex
Gaussian with zero mean, i.e., ni ∼ CN (0, σ2) where σ2 is
the noise variance. Let bi and hi be the unit amplitude of the
M -order PSK (M -PSK) modulated symbol and N×1 channel
vector for the ith user, respectively. The transmit signal at the
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Fig. 1. In M -PSK, (a) precoding for interference exploitation and generic optimization [40] where the grey area is the constructive area of constellation;
(b) constructive interference yi within correct detection region; (c) after rotation by ∠b∗i , Re(yib

∗
i ) and Im(yib

∗
i ) are projected from yib

∗
i on real and

imaginary axis, respectively; (d) the detection region approach is described using trigonometry.

BS is the N × 1 vector

x =
K∑

i=1

tibi, (1)

where ti is the N × 1 beamforming vector for the ith user.
The signal received by the ith user is given by

yi = hT
i x + ni,

= hT
i tibi︸ ︷︷ ︸

desired signal

+
K∑

j=1,j �=i

hT
i tjbj + ni.

︸ ︷︷ ︸
interference plus noise

(2)

The received SINR for the ith user is written as

SINRi � |hT
i ti|2∑K

j=1
j �=i

|hT
i tj |2 + σ2

. (3)

The mean total transmit power PT over transmit symbols is
defined as

PT � E{‖
K∑

i=1

tibi‖2} =
K∑

i=1

‖ti‖2. (4)

We note that while above we consider a single carrier system
model for notational simplicity in line with our benchmarks
[6], [40], our approach can readily be extended to a MIMO-
OFDM transmission where the involved precoding optimiza-
tion can be applied on a per subcarrier basis. Below we present
the two most common downlink beamforming optimization
problems in the literature [5]–[8].

A. SINR Balancing

Our first benchmark optimization involves maximizing the
minimum SINR subject to a predefined total transmit power.
The problem can be written as [6]

max
ti,γ

γ s.t.
|hT

i ti|2∑K
j=1
j �=i

|hT
i tj |2 + σ2

≥ γ, ∀i = 1, . . . ,K,

K∑

i=1

‖ti‖2 ≤ P0, (5)

where P0 is the predefined total transmit power threshold.

B. Power Minimization

A relevant approach aims to minimize the total transmit
power under the SINR constraints, in the form [6]

min
ti

K∑

i=1

‖ti‖2

s.t.
|hT

i ti|2∑K
j=1
j �=i

|hT
i tj |2 + σ2

≥ γ0, ∀i = 1, . . . ,K, (6)

where γ0 is the minimal acceptable SINR. However, these
problems do not consider the data symbols as a part of the
optimization problem for each transmission. In this paper,
we aim to design the downlink beamforming problem where
we take the given symbols into account, to exploit constructive
interference.

III. CONSTRUCTIVE INTERFERENCE

OPTIMIZATION-BASED PRECODING

Interference is a major limitation in wireless networks.
In conventional downlink beamforming [6], a critical part of
the transmit power is wasted to suppress the interference.
It has recently been shown that, by exploiting the instanta-
neous interference, the received signals can be pushed further
into the correct detection region, which improves the system
performance [34], [35]. With the knowledge of the CSI and
user data available at the transmitter, the constructive interfer-
ence optimization precoder given in [40] improves upon the
above optimizations to design beamformers to maximize the
distance Γσ between the desired detection region in Fig. 1(a)
that the received symbols must fall into, and the decision
thresholds of the corresponding constellation point. This is
done such that the resultant received symbol hT

i x falls within
the corresponding constructive area of constellation, as shown
in Fig. 1(a). That is, the area in the symbol constellation where
the distances to the decision thresholds are increased with
respect to the constellation point of interest. The design moves
the resultant received symbol away from the original decision
thresholds of the constellation, which improves the QoS.
To avoid extensive repetition, the reader is referred to [40]
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for the details of the underlying concept. Here, we recapture
the optimization problem in the mathematical form as [40]

max
x,Γ

Γ

s.t. |φi(x,Γ)| ≤ θ, (7a)

‖x‖2 ≤ P0, ∀i = 1, . . . ,K, (7b)

where Γ is a scalar auxiliary variable that is equivalent to the
minimum distance in the constellation region that will become
clear in the following, θ = π/M and P0 is the total transmit
power threshold. The constraints in (7a) come from the fact
that the resultant received symbol for the ith user lays on the
constructive area of the constellation, if and only if

−θ ≤ φi ≤ θ (8)

where φi in Fig. 1(a) is the angle such that

φi(x,Γ)=

⎧
⎨

⎩
tan−1

( Im(b∗i h
T
i x)

Re(b∗i h
T
i x) − Γσ

)
Re(b∗i h

T
i x) > Γσ,

0 b∗i h
T
i x = Γσ.

(9)

and the physical meaning of Γσ in (9) is the distance of the
correct detection region in Fig. 1(a) away from origin along
with the direction of the corresponding constellation point.
By substituting (9) into (7) and taking both sides by tan, the
problem (7) can be equivalently written as

max
x,Γ

Γ s.t. | Im(b∗i h
T
i x)| ≤ (Re(b∗i h

T
i x) − Γσ)tan θ,

‖x‖2 ≤ P0, ∀i = 1, . . . ,K. (10)

The corresponding power minimization is written as [40]

min
x

‖x‖2 s.t. | Im(b∗i h
T
i x)| ≤ (Re(b∗i h

T
i x) − Γ0σ)tan θ,

∀i = 1, . . . ,K, (11)

where Γ0σ is the minimal acceptable distance of the correct
detection region. We note that (10),(11) correspond to the
conventional SINR balancing and Power minimization prob-
lems (5),(6) where the SINR objsectives/constraints have been
reformulated to accommodate constructive interference.

From Fig. 1(a), we can see the real projection of the resul-
tant symbol is parallel to the signal and imaginary projection of
the resultant symbol is perpendicular to the signal. Therefore,
the approach in [40] treats Γ as an SNR-related variable, where
it is shown that the SNR can defined as the instantaneous
power of the real projection of the resultant symbol over the

expectation of noise power, i.e., Γ2 = minK
i=1{Re(b∗i hT

i x�
CI)

2}
σ2

where x�
CI is an optimal solution of transmit signal in (10).

In the following section, instead of using the SNR as a measure
of QoS, we introduce a detection-region based adaptation of
the above constructive interference-based beamformers.

IV. DETECTION-REGION BASED BEAMFORMING

OPTIMIZATION

In this section, we improve upon optimizations (10) and (11)
by introducing a detection-region based adaptation. First we
introduce an alternative systematic treatment of constructive

interference as per Fig. 1. For PSK modulation, interference
is constructive if the received signal yi falls within the correct
detection region, which is the shaded area shown in Fig. 1(b).
It is important to note that, here we consider the resultant
received symbol yi including noise is considered, whereas
the resultant received symbol hT

i x excluding is discussed
in [40]. Accordingly, we are interested in the constraints that
the received symbol yi falls inside the correct detection region
in the constellation, given a certain noise variance. Under this
new definition, we have the following lemma.

Lemma 1: The received signal yi benefits from constructive
interference, if and only if

−θ ≤ ψi ≤ θ (12)

where ψi in Fig. 1(b) is the angle between the received signal
yi and the transmit symbol bi and is also treated as a function
in terms of x and ni such that

ψi(x, ni) =

⎧
⎨

⎩
tan−1

( Im(yib
∗
i )

Re(yib∗i )
)

Re(yib
∗
i ) > 0,

0 yib
∗
i = 0.

(13)

Proof: To find out the angle ψi that ensures constructive
interference, we first rotate Fig. 1(b) to Fig. 1(c) by shifting the
constellation by a phase equal to −∠bi, i.e., by multiplying b∗i .
Since bi has unit power, yib

∗
i does not change the magnitude of

the complex number. Then we obtain (13) where Im(yib
∗
i ) and

Re(yib
∗
i ) are the projection of yib

∗
i onto the real and imaginary

axis, respectively.
Based on the above, the classification criterion (12) can be

reformulated as the following constraints

| Im(yib
∗
i )|

Re(yib∗i )
≤ tan θ, (14)

Re(yib
∗
i ) > 0, (15)

which is equivalent to the following single constraint

| Im(yib
∗
i )| − Re(yib

∗
i ) tan θ ≤ 0. (16)

A. Noise Uncertainty Radius Maximization

As shown in Fig. 1(d), for a given received signal excluding
noise (denoted by the red arrow in the figure) one has to apply
the noise uncertainty region such that the received symbols
including noise obey the required SNR Γ with respect to the
detection thresholds of the modulation constellation, denoted
by the bounds of the grey region in the figure. The idea of the
detection-region based downlink beamforming problem is to
design the beamforming weight vector and the radius Γσ of the
noise uncertainty set such that if the noise is within the noise
uncertainty set, then it guarantees that the given received signal
falls into the constructive area of the constellation and can be
decoded without any error, i.e., yi benefits from constructive
interference. Given the noise variance σ2, the optimization
aims to maximize the radius Γσ of the noise uncertainty set
such that it can still satisfy the constraints (16) under the
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power budget. The resulting detection-region based downlink
beamforming problem can be expressed as

max
x,Γ

Γ (17)

s.t. max
‖ni‖≤Γσ

|ψi(x, ni)| ≤ θ, ∀i = 1, . . . ,K,

‖x‖2 ≤ P, (18)

where P is the maximum allowable total transmit power.
By Lemma 1 and (16), problem (18) can be rewritten as

max
x,Γ

Γ

s.t. max
‖ni‖≤Γσ

| Im(yib
∗
i )| − Re(yib

∗
i ) tan θ ≤ 0, (19a)

‖x‖2 ≤ P, ∀i = 1, . . . ,K. (19b)

We can first solve the inner maximization on the left side
of (19a).

Corollary 1: For a fixed x̃, the optimal solution of the inner
maximization in (19) is given by

| Im(b∗i h
T
i x̃)| + Γσ/ cos θ − Re(b∗i h

T
i x̃) tan θ. (20)

Proof: See Appendix A.
According to Corollary 1, problem (19) can be rewritten as

a function Γ�(·) for any given P ≥ 0 such that

Γ�(P ) : max
x,Γ

Γ

s.t. | Im(b∗i h
T
i x)| + Γσ/cos θ ≤ Re(b∗i h

T
i x) tan θ,

‖x‖2 ≤ P, ∀i = 1, . . . ,K. (21)

The problem in (21) can be solved using available convex
optimization tools [55]. Finally, we can set the optimal beam-
forming vector t�

i in (1) as

t�
i =

x�b∗i
K

, (22)

where x� is an optimal solution of transmit signal in (21). Note
that (10) and (21) are only different by a constant. Suppose
x�

SD and x�
NR are optimal solutions of transmit signal in (10)

and (21), respectively. Then sin θx�
NR = x�

SD. Therefore we
can treat them as equivalent problems.

B. Trigonometrical Equivalence

The optimization problem (21) can also be explained using
trigonometry. The Fig. 1(d) uses a trigonometrical approach
by maximizing the radius Γσ of the noise uncertainty set
within the shaded region. As seen in the figure, Γσ/cos θ is
the projection of Γσ on the imaginary axis. By observing the
trigonometry in Fig. 1(d), we have

| Im(b∗i h
T
i x)| + Γσ/cos θ

Re(b∗i h
T
i x)

≤ tan θ, (23)

Re(b∗i h
T
i x) > 0, (24)

or

b∗i h
T
i x = 0, (25)

Γ = 0, (26)

which is equivalent to

| Im(b∗i h
T
i x)| + Γσ/cos θ ≤ Re(b∗i h

T
i x) tan θ. (27)

which yields directly (21).

C. The Power Minimization Problem

In this subsection, we present the power minimization that
is related to (21), and employ this formulation to design an
efficient solver. The downlink beamforming optimization is
to minimize the total transmit power such that noise in the
given uncertainty set falls within the constructive area of the
constellation. Based on (21) the problem can be written as

min
x

‖x‖2 s.t. max
‖ni‖≤Γσ

|ψi(x, ni)| ≤ θ, ∀i = 1, . . . ,K.

(28)

Using a similar approach as in Subsection IV-A, we can
reformulate problem (28) as a function P �(·) for any given
Γ ≥ 0 such that

P �(Γ) : min
x

‖x‖2

s.t. | Im(b∗i h
T
i x)| + Γσ/cos θ ≤ Re(b∗i h

T
i x) tan θ,

∀i = 1, . . . ,K. (29)

Similarly, we notice that (11) and (29) can be treated as
equivalent problems. To obtain a real-valued representation of
the optimization that allows efficient solvers following [40],
let us denote

x̄ � [Re(x)T Im(x)T ]T , (30)

h̄i � [Im(b∗i hi)T Re(b∗i hi)T ]T , (31)

ΠK � [0K,K − IK ; IK 0K,K ], (32)

where 0K,K is the K ×K zero matrix. Then we can express
the real part and imaginary part in (29) as follows

Re(b∗i h
T
i x) = h̄T

i ΠK x̄, (33)

Im(b∗i h
T
i x) = h̄T

i x̄. (34)

Using (30), (33) and (34), we can rewrite (29) as

min
x̄

‖x̄‖2 s.t. − Tx̄ + Γ12K ≤ 02K , (35)

where T is a 2K × 2N matrix such that

T � cos θ
σ

⎛

⎜⎜⎜⎜⎜⎝

−h̄T
1 + tan θh̄T

1 ΠK

h̄T
1 + tan θh̄T

1 ΠK

...
−h̄T

K + tan θh̄T
KΠK

h̄T
K + tan θh̄T

KΠK

⎞

⎟⎟⎟⎟⎟⎠
. (36)

The Lagrangian associated with (35) is given by

L(x̄,u) = ‖x̄‖2 + uT (−Tx̄ + Γ12K), (37)

where u is a 2K × 1 vector. Setting ∂L(x̄,u)/∂x̄ = 02K ,
we obtain

x̄� =
1
2
TT u�. (38)
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Substituting (36) into (37), we write the dual problem of (35)
as

max
u≥02K

− ‖TTu‖2

4
+ Γ1T

2Ku, (39)

which is equivalent to

− min
u≥02K

f(u) � ‖TTu‖2

4
− Γ1T

2Ku. (40)

The above optimization can be solved effieicntly using the
gradient descent algorithm with simple bound constraints [56].
The gradient of f(u) is given by

	f(u) =
TTT u

2
− Γ12K . (41)

By substituting (38) into (35), problem (35) can be reformu-
lated as

min
u≥02K

‖1
2
TTu‖2 s.t. −	f(u) ≤ 02K . (42)

Therefore, we need to guarantee at the optimal dual solution
u� of problem (40) that

	f(u�) ≥ 02K . (43)

If the condition of (43) is violated, then either the gradient
descent algorithm has a low convergence rate or (42) is
infeasible. The feasibility of (42) can be examined by solving
the following problem:

find u s.t. −	f(u) ≤ 02K , u ≥ 02K . (44)

which is a linear programming problem.
Algorithm 1 outlines the gradient descent method to solve

(29) where imax and Δt are the given maximum number of
iterations and error tolerance, respectively. According to [57],
the gradient descent method requires at most O(Δ−2

t ) iter-
ations for Δt > 0 arbitrarily small. However, it is an open
question whether the above bound is tight or not. For the ill-
conditioned problems, the convergence rate of gradient descent
may be poor. It is important to note at this point that that com-
putational complexity is key for all interference exploitation
approaches. Indeed, while conventional beamforming needs
to be optimized whenever the channel changes, interference
exploitation optimizations are data-dependent, and need to
be performed on a symbol-by-symbol basis. Accordingly,
efficient solvers for reducing the complexity of obtaining the
beamformers are indispensable, and we derive a number of
efficient approaches in the following.

D. An Efficient Algorithm for Power Minimization of (29)
Based on the Barrier Method

It will be shown in the simulation results that Algorithm 1
can have a low convergence rate. In this subsection, we pro-
pose the barrier method as an alternative to compute the
optimal solution of the power minimization in (29). Let

φ(u) = −1T
2K ln(u) (45)

be the logarithmic barrier function where natural logarithm
ln(·) is an elementwise operator. We note that the barrier

Algorithm 1 Gradient Descent Algorithm to Solve (29)

Input: {hi}K
i=1, {bi}K

i=1,Γ0, σ
Output: The optimal solution x̄� of problem (29)
Initialize randomly u(0) and i = 0;
repeat
i = i+ 1;
if i > imax then

Exit and output no solution;
end if
Compute the gradient descent direction 	f(u(i−1));
Choose ai via backtracking linear search;
u(i) = max

(
02K ,u(i−1) − ai 	 f(u(i−1))

)
;

until ‖u(i) − u(i−1)‖ < Δt and min	f(u(i)) > −Δt;
Output x̄� = TT u(i)/2;

method based on the logarithmic barrier function, as above,
is identical to the primal-dual interior point method [54]. For
s > 0, define u�(s) as the solution of

min
u

sf(u) + φ(u). (46)

Problem (46) can be solved using the gradient descent algo-
rithm. It has been shown in [25] that the number of gradient
descent iterations is of the order O( log(K/Δt)

log μ ) for the barrier
method. In general, the barrier method is a more practical
approach to solve a convex optimization problem as it provides
a guarantee on the convergence rate compared to the gradient
descent method. The algorithm to efficiently solve (29) is
shown in Algorithm 2. It will be shown in the simulations
that this provides much faster convergence than Algorithm 1.

Algorithm 2 Efficient Barrier Method Algorithm to Solve (29)

Input: {hi}K
i=1, {bi}K

i=1,Γ0, σ, μ
Output: The optimal solution of transmit signal x̄� in
problem (29)
if (44) has no solution then

Exit and output infeasible;
else

Set u�(1) to be the solution of (44);
end if
repeat

Compute u�(s) of (46) ;
Set s = μs;

until ‖u�(s) − u�(s − 1)‖ < Δt and min	f(u�(s)) >
−Δt;
Output x̄� = TT u�(s)/2;

E. An Efficient Detection-Region Based Algorithm

Based on the above formulation, in this subsection we
refocus our attention to problem (21) and provide an efficient
algorithm for solving the detection-region based beamforming
problem. First of all, we show that the solution of (21) can be
obtained by solving (29). Then based on this fact, we present
an efficient algorithm to solve (21).
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Let x =
√
P x̌ such that ‖x̌‖2 = 1. Then problem (21) can

be rewritten as

max
x̌,Γ

Γ

s.t. | Im(b∗i h
T
i x̌)| + Γσ√

P cos θ
≤ Re(b∗i h

T
i x̌) tan θ,

‖x̌‖2 ≤ 1, ∀i = 1, . . . ,K. (47)

Problem (47) implies that Γ is directly proportional to
√
P .

Hence, we have the following relations:

Γ�(P ) =
√
PΓ�(1), (48)

x�
Γ(P ) =

√
Px�

Γ(1), (49)

where x�
Γ(P̃ ) is an optimal solution of transmit signal in (21)

for a given total transmit power P̃ . Similarly, if P �(1) is
feasible, then we have the following relations:

P �(Γ) = Γ2P �(1), (50)

x�
P (Γ) = Γx�

P (1), (51)

where x�
P (Γ̃) is an optimal solution of transmit signal in (29)

for a given noise uncertainty set radius Γ̃σ.
Remark: Problem (21) is always feasible for any given

power P0 as the trivial solution is one of the candidate
solutions. Suppose Γ�(1) �= 0. Then, using a similar argument
as in [6] we have that

‖x�
Γ(P )‖2 = P. (52)

The following two Corollaries show the we can obtain the
solution of (21) by solving (29) and vice versa.

Corollary 2: Let Γ0σ and P0 be the given positive noise
uncertainty set radius and total transmit power. Suppose P �(1)
is feasible. Then we obtain

Γ�(P �(Γ0)) = Γ0, (53)

x�
Γ(P �(Γ0)) = x�

P (Γ0). (54)

Conversely, suppose Γ�(1) �= 0. Then we can also obtain

P �(Γ�(P0)) = P0, (55)

x�
P (Γ�(P0)) = x�

Γ(P0). (56)

Proof: See Appendix B.
Corollary 3: Suppose Γ�(1) �= 0. Then problem (29)

always has non-trivial solution for any given Γ0.
Proof: See Appendix C.

According to Corollary 2 and Corollary 3, once the optimal
solution of (29) is known, which can be efficiently found
through Algorithms 1-2, the solution to (21) can be found
in closed form. Accordingly, we can derive an efficient algo-
rithm for solving (21) using Algorithm 2. Algorithm 3 below
presents the algorithm used to compute the optimal solution
of (21).

V. WORST USER ERROR PROBABILITY APPROACH

In this section, we propose a new approach to downlink
beamforming based on the error probability. The main con-
cept is to replace the detection-region based downlink beam-
forming constraints by more flexible probabilistic constraints.

Algorithm 3 Algorithm to Solve (21)

Input: {hi}K
i=1, {bi}K

i=1, P0, σ
Output: The solution x� of problem (21)
(P �(1),x�

P (1)) be the solution of (29) by Algorithm 2;
if P �(1) is feasible and it is not a trivial solution then

Set Γ̃ =
√
P0/P �(1);

(Γ̃x�
P (1), Γ̃) be the optimal solution of (21);

else
Output the trivial solution: Γ̃ = 0,x�

P = 0K ;
end if

We define the EP for ith user as the probability that the
received signals of ith user fall inside the left or right half
plane of Fig. 1(b), i.e., regions bounded between θ and
π + θ or between −θ and −π − θ, respectively, for which
case incorrect detection occurs. The EP optimization problem
for the worst user minimizes the maximum EP and can be
written as

min
x,p

p

s.t. Pr
(
π + θ ≥ ψi(x, ni) ≥ θ

)
≤ p, ∀i = 1, . . . ,K,

(57a)

Pr
(
−π − θ ≥ ψi(x, ni) ≥ −θ

)
≤ p, ∀i = 1, . . . ,K,

‖x‖2 ≤ P. (57b)

Remark: Problem (57) is different from the channel outage
probability based downlink beamforming problem in [31]
and [32]. The constraints in [31] and [32] are probabilistic
SINR-based with respect to the channel random variables,
while the constraints in our constructive interference-based
optimization are adapted to reflect the EP due to noise random
variables, in which the received signal falls outside the desired
region of the constellation, in order to have a reliable detection.
According to Lemma 1 and (16), problem (57) reduces to

min
x,p

p

s.t. Pr
(
Im(yib

∗
i ) ≥ Re(yib

∗
i ) tan θ

)
≤ p, (58a)

Pr
(
Im(yib

∗
i ) ≤ −Re(yib

∗
i ) tan θ

)
≤ p,

‖x‖2 ≤ P, ∀i = 1, . . . ,K. (58b)

Let

zj = (−1)(j+1) Im(b∗i h
T
i x) − Re(b∗i h

T
i x) tan θ, (59)

ñj = (−1)(j+1) Im(b∗i ni) − Re(b∗ini) tan θ, (60)

for i = �j/2� and j = 1, . . . , 2K . The constraints in (58a)
and (58b) can be reformulated as

Pr(zj + ñj ≥ 0) ≤ p, ∀j = 1, ...., 2K. (61)

Since ni is a circularly symmetric complex Gaussian random
variable, we get

E{Re(b∗ini)
2} = E{Im(b∗ini)

2}
= b2Ri

σ2

2
+ b2Ii

σ2

2
=
σ2

2
, (62)

E{Re(b∗ini) Im(b∗ini)} = bRibIi − bRibIi = 0. (63)
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Then ñj is a real-valued Gaussian random variable with zero
mean such that

E{ñ2
j} =

(1 + tan2 θ)σ2

2
=

σ2

2 cos2 θ
, (64)

i.e., ñj ∼ N (0, σ2

2 cos θ2 ). Thus we have [32]

Pr(zj + ñj ≥ 0) =
∫ ∞

−zj

cos θ√
πσ

e
ñ2 cos2 θ

σ2 dñ.

Using the Gaussian error function erf(·), we can write

Pr(zj + ñj ≥ 0) =

⎧
⎪⎨

⎪⎩

1
2

+
1
2

erf
(zj cos θ

σ

)
, −zj ≤ 0,

1
2
− 1

2
erf

(−zj cos θ
σ

)
, −zj ≥ 0.

(65)

Since erf(−x) = − erf(x), we rewrite it as

1
2
− 1

2
erf

(−zj cos θ
σ

)
≤ p, (66)

which is equivalent to

| Im(b∗i h
T
i x)| + erf−1(1 − 2p)σ

cos θ
≤ Re(b∗i h

T
i x) tan θ, ∀i.

(67)

Thus, the worst user EP problem (58) can be written as

min
x,p

p

s.t. | Im(b∗i h
T
i x)| + erf−1(1 − 2p)σ

cos θ
≤ Re(b∗i h

T
i x) tan θ,

‖x‖2 ≤ P, ∀i = 1, . . . ,K. (68)

Remark: By observation of (21) and (68) it can be seen that
the optimal values of the two problems have the following
relations:

Γ�(P ) = erf−1(1 − 2 p�(P )), (69)

p�(P ) =
1
2
− 1

2
erf(Γ�(P )), (70)

x�
p(P ) = x�

Γ(P ), (71)

where (x�
p(P̃ ), p�(P̃ )) is an optimal solution of (68) for a

given power P̃ . The above relations show that given a radius
of noise uncertainty set of (21), one can obtain the worst user
EP of (68). In reverse, given an EP of (68), we can also obtain
the radius of noise uncertainty set of (21). Therefore, we can
treat the detection-region based problem (21) and the worst
user EP-based problem (68) as equivalent problems. Using
(49), we can express the worst user EP in terms of the total
transmit power P as

p�(P ) =
1
2
− 1

2
erf

(√
PΓ�(1)

)
, (72)

x�
p(P ) =

√
Px�

Γ(1). (73)

VI. SUM EPS APPROACH

In this section, we build upon the EP optimization above
to derive the sum EPs-based downlink beamforming problem.
The important benefit here is that the sum EPs approach facil-
itates the derivation of an analytical bound, which is shown to
be tight in our results section. Accordingly, we replace the EP
for the worst user in (57), by the sum of the EPs for all users,
in which the optimization problem provides an analytic bound
of the average SER. The optimization aims to minimize the
sum of the EPs for all users subject to the power constraint,
which can be written as

min
x,p

1T
2Kp

s.t. Pr
(
π + θ ≥ ψi(x, ni) ≥ θ

)
≤ p2i−1, ∀i = 1, . . . ,K,

Pr
(
−π − θ ≥ ψi(x, ni) ≥ −θ

)
≤p2i, ∀i = 1, . . . ,K,

‖x‖2 ≤ P, 0 ≤ pj , ∀j = 1, . . . , 2K, (74)

where p = (p1 p2 . . . p2K)T is a 2K × 1 vector and the
sum EPs for all users is defined to be 1T

2Kp. Similarly to the
approach of Section V, we can rewrite (74) as a function p�(·)
for any given P ≥ 0 such that

p�(P ) : min
x̄,p

1T
2Kp

s.t. − Tx̄ + erf−1(1 − 2p) ≤ 02K ,

‖x̄‖2 ≤ P, 0 ≤ pj ≤ 0.5, ∀j = 1, . . . , 2K,
(75)

which can be expressed as

min
x̄,q

K − 1T
2Kerf(q)

2
s.t. − Tx̄ + q ≤ 02K ,02K ≤ q,

‖x̄‖2 ≤ P, (76)

where erf−1(·) and erf(·) are elementwise inverse error and
error functions and q is a 2K × 1 vector such that p = 1

2 −
1
2erf(q).

Remark: Function erf(x) is concave for x ≥ 0. This implies
that the objective function of (76) is a convex function. Hence,
problem (76) is a convex optimization. Furthermore, a feasible
point of (68) is also a feasible point of (76). Thus it can
be shown that (76) contains an interior point. By Slater’s
condition, the strong duality holds for (76).

By multiplying the objective function by a constant,
the optimal solution of (76) will remain unchanged. Hence,
we can equivalently solve the following problem

min
x̄,q

√
π
(
K − 1T

2Kerf(q)
2

)

s.t. − Tx̄ + q ≤ 02K ,02K ≤ q, ‖x̄‖2 ≤ P. (77)

The Lagrangian of (77) is given by

L(x̄,q,u,v, r) =
√
π
(
K − 1T

2Kerf(q)
2

)
+ uT (−Tx̄ + q)

−vT q + r(‖x̄‖2 − P ), (78)

where u and v are 2K × 1 unknown variable vectors.
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Remark: If v�
i �= 0, then Slater’s condition leads to q�

i = 0
and implies that p�

i = 0.5.
Taking the derivative of (78) with respect to x̄ and setting

to zeros, we can write x̄� as

x̄� =
1

2r�
TTu�. (79)

Furthermore, if x̄� is an optimal solution of transmit signal in
(77), then using the similar argument in [6] it can be shown
that

‖x̄�‖2 = P. (80)

Using (80) and (79), we can express r� as

r� =
‖TTu�‖

2
√
P

. (81)

Thus, the optimal solution of transmit signal x̄� for (77) can
be rewritten as

x̄� =

√
P

‖TT u�‖TT u�. (82)

Taking the derivative of (78) with respect to q, and setting to
zero, we reach −e−q�2

+ u� − v� = 02K or equivalently,

q� =
√
− ln (u� − v�). (83)

Using (82) and (83), the dual problem of (77) can be refor-
mulated as

max
u,v

√
πK −

∫ 12K

u−v

1T
2K

√− ln z dz −
√
P‖TT u‖

s.t. 02K ≤ u, 02K ≤ v, 02K ≤ u − v ≤ 12K , (84)

where
∫ 1

ζ

√− lnxdx =
√
π

2
erf

(√
− ln ζ

)
− ζ

√
− ln ζ (85)

using the integration by parts [58]. We can rewrite (84) as a
corresponding standard minimization problem:

min
02K≤u,v

f(u,v) s.t. 02K ≤ u− v ≤ 12K , (86)

where

f(u,v) � −√
πK +

∫ 12K

u−v

1T
2K

√− ln z dz +
√
P‖TTu‖.

To solve (86), we need to show the objective function of (86)
is convex. Note that for the double derivative

(∫ 1

ζ

√− lnxdx
)′′

=
(
2ζ

√
− ln ζ

)−1

≥ 0. (87)

Thus it is a convex function. Since norm is a convex function
and f(u,v) is a sum of convex functions, it is also convex.
Therefore, problem (86) is a convex optimization problem.
Putting (82), (83) into (77), we can reformulate (77) as

min
u,v

√
π
(
K − 1T

2Kerf(
√− ln (u− v))

2

)

s.t. −	f(u,v) ≤ 02K (88)

where the gradient of f(u,v) in (86) are given by

	f(u,v) =

⎡

⎣−√− ln (u − v) +
√
P

‖TTu‖TTT u
√− ln (u − v)

⎤

⎦. (89)

Hence, we need to ensure that 	f(u�,v�) ≥ 02K . To
efficiently compute (86), similarly to the approach in Section V
we propose to use the barrier method to obtain the optimal
solution. Let

φ(u,v) = −1T
2K ln(u) − 1T

2K ln(v) − 1T
2K ln(u − v)

− 1T
2K ln(12K − u + v) (90)

be the logarithmic barrier function. For s > 0, define u�(s)
and v�(s) as the solution of

min
u,v

sf(u,v) + φ(u,v). (91)

The barrier method for solving (75) is summarized as Algo-
rithm 4. As the barrier method yields globally optimal solu-
tions, and similar to the barrier method in Algorithm 2,
Algorithm 4 also gives globally optimal solutions. Our results
in the following section show that Algorithm 4 provides the
best SER performance amongst the proposed optimizations.

Algorithm 4 Efficient Barrier Method Algorithm to Solve (75)

Input: {hi}K
i=1, {bi}K

i=1, P0, σ, μ
Output: The optimal solution (x̄�, p̄�) of problem (75)
repeat

Compute (u�(s), v�(s)) of (91) ;
Set s = μs;

until ‖u�(s) − u�(s− 1)‖2 + ‖v�(s) − v�(s− 1)‖2 < Δ2
t

and min	f(u�(s),v�(s)) > −Δt;
Output

x̄� =
√
P0

‖TTu�(s)‖TTu�(s)

p̄� =
1
2
−

erf
(√

− ln
(
u�(s) − v�(s)

))

2
;

VII. SIMULATIONS

In our simulations, we consider a downlink beamforming
network with N = 10 antennas, while it is intuitive that
the benefits shown extend to different numbers of antennas.
In line with our benchmark techniques [6], [40] we assume
an uncoded transmission, while it would be interesting to
examine the joint design of precoding and forward error
correction (FEC) for practical modulation schemes as the
focus of future work. The system with QPSK modulation is
considered, i.e., θ = π/4, while it is obvious that the benefit of
the proposed approaches extend to BPSK, or higher order PSK
modulation, similarly to the approaches in [40] and [41]. The
circularly symmetric complex Gaussian noise ni is complex
zero-mean with the variance σ2 = 1. Let ωi be a uniformly
distributed random number between −π/2 and π/2. Then the
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downlink channel between the BS and ith user are modeled
as

hi =
[
1, ejπ sin ωi , . . . , ejπ(N−1) sin ωi

]T
, (92)

i.e., the identical path loss line-of-sight channel model is
assumed [26]. All results are averaged over 10000 Monte Carlo
runs. The maximum iteration number imax = 1000 and error
tolerance Δt = 10−4 are used in Algorithm 1. For the barrier
methods, we set μ = 100 and the maximum number of inner
iterations in the gradient descent method is set to iGD = 100.

In the simulations, we omit the power minimization
approaches and focus on the SINR-, SNR- and EP- based
optimizations that can be compared by SER results, as a
common metric between constructive interference-based and
conventional optimizations for a given power. It is intu-
itive however, that the symmetrical versions of the problems
where power is minimized subject to our new SNR/detection
region/error probability constraints, similarly outperform con-
ventional power minimization as per the benefits of our
relaxed optimization regions. Based on our analysis in
Section V, since the detection-region based approach of
(21) and the worst user EP approach of (68) are equiv-
alent, in the following simulations, we only consider the
detection-region based approach. We compare the following
techniques:

• ‘SINR Balancing [6]’ refers to the conventional SINR
balancing problem in [6];

• ‘Gradient descent DRB (∼= [40])’ stands for using the
gradient descent approach to solve the decision-region
based optimization in Algorithm 3 and problem (21),
which is equivalent to (10) proposed in [40];

• ’CIMM [41]’ refers to the interference exploitation
approach of [41];

• ‘Barrier method DRB’ refers to use the barrier method
in Algorithm 3 to solve the detection-region based
problem (21);

• ‘Barrier method sum EPs’ refers to the barrier method in
Algorithm 4 to solve (75);

• ‘Analyt-DRB’ and ‘Analyt-sum EPs’ refer to the analyti-
cal bounds for using the barrier method of (68) and (75),
respectively;

• ‘Analyt-sum EPs’ is the analytic bound of the average
SER.

A. Complexity

Fig. 2 compares the trend of the average execution time
of our proposed methods and the gradient descent detection-
region based method for different number of users with a
transmit SNR of Eb

σ2 = 20dB, where Eb is the energy per
transmitted bit. As shown in Fig. 2, when the number of users
is small, the average execution time of the gradient descent
detection-region based method is faster than the both barrier
methods of detection-region based approach and sum EPs
approach. Nonetheless, when the number of users increases,
the barrier detection-region based approach has a higher com-
putational efficiency than the gradient descent detection-region
based approach.

Fig. 2. Average execution time versus number of users with N = 10, and
SNR = 20dB.

Fig. 3. SER performance versus SNR with N = 10, and K = 10.

B. Performance Comparison

Fig. 3-4 compare the SER performance for the different
techniques. In Fig. 3, we fix the number of users and com-
pare both experimental and analytic SER performance of all
approaches versus the SNR for K = 10. It can be seen from
these figures that the the sum EPs approach given in (75) out-
performs the detection-region based (DRB) approach, the con-
ventional method of (5), and the CIMM scheme of [41]
in terms of the experimental SER performance. As per our
derivations above we reiterate that the DRB approach is equiv-
alent to the worst EP approach, which is still outperformed
by the sum EP optimization. Indeed, we have observed that
while the worst EP approach provides a slightly better worst
EP compared to the sum EP approach, the EP obtained for
the rest of the users (second worst onwards) is significantly
inferior to the sum EP approach. Accordingly the average EP
obtained (the one shown in our results) is typically lower for
the sum EP approach. We also notice that the detection-
region based technique outperformns the technique in [40],
and CIMM in [41] at higher transmit power. Importantly, it can
be observed that our analytic SER performance calculations
match the simulated SER results. Furthermore, the proposed
sum EPs approach achieves the analytic bound of the average
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Fig. 4. SER performance versus number of users with N = 10, and
SNR= 20dB.

Fig. 5. Histogram of normalized constraint value with N = 10, K = 10
and SNR = 5dB.

SER performance. The gradient method detection-region based
approach is characterized by an error floor as it is not
guaranteed to converge. In Fig. 4, we illustrate both simulated
and analytic SER performance for increasing numbers of users
when we set the transmit SNR to be 20dB. We observe that
the SER performance of our proposed approaches are better
than the conventional approach of [6] and the gradient descent
approach given in [40], respectively. The proposed sum EPs
approach using the barrier method has the best performance.

In Fig. 5 and Fig. 6, we look at the distribution of the
received signals. We introduce the normalized constraint value

ηi =

⎧
⎨

⎩

Im(yib
∗
i )

Re(yib∗i )
Re(yib

∗
i ) > 0,

∞ otherwise,
(93)

As a measure of the resulting deviation from the angle
of the desired symbol bi, to evaluate the performance of
the different approaches. Fig. 5 displays the histograms of
ηi with K = 10 and SNR= 5dB. According to Lemma 1,
the receive signal can be correctly classified if it is within the
region between − tan θ and tan θ. As can be observed from
Fig. 5, the conventional and the worst user EP approaches
satisfy about 75% and 80% of the normalized constraints,

Fig. 6. Distribution of received signals on complex plane where N = 10,
and K = 10 with SNR= 5dB and SNR = 15dB, respectively.

Fig. 7. SER performance versus SNR with N = 10, and K = 10,
imperfect CSI.

respectively. However, the sum EPs approach achieves about
90% of the normalized constraints with normal-like distribu-
tion. Fig. 6 depicts the distribution of the received signals on
the modulation constellation using different techniques with
SNR= 5dB and SNR= 15dB. Here, we set the transmit
symbol to 1. We observe from these figures that the received
signals of our proposed methods can better center the received
symbol into the correct detective region compared to the
conventional method. We also notice that when the power
increases, our techniques can shift the received signals further
away from the decision threshold which further improves the
error rate performance.

C. Imperfect CSI

Finally, in Fig. 7 we illustrate the comparison of our
proposed schemes and the conventional scheme in [6] under
imperfect CSI. To keep the CSI imperfections generic,
we model the estimated CSI as [15], [16]

ĥT
i = hT

i + ei (94)
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where ei ∼ CN (0, a
(

P
σ2

)−1
I), and a is a constant. It can

be seen in the results that the performance of both proposed
and conventional schemes deteriorates with imperfect CSI,
while the performance gains of the proposed w.r.t. conven-
tional beamforming persist. We note however, that existing
CSI-robust approaches [31] can be adapted to the proposed
optimization, to further improve performance against CSI
errors. We designate this as the focus of our future work.

VIII. CONCLUSION

In this paper, we exploit constructive interference by making
use of CSI and data information jointly. We propose beam-
forming optimizations for QoS based on the detection regions
of the symbol constellation, in terms of the worst user EP,
and sum EPs, respectively. The detection-region based and
the worst user EP downlink beamforming are shown to be
equivalent problems. Using the sum EPs approach, we obtain
an analytic bound of the average SER performance. Simulation
results have demonstrated that our proposed methods have
substantially improved performance compared to conventional
downlink beamforming and constructive interference-based
optimizations. Our future work will focus on reducing the
complexity of the algorithm of the sum EPs approach by pro-
viding a heuristic algorithm. Other interesting research topics
are to jointly optimize beamforming and FEC for interference
exploitation, and to develop CSI-robust approaches as detailed
above. Communication theoretic future work will focus on
deriving modulation-dependent sum rate bounds for the con-
cept of interference exploitation, using finite constellation sum
rate analysis.

APPENDIX

A. Proof of Corollary 1
The dual Lagrange function is given by

L(κi, ni) = − | Im(ỹi)| + Re(ỹi) tan θ + κi(‖ni‖2 − Γ2σ2),
(95)

where ỹi = b∗i (h
T
i x̃ + ni) and κi ≥ 0. We define ni � nRi +

inIi, and bi � bRi + ibIi. By using chain rule [58] and setting
∂L

∂nRi
= 0 and ∂L

∂nIi
= 0, we get

bRi tan θ + bIiαi + 2κ�
in

�
Ri = 0, (96a)

−bRiαi + bIi tan θ + 2κ�
in

�
Ii = 0, (96b)

where a� is the optimal value of a, and αi = Im(ỹi)/| Im(ỹi)|.
Suppose κ�

i = 0. Then (96) implies that bRi = bIi = 0, which
leads to the contradiction. Thus it is always true that κ�

i > 0
and

‖n�
i ‖2 = Γ2σ2 (97)

by the complementary slackness [25]. By (96), we obtain

n�
Ri = −(bRi tan θ + bIiαi)/2κ�

i , (98a)

n�
Ii = (bRiαi − bIi tan θ)/2κ�

i . (98b)

Putting (98) into (97), we can write (97) as
(bRi tan θ+bIiαi

2κ�
i

)2

+
(bRiαi − bIi tan θ

2κ�
i

)2

=Γ2σ2. (99)

Since bi is an unit power symbol, we can express (99) as

1 + tan2 θ

4κ�
i
2 = Γ2σ2. (100)

Thus, we have the following relation:

κ�
i =

1
2Γσ cos θ

. (101)

We put (101) back into (98), then we have

n�
Ri = −(bRi tan θ + bIiαi)Γσ cos θ, (102a)

n�
Ii = (bRiαi − bIi tan θ)Γσ cos θ. (102b)

Substituting (102) into problem (19), we reformulate the
constraint (19a) as

max
‖ni‖≤Γσ

| Im(ỹi))| − Re(ỹi) tan θ

= αi Im(b∗i h
T
i x̃) + αi Im(b∗in

�
i )

− Re(b∗in
�
i ) tan θ − Re(b∗i h

T
i x̃) tan θ

= αi Im(b∗i h
T
i x̃) − n�

Ri(bRi tan θ + bIiαi)
+n�

Ii(bRiαi − bIi tan θ) − Re(b∗i h
T
i x̃) tan θ

= | Im(b∗i h
T
i x̃)| + Γσ/cos θ − Re(b∗i h

T
i x̃) tan θ, (103)

where Im(ỹi) and Re(b∗i h
T
i x̃) have the same sign as the noise

cannot dominate the received signal. �

B. Proof of Corollary 2

Since (Γ0,x�
P (Γ0)) is a candidate solution of (29), it implies

that Γ�(P �(Γ0)) ≥ Γ0. Suppose Γ�(P �(Γ0)) > Γ0. Let
Γ�(P �(Γ0)) = βΓ0 for some β > 1. By (21) and (52), it can
guarantee that

| Im(b∗i h
T
i x�

P (Γ0))| + βΓ0σ

cos θ
≤ Re(b∗i h

T
i x�

P (Γ0)) tan θ,

(104)

‖x�
P (Γ0)‖2 = P �(Γ0), ∀i. (105)

Let x̂ = x�
P (Γ0)/β. Then we can rewrite as

| Im(b∗i h
T
i x̂)| + Γ0σ/cos θ ≤ Re(b∗i h

T
i x̂) tan θ, ∀i, (106)

‖x̂‖2 = P �(Γ0)/β2, (107)

which contradicts that P �(Γ0) is the minimum power for the
given Γ0. Similarly, we can use the same approach to show
the second half of Corollary 2. �

C. Proof of Corollary 3

Let Γ0 be any given positive number. Since (21) has a non-
trivial solution, we obtain a solution (Γ�(1),x�

Γ(1)) of (21)
for P = 1. Then there exists P0 such that

Γ0 =
√
P0Γ�(1) = Γ�(P0). (108)

Then by Corollary 2, we have

P �(Γ0) = P �(Γ�(P0)) = P0, (109)

x�
P (Γ0) = x�

P (Γ�(P0)) = x�
Γ(P0) =

√
P0x�

Γ(1). (110)

This shows that problem (29) is feasible for the given Γ0. �
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