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Cell-Free Massive MIMO Networks: Optimal
Power Control Against Active Eavesdropping
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Abstract— This paper studies the security aspect of a recently
introduced “cell-free massive MIMO” network under a pilot
spoofing attack. First, a simple method to recognize the presence
of this type of an active eavesdropping attack to a particular
user is shown. In order to deal with this attack, we consider the
problem of maximizing the achievable data rate of the attacked
user or its achievable secrecy rate. The corresponding problems
of minimizing the power consumption subject to security con-
straints are also considered in parallel. Path-following algorithms
are developed to solve the posed optimization problems under
different power allocation to access points (APs). Under equip-
power allocation to APs, these optimization problems admit
closed-form solutions. Numerical results show their efficiency.

Index Terms— Cell-free, channel estimation, pilot spoofing
attack, active eavesdropping, inner convex approximation.

I. INTRODUCTION

A. Previous Works
1) Cell-Free Massive MIMO Networks: Cell-free massive

MIMO has been recently introduced in [1]–[3]. These papers
showed that by proper implementation, cell-free massive
MIMO can provide a uniformly good service to all users
in the network and outperform small-cell massive MIMO in
terms of throughput, and handle the shadow fading correlation
more efficiently. In a typical small-cell massive MIMO system,
the channel from an access point (AP) to a user is a single
scalar. In contrast, in a cell-free Massive MIMO system,
all APs can liaise with each other via a central processing
unit (CPU) to perform beamforming transmission tasks, and
thus the effective channel (from an AP to a user) will take
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the form of an inner product between two vectors [2]. That
inner product can converge to its mean when the length of
each vector (equivalently, the number of APs) is large enough.
As a result, the effective channel also converges to a constant
and there is no need to estimate downlink channels in the
massive MIMO systems using cell-free architecture, while the
small-cell counterpart may require both downlink and uplink
training for channel estimation.

Inspired by [1]–[3], cell-free massive MIMO has been fur-
ther studied in [4]–[7]. Cell-free massive MIMO was modified
in [4] to allow each AP serving only several users based
on the strongest channels instead of serving all users. The
joint user association and interference/power control to mit-
igate the interference and cell-edge effect was considered
in [5]. The problem of designing zero-forcing precoders to
maximize the energy efficiency for cell-free massive MIMO
networks was considered in [6]. We are motivated to investi-
gate the security aspect of cell-free massive MIMO as it was
not considered in the current research.

2) Pilot Spoofing Attack: Recently, active eavesdropping
has attracted the researchers’ attention to physical layer
security. It has been proved that active eavesdroppers are
more dangerous than passive eavesdroppers because con-
fidential information leaked to the active eavesdroppers is
possibly higher [8]. Active eavesdropping is an interesting
topic which has been emerging in recent years. For instance,
active eavesdroppers are capable of jamming as well as
eavesdropping [9]–[11] and/or they can send spoofing pilot
sequences [8], [12], [13]. The latter scenario relates to the so-
called pilot spoofing attacks [8], [12]. Eavesdropping attacks
caused by an active eavesdropper is more harmful than passive
ones. A feedback-based encoding scheme to improve the
secrecy of transmission was proposed in [12]. On the contrary,
from an eavesdropping point of view, [8] showed how an
active eavesdropper achieves a satisfactory performance with
the use of transmission energy.

Initialized by [8], pilot spoofing attacks in wireless security
have been actively studied [13]–[18]. By assuming that an
eavesdropper can attack a wireless communication system
during training phase to gain the amount of leaked information,
Kapetanovic et al. [13], Wu et al. [14], Im et al. [15],
Tugnait [16], and Xiong et al. [17], [18] have studied pilot
contamination attacks in distinct scenarios. Their results reveal
that active eavesdropping poses an actual threat to differ-
ent types of wireless systems in general. More specifically,
the authors in [13] conducted a survey of detecting active
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attacks on massive MIMO systems. Wu et al. [14] designed
an artificial noise to cope with an active eavesdropper in a
secure massive MIMO system. The use of artificial noise
is not necessary in the present paper as our proposed opti-
mization problems can also control beam steering towards
intended destinations such that security constraints are met.
Meanwhile, the consideration of Im et al. [15] [15] is a secret
key generation, which is beyond the scope of our paper.
In [16] a method called minimum description length source
enumeration is employed to detect an active eavesdropping
attack in a relaying network; however, the secure performance
of the system (via metrics such as secrecy rate or secrecy
outage probability) is not evaluated. Other detection tech-
niques can be found in [17] and [18]. While [17] resort to
the downlink phase to estimate channels and improve the
system performance, we only use one training phase to detect
a potential eavesdropper (which is presented in Appendix A).
Our simple detection technique is similar to that in [18], which
also compares the asymmetry of received signal power levels
to detect eavesdroppers. The differences between [18] and
our paper lie in modeling (massive MIMO networks versus
cell-free networks) and optimization formulations. Although
the eavesdropping attack detection methods in [16]–[18] are
really attractive, we will not delve into similar methods and
not consider such a method as a major contribution. Instead,
we focus on solving optimization problems to provide specific
solutions for cell-free systems in the case that a user is really
suspected of being an eavesdropper.

B. Contributions

As discussed above, the introduction of a cell-free massive
MIMO network can bring about a huge chance of improving
throughput in comparison with small-cell networks. We thus
study the security aspect of such a network and more impor-
tantly, this paper is the first work on the integration of security
with the cell-free massive MIMO architecture. On the other
hand, the analytical approach in this work is different from
previous papers on security for massive MIMO. The major
difference is that we do not use the law of large number to
formulate approximate expressions for signal-to-noise (SNR)
ratios. Instead, we consider lower- and upper- bounds for
SNR expressions, thereby a lower-bound for secrecy rate is
formulated and evaluated. This alternative approach, of course,
holds true for general situations in which the number of
nodes/antennas are not so many (and hence the term “massive”
can be relatively understood and/or can be also removed).

In this paper, we examine a cell-free network in which
an eavesdropper is actively involved in attacking the system
during the training phase. We simply and shortly show that
such an attack is dangerous but can be detected by a simple
detection mechanism. Thereby, efforts to deal with active
eavesdropping can be made and secure strategies can be
prepared at APs during the next phase (i.e. the downlink
phase). With these in mind and with the aim of keeping
confidential information safe, we can realize beforehand which
user is under attack and thus, we can propose optimization
problems based on secrecy criteria to protect that user from

being overhead. Our proposed optimization problems can be
classified into 2 groups. For the first group, we design a matrix
of power control coefficients

• to maximize the achievable data rate of the user who is
under attack (see III-A)

• to maximize the achievable secrecy rate of user 1
(see III-B)

• to minimize the total power at all APs subject to the
constraints on the data rate of each user, including all
legitimate users and eavesdropper (see IV-A)

• to minimize the total power at all APs subject to the
constraints on the achievable data rate and the data rates
of other users (i.e. legitimate users not under attack)
(see IV-B).

For the second group, we design a common power control
coefficient for all APs and consider 4 optimization prob-
lems (V-A, V-B, V-C and V-D), which are similar and compa-
rable to their counterparts in the first group. While the common
goal of all maximization programs is achievable secrecy rate,
that of all minimization programs is power consumption at
APs. Taking control of power at each AP, we find the most
suitable solutions to the proposed optimization problems and
compare them in secure performance as well as energy.

The rest of the paper is organized as follows. In Section II,
the system model is presented. In Section III, we propose two
maximization problems to maximize achievable secrecy rate
subject to several quality-of-service constraints. In parallel,
Section IV provides two minimization problems to minimize
the power consumption such that security constraints are
still guaranteed. In Section V, special cases of the proposed
optimization problems are given for comparison purposes.
Simulation results and conclusions are given in Sections VI
and VII, respectively.

Notation: [·]T , [·]∗, and [·]† denote the transpose operator,
conjugate operator, and Hermitian operator, respectively. [·]−1

and [·]+ denote the inverse operator and pseudo-inverse oper-
ator, respectively. Vectors and matrices are represented with
lowercase boldface and uppercase boldface, respectively. In

is the n × n identity matrix. ‖ · ‖ denotes the Euclidean
norm. E {·} denotes expectation. z ∼ CN n (z̄,Σ) denotes
a complex Gaussian vector z ∈ Cn×1 with mean vector z̄ and
covariance matrix Σ ∈ Cn×n.

II. CELL-FREE SYSTEM MODEL

We consider a system with M APs and K users in the
presence of an active eavesdropper (Eve). Each node is
equipped with a single antenna and all nodes are randomly
positioned. Let gmk =

√
βmkhmk ∼ C N (0, βmk) be the

downlink channel from the mth AP to the kth user.1 We
assume channel reciprocity between uplink and downlink.
Similarly, let gmE ∼ CN (0, βmE) be the channel between
the mth AP and Eve. Note that the desirable property of

1In the formulation gmk =
√

βmkhmk , the term βmk represents the large
scale fading, while the term hmk ∼ C N (0, 1) implies the small scale
fading. The value of βmk is constant and is based on a particular rule of
power degradation. This rule will be presented in Section VI, given that the
Hata-COST231 propagation prediction model is used (see [19] and [20]).
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Fig. 1. A system model consisting of M APs, K legal users and one active eavesdropper Eve. The arrows point to the direction from transmitters to receivers.
All directions, connected to Eve, are in red. In uplink training phase, all users and Eve send the pilots to the APs in order to request for the messages, which
privately intended for them. Connected together through a CPU, the APs exchange information, estimate channels and detect abnormality in pilot sequences.
In downlink transmission phase, the APs transmit their designed signals to users and Eve.

channel reciprocity requires the highly accurate calibration of
hardware. In addition, the APs in cell-free massive MIMO
systems are connected to a CPU via backhaul, thereby they
can share information. We assume that the backhaul is perfect
enough to consider error-free information only. Any limitation
on capacity (caused by imperfect backhaul) will be left for
future work.

The transmission includes 2 phases: Uplink training for
channel estimation and downlink data transmission.

A. Uplink Training

In this phase, the kth user sends a certain pilot vector
pk ∈ CT×1 to all APs where T is an integer number. If Lint

denotes the coherence interval, then the first T symbols are for
pilot training and the (Lint − T ) remaining symbols are for
data transmission. In low-mobility environment, the coherence
interval can take on large numbers. It is shown that if the
vehicle speed is 5.4 km/h, the coherence interval Lint can
approach 15000 symbols (see [21, p.23]). With such a large
value of Lint, we can totally assign a sufficiently-large number
to T such that the inequality T ≥ K holds true. For example,
(T, K) = (150, 100) is totally possible in practical situations
(note that T = 150 accounts for only 0.1% of Lint = 15000).
In short, we can totally have T ≥ K and then design K
orthogonal pilot vectors such that p†

kpk′ = 0 for k �= k′

and ‖pk‖2 = 1. In general, p1, . . . ,pK are known to Eve
because the pilot sequences of a system are standardized and
public. Taking advantage of this, Eve also sends its pilot
sequence pE to all APs. If Eve wants to detect the signal
destined for the lth user, pE will be designed to be the same
as pl (see [8], [22], [23]). Without the loss of generality, let
us consider the situation in which Eve aims to overhear the
confidential messages intended for the 1st user, i.e. pE = p1.
At the mth AP, the received pilot vector is given by

yp,m =
√

Tρu

K∑

k=1

gmkpk +
√

TρEgmEp1 + wm (1)

where ρu � Pu/N0 and ρE � PE/N0. Herein, Pu and PE

are the average transmit power of each user and that of Eve,
respectively; while N0 is the average noise power per a receive
antenna. wm is an additive white Gaussian noise (AWGN)
vector with wm ∼ CN (0, I). Projecting yp,m onto p†

k,
we can write the post-processing signal ykm = p†

kyp,m as2

ykm =

{√
Tρugmk + p†

kwm, k �= 1√
Tρugm1 +

√
TρEgmE + p†

1wm, k = 1.
(2)

It is of crucial importance that all APs are not aware of
an eavesdropping attack until they have realized an abnormal
sign from the sequence of signals {ykm} in (2). Based on
that abnormal sign, APs can identify the pilot which might be
harmed. Therefore, it is necessary for APs to have a method to
observe abnormality from {ykm}. We describe such a method
in Appendix A.

Besides, with the aim of estimating gmk and gmE from (2),
the MMSE method is adopted at the mth AP, i.e.

ĝmk =

⎧
⎪⎪⎨

⎪⎪⎩

√
Tρuβmk

Tρuβmk + 1
ykm, k �= 1

√
Tρuβm1

Tρuβm1 + TρEβmE + 1
y1m, k = 1

(3)

and

ĝmE =
√

ρE

ρu

βmE

βm1
ĝm1. (4)

Let us denote

γmk � E
{|ĝmk|2

}
=

⎧
⎪⎪⎨

⎪⎪⎩

Tρuβ2
mk

Tρuβmk + 1
, k �= 1

Tρuβ2
m1

Tρuβm1 + TρEβmE + 1
, k = 1

2If we assumed T < K (i.e. p†
kpk′ �= 0 for k �= k′), there would be the

presence of the term
√

Tρu
�K

k′ �=k gmk′p†
kpk′ in (2). Other changes could

also be made and the framework of this paper could be re-applied.
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and γmE � E
{|ĝmE|2

}
. Using (4), we can also rewrite

γmE = αmγm1

with αm =
(
ρEβ2

mE

)
/
(
ρuβ2

m1

)
. In association with the

above, we state the following proposition for later use in the
rest of paper.

Proposition 1: ĝmk and ĝmk′ are uncorrelated for ∀k′ �= k.
At the same time, ĝmE and ĝmk′ are uncorrelated for ∀k′ �= 1.
Furthermore, we have

E
{
|ĝmkĝ∗mk′ |2

}
=

{
γmkγmk′ , k′ �= k

2γ2
mk, k′ = k

, (5)

and

E
{
|ĝmEĝ∗mk′ |2

}
=

{
αmγm1γmk′ , k′ �= 1
2αmγ2

m1, k′ = 1.
(6)

Proof: It is straightforward to prove the uncorrelated-
ness by showing E {ĝmkĝ∗mk′} = 0 for ∀k′ �= k and
E {ĝmEĝ∗mk′} = 0 for ∀k′ �= 1. Using these results, we can
obtain (5) and (6) with the help of (2)–(4) and the definitions
of γmk and γmE. �

Note that the eavesdropper’s attack against the 1st user
during the training phase leads to the presence of ρE in the
denominator of ĝm1 (which is called a pilot spoofing attack).

B. Downlink Transmisson

In this phase, the mth AP uses the estimate ĝmk to perform
beamforming technique. First, we denote sk be the signal
intended for the kth user and Ps be the average transmit power
for a certain sk. Then the signal transmitted by the mth AP
can be designed (according to beamforming technique) as [2]

xm =
√

Ps

K∑

k=1

√
ηmkĝ∗mksk (7)

with sk being normalized such that E
{|sk|2

}
= 1. In (7),

ηmk is the power control coefficient, which corresponds to
the downlink channel from the mth AP to the kth user.

As such, the received signal at the kth user and Eve are,
respectively, given by

zk =
√

ρs

M∑

m=1

gmk

(
K∑

k=1

√
ηmkĝ∗mksk

)

+ nk, (8)

zE =
√

ρs

M∑

m=1

gmE

(
K∑

k=1

√
ηmkĝ∗mksk

)

+ nE (9)

where ρs = Ps/N0, nk ∼ CN (0, 1), and nE ∼ CN (0, 1).
1) The Lower-Bound for the Mutual Information Between

sk and zk: We rewrite (8) as

zk = DSk × sk + BUk × sk +
K∑

k′ �=k

UIkk′ × sk′ + nk

︸ ︷︷ ︸
treated as aggregated noise

, (10)

where

DSk � √
ρs

M∑

m=1

E {√ηmkgmkĝ∗mk},

BUk � √
ρs

M∑

m=1

(
√

ηmkgmkĝ∗mk − E {√ηmkgmkĝ∗mk}),

UIkk′ � √
ρs

M∑

m=1

√
ηmk′gmkĝ∗mk′

represent the strength of the desired signal sk, the beamform-
ing gain uncertainty, and the interference caused by the k′th
user (with k′ �= k), respectively. It is proved that the terms
DSk, BUk, UIkk′ and nk in (10) are pair-wisely uncorrelated.

Lemma 1: Let U and V be complex-valued random vari-
ables with U ∼ CN (0, var{U}) and E

{|V |2} = var{V }.
Given that U and V are uncorrelated, then the mutual informa-
tion I(U ; U + V ) between U and U + V is lower-bounded by
log2 (1 + var{U}/var{V }). Consequently, the lower-bound
SNR can be given by var{U}/var{V }.

Proof: The reader is referred to [24] and [25] for detailed
proofs in terms of information theory. �

Let Ik (sk; zk) denote the mutual information between sk

and zk. Considering the second, third, and fourth terms in (10)
as noises, the lower-bound for Ik (sk; zk) can be deduced from
Lemma 1 as follows:

Ik (sk; zk) ≥ log2(1 + snrk) (11)

where

snrk =
|DSk|2

E {|BUk|2} +
∑K

k′ �=k E {|UIkk′ |2} + 1

=
ρs

(∑M
m=1

√
ηmkγmk

)2

ρs

∑K
k′=1

∑M
m=1 ηmk′γmk′βmk + 1

, k ∈ K (12)

with K = {1, 2, . . . , K}. The derivation of (12) is available
in [2, Appendix A]. The right hand side (RHS) of (11) is the
achievable data rate of user k.

2) The Upper-Bound for the Mutual Information Between
s1 and zE: We rewrite (9) as

zE = BUE,1 × s1 +
K∑

k′ �=1

UIE,k′ × sk′ + nE

︸ ︷︷ ︸
treated as aggregated noise

. (13)

where

BUE,1 � √
ρs

M∑

m=1

√
ηm1gmEĝ∗m1,

UIE,k′ � √
ρs

M∑

m=1

√
ηmk′gmEĝ∗mk′

respectively represent the strength of the desired signal s1

(which Eve may want to overhear) and the interference caused
by the remaining users (with k′ �= k). It is proved that
the terms BUE,k, UIE,kk′ and nE in (13) are pair-wisely
uncorrelated. Thus, we can consider the second and third terms
in (13) as noises.
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Let IE (s1; zE) denote the mutual information between s1

and zE. Then the upper-bound for IE (sk; zE) can be formulated
as follows:

IE (s1; zE)
(a)

≤ IE

(
s1; zE

∣
∣
∣{gmk}m,k , {ĝmk}m,k , {gmE}m

)

= E

{

log2

(

1 +
|BUE,1|2

∑K
k′ �=1 |UIE,k′ |2 + 1

)}

(b)≈ log2 (1 + snrE) (14)

where

snrE =
E
{|BUE,1|2

}

∑K
k′ �=1 E {|UIE,k′ |2} + 1

(15)

(c)
=

ρs

∑M
m=1 ηm1γm1

(
ρEβ2

mE
ρuβ2

m1
γm1 + βmE

)

ρs

∑K
k′ �=1

∑M
m=1 ηmk′γmk′βmE + 1

. (16)

The RHS of inequality (a) means that Eve perfectly
knows channel gains. It also implies the worst case in
terms of security. Meanwhile, the approximation (b) fol-
lows [26, Lemma 1]. Finally, the derivation of (c) is provided
in Appendix B.

3) Achievable Secrecy Rate: From (11) and (14), we can
define the achievable secrecy rate of user 1 as follows:

Δ = I1 (s1; z1) − IE (s1; zE)
≥ log2 ((1 + snr1)/(1 + snrE)) � Rsec (17)

in which the explicit expressions for snr1 and snrE are pre-
sented in (12) and (16), respectively.

In order to facilitate further analysis in the rest of paper,
we denote Ψ be the matrix in which the (m, k)th entry is
Ψ(m, k) =

√
ηmk. The kth column vector of Ψ is denoted as

uk = Ψ(:, k) = [
√

η1k,
√

η2k, . . . ,
√

ηMk]T .

Besides, we also define the following matrices and vectors

ak =
√

ρs [γ1k, γ2k, . . . , γMk]T ,

Akk′ =
√

ρsdiag
(√

β1kγ1k′ , . . . ,
√

βMkγMk′
)

,

BE =
√

ρsdiag
(√

γ11(γ1E+β1E), . . . ,
√

γM1(γME+βME)
)

Bk′ =
√

ρsdiag
(√

β1Eγ1k′ , . . . ,
√

βMEγMk′
)

with k′ �= 1.

Finally, the SNRs in (12) and (16) can be rewritten in a more
elegant way as follows:

snrk =
(
aT

k uk

)2/
ϕk(Ψ), (18)

snrE = ‖BEu1‖2
/

ϕE(Ψ) (19)

where

ϕk(Ψ) =
K∑

k′=1

‖Akk′uk′‖2 + 1, k ∈ K, (20)

ϕE(Ψ) =
K∑

k′ �=1

‖Bk′uk′‖2 + 1. (21)

All SNR-related expressions are now presented as functions
of Ψ instead of {ηmk}m,k. Given that ηmk decides the amount
of the mth AP’s power destined for the k user, the (m, k)th
entry of Ψ is also referred to as the factor deciding how much
transmit power used by the mth AP and destined for the k
user.

III. SECRECY RATE MAXIMIZATION

In this section, we aim to design the matrix Ψ to maximize
either the achievable data rate of user 1 (in nats/s/Hz), i.e.
ln (1 + snr1), or its achievable secrecy rate ln (1 + snr1) −
ln (1 + snrE1) in improving the secure performance of our
system. Prior to performing these tasks, however, we need
to impose a critical condition on the power at each AP. The
power constraint is described as follows:

• Let Pmax be the maximum transmit power of each AP,
i.e. Pmax ≥ E

{|xm|2}. From (7), the average transmit
power for the mth AP can be given by

E
{|xm|2} = Ps

K∑

k=1

ηmkγmk. (22)

With the power constraint on every AP, we have

K∑

k=1

Ψ2(m, k)γmk ≤ ρmax

ρs
, m ∈ M (23)

with M = {1, . . . , M}. Note that ρmax = Pmax/N0 is
viewed as the maximum possible ratio of the mth AP’s
average transmit power to the average noise power.

Now we begin with optimizing Ψ to maximize the achiev-
able data rate of the 1st user (who is under attack), i.e.

(P1) max
Ψ

ln
(
1 +

(
aT

1 u1

)2/
ϕ1(Ψ)

)
(24a)

s.t. (23), (24b)

‖BEu1‖2

ϕE(Ψ)
≤ θE, (24c)

(
aT

k uk

)2

ϕk(Ψ)
≥ θk, k ∈ K\{1}. (24d)

Herein, optimizing Ψ is equivalent to finding the optimal value
of every power control coefficient ηmk (because of the relation
Ψ(m, k) =

√
ηmk).

The constraint (23) is to control the transmit power at each
AP as previously described. The constraint (24c) requires that
the greatest amount of information Eve can captures will not
exceed some predetermined threshold, i.e. ln (1 + snrE) ≤
ln(1 + θE). Finally, the constraint (24d) guarantees that the
achievable data rate of user k ∈ K\{1} is equal to or greater
than some target threshold, i.e. ln (1 + snrk) ≥ ln(1 + θk).

Similarly, we will optimize every ηmk (through optimizing
the coefficient matrix Ψ) to maximize the achievable secrecy
rate of user 1, i.e.

(Q1) max
Ψ

ln

⎛

⎝
1 +

(
aT

1 u1

)2/
ϕ1(Ψ)

1 + ‖BEu1‖2
/

ϕE(Ψ)

⎞

⎠ (25a)

s.t. (23), (24d). (25b)
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It should be noted that both problems (P1) and (Q1) has
been considered in [27] and [28] in the context of conventional
MIMO systems, information and energy transfer. Inspired by
these two works, we also use path-following algorithms to
solve non-convex optimization problems. As can be seen in
the subsections below, each of the proposed path-following
algorithms invokes only one simple convex quadratic program
at each iteration and thus, at least a locally optimal solution
can be found out.

A. Solving Problem (P1)

We can see that the constraint (23) is obviously convex,
while (24d) is the following second-order cone (SOC) con-
straint and thus convex:

1√
θk

aT
k uk ≥

√
ϕk(Ψ), k ∈ K\{1}. (26)

Besides, we observe that the objective function of (P1) can
be replaced with

(
aT

1 u1

)2/
ϕ1(Ψ). Let Ψ(κ) be a feasible

point for (P1) found from the (κ−1)th iteration. By using the
inequality

x2

y
≥ 2

x̄

ȳ
x − x̄2

ȳ2
y ∀ x > 0, y > 0, x̄ > 0, ȳ > 0 (27)

we obtain
(
aT

1 u1

)2

ϕ1(Ψ)
≥ f

(κ)
1 (Ψ) � a(κ)aT

1 u1 − b(κ)ϕ1(Ψ) (28)

with

a(κ) = 2

(
aT

1 u(κ)
1

)2

ϕ1(Ψ(κ))
, b(κ) = (a(κ)/2)2. (29)

As such, maximizing
(
aT

1 u1

)2/
ϕ1(Ψ) is now equivalent to

maximizing f
(κ)
1 (Ψ). Finally, considering the function ϕE(Ψ)

in (24c), we find that it is convex quadratic and thus, the non-
convex constraint (24c) is innerly approximated by the convex
quadratic constraint3

‖BEu1‖2
/

θE ≤ ϕ
(κ)
E (Ψ) (30)

for

ϕ
(κ)
E (Ψ) �

K∑

k �=1

[
u(κ)

k

T
B2

k

(
2uk − u(κ)

k

)]
+ 1. (31)

Having the approximations (28) and (30), at κ-th iteration we
solve the following convex optimization to generate a feasible
point Ψ(κ+1):

max
Ψ

f
(κ)
1 (Ψ)s.t. (23), (26), (30). (32)

The problem (32) involves MK scalar real variables (because
Ψ has MK entries) and ε = M + K quadratic constraints.
According to [28], the per-iteration cost to solve (32) is
O (

(MK)2ε2.5 + ε3.5
)
.

3The right hand side of (30) is the first-order Taylor approximation of
ϕE(Ψ) near Ψ(κ) . With ϕE(Ψ) being convex, we have ϕ

(κ)
E (Ψ) ≤ ϕE(Ψ).

To find a feasible point for (P1) to initialize the above
procedure, we address the problem

min
Ψ

‖BEu1‖2
/

θE − ϕE(Ψ) s.t. (23), (26). (33)

Initialized by any feasible point Ψ(0) for convex constraints
(23) and (26), we iterate the following optimization problem

min
Ψ

‖BEu1‖2
/

θE − ϕ
(κ)
E (Ψ) s.t. (23), (26), (34)

till
∥
∥∥BEu

(κ)
1

∥
∥∥

2/
θE − ϕE

(
Ψ(κ)

)
≤ 0, (35)

so Ψ(κ) is feasible for (P1). To sum up, we provide the
following algorithm:

Algorithm 1 Path-Following Algorithm for Solving (P1)

1: Initialization: Set κ = 0 with a feasible point Ψ(0) for
(P1).

2: repeat
3: Solve (32) to obtain the optimal solution Ψ(κ+1).
4: Reset κ := κ + 1.
5: until Converge.
6: return Ψ(κ) as the desired result.

B. Solving Problem (Q1)

By using the inequality [29]

ln
(

1 +
x2

y

)
≥ ln

(
1 +

x̄2

ȳ

)
+

x̄2

ȳ

1 + x̄2

ȳ

(
2 − x̄

2x − x̄
− y

ȳ

)

for ∀ x > 0, x̄ > 0, y > 0, ȳ > 0, 2x > x̄ (36)

we obtain

ln

(

1 +

(
aT

1 u1

)2

ϕ1(Ψ)

)

≥ a(κ)+b(κ)

(

2− ϕ1(Ψ)
ϕ1(Ψ(κ))

− (aT
1 u(κ)

1 )2

2aT
1 u(κ)

1 aT
1 u1−(aT

1 u(κ)
1 )2

)

� f (κ)(Ψ) (37)

over the trust region

2aT
1 u(κ)

1 aT
1 u1 − (aT

1 u(κ)
1 )2 > 0 (38)

for

a(κ) = ln
(
1 + t(κ)

)
,

b(κ) = t(κ)
/(

1 + t(κ)
)

,

t(κ) =
(
aT

1 u(κ)
1

)2/
ϕ1

(
Ψ(κ)

)
.

In addition, by respectively using the inequality [29]

ln(1+x) ≤ ln(1+x̄)− x̄

1+x̄
+

x

x̄+1
, ∀ x > 0, x̄ > 0 (39)
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and the fact that ϕ
(κ)
E (Ψ) ≤ ϕE(Ψ) (please see Footnote 2),

we obtain

ln

(

1 +
‖BEu1‖2

ϕE(Ψ)

)

≤ c(κ) + d(κ) ‖BEu1‖2

ϕE(Ψ)

≤ c(κ) + d(κ) ‖BEu1‖2

ϕ
(κ)
E (Ψ)

� g(κ)(Ψ) (40)

over the trust region

ϕ
(κ)
E (Ψ) > 0 (41)

for

c(κ) = ln(1 + t
(κ)
E ) − t

(κ)
E

/(
1 + t

(κ)
E

)
,

d(κ) = 1
/(

1 + t
(κ)
E

)
,

t
(κ)
E =

∥
∥
∥BEu

(κ)
1

∥
∥
∥

2/
ϕE

(
Ψ(κ)

)
.

Initialized by a feasible point Ψ(0) for the convex con-
straints (23) and (26), at κ-th iteration for κ = 0, 1, . . . , we
solve the following convex optimization problem to generate
the next feasible point Ψ(κ+1):

max
Ψ

f (κ)(Ψ) − g(κ)(Ψ) (42a)

s.t. (23), (26), (38), (41). (42b)

With MK scalar real variables, 2 linear constraints and (ε−1)
quadratic constraints, the per-iteration cost to solve (42) is
O (

(MK)2(ε − 1)2.5 + (ε − 1)3.5
)
.

As such, the problem (Q1) can be solved by using the
following algorithm:

Algorithm 2 Path-Following Algorithm for Solving (Q1)

1: Initialization: Set κ = 0 with a feasible point Ψ(0) for
(Q1).

2: repeat
3: Solve (42) to obtain the optimal solution Ψ(κ+1).
4: Reset κ := κ + 1.
5: until Converge.
6: return Ψ(κ) as the desired result.

IV. POWER MINIMIZATION

In this section, we aim to design the matrix Ψ to minimize
the total average transmit power of all APs subject to security
constraints as well as other SNR-based constraints:

(R1) min
Ψ

M∑

m=1

K∑

k=1

Ψ2(m, k)γmk (43a)

s.t. (23), (24c), (43b)
(
aT

k uk

)2

ϕk(Ψ)
≥ θk, k ∈ K (43c)

and

(S1) min
Ψ

M∑

m=1

K∑

k=1

Ψ2(m, k)γmk (44a)

s.t. (23), (26), (44b)

ln

⎛

⎝
1 +

(
aT

1 u1

)2/
ϕ1(Ψ)

1 + ‖BEu1‖2
/

ϕE(Ψ)

⎞

⎠ ≥ rφ. (44c)

Again, Ψ(m, k) is the (m, k)th entry of the matrix Ψ. Due
to the relation Ψ(m, k) =

√
ηmk, finding Ψ is equivalent to

finding every power control coefficient ηmk (m ∈ M and
k ∈ K).

In addition, the objective function is the total power radiated
by the antennas of APs. The power consumed by other
components (such as the backhaul and the CPU) is beyond
the scope of this paper.

Note that (43c) is not exactly the same as (26) because (43c)
contains one more constraint, i.e. snr1 ≥ θ1. Meanwhile, rφ

in the program (S1) is the given threshold which a designer
may want to obtain. In general, we will have different results
(which of course leads to different secure performances) when
using (R1) and (S1). However, the obtained results can also be
the same when using these programs, depending on the given
values of θ1, θE and rφ.

A. Solving Problem (R1)

At κ-th iteration, we solve the following convex
optimization problem to generalize the next iterative feasible
point Ψ(κ+1)

min
Ψ

M∑

m=1

K∑

k=1

Ψ2(m, k)γmk (45a)

s.t. (23), (26), (30). (45b)

Similar to (32), the computational complexity of solving (45)
is also O (

(MK)2ε2.5 + ε3.5
)
.

Note that a feasible point Ψ(0) for (R1) can be found in the
same way as (P1). Furthermore, the algorithm for solving (R1)
is presented below.

Algorithm 3 Path-Following Algorithm for Solving (R1)

1: Initialization: Set κ = 0 with a feasible point Ψ(0) for
(R1).

2: repeat
3: Solve (45) to obtain the optimal solution Ψ(κ+1).
4: Reset κ := κ + 1.
5: until Converge.
6: return Ψ(κ) as the desired result.

B. Solving Problem (S1)

At κ-th iteration, we solve the following convex opti-
mization problem to generalize the next iterative feasible
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point Ψ(κ+1):

min
Ψ

M∑

m=1

K∑

k=1

Ψ2(m, k)γmk (46a)

s.t. (23), (26), (46b)

f (κ)(Ψ) − g(κ)(Ψ) ≥ rφ. (46c)

Similar to (32) and (45), the computational complexity of
solving (46) is also O (

(MK)2ε2.5 + ε3.5
)
.

Note that a feasible point Ψ(0) for (S1) can be found like
that for (Q1). Finally, we provide the detailed algorithm for
solving (S1) as follows:

Algorithm 4 Path-Following Algorithm for Solving (S1)

1: Initialization: Set κ = 0 with a feasible point Ψ(0) for
(S1).

2: repeat
3: Solve (46) to obtain the optimal solution Ψ(κ+1).
4: Reset κ := κ + 1.
5: until Converge.
6: return Ψ(κ) as the desired result.

V. OPTIMIZATION UNDER EQUAL POWER

ALLOCATION AT ACCESS POINTS

In this section, we reconsider the proposed optimization
problems with ηmk being equal to η (for all m and k) for
comparison purposes.

Plugging ηmk = η into (12)–(16), we obtain the special
expressions for snrk and snrE as follows:

snrk|ηmk=η = ηωk/ (ηω̆k + 1), (47)

snrE|ηmk=η =
η�

η�̆ + 1
(48)

where

ωk = ρs

(
M∑

m=1

γmk

)2

,

ω̆k = ρs

K∑

k′=1

M∑

m=1

γmk′βmk,

� = ρs

M∑

m=1

γm1

(
ρEβ2

mE

ρuβ2
m1

γm1 + βmE

)
,

�̆ = ρs

K∑

k′ �=1

M∑

m=1

γmk′βmE.

Then, problems (P1) and (Q1) reduce to

(P1) max
η

ηω1/ (ηω̆1 + 1) (49a)

s.t. η ≤ ρmax/ρs
∑K

k=1 γmk

, m ∈ M (49b)

η (� − θE�̆) ≤ θE, (49c)

η (ωk − θkω̆k) ≥ θk, k ∈ K\{1} (49d)

and

(Q1) max
η

(
1 +

ηω1

ηω̆1 + 1

)/(
1 +

η�

η�̆ + 1

)
(50a)

s.t. (49b), (49d). (50b)

Similarly, problems (R1) and (S1) reduce to

(R1) min
η

η (51a)

s.t. (49b), (49c), (51b)
ηωk

(ηω̆k + 1)
≥ θk, k ∈ K (51c)

and

(S1) min
η

η (52a)

s.t. (49b), (49d), (52b)
1 + ηω1/ (ηω̆1 + 1)
1 + η�/ (η�̆ + 1)

≥ φ. (52c)

A. Closed-Form Solutions to (P1)

The objective function of (P1) increases in η. Hence, max-
imizing that objective function is equivalent to maximizing η.
In other words, we will solve the following problem

(P1) max
η

η (53a)

s.t. (49b), (49c), (49d). (53b)

In order for (49d) to be meaningful, we need the condition

(ωk − θkω̆k) > 0 ⇔ θk < ωk/ω̆k (54)

with k ∈ K\{1}. If θk satisfies the above condition, we can
infer from both (49b) and (49d) the following:

max
k∈K\{1}

{
θk

ωk − θkω̆k

}

︸ ︷︷ ︸
≥0

≤ η ≤ min
m∈M

{
ρmax/ρs
∑K

k=1 γmk

}

︸ ︷︷ ︸
>0

.

This also implies another necessary condition as follows:

θk <
ωk minm∈M

{
ρmax/ρs�

K
k=1 γmk

}

1 + ω̆k minm∈M
{

ρmax/ρs�
K
k=1 γmk

} (55)

for each k ∈ K\{1}. The two conditions (54) and (55) are
now rewritten in the following form:

θk < min

⎧
⎨

⎩
ωk

ω̆k
,

ωk minm∈M
{

ρmax/ρs�K
k=1 γmk

}

1 + ω̆k minm∈M
{

ρmax/ρs�K
k=1 γmk

}

⎫
⎬

⎭
(56)

with k ∈ K\{1}. Once (56) has been satisfied, the solution to
(P1) can be given by

• either

η�
(P1) = min

m∈M

{
ρmax/ρs
∑K

k=1 γmk

}

(57)

for

θE ≥ �/�̆ (58)
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• or

η�
(P1) = min

m∈M

{
ρmax/ρs
∑K

k=1 γmk

,
θE

(� − θE�̆)

}

(59)

for

� maxk∈K\{1}
{

θk

ωk−θkω̆k

}

1 + �̆ maxk∈K\{1}
{

θk

ωk−θkω̆k

} ≤ θE < �/�̆. (60)

B. Closed-Form Solution to (Q1)

As presented in the previous subsection, (56) is necessary
in order that (Q1) can be solved. Then we can rewrite (Q1) as

(Q1) max
χ

l(χ) (61a)

s.t. 0 ≤ χ ≤ α (61b)

where

χ � η − α,

α � min
m∈M

{
ρmax/ρs
∑K

k=1 γmk

}

− α,

α � max
k∈K\{1}

{
θk

ωk − θkω̆k

}

and

l(χ) =
χ (ω1 + ω̆1) + α (ω1 + ω̆1) + 1

χω̆1 + αω̆1 + 1

× χ�̆ + α�̆ + 1
χ (� + �̆) + α (� + �̆) + 1

.

Introducing a new variable τ ≥ 0 and defining a Lagrangian
function L (χ, τ) � l(χ) − τ(χ − α), we first consider two
sub-cases:

• For τ = 0, we solve ∂l(χ)
∂χ = 0 to obtain two positive-real

critical points χ = χ1 and χ = χ2 (if possible).
• For τ > 0, we solve the system of two equations

⎧
⎪⎨

⎪⎩

∂L (χ, τ)
∂τ

= 0
∂L (χ, τ)

∂χ
= 0

⇔

⎧
⎪⎨

⎪⎩

χ = α

τ =
∂l (χ)
∂χ

∣
∣
∣
∣
χ=α

to obtain another critical point χ = α � χ3.

Then the optimal solution to
(
Q1

)
can be given by

η�

(Q1) = α + arg max
χ∈{χ1,χ2,χ3}

l (χ) . (62)

C. Closed-Form Solution to (R1)

Similar to (P1), we first need the condition (56) with k ∈
{1, . . . , K} in order that (R1) can be solved. Then we can
attain the solution to (R1), i.e.

η�
(R1) = max

k∈K

{
θk

ωk − θkω̆k

}
, (63)

in the case that either (58) or (60) is satisfied.

D. Closed-Form Solutions to (S1)

For (S1), the condition (56) (with k ∈ {2, . . . , K}) is also
required. The third constraint (52c) is rewritten in the form
ăη2 + b̆η + c̆ ≥ 0 with ă = �̆ (ω1 + ω̆1) − φω̆1 (�̆ + �),
b̆ = ω1 + ω̆1 + �̆− φ (ω̆1 + �̆ + �) and c̆ = 1− φ. As such,
there are two possibilities as follows:

• If ă > 0, then (52c) always holds for b̆2−4ăc̆ ≤ 0. In this
case, the solution to (S1) is given by

η�
(S1) = max

k∈K\{1}

{
θk

ωk − θkω̆k

}
. (64)

• If ă < 0, then (52c) holds for b̆2−4ăc̆ > 0 and η1 ≤ η ≤
η2 given that η1 and η2 are the solutions to the quadratic
equation ăη2 + b̆η + c̆ = 0. In this case, (S1) is infeasible
if η2 < 0; otherwise, the solution to (S1) is given by

η�
(S1) = max

k∈K\{1}

{
θk

ωk − θkω̆k
, η1

}
. (65)

VI. NUMERICAL RESULTS

In this section, we evaluate the secure performance and
make comparisons for different scenarios. More specifically,
we measure the secure performance by calculating Rsec (in
nats/s/Hz) at

• Ψ = Ψ�
(P1) (the solution to (P1));

• Ψ = Ψ�
(Q1) (the solution to (Q1));

• Ψ = Ψ�
(R1) (the solution to (R1));

• Ψ = Ψ�
(S1) (the solution to (S1));

• η�
(P1) (the solution to (P1));

• η�

(Q1) (the solution to
(
Q1

)
);

• η�
(R1) (the solution to (R1));

• η�
(S1) (the solution to (S1)).

For each case, the obtained value of Rsec will be denoted
by Rsec (P1), Rsec (Q1), Rsec (R1), Rsec (S1), Rsec (P1),
Rsec

(
Q1

)
, Rsec (R1) and Rsec (S1), respectively. Likewise,

the notation Ptot (R1), Ptot (S1), Ptot (R1), and Ptot (S1)
will stand for “ the total average transmit power of all APs
at Ψ = Ψ�

(R1), Ψ = Ψ�
(S1), η = η�

(R1), and η = η�
(S1),

respectively.”
As for simulation parameters, we use the Hata-

COST231 model (see [2], [19] and [20]) to imitate the
large scale fading coefficients, i.e.

βmk = 10(S+PL(dmk))/10, (66)

βmE = 10(S+PL(dmE))/10 (67)

where S ∼ CN
(
0, σ2

S
)

presents the shadowing fading effect
with the standard deviation σS = 8 dB and

PL (d) =

⎧
⎪⎨

⎪⎩

−139.4− 35 log10(d) if d > 0.05
−119.9− 20 log10(d) if d ∈ (0.01, 0.05]
−79.9 if d ≤ 0.01

(68)

represents the path loss in dB with d ≡ dmk (or d ≡ dmE)
being the distance in km between the mth AP and user k
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Fig. 2. Secrecy rate versus Ps (the average transmit power for a sig-
nal sk). Other parameters: the average transmit power of each user is
Pu = {0.3, 0.6} W, the average transmit power of Eve is PE = {0.1, 0.5}
W, M = 50, K = 8, T = 12, θE = 10−4, and θk = 2 × 10−4 for
k = {2, . . . , K}.

(or Eve).4 In addition, the maximum transmit power of each
AP is Pmax = 1 W. Meanwhile, the average noise power
(in W) is given by

N0 = bandwidth× kB × T0 × noise figure (69)

where kB = 1.38 × 10−23 (Joule/Kelvin) is the Boltzmann
constant, and T0 = 290 (Kelvin) is the noise temperature. In all
simulation results, we suppose that the bandwidth is 20 MHz
and the noise figure is 9 dB. Finally, other parameters will be
mentioned whenever they are used.

In Figure 2, we show the achievable secrecy rate
(in nats/s/Hz) in 2 different cases: i) Ψ = Ψ�

(P1) and ii) η =
η�
(P1). For each case, 3 different sub-cases of (Pu, PE) are

considered. It is observed that Rsec (P1) is significantly higher
than Rsec (P1). In fact, the obtained values of Rsec (P1) fall
within the interval (0.55, 0.57) nats/s/Hz. In other words,
having ηmk = η� (for all m and k) will lead to very poor
performance in terms of security. Furthermore, the secure
performance increases with Pu and reduces with PE (the
average transmit power of Eve).

Figure 3 shows the achievable secrecy rate versus Ps in
two cases: i) Ψ = Ψ�

(Q1) and ii) η = η�

(Q1). The secure

performance in the first case is significantly higher than
the second case. Moreover, the changes in the value of
Rsec

(
Q1

)
are minor, i.e. Rsec

(
Q1

)
falls within (0.67, 0.79)

nats/s/Hz. We also observe that Rsec (Q1) is improved with
increasing Pu and is impaired with PE. Meanwhile, Rsec

(
Q1

)

slightly decreases with Pu.
In Figures 4 and 5, the achievable secrecy rates Rsec (P1)

and Rsec (Q1) are depicted as functions of M. We can see

4Other presentations for PL (d) are also available in literature. Herein,
(68) is suggested for a practical scenario in which the carrier frequency
is 1900 MHz, the heigh of each AP antenna is 20 m, the heigh of each
user antenna (as well as that of Eve antenna) is 1.5 m and all nodes
(APs, users and Eve) are randomly dispersed over a square of size 1 × 1
km2 [2, eqs. (52) and (53)].

Fig. 3. Secrecy rate versus Ps (the average transmit power for a signal sk).
Other parameters: the average transmit power of each user is Pu =
{0.3, 0.6} W, the average transmit power of Eve is PE = {0.1, 0.5} W,
M = 50, K = 8, T = 12 and θk = 2 × 10−4 for k = {2, . . . , K}.

Fig. 4. Secrecy rate versus M. Other parameters: the average transmit power
for a signal sk is Ps = 0.8 W, the average transmit power of each user is
Pu = {0.3, 0.6} W, the average transmit power of Eve is PE = {0.2, 0.7} W,
K = 8, T = 12, θk = 2 × 10−4 for k = {2, . . . , K} and θE = θk/50.

that both of them increase with M. It implies that the more
service APs we have, the higher secure performance we gain.
Finally, Rsec (P1) as well as Rsec (Q1) increases with Pu and
decreases with PE. With the chosen parameters, (Q1) appears
better than (P1) in terms of secrecy rate. Overall, PE represents
the strength of an actively eavesdropping attack; thus, we can
observe that the secure performance is degraded when PE

grows as shown in Figures 2–5.
Figure 6 shows that Ptot (R1) is much higher than Ptot (R1)

which is around 0.003 mW with every Ps. It means that
the solution Ψ�

(R1) is much better than the solution η�
(P1) in

terms of energy, because the APs do not have to consume
too much energy to meet security requirements. Besides,
the figure also shows that Ptot (R1) inversely decreases with
Ps and is lowest at Ps = Pmax. Finally, we observe that
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Fig. 5. Secrecy rate versus M. Other parameters: the average transmit power
for a signal sk is Ps = 0.8 W, the average transmit power of each user is
Pu = {0.3, 0.6} W, the average transmit power of Eve is PE = {0.2, 0.7} W,
K = 8, T = 12 and θk = 2 × 10−4 for k = {2, . . . , K}.

Fig. 6. Total power of all APs (in mW) versus Ps (the average transmit
power for a signal sk). Other parameters: the average transmit power of each
user is Pu = {0.1, 1} W, the average transmit power of Eve is PE = 0.5 W,
M = 50, K = 8, T = 12, θ1 = 0.1, θk = 0.02 for k = {2, . . . , K} and
θE = θ1/50.

when Ps changes, Rsec (R1) ≈ 0.0953 nats/s/Hz remains
almost constant; meanwhile, Rsec (R1) ≈ 0.5386 nats/s/Hz
with Pu = 0.1 W and 0.5091 nats/s/Hz with Pu = 1 W.

Figure 7 shows that Ptot (S1) is much higher than Ptot (S1)
which is around 0.0027 mW at each considered value of Ps.
This result also reveals that (R1) is the better program in
terms of energy, because there is really less energy required for
security. Besides, the figure also shows that Ptot (S1) inversely
decreases with Ps and is lowest at Ps = Pmax. Finally,
we record that Rsec (S1) ≈ 0+ nats/s/Hz when Ps changes.
In contrast, Rsec (S1) ≈ 0.4619 nats/s/Hz with Pu = 0.1 W
and 0.4521 nats/s/Hz with Pu = 1W.

Figure 8 depicts Ptot (R1) as a function of M. With 3 differ-
ent values of K, we observe that the total power consumption

Fig. 7. Total power of all APs (in mW) versus Ps (the average transmit
power for a signal sk). Other parameters: the average transmit power of each
user is Pu = {0.1, 1} W, the average transmit power of Eve is PE = 0.5 W,
M = 50, K = 8, T = 12, θk = 0.02 for k = {2, . . . , K} and φ = 1.

Fig. 8. Total power of all APs (in mW) versus M. Other parameters: the
average transmit power for a signal sk is Ps = 0.7 W, the average transmit
power of each user is Pu = 0.4 W, the average transmit power of Eve
is PE = 0.5 W, K = {6, 8, 10}, T = 12, θ1 = 0.1, θk = 0.02 for
k = {2, . . . , K} and θE = θ1/50.

reduces with M but increases with K. We can see that (R1)
can be solved with many different values of (M, K). Among
them, the best choice is to choose M as large as possible while
K should be as small as possible. For example, the system
with (M, K) = (70, 6) will require less power consumption
(at APs) than the system with (M, K) = (50, 10), while the
security constraints remain guaranteed.

Figure 9 depicts Ptot (S1) as a function of M. Our obser-
vation of this figure is similar to Figure 8. We should choose
M as large as possible and K as small as possible in order to
attain the best performance (as long as the security constraints
are satisfied). When M is large enough, the total power
consumption is nearly zero and yet, the secrecy rate is also
around zero (with the chosen parameters).
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Fig. 9. Total power of all APs (in mW) versus M. Other parameters: the
average transmit power for a signal sk is Ps = 0.7 W, the average transmit
power of each user is Pu = 0.4 W, the average transmit power of Eve is
PE = 0.5 W, K = {6, 8, 10}, T = 12, θk = 0.02 for k = {2, . . . , K} and
φ = 1.

In comparison between Figure 8 and Figure 9, one can find
the two differences: i) the presence of θE and the absence of
φ in Figure 8; and ii) the absence of θE and the absence of
φ in Figure 9. It is because of the fact that (R1) and (S1)
have different security constraints. With the setup parameters,
(S1) offers better performance than (R1) because the required
power consumption is lower (i.e., the curves in Figure 9 is
slightly lower than those in Figure 8).

VII. CONCLUSIONS

In this paper, we have considered a cell-free MIMO network
in the presence of an active eavesdropper. We have suggested
maximization problems to maximize the achievable secrecy
rate subject to quality-of-service constraints. Also, minimiza-
tion problems have been provided to minimize power con-
sumption as long as security requirements are still guaranteed.
In finding the optimal values of the power control coefficients
{ηmk}m,k, we have considered two different cases: i) ηmk

changes with m and k; and ii) ηmk = η for all m and k.
Through numerical results, we have found that the case of
ηmk = η will lead to far worse performance than the other
case. Based on numerical results and intuitive observations,
a trade-off problem between secrecy rate and energy consump-
tion may be considered for cell-free networks in the future.
Besides, preventing Eve’s intrusion into the pilot training will
be also worth considering.

APPENDIX

A. A Simple Method to Identify Abnormality in Pilot Training

As presented in Subsection II.A, the mth AP receives the
array of signals {ykm}K

k=1 after calculating the Hermitian
inner product between yp,m and pk. Then all APs (through
the CPU) exchange information and make a calculation of

Y �
M∑

m=1

E
{|y1m|2}

to check if Eve tries to overhear the signal transmitted from
APs to user 1. If H0 denotes the hypothesis that there is no
active eavesdropping and H1 denotes the opposite, then two
possibly obtained values of Y are

Y|H0 = Tρu

M∑

m=1

βm1 + M,

Y|H1 = Tρu

M∑

m=1

βm1 + TρE

M∑

m=1

βmE + M.

It is clear that Y|H1 > Y|H0 always holds for ρE > 0.
Therefore, APs simply compare Y with Y|H0 to make the
decision, i.e.

• Y = Y|H0 ⇔ No active eavesdropping.
• Y > Y|H0 ⇔ Eve is seeking to attack the system.

Note that Y|H0 is a known value and is referred to as the only
threshold (which APs need) to check any abnormality in pilot
training related to the pilot p1.

In fact, the above-mentioned detection method can be per-
formed without knowing the value of ρE. However, ρE can
also be predicted by

ρE =
Y − Y|H0

T
∑M

m=1 βmE

in the case that active eavesdropping occurs.

B. Explicit Expression for snrE

We first calculate

E
{|BUE,1|2

}

= ρs

M∑

m=1

ηm1 E
{
|gmEĝ∗m1|2

}

(a)
= ρs

M∑

m=1

ηm1 E
{
|(emE + ĝmE) ĝ∗m1|2

}

= ρs

M∑

m=1

ηm1

(
E
{
|ĝmEĝ∗m1|2

}
+ E

{
|emE|2 |ĝ∗m1|2

})

(b)
= ρs

M∑

m=1

ηm1

[
2αmγ2

m1 + (βmE − γmE) γm1

]

(c)
= ρs

M∑

m=1

ηm1

(
αmγ2

m1 + βmEγm1

)

= ρs

M∑

m=1

ηm1

[(
ρEβ2

mE

ρuβ2
m1

)
γ2

m1 + βmEγm1

]
(70)

where (a) is obtained by substituting gmE = emE + ĝmE with
emE � gmE − ĝmE being the channel estimation error for the
link between the mth AP and Eve. In deriving (a), we also
use the fact that emE ∼ CN (0, βmE − γmE) is independent
of ĝmE. The equality (b) is obtained by using (6). Meanwhile,
(c) results from the substitution of γmE = αmγm1.
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Similarly, for k′ �= 1, we calculate

E
{
|UIE,k′ |2

}

= ρs E

⎧
⎨

⎩

∣
∣
∣∣
∣

M∑

m=1

√
ηmk′gmEĝ∗mk′

∣
∣
∣∣
∣

2
⎫
⎬

⎭

= ρs

M∑

m=1

ηmk′
(
E
{
|ĝmEĝ∗mk′ |2

}
+ E

{
|emEĝ∗mk′ |2

})

(a)
= ρs

M∑

m=1

ηmk′
(
αm E

{
|ĝm1ĝ

∗
mk′ |2

}
+ E

{
|emE|2 |ĝ∗mk′ |2

})

(b)
= ρs

M∑

m=1

ηmk′ [αmγm1γmk′ + (βmE − αmγm1) γmk′ ]

= ρs

M∑

m=1

ηmk′βmEγmk′ (71)

where (a) is obtained by using (4) and (b) results from the
substitution of (5).

Finally, substituting (70) and (71) into (15) yields (16).
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