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Distance Hardening in Large MIMO Systems
Yuan Qi , Member, IEEE, and Rongrong Qian , Member, IEEE

Abstract— Asymptotic analysis plays an important role in the
performance evaluation and technology design of large multiple-
input multiple-output (MIMO) systems. This paper investigates
an asymptotic property of large MIMO systems, called distance
hardening. It involves distance metrics defined in terms of
many factors, such as the channel matrix and the difference
matrix of two arbitrary transmitted codewords. The asymptotic
property is revealed by the use of the Chernoff bounding method
and expressed in an analogous way to the well-known channel
hardening. More specifically, we first derive Chernoff bounds
on the tail probabilities of distance metrics, in which we are
interested. Then, we formulate the asymptotic property based on
a generalized definition of the hardening phenomena by referring
to a formal definition of the channel hardening. The distance
hardening is shown to have implications for space-time code
design, MIMO detection, and millimeter wave MIMO systems.
Numerical simulations are conducted to verify our theoretical
development.

Index Terms— Multiple-input multiple-output (MIMO), large
MIMO system, asymptotic analysis.

I. INTRODUCTION

THE emergence of large MIMO systems using large
antenna arrays has led to an increased focus on such

systems in practical communication systems design. As the
demands on the data rate/throughput dramatically increase
in practical multi-antenna systems, the number of antennas
needs to be scaled up to tens or hundreds to meet perfor-
mance requirements [1]–[3], [31]. In addition to two obvious
benefits of large MIMO systems (increased data rates and
enhanced reliability), the large dimensionality of the systems
can also result in a host of other advantages that do not
come with small and moderate-size systems [1], [31]. For
example, as the asymptotics of random matrix theory arise
in large MIMO systems [2], [32], some random variables
converge to be deterministic [2]. Hence, many metrics that
were previously difficult to analyze are clarified by accurate

Manuscript received June 22, 2017; revised October 1, 2017 and
December 2, 2017; accepted December 3, 2017. Date of publication
December 11, 2017; date of current version April 16, 2018. This work
is sponsored by the National Natural Science Foundation of China (Grant
No. 61501043) and the Program of Introducing Talents of Discipline to
Universities of China (Grant No. B08004). The associate editor coordinating
the review of this paper and approving it for publication was V. Raghavan.
(Corresponding author: Rongrong Qian.)

Y. Qi is with the School of Electronic Engineering, Beijing Univer-
sity of Posts and Telecommunications, Beijing 100876, China (e-mail:
qiyuan@bupt.edu.cn).

R. Qian is with the Automation School, Beijing University of
Posts and Telecommunications, Beijing 100876, China (e-mail:
rongrongqian@bupt.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TCOMM.2017.2782343

approximations [4], [5]. To illustrate, let us briefly review some
previous results.

First, the classical central limit theorem (CLT) establishes
that, in most situations, the properly normalized sum of inde-
pendent random variables tends toward a normal distribution
even if the original variables are not normally distributed [35].
This theorem has a number of variants, some of which are
relevant to random matrix and large MIMO research [33]. The
CLT of linear spectral statistics for large dimensional sample
covariance matrices is investigated in [6], which can be used to
derive the size-asymptotic, finite-SNR diversity-multiplexing
tradeoff for a broad class of fading channels [7], [32]. A CLT
for random determinants is developed in [8], which has been
extended to study the weak convergence of the capacity
random variable [9].

Second, the asymptotic empirical eigenvalue distribu-
tion (EED) functions of many random Hermitian matri-
ces have been shown to converge a.s. to non-random
limits [10], [11], [34]. The extensive use of this convergence
helps to analyze the asymptotic SINR of independent non-
identically distributed (IND) channels [12] and the capacity of
the sparse family of channels (beamforming and multiplexing
channels) [13]. According to [13], although a closed-form
expression of the limiting EED in the multiplexing channel
may not be available, the capacity formula of this channel is
identical to that of the ideal channel with a proper parameter.
Note that, the capacity of the ideal channel can be expressed
in closed form by using the asymptotic EED function.

Third, the free probability theory [32], [33] provides a suf-
ficient condition (called almost sure asymptotic freeness [32])
under which the normalized trace of the product of two random
matrices converges almost surely [14]. The power of free prob-
ability theory should be evident in both the fresh view it pro-
vides on established results and the new properties it unveils on
random matrices [32]. The concept of almost sure asymptotic
freeness has been used to compute asymptotic pairwise error
probabilities (PEPs) with maximum-likelihood (ML) detection
and three types of receiver architectures [14].

Fourth, as the number of antennas grows, the MIMO chan-
nel quickly “hardens” in the sense that the off-diagonal terms
of the matrix H H H become increasingly weaker compared to
the diagonal terms [15] or the mutual information fluctuation
rapidly decreases relative to its mean [4]. This is a well-known
phenomenon called channel hardening. Due to channel hard-
ening, approximate matrix inversion, using series expansion
and deterministic approximations from the limiting distribu-
tion [31], can be employed to realize low-complexity MIMO
detectors with good performance in large dimensions [15].
According to recent studies [4], [16], [17], channel hardening
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can also affect the scheduling gains, the number of bits needed
in rate feedback, and the energy efficiency in MIMO and
antenna selection systems.

These results show that the analysis of asymptotic properties
(e.g., CLT, asymptotic EED, almost sure asymptotic freeness,
and channel hardening) allows us to gain profound insights
into a number of important problems in large MIMO sys-
tems [2], [4], [5], [7], [9], [13]–[18], [32]. The insights could
further facilitate the performance evaluations and technology
design for these systems. This is the reason why asymptotic
properties of large MIMO systems need to be well investi-
gated. The above arguments motivate theoretical research on
exploring new asymptotic properties of large MIMO systems
and exploiting more benefits from the known properties.

In this paper, we report on an asymptotic property of
large MIMO systems, and attempt to describe this property
in a rigorous, intuitive way, by using the Chernoff bounding
method [35]. This asymptotic property is named distance hard-
ening, since it is similar to channel hardening [4], [15], [16].
We also discuss implications of this “distance hardening”
result for space-time code design, MIMO detection, and
mmWave MIMO systems.

Our main contributions and the novelty of this paper can be
summarized as follows.

• The Chernoff bound expressions for the tail probabilities
of two distance metrics are derived (Theorems 1-3). One
metric is used in many areas of space-time MIMO
design and the other could appear in spatial multiplex-
ing, beamforming, and precoding systems with uniform
linear arrays (ULAs). For the Chernoff bound given in
the two most important theorems of this paper (Theo-
rems 1 and 2), several related properties are provided
(Lemma 3) and extreme point analysis is performed
(Corollary 5) in order to clarify its mathematical charac-
teristics. It is also shown that the expressions of Chernoff
bound can be extended to MIMO channels with transmit
correlation (Corollary 3).

• The distance hardening properties are formulated
(Theorems 4-6) by the use of the obtained Chernoff
bound expressions and a generalized definition for the
hardening phenomena that originates from the formal
definition of the channel hardening introduced in [18].
Based on the distance hardening formulation together
with the tail probability analysis, a new space-time decod-
ing strategy and its related criterion of code design are
proposed (Corollary 6). The derived results’ implications
for MIMO detection and mmWave MIMO systems are
also discussed (Corollary 7).

The paper is organized as follows. Section II intro-
duces the system models used in our development, which
include the widely used analytical model of large MIMO
systems and the model available for many realistic large
MIMO systems. Section III presents the tail probability
analysis that yields the results of Chernoff bound expres-
sions. Section IV formulates the distance hardening and dis-
cusses its implications. Numerical results are provided in
Section V, and Section VI concludes the paper and gives the
outlook.

Notations: Matrices are set in boldface capital letters, and
vectors in boldface lowercase letters. We write ai j for the entry
in the i th row and j th column of the matrix A, and bi for the
i th entry of the vector b. A = diag{b1, b2, · · · , bn} puts the
elements b1, b2, · · · , bn on the main diagonal of matrix A. The
superscripts T and H stand for the transpose and conjugate
transpose, respectively. The Frobenius norm is denoted by
‖A‖F = √

Tr(AH A) = √
Tr(AAH ), where Tr(·) is the trace

of a square matrix. E[·] denotes the expectation operator.

We write
d= for equality in distribution and

P−→ for conver-
gence in probability. The zero-mean complex Gaussian distrib-
ution with variance σ 2 is denoted by CN (0, σ 2). If z1, · · · , zk

are independent, standard normal random variables, then the
sum of their squares, y = ∑k

i=1 z2
i , is distributed according

to chi-squared distribution with k degrees of freedom, which
is usually denoted as y ∼ χ2

k . Suppose that the sequence
{xk} converges to the number a. We say that this sequence
converges linearly to a, if there exists a number r ∈ (0, 1)
such that

lim
k→+∞

|xk+1 − a|
|xk − a| = r. (1)

Here, r is called the rate of convergence. In numerical sim-
ulation, if the computation of r is not available, we will
be interested in evaluating the instantaneous rate defined as
rk � |xk+1−a|

|xk−a| .

II. SYSTEM MODELS

The widely used analytical model of large MIMO chan-
nels is the i.i.d. flat fading channel model [7], [20], [31],
[32]. This model relies on (i) the antenna elements in the
transmitter/receiver being spatially well separated, and (ii) the
environment being rich-scattering so that its combined gains
can be approximated by a Gaussian random variable owing to
the CLT [31]. Here, rich scattering is thought to be common
in typical indoor and outdoor urban environments [31] and
known to be favorable for the operation of large MIMO [20].
On the other hand, many realistic large MIMO systems are
expected to have clustered-scattering channels that can usually
be effectively represented by the virtual representation model
proposed in [21]. A typical channel that might be clustered-
scattering is the channel of millimeter wave (mmWave) com-
munication with a ULA [22], [23]. Taken together, this study
will consider two models of Rayleigh fading MIMO systems,
as given in Subsections II-A and II-B.

A. Space-Time MIMO System With Rich Scattering
(i.i.d. Model) [7], [20], [31], [32]

We consider a Rayleigh-fading MIMO channel with nT

transmit and nR receive antennas. The channel is quasi-static
fading with a quasi-static interval t . The standard discrete-time
system model is adopted here,

Y = H X + N . (2)

X ∈ C

nT ×t and Y ∈ C

nR×t denote the transmitted and
received signals, respectively. We assume that X is a code
matrix drawn from a space-time codebook C. H = [hi, j ] ∈
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C

nR×nT represents the channel matrix, where hi, j denotes
the complex path gain (the fading coefficient) from transmit
antenna j to receive antenna i . It is assumed that hi, j are i.i.d.
zero mean complex Gaussian random variables with variance
ρh , i.e., hi, j ∼ CN (0, ρh). N ∈ C

nR×t denotes the i.i.d.
complex Gaussian noise in the MIMO channel.

Let D
(
X, X̂

)
� X − X̂ be the difference matrix of two

arbitrary code matrices X ∈ C and X̂ ∈ C. The distance
metric,

∥
∥DH,W

(
X, X̂

)∥∥2
F , is of interest in this study, where

DH,W
(
X, X̂

)
� H D

(
X, X̂

)+ W . (3)

W = [wi, j ] ∈ C

nR×t is the circularly symmetric, complex
Gaussian noise matrix with i.i.d. entries wi, j ∼ CN (0, N0).
The noise matrix W could be the matrix of channel noise
N or an all-zero matrix.

For brevity, in the remainder of the paper, DH,W and D will
be used to denote DH,W

(
X, X̂

)
and D

(
X, X̂

)
, respectively,

by dropping
(
X, X̂

)
.

B. Spatial Multiplexing, Beamforming, and Precoding
Systems With ULAs (Virtual Representation Model) [13],
[22], [23], [26]

We assume that the MIMO channel is Rayleigh-fading with
nT transmit and nR receive antennas. A unified discrete-time
system model available to spatial multiplexing, beamforming,
and precoding systems, can be written as

y = H x + n, (4)

where x ∈ C

nT ×1 and y ∈ C

nR×1 are the transmitted and
received signals, respectively. Within beamforming systems,
x may be given by x = f c, where f denotes the beamforming
vector and c is the symbol chosen from a constellation
for signaling [23]. In precoding systems, x can be given
by x = FRF FB B cSV , where FRF , FB B , and cSV are the
RF precoder, the baseband precoder, and the symbol vector,
respectively [22]. The channel matrix H is expressed by
virtual representation as [13]

H = Ar Hv AH
t , (5)

where At and Ar are nT × nT and nR × nR unitary discrete
Fourier matrices, respectively. Hv = [hi, j,v ] ∈ C

nR×nT is the
virtual channel matrix whose entries are independent zero-
mean, complex Gaussian [13]. In other words, Hv has inde-
pendent non-identically distributed (i.n.d.) entries [12]. The
statistics of Hv are characterized by the virtual channel power
matrix � = [ψi, j ] ∈ C

nR×nT , where ψi, j � E
[|hi, j,v |2

]
.

n ∈ C

nR×1 is the i.i.d. complex Gaussian noise in channel,
and its elements are ni ∼ CN (0, N0).

Let d
(
x, x̂

)
� x − x̂ be the difference vector of two arbi-

trary transmitted vectors x ∈ C

nT ×1 and x̂ ∈ C

nT ×1. Another
distance metric of interest in this study, is

∥
∥dH,n

(
x, x̂

)∥∥2
F ,

where

dH,n
(
x, x̂

)
� Hd

(
x, x̂

)+ n. (6)

For simplicity, by dropping
(
x, x̂

)
, dH,n and d will be used

to denote dH,n
(
x, x̂

)
and d

(
x, x̂

)
, respectively. We define

d̃ � AH
t d = [

d̃1, · · · , d̃nT

]T
. (7)

C. Distance Metrics

The forthcoming analysis will concentrate on
∥
∥DH,W

∥
∥2

F and
∥
∥dH,n

∥
∥2

F , where

DH,W = H D + W, (8)

and

dH,n = Hd + n. (9)

Here, it is known that
∥
∥DH,W

∥
∥2

F is a crucial metric for many
important problems in space-time MIMO systems, such as the
evaluation of PEP, MIMO detection, space-time code design,
and the analysis of diversity-multiplexing tradeoff (DMT) [14],
[27], [31], [36]. The derivation of exact analytical expressions
for the statistics of

∥
∥DH,W

∥
∥2

F and
∥
∥dH,n

∥
∥2

F can be difficult,
so the accurate approximations given by asymptotic analysis
will become very helpful, as shown later in the next two
sections.

III. TAIL PROBABILITY ANALYSIS:
THE CHERNOFF BOUND

The Chernoff bounding method is used as the main analyti-
cal tool in this study, and we begin by analyzing the statistics
of
∥
∥DH,W

∥
∥2

F and
∥
∥dH,n

∥
∥2

F with this method. In analyzing
the statistics of a random variable, it is often necessary to
determine the area under the tail of the probability distribution
function (PDF) [35]. This area is known as the tail probability.
In this section, we first derive the Chernoff bound on the tail
probability of the following normalized distance metric

‖DH,W ‖2
F

nRρh‖D‖2
F + tnR N0

, (10)

which is said to be normalized because nRρh‖D‖2
F +

tnR N0 = EH,W
[‖DH,W‖2

F

]
(see Lemma 1) such that

EH,W

[
‖DH,W ‖2

F
‖nRρh D‖2

F+tnR N0

]
= 1. Then, we perform a similar

analysis to another normalized distance metric

‖dH,n‖2
F

EH,n
[‖dH,n‖2

F

] , (11)

where EH,n
[‖dH,n‖2

F

] = ∑nR
i=1

∑nT
j=1ψi, j

∣
∣d̃ j
∣
∣2 + nR N0. The

tail probability analysis will give rise to the fundamental
results that enable us to investigate the so-called distance
hardening phenomenon in next section.

A. Deriving the Chernoff Bound

Let us begin by developing a simplified equivalent of
the distance metric ‖DH,W ‖2

F , which will be of particular
importance in the derivation of the Chernoff bound for the

tail probability of
‖DH,W ‖2

F
nRρh‖D‖2

F +tnR N0
.

Lemma 1: ‖DH,W ‖2
F can be expressed as

‖DH,W ‖2
F = ‖H D + W‖2

F =
s∑

j=1

u j +
t∑

k=s+1

vk, (12)
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where

(
ρhσ

2
j

2 + N0
2

)−1

u j ∼ χ2
2 nR

,
(

N0
2

)−1
vk ∼ χ2

2 nR
, and

s = min{nT , t}. Note that the terms vk in (12) will disappear
if nT ≥ t such that s = min{nT , t} = t . The expectation of
the distance metric

∥
∥DH,W

∥
∥2

F can be computed in the form

EH,W

[∥
∥DH,W

∥
∥2

F

]
= nRρh‖D‖2

F + tnR N0. (13)

Proof: See Appendix A, where the definitions and prop-
erties of u j and vk are provided, e.g., (58), Lemma A.1, and
Lemma A.2.

For simplicity of presentation, let ξ � nRρh‖D‖2
F + tnR N0

such that

ξ = EH,W

[∥
∥DH,W

∥
∥2

F

]
= nRρh

⎛

⎝
s∑

j=1

σ 2
j

⎞

⎠+ tnR N0, (14)

where σ j denotes the j -th singular value of D.
The exact closed-form expression of the tail probability of
‖DH,W‖2

F
nRρh‖D‖2

F +tnR N0
is difficult to obtain. Nevertheless, there is

an interesting and useful upper bound on this tail probability,
which is adequate for the analysis of this study.

Theorem 1: The tail probability of ‖DH,W‖2
F

nRρh‖D‖2
F +tnR N0

can be

upper-bounded by the Chernoff bound as

P

(
‖DH,W ‖2

F

nRρh‖D‖2
F + tnR N0

≥ θ

)

≤ Uc(θ, γ , σ̃ , N0) (15)

for the cases with θ > 1, or

P

(
‖DH,W ‖2

F

nRρh‖D‖2
F + tnR N0

≤ θ

)

≤ Uc(θ, γ , σ̃ , N0) (16)

for the cases with 0 < θ < 1, where

Uc(θ, γ , σ̃ , N0) � e−γ θ
(

1 − γ N0

ξ

)−(t−s)nR

×
s∏

j=1

⎛

⎝1 −
γ
(
ρhσ

2
j + N0

)

ξ

⎞

⎠

−nR

,

(17)

σ̃ � [σ 2
1 · · · σ 2

s ], and

t − s
(
ξ

N0
− γ

) +
s∑

j=1

1
(

ξ

ρhσ
2
j +N0

− γ

) = θ

nR
. (18)

Proof: See Appendix B.

The Chernoff bound applied to ‖DH,W‖2
F

nRρh‖D‖2
F+tnR N0

yields an

exponential dependence on nR , and thus provides a tight upper
bound on the tail probability. In Theorem 1, γ is an important
term for the Chernoff bound obtained as (17), which can be
computed from θ by the use of the relationship in (18).

Corollary 1: As an implicit equation that gives the relation-
ship between γ and θ , (18) provides the following results.

1) γ can be viewed as a function of θ , denoted by γ (θ)
if needed, which is strictly monotonically increasing
with θ .

2) γ = 0 if and only if θ = 1. This also implies γ > 0
when θ > 1 and γ < 0 when θ < 1.

3) γ < min j
ξ

ρhσ
2
j +N0

.

4) If D, ρh , N0, and θ are fixed, then γ
nR

will not change
as nR varies.

Proof: Differentiating the implicit function γ (θ), defined
by (18), yields

dγ

dθ
= 1

nR

⎡

⎢
⎢
⎢
⎣

t − s
(
ξ

N0
− γ

)2 +
s∑

j=1

1
(

ξ

ρhσ
2
j +N0

− γ

)2

⎤

⎥
⎥
⎥
⎦

−1

. (19)

This implies dγ
dθ > 0; hence, γ is strictly monotonically

increasing as θ grows. Due to (14), it is easy to verify that,
if θ = 1, then γ = 0. According to Appendix B, γ should be
less than ξ

ρhσ
2
j +N0

with any j . Moreover, (18) can be rewritten
as

t − s
(

ξ
nR N0

− γ
nR

) +
s∑

j=1

1
(

ξ

nRρhσ
2
j +nR N0

− γ
nR

) = θ. (20)

From above, we can find that ξ
nR N0

and ξ

nRρhσ
2
j +nR N0

, 1 ≤ j ≤
s, will not change with different nR , as long as D, ρh , and N0
are fixed. Then if θ is also fixed, γ

nR
in (20) will be unaltered

as nR changes.
Furthermore, in case of t = 1, Theorem 1 takes on a

remarkably simple form.
Corollary 2: If t = 1, there exists the Chernoff bound

relation as

P

(
‖DH,W ‖2

F

nRρh‖D‖2
F + nR N0

≥ θ

)

≤
(
θe1−θ)nR

(21)

for the cases with θ > 1, or

P

(
‖DH,W ‖2

F

nRρh‖D‖2
F + nR N0

≤ θ

)

≤
(
θe1−θ)nR

(22)

for the cases with 0 < θ < 1.
In fact, such a simplified relationship on the Chernoff bound

is exactly the main result of the previous study [19]. In this
sense, Theorem 1 of this study is a generalization of the
main result in [19]. It is easy to find that the expression
of Theorem 1 in this study applies to the generic space-
time MIMO systems including space-time coding and spatial-
multiplexing systems, whereas the corresponding expression
obtained by [19] is unavailable to space-time coding system.

It is worth pointing out that the result of Theorem 1 can
be extended to space-time MIMO systems with some other
channel models. In [2], the channel is modeled as G =
H L1/2, where H describes the small scale fading. L1/2 is
a diagonal matrix whose diagonal elements are the large scale
fading coefficients that account for path loss and shadow
fading. In [24] and [25], the channel that involves the transmit
correlation can be written as G = HC1/2, where H describes
the channel fading and C is a Hermitian Toeplitz deterministic
correlation matrix.
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Corollary 3: If the channel matrix of the space-time MIMO
system becomes G = H L1/2 or G = HC1/2, where H
has i.i.d. zero mean complex Gaussian entries, then the tail

probability of ‖DH,W‖2
F

nRρh‖L1/2 D‖2
F+tnR N0

or ‖DH,W‖2
F

nRρh‖C1/2 D‖2
F +tnR N0

will

have the Chernoff upper bounds as given in Theorem 1,
by letting σ j be the j -th singular value of L1/2 D and C1/2 D,
respectively.

However, Theorem 1 cannot be applied to the channel with
the receive correlation, denoted by G = C1/2 H [24], [25].
In this case, the correlation C1/2 is the obstruction to our
analytical framework.

The expression of the Chernoff bound in
Theorem 1 involves too many parameters such as N0,
σ j , and ξ , which hinders more insights on the properties of
this bound. To be refined, let us define

Ce(λ) � λ

1 − λ
, (23)

so that (18) can be rewritten as

(t − s)Ce

(
γ N0

ξ

)
+

s∑

j=1

Ce

⎛

⎝
γ
(
ρhσ

2
j + N0

)

ξ

⎞

⎠ = θγ

nR
.

(24)

Moreover, by defining

λ0 � γ N0

ξ
, and λ j �

γ
(
ρhσ

2
j + N0

)

ξ
, (25)

where 1 ≤ j ≤ s, (24) further becomes

(t − s)Ce(λ0)+
s∑

j=1

Ce(λ j ) = θγ

nR
. (26)

The Chernoff bound in Theorem 1, Uc(θ, γ , σ̃ , N0), can be
rewritten as

Uc(θ, γ , σ̃ , N0)

=
[(

1

1 − λ0

)
exp

(
− λ0

1 − λ0

)](t−s)nR

×
∏

1≤ j≤s

[(
1

1 − λ j

)
exp

(
− λ j

1 − λ j

)]nR

. (27)

From the above equation, we observe that the expression of
the Chernoff bound has a tight relationship to an elementary
function

(
1

1−λ
)

exp
(
− λ

1−λ
)

. Thus, for simplicity, let us define

Be(λ) �
(

1

1 − λ

)
exp

(
− λ

1 − λ

)
, (28)

where λ < 1. As a consequence, the expression of Theo-
rem 1 simplifies to the following form.

Theorem 2: The tail probability of ‖DH,W‖2
F

nRρh‖D‖2
F +tnR N0

is upper-

bounded as

P

(
‖DH,W ‖2

F

nRρh‖D‖2
F + tnR N0

≥ θ

)

≤ Uc(θ,λ) (29)

for the cases with θ > 1, or

P

(
‖DH,W ‖2

F

nRρh‖D‖2
F + tnR N0

≤ θ

)

≤ Uc(θ,λ) (30)

for the cases with 0 < θ < 1, where λ = [λ0 λ1 · · · λs ] with
λ j , 0 ≤ j ≤ s, as defined in (25) and (26), and

Uc(θ,λ) � [Be(λ0)](t−s)nR
∏

1≤ j≤s

[
Be(λ j )

]nR . (31)

Corollary 4: If D, ρh , N0, and θ are fixed, then λ0 and λ j

(1 ≤ j ≤ s) will not change as nR varies.
Proof: Rewriting (25) as

λ0 = γ

nR
· nR N0

ξ
,

λ j = γ

nR
·
(

nRρhσ
2
j + nR N0

)

ξ
, 1 ≤ j ≤ s, (32)

we can derive this corollary from Corollary 1.
Let us turn to deriving the Chernoff bound for the tail

probability of
‖dH,n‖2

F
EH,n

[‖dH,n‖2
F

] . To attain this goal, we need a

simplified equivalent of the distance metric ‖dH,n‖2
F .

Lemma 2: ‖dH,n‖2
F can be expressed as

‖dH,n‖2
F = ‖Hd + n‖2

F =
nR∑

i=1

κi , (33)

where

(
∑nT

j=1
ψi, j |d̃ j |2

2 + N0
2

)−1

κi ∼ χ2
2 . Please refer to (7)

for d̃ j .
Proof: See Appendix C, where the definition and property

of κi are provided, i.e., Lemma C.1.
Therefore, a result similar to Theorem 1 can be obtained

for ‖dH,n‖2
F .

Theorem 3: The tail probabilities P

(
‖dH,n‖2

F

E
[‖dH,n‖2

F

] ≥ θ

)

for

θ > 1 and P

(
‖dH,n‖2

F

E
[‖dH,n‖2

F

] ≤ θ

)

for θ < 1 have the Chernoff

upper bounds of the same form, as

nR∏

i=1

Be

⎛

⎝
γ
(∑nT

j=1ψi, j
∣
∣d̃ j
∣
∣2 + N0

)

η

⎞

⎠, (34)

where η � E
[∥
∥dH,n

∥
∥2

F

]
= ∑nR

i=1

∑nT
j=1ψi, j

∣
∣d̃ j
∣
∣2 + nR N0,

and γ can be computed by

nR∑

i=1

Ce

⎛

⎝
γ
(∑nT

j=1ψi, j
∣
∣d̃ j
∣
∣2 + N0

)

η

⎞

⎠ = θγ . (35)

Proof: It is similar to the proof of Theorem 1. See
Appendix B.
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B. Discussion

Up to this point, we have derived the Chernoff bounds
on the tail probabilities of the normalized distance metrics

‖DH,W ‖2
F

nRρh‖D‖2
F +tnR N0

and ‖dH,n‖2
F

E
[‖dH,n‖2

F

] . We emphasize the following.

1) The Relationship between Theorems 1 and 2:
Uc(θ, γ , σ̃ , N0) in Theorem 1 and Uc(θ,λ) in Theo-
rem 2 essentially represent the same bound, and the difference
between them is only in the form of an expression.

2) Properties of Be(λ) and Ce(λ) defined for Theo-
rems 2 and 3: Although Be(λ) and Ce(λ) are very simple in
terms of expressions, they play important roles in this study.
On the one hand, Uc(θ,λ) is expressed in terms of Be(λ) for
which one can further have

Be(λ) = (1 + Ce (λ)) exp (−Ce(λ)) , (36)

while Ce(λ) simultaneously constructs the relationship in (26).
On the other hand, several properties of Be(λ) and Ce(λ) will
be used in the subsequent analysis.

Lemma 3: The properties of Ce(λ) and Be(λ) that prove
useful are as follows.

• Ce(λ) is a convex function in the range (−∞, 1). That is,
∀λ1, λ2 ∈ (−∞, 1), ∀α ∈ [0, 1], it holds that Ce(αλ1 +
(1 − α)λ2) ≤ αCe(λ1)+ (1 − α)Ce(λ2).

• For λ ∈ (−∞, 1), Be(λ) ≤ 1 with equality if and only if
λ = 0.

• The function loge Be(λ) is convex in the interval
(−∞,−1] and is concave in the interval [−1, 1).

Proof: These properties follow from the development in
Appendix D. Moreover, the curves of Be(λ) and Ce(λ) appear
as shown in Figure 1. From Figure 1, we observe that, within
the interval (−∞, 1), the maximum value of Be(λ) is 1 at
λ = 0.

3) Extreme point analysis: The value of the Chernoff bound
in the form of either Uc(θ, γ , σ̃ , N0) or Uc(θ,λ) depends
on many parameters. Sometimes, we may not want such
meticulous results and just wish to know the extreme point
on the Chernoff bound for a certain MIMO system with
static parameters nT , nR , and t . Here, a relevant result is
presented.

Corollary 5: The Chernoff bound derived for the tail proba-

bility of the metric
‖DH,W ‖2

F
nRρh‖D‖2

F +tnR N0
has a strict local minimum

(
θe1−θ )tnR , at λ∗

0 = λ∗
1 = · · · = λ∗

s = γ (λ∗)
tnR

= 1 − 1
θ

with γ (λ∗) = tnR
(
1 − 1

θ

)
. Moreover, such a minimum can

be proven to be the global minimum if 0 < θ ≤ 1/2.
Proof: The strict local minimum can be verified

by means of Lagrangian duality [37], the Karush-Kuhn-
Tucker (KKT) condition [37], and the bordered Hessian [38],
whereas the validation of the global minimum requires the
method of convex optimization [37]. See Appendix E for
details.

IV. DISTANCE HARDENING

Having performed the tail probability analysis, we now
apply the obtained results to large MIMO systems.

More specifically, in this section we introduce a general-
ized definition for the hardening phenomena that includes
but is not limited to channel hardening. Then, we reveal
a phenomenon named distance hardening for large MIMO
systems by the use of the theorems provided in the previous
section.

A. Formulating Distance Hardening

In large MIMO systems, channel hardening is the phenom-
enon that the off-diagonal entries of the matrix H H H become
increasingly weaker compared to the diagonal entries as the
number of antennas grows [15], [31]. The mutual information
of an MIMO system is defined as I � log det

(
I + ρ

nT
H H H

)
,

where I is the identity matrix and ρ is the SNR as phys-
ically measured at each receive antenna, which is closely
related to H H H . Therefore, channel hardening also refers
to the phenomenon where the variance of the mutual infor-
mation of the MIMO channel grows at a smaller rate rel-
ative to the mean or just stays constant in the extreme
case [4].

The recent work [18] provides a formal definition of channel
hardening. One can say that the propagation offers channel
hardening if

‖hi‖2
F

E
[‖hi‖2

F

]
P−→ 1, i = 1, · · · , nT , (37)

as nR → ∞. By this definition, the channel hardening
phenomenon becomes more embodied, which will be thought

to occur if the probability that
‖hi ‖2

F

E
[
‖hi ‖2

F

] differs from 1 by

more than δ (δ > 0) approaches zero as nR approaches infin-
ity. Meanwhile, a simple criterion, based on the Chebyshev
inequality, is also proposed to check whether the channel
hardens [18].

Then, a natural question is whether a similar harden-
ing phenomenon occurs with metrics other than ‖hi‖2

F .
To answer this, we propose a generalized definition as
follows.

Definition 1: A metric φ in large MIMO systems is said to
have the hardening property if

H (φ) � φ

E [φ]
P→ 1, (38)

in the limit as nR → ∞, where H is called the evaluation
function for the hardening.

This definition formalizes the phenomenon that certain
metrics in MIMO systems, after being normalized by its mean,
converge in probability to 1, as the number of receive anten-
nas increases. Then, the relationships in Theorems 1 and 2
immediately allow us to discover a hardening phenom-
enon related to the distance metric ‖DH,W ‖2

F within large
MIMO systems.

Theorem 4: If D, ρh , and N0 are fixed, the distance metric
‖DH,W‖2

F has the hardening property, i.e., as nR → ∞,

H
(∥
∥DH,W

∥
∥2

F

)
P→ 1. (39)
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Fig. 1. Curves of Ce and Be.

Proof: For any ε > 0, referring to Lemma 1 and
Theorem 2, we can get

P
(∣∣
∣H
(∥
∥DH,W

∥
∥2

F

)
− 1

∣
∣
∣ ≥ ε

)

≤ P

(
‖DH,W ‖2

F

nRρh‖D‖2
F + tnR N0

≥ 1 + ε

)

+ P

(
‖DH,W ‖2

F

nRρh‖D‖2
F + tnR N0

≤ 1 − ε

)

≤ Uc (1 + ε,λ1+ε)+ Uc (1 − ε,λ1−ε), (40)

where the term P

(
‖DH,W ‖2

F
nRρh‖D‖2

F +tnR N0
≤ 1 − ε

)
= 0 if ε > 1.

λ1+ε and λ1−ε denote the vectors λ which are computed
from (25) and (26) with θ = 1+ε and θ = 1−ε, respectively.
For a given ε, when D, ρh , and N0 are fixed, λ1+ε and
λ1−ε should not vary with nR according to Corollary 4. This
means that Uc (1 + ε,λ1+ε) and Uc (1 − ε,λ1−ε) exponen-
tially decay as nR increases, since at least one element of
either λ1+ε or λ1−ε is nonzero such that, with respect to
Lemma 3, there is Be(λ j ) < 1 with some 1 ≤ j ≤ s.
Thus, for ε > 0, a substitution of (28) and (31) into (40)
yields

lim
nR→∞ P

(∣∣
∣H
(∥
∥DH,W

∥
∥2

F

)
− 1

∣
∣
∣ ≥ ε

)
= 0. � (41)

Theorem 5: With fixed D and N0, if ρh is a decreasing
function of nR and

lim
nR→∞ ρh = 0, (42)

the distance metric ‖DH,W ‖2
F has the hardening property,

i.e., as nR → ∞,

H
(∥
∥DH,W

∥
∥2

F

)
P→ 1. (43)

Proof: When nR → ∞, ρh → 0 such that λ tends to the
minimum λ∗. It further yields Uc(θ,λ) → (

θe1−θ)tnR . Once
again, by using (40), we can complete the proof.

Theorem 6: If the entries in each column of the virtual
channel power matrix � are identical, that is, ψi1, j = ψi2, j ,
1 ≤ i1, i2 ≤ nR , for every j (note that the entries in each row
are not necessarily same), then the distance metric ‖dH,n‖2

F
has the hardening property, i.e., as nR → ∞,

H
(∥
∥dH,n

∥
∥2

F

)
P→ 1. (44)

Proof: Since ψi1, j = ψi2 , j , 1 ≤ i1, i2 ≤ nR , for every j ,
we can get

∑nT
j=1ψi, j

∣
∣d̃ j
∣
∣2 + N0

η
= 1

nR
, (45)

and γ = nR
(
1 − 1

θ

)
. The Chernoff bound can be rewritten as[

Be
(
1 − 1

θ

)]nR that approaches 0 as nR → ∞.
Theorems 4, 5, and 6 show that the hardening phenomenon

is not peculiar to channel propagation, but it also occurs
in other type of metrics as well. For example, the normal-

ized distance metric ‖DH,W‖2
F

EH,W
[‖DH,W ‖2

F

] converges in probability

to 1, as the number of receive antennas nR increases, where
EH,W

[‖DH,W ‖2
F

] = nRρh‖D‖2
F + tnR N0. This phenom-

enon is called distance hardening and formulated by virtue
of the evaluation function H . Additionally, the Chernoff
bounds given by Theorems 1, 2, and 3 help to quantify
the convergence behavior of P

(∣∣
∣H
(∥
∥DH,W

∥
∥2

F

)
− 1

∣
∣
∣ ≥ ε

)

and P
(∣∣
∣H
(∥
∥dH,n

∥
∥2

F

)
− 1

∣
∣
∣ ≥ ε

)
. Due to space limitations,

we neglect the detailed discussion of these aspects.

B. Discussion

The formulation of distance hardening in this section
together with the tail probability analysis presented in the
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previous section, allow us to gain insights into the statistics
of
∥
∥DH,W

∥
∥2

F and ‖dH,n‖2
F . This could have implications for

space-time code design [30], [36], MIMO detection [3], [31],
and mmWave MIMO systems [22], [23], [26].

1) Space-Time Code Design: The design criteria for space-
time codes are typically based on connecting the PEP behavior
of a code for a certain channel under a given decoding
algorithm with the specific metric [29], [30], where summing
the PEPs gives rise to an upper bound on the average proba-
bility of error [27], [29]. We now propose a new space-time
decoding strategy and its related criterion of code design. For
convenience, in what follows, let X1, X2, X3 ∈ C denote three
possible transmitted codewords.

Proposed Decoding Strategy: When considering the MIMO
system model of (2), the space-time decoding problem can be
solved by finding a codeword X̃ ∈ C that satisfies

∥
∥Y − H X̃

∥
∥2

F

nRρhd2
min + tnR N0

≤ β, (46)

where d2
min � minX1,X2∈C ‖X2 − X1‖2

F and β is an adjustable
parameter.

For this strategy, we can get the following result.
Corollary 6: Assume that a space-time code is properly

designed such that ρhd2
min ≥ s, and its decoding uses the

strategy (46) with β = N0 log (1/N0), where log(·) is the
logarithm to either base e or base 2. Then, the probability of
transmitting X1 and deciding in favor of X2 at the decoder
(the PEP), denoted by P(X1 → X2), satisfies

lim
N0→0

log P(X1 → X2)

log N0
≥ snR . (47)

Thus a diversity of snR can be achieved.
Sketch of Proof: We assume the received signal for X1 is

Y1 (= H X1 + N) and �X � X1 − X2. It holds that

P(X1 → X2) ≤ P

(
‖Y1 − H X1‖2

F

nRρhd2
min + tnR N0

≥ β

)

+ P

(
‖Y1 − H X2‖2

F

nRρhd2
min + tnR N0

≤ β

)

. (48)

Here, using Theorem 1, we have

P

(
‖Y1 − H X1‖2

F

nRρhd2
min + tnR N0

≥ β

)

≤ P

(
‖Y1 − H X1‖2

F

tnR N0
≥ β

(
ρhd2

min

t N0

))

≤ Uc

(

β

(
ρhd2

min

t N0

)

, γ , σ̃X1−X1 , N0

)

, (49)

where σ̃X1−X1 is an empty vector because ‖Y1 − H X1‖2
F =

‖H(X1 − X1)+ N‖2
F in which X1 − X1 leads to an all-zero

matrix D for Theorem 1, and

P

(
‖Y1 − H X2‖2

F

nRρhd2
min + tnR N0

≤ β

)

≤ P

(
‖Y1 − H X2‖2

F

nRρh ‖�X‖2
F + tnR N0

≤ β

)

≤ Uc
(
β, γ , σ̃X1−X2 , N0

)
, (50)

where the elements of σ̃X1−X2 are obtained by setting D =
�X in Theorem 1. If β = N0 log (1/N0), then β < 1 and

β

(
ρh d2

min
t N0

+ 1

)
> 1 as N0 → 0. After some mathematical

manipulation, we can obtain

lim
N0→0

log Uc

(
β

(
ρh d2

min
t N0

)
, γ , σ̃X1−X1 , N0

)

log N0
≥ nRρh ‖�X‖2

F ,

(51)

lim
N0→0

log Uc
(
β, γ , σ̃X1−X2, N0

)

log N0
≥ snR . (52)

Then if ρhd2
min ≥ s, (47) follows, because ‖�X‖2

F ≥ d2
min.

Note that, being the number of nonzero singular values of
�X , s is equal to the rank of �X .

From the preceding analysis, we arrive at the following
proposed design criterion of space-time code for the decoding
strategy (46). To obtain a diversity of snR , the minimum rank
of �X has to be s, and ρhd2

min ≥ s, over all distinct pairs of
codewords X1 and X2.

According to the rank criterion of space-time code
design [30], a diversity of snR can be achieved by the
ML decoder if the minimum rank of all possible �X is s.
Compared to the ML decoder, the decoding strategy (46)
requires an extra condition, ρhd2

min ≥ s, to attain the same
diversity. The advantage of the strategy (46) is that the
decoding immediately terminates once a codeword is found to
meet the condition (46), but the ML decoding has to perform
a brute-force search until all the codewords in C have been
verified. At first glance, there is some analogy between the
relationship in (46) and the idea of sphere decoding. However,
sphere decoding still has to search all candidates that lie in
a sphere [3] and (46) needs to find just one candidate. This
means that we might be able to realize the very low complexity
algorithm of space-time decoding with near-ML performance
by combining the decoding strategy (46) with some depth-
first [3] or local search approaches [31].

To obtain the final solution of the low complexity decoding
algorithm based on our proposed decoding strategy and the
related space-time code based on the proposed design criterion
is still not a simple task. However, (46) and Corollary 6 allow
us to exploit some results on the depth-first or local search
based decoding algorithms [3], [31] and the space-time codes
that have certain Euclidean distance properties, such as spher-
ical codes [29]. This could be an interesting future study.

2) MIMO Detection: According to the classical approach
of analyzing any type of modulation or coding schemes,
the distance properties of the signals under consideration are
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Fig. 2. Plot of γ as a function of θ for different n R with fixed σ j , 1 ≤ j ≤ 2,
and N0.

Fig. 3. Plot of γ as a function of θ for different N0 with fixed σ j , 1 ≤ j ≤ 2,
and n R .

always worth studying [29]. As far as MIMO encoding is con-
cerned [31], this study reveals a connection between code dis-
tances before and after MIMO propagation, i.e., ‖X1 − X2‖2

F
and ‖H (X1 − X2)‖2

F (or ‖H (X1 − X2)+ N‖2
F ), respec-

tively. The results obtained might potentially find applications
in MIMO detection.

First, we can develop new post-processing functionality
for MIMO detection to reduce the computational complex-
ity or improve the performance of the receive links. For
example, the theoretical result of Corollary 2 has inspired the
design of a functionality that can verify whether a solution
obtained by MIMO detection is full-diversity [28].

Second, many local search algorithms, such as likelihood
ascent search (LAS) and reactive tabu search (RTS), have been
designed in large MIMO detection domains [31]. Typically,
a local search starts with an initial solution and then attempts
to find better solutions by searching in the neighborhoods
defined by certain a neighborhood function [31]. In practice,

Fig. 4. Tail probability of
∥
∥DH,W

∥
∥2

F
n Rρh‖D‖2

F +tn R N0
vs its Chernoff bound.

Fig. 5. Instantaneous rates of convergence for the tail probability of∥
∥DH,W

∥
∥2

F
n Rρh‖D‖2

F +tn R N0
and its Chernoff bound.

local search algorithms are known to converge quickly and
find high-quality solutions. This study provides an intuitive
explanation for the efficiency of local search algorithms. The
neighboring codewords of a transmitted code are more likely
to become the neighbors of the corresponding received code,
which can be observed from a result as follows.

Corollary 7: Let X1, X2, and X3 be three codewords in
MIMO encoding. We define l12 � ‖X1 − X2‖2

F , l13 �
‖X1 − X3‖2

F , and �l � l13 − l12. Assuming that X2 stays
closer to X1 than X3 (i.e., l12 < l13) results in

P
(
‖H (X1 − X2)‖2

F ≥ ‖H (X1 − X3)‖2
F

)

≤ Uc

(
1 + �l

2l12
,λX1−X2

)

+ Uc

(
1 − �l

2l13
,λX1−X3

)
, (53)
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Fig. 6. Numerical results for Corollary 5.

where the elements of λX1−X2 and λX1−X3 are obtained
by setting D = X1 − X2 and D = X1 − X3
in Theorem 2, respectively. Furthermore, the probability
P
(‖H (X1 − X2)‖2

F ≥ ‖H (X1 − X3)‖2
F

)
can be arbitrarily

small as long as nR is large enough. The reason is that if
X1, X2, X3, ρh , and N0 are fixed, this probability exponen-
tially decays as nR grows.

Sketch of Proof: First, the event ‖H (X1 − X2)‖2
F ≥

‖H (X1 − X3)‖2
F actually belongs to the union of two events:

‖H (X1 − X2)‖2
F ≥ nRρh

(
l12 + �l

2

)
and ‖H (X1 − X3)‖2

F ≤
nRρh

(
l13 − �l

2

)
. Note here that l12 + �l

2 = l13 − �l
2 .

This can lead to (53). Second, according to Corollary 4,
if X1, X2, X3, ρh , and N0 are fixed, both λX1−X2 and λX1−X3

will not vary with nR . Hence, from (31), it follows that
Uc

(
1 + �l

2 l12
,λX1−X2

)
and Uc

(
1 − �l

2 l13
,λX1−X3

)
tend to 0

at exponential rates as nR increases, which concludes the
proof.

3) mmWave MIMO Systems: The Chernoff bound for the
tail probability of

∥
∥dH,n

∥
∥2

F , as given in Theorem 3, is applica-
ble to mmWave MIMO systems with the model (4). For these
systems, Theorem 6 presents a simple case in which distance
hardening can be observed. However, Theorem 6 cannot

have a wide significance for clarifying the distance hard-
ening phenomenon in mmWave MIMO systems, since its
assumption is quite special and it does not take the spar-
sity of mmWave MIMO channels into consideration. Recent
studies [13], [22], [23] show that mmWave MIMO channels
are likely to be sparse, where only a few degrees of freedom
are dominant to contribute towards channel capacity. This
sparsity makes the formulation of the hardening property
complicated. It should be interesting to investigate the distance
hardening in mmWave MIMO systems with channel sparsity.
We do not present such an investigation in this paper due to
space limitation, which we leave for future work.

V. NUMERICAL STUDIES

This section is devoted to illustrating the analytical results
obtained previously via numerical studies.

Figures 2 and 3 illustrate the curves of γ as a function
of θ , with the same parameters as nT = 2 (σ1 = σ2 = 1),
ρh = 1/nR , and t = 8 but with different nR and N0, respec-
tively. This illustrates the relationship of (18) and confirms
the statements in Corollary 1 such as the monotonicity of
the implicit function γ (θ) and the special point of position,
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i.e., γ = 0 at θ = 1. Figures 2 and 3 also show how nR

and N0 affect the relationship between γ and θ , respectively.
A surprise is that the relationship between γ and θ tends
to be gradually fixed as N0 becomes sufficiently large since,
as we can see, the curves of γ with N0 = 0.5 and N0 = 50
almost overlap each other in Figure 3. However, this is still
reasonable since the relationship between γ and θ will tend

to
(
ξ

N0
− γ

)−1 = θ
tnR

if N0 grows relatively large such that

σ 2
j in (18) can be ignored.
To demonstrate the tightness of the Chernoff bound on the

tail probability of ‖DH,W‖2
F

nRρh‖D‖2
F +tnR N0

, we present the examples

in Figures 4 and 5, where the system parameters are set as
nT = 4, ρh = 1/nR , and t = 8. Figure 4 straightforwardly

compares the tail probability of ‖DH,W‖2
F

nRρh‖D‖2
F+tnR N0

with its

Chernoff bound, from which we observe that there exists a
gap between every tail probability and its bound. Relatively
speaking, this gap is not very significant for large MIMO
systems because, to reach the same value for curves of the
tail probability and its bound, the difference between the
corresponding nR is less than 3. The above gap seems to
be roughly constant which implies that the rate of conver-
gence of the Chernoff bound approximately coincides with
that of the tail probability if the rate of convergence is

defined as (1). Since P

(
‖DH,W ‖2

F
nRρh‖D‖2

F +tnR N0
≥ θ

)
for θ > 1,

P

(
‖DH,W ‖2

F
nRρh‖D‖2

F +tnR N0
≤ θ

)
for θ < 1, and Uc(θ,λ) are all

related to nR , we can evaluate their rates of convergence with
increasing nR by replacing k by nR in (1) and constructing
the sequences as {ẋnR }, {x̄nR }, and {x̃nR }, where

ẋnR = P

(
‖DH,W ‖2

F

nRρh‖D‖2
F + tnR N0

≥ θ

)

, (54)

x̄nR = P

(
‖DH,W ‖2

F

nRρh‖D‖2
F + tnR N0

≤ θ

)

, (55)

and x̃nR = Uc(θ,λ).
Computing the rate of convergence r is hard in simulations

since it is almost impossible to obtain the values of xnR+1 and
xnR with nR = ∞ as the definition (1) require. Thus, Figure 5
plots the instantaneous rates for {ẋnR }, {x̄nR }, and {x̃nR }, which
can be regarded as the approximation of r . It is clear from
Figure 5 that the instantaneous rates of convergence for the tail

probability of ‖DH,W‖2
F

nRρh‖D‖2
F +tnR N0

and its corresponding Chernoff

bound stay close to each other and approach some fixed value.
The numerical results for Corollary 5 that are concerned

with the extreme point of Chernoff bound are illustrated by
Figure 6. Within the simulation, the parameters are set as
nT = 2, nR = 5, t = 2, ρh = 1/nR , and N0 = 1. Since
nT = 2 and t = 2 such that s = min{nT , t} = 2, we shall have
‖D‖2

F = σ 2
1 + σ 2

2 . In Figure 6, loge Uc(θ,λ) is shown as the
function of σ1 and σ2, where λ1 and λ2 that constitute λ, can be
computed from σ1 and σ2 according to (25). It can be observed
from Figure 6 that loge Uc(θ,λ) reaches the minimum value
−0.9458, −0.2314, −1.931, and −5.04 at |σ1| = |σ2| for
θ = 1.5, θ = 0.8, θ = 0.5, and θ = 0.3, respectively.

It shall be noted that the relationship |σ1| = |σ2| means that
λ1 = λ2 = 1 − 1

θ . Thus, these simulation results conform to
Corollary 5. Likewise, according to Corollary 5, the solution
λ1 = λ2 = 1 − 1

θ is proven to attain the global minimum if
0 < θ ≤ 1/2, whereas it seems that such a solution can also
yield the global minimum for θ > 1/2 as shown in Figure 6.

VI. CONCLUSION AND FUTURE RESEARCH IMPLICATIONS

The research on an asymptotic property in large MIMO
systems (the distance hardening phenomenon) is presented in
this paper. As we have seen, the large number of antennas
and the resulting channel hardening make the analysis and
design of large MIMO systems more convenient in previous
works. The elementary concept of the hardening phenomenon
is particularly useful in describing the asymptotic property that
we report in this study.

In fact, to clearly reveal and properly describe this property,
we first derive the Chernoff bounds on the tail probabilities
of the distance metrics of interest (see Theorems 1-3). Then,
we formulate the asymptotic property by utilizing a general-
ized definition for the hardening phenomena that originates
from a formal definition of the well-known channel hardening
(see Theorems 4-6). For the Chernoff bound given in the two
most important theorems of this study (Theorems 1 and 2),
several related properties are provided and extreme point
analysis is performed in order to clarify its mathematical
characteristics. It is also shown that the expressions of Cher-
noff bound can be extended to MIMO channels with transmit
correlation (Corollary 3).

It appears that the asymptotic property reported in this paper
may have potential applications in the design of space-time
code for large MIMO systems and the design of new post-
processing functionality for MIMO detection. First, we pro-
pose a new space-time decoding strategy and its related
criterion of code design (the most important result therein,
Corollary 6, might finally guide us to a promising solution of
low complexity decoding algorithms based on our proposed
decoding strategy and its related space-time code design).
Second, some theoretical result (Corollary 2) has inspired the
design of a full-diversity solution identification that can verify
whether a solution obtained by MIMO detection is of full-
diversity. This study provides an intuitive explanation for the
efficiency of local search algorithms, which can be observed
from Corollary 7. A more comprehensive analysis and its
extension to analyzing the error probability performance of
local search algorithms might be an interesting future work,
because to the best of the author’s knowledge, it still lacks
such an analysis. For mmWave MIMO systems, this paper
provides a very simple example of the distance hardening
phenomenon. While it still lacks an in-depth analysis of the
distance hardening for mmWave MIMO systems with channel
sparsity, which will be our future work.

APPENDIX A

Proof of Lemma 1:
By applying the singular value decomposition (SVD),

we get D = U�V H , where U and V are nT × nT and t × t
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unitary matrices, respectively, � is a diagonal nT × t matrix
which is defined as � � diag{σ1, σ2, · · · }. Without loss of
generality, we assume that D has s singular values such that
σ1, · · · , σs ≥ 0, where s = min{nT , t}. This further implies

‖D‖2
F = Tr

(
�H�

)
=

s∑

j=1

σ 2
j . (56)

For (8), it establishes that

‖H D + W‖2
F =

∥
∥
∥(HU� + W V ) V H

∥
∥
∥

2

F

= ‖HU� + W V‖2
F = ∥

∥H̃� + W̃
∥
∥2

F , (57)

where H̃ � HU and W̃ � W V are defined for notational
simplicity. From [19, Lemma A.1], it follows that W̃ d= W ,
and ‖W̃‖2

F = Tr(W̃ H W̃) is chi-squared distributed with 2nRt
degrees of freedom.

By assuming that H̃ = [
h̃i, j

]
has columns h̃1, · · · , h̃nT and

W̃ = [
w̃i,k

]
has columns w̃1, · · · , w̃t , we shall get the below

equivalent expression of ‖DH,W ‖2
F as

‖DH,W ‖2
F = ‖H D + W‖2

F = ∥
∥H̃� + W̃

∥
∥2

F

=
s∑

j=1

u j +
t∑

k=s+1

vk , (58)

where u j �
(
σ j h̃ j + w̃ j

)H (
σ j h̃ j + w̃ j

)
, and vk � (w̃k)

H w̃k .
Note that, the terms vk will disappear if nT ≥ t such that
s = min{nT , t} = t .

Lemma A.1:

(
ρhσ

2
j

2 + N0
2

)−1

u j ∼ χ2
2 nR

, and
(

N0
2

)−1
vk ∼

χ2
2 nR

as long as s < t .
Proof: The sum of two statistically independent Gaussian

random variables is also a Gaussian random variable; hence,
we can get σ j h̃i, j + w̃i, j ∼ CN

(
0, ρhσ

2
j + N0

)
and w̃i,k ∼

CN (0, N0).
Lemma A.2: If t > nT , then

(
N0

2

)−1 t∑

k=s+1

vk ∼ χ2
2(t−s)nR

. (59)

APPENDIX B

Proof of Theorems 1 and 3:

Obviously, the tail probability of ‖DH,W‖2
F

nRρh‖D‖2
F +tnR N0

is decided

by the statistics of
∥
∥DH,W

∥
∥2

F . Due to Lemma 1,
∥
∥DH,W

∥
∥2

F
can be treated as the random variable: y = 1

ϕ

∑N
i xi , where xi ,

1 ≤ i ≤ N , are independent random variables, xi

α2
i

∼ χ2
2 is chi-

squared distributed with 2 degrees of freedom with E [xi ] =
2α2

i , and ϕ = ∑N
i=1 E [xi ] = 2

∑N
i=1 α

2
i .

For y, the following relations hold:

E
[
yeγ y] = 1

ϕ

N∑

i=1

E

[
xi exp

(
γ

ϕ
xi

)]
E

⎡

⎣exp

⎛

⎝γ
ϕ

∑

j �=i

x j

⎞

⎠

⎤

⎦

in which E
[
xi exp

(
γ
ϕ xi

)]
= 2α2

i

(
1 − 2γ α2

i
ϕ

)−2

, and

E
[
eγ y] = E

[

exp

(
γ

ϕ

N∑

i=1

xi

)]

=
N∏

i=1

E

[
exp

(
γ

ϕ
xi

)]

in which E
[
exp

(
γ
ϕ xi

)]
=
(

1 − 2γ α2
i

ϕ

)−1

where it is required

that γ < ϕ

2α2
i

such that

(
1 − 2γ α2

i
ϕ

)−1

> 0.

The Chernoff bound on the upper tail probability P(y ≥ θ)
for θ > E [y] can be obtained as [35]

P(y ≥ θ) ≤ e−γ θ
N∏

i=1

(

1 − 2γα2
i

ϕ

)−1

, (60)

where γ is the solution of the equation E
[
yeγ y

] = θE
[
eγ y
]

which can be simplified to the form as

N∑

i=1

(
ϕ

2α2
i

− γ

)−1

= θ. (61)

In a similar manner, the Chernoff bound on the lower tail
probability P(y ≤ θ) for θ < E [y] can be derived as [35]

P(y ≤ θ) ≤ e−γ θ
N∏

i=1

(

1 − 2γα2
i

ϕ

)−1

, (62)

where γ is also determined by (61).
Since the relationships in (60) and (62) apply to

∥
∥DH,W

∥
∥2

F ,
Theorem 1 can, therefore, be proved by employing Lemma 1,
Lemma A.1, and Lemma A.2. Moreover, using a similar
procedure to analyze

∥
∥dH,n

∥
∥2

F can verify Theorem 3.

APPENDIX C

Proof of Lemma 2:
Along similar lines as Lemma 1, we obtain ‖dH,n‖2

F =
‖Hd + n‖2

F = ∥
∥Hv d̃ + ñ

∥
∥2

F , where ñ � AH
r n =

[
ñ1, · · · , ñnR

]T
. Furthermore, since Ar is unitary, ñ

d= n
owing to [19, Lemma A.1].

Lemma C.1: Assuming that Hv = [
hi, j,v

]
, then

‖dH,n‖2
F = ‖Hd + n‖2

F =
nR∑

i=1

κi , (63)

where κi =
∣
∣
∣
∑nT

j=1 hi, j,v d̃ j + ñi

∣
∣
∣
2
. Furthermore, hi, j,v and

ñi are independent complex Gaussian random variables such
that

⎛

⎝
nT∑

j=1

ψi, j
∣
∣d̃ j
∣
∣2

2
+ N0

2

⎞

⎠

−1

κi ∼ χ2
2 . (64)
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APPENDIX D

Convexity and Concavity Analysis of Ce(λ) and loge Be(λ):
Lemma D.1: Ce(λ) is a convex function in the interval

(−∞, 1).
Proof: If a + b = 1 with 0 ≤ a, b ≤ 1, for any

x, y < 1, we have Ce(ax + by) − (aCe(x)+ bCe(y))=
−ab(x−y)2

[1−(ax+by)](1−x)(1−y) < 0. This completes the proof.

Lemma D.2: The function loge Be(λ) is convex in the
interval (−∞,−1], and is concave in the interval [−1, 1).

Proof: Since C′
e(λ) = 1

(1−λ)2 and C′′
e (λ) =

2
(1−λ)3 , we obtain loge Be(λ) = loge (1 + Ce(λ)) − Ce(λ),[
loge Be(λ)

]′ = − λ
(1−λ)2 ,

[
loge Be(λ)

]′′ = − 1+λ
(1−λ)3 . The result

can be validated because λ < −1 yields
[
loge Be(λ)

]′′
> 0 that

implies the convexity of loge Be(λ), whereas λ > −1 leads to[
loge Be(λ)

]′′
< 0 so that loge Be(λ) is concave.

APPENDIX E

Proof of Corollary 5:
Before the analysis is performed, for the sake of simplicity,

we define

γ (x) � nR

θ

⎡

⎣(t − s)Ce(x0)+
s∑

j=1

Ce(x j )

⎤

⎦,

f1(x) �

⎡

⎣γ (x)
nR

− (t − s)x0 −
s∑

j=1

x j

⎤

⎦, (65)

where x = [x0 x1 · · · xs] ∈ S

s+1 and S

s+1 � (−∞, 1)s+1.
Although the Chernoff bound can be expressed in either

Uc(θ,λ) or Uc(θ, γ , σ̃ , N0), our analysis will make use of
Uc(θ,λ) because Uc(θ,λ) is more mathematically tractable
than Uc(θ, γ , σ̃ , N0) that has too many parameters such as γ ,
σ̃ , and N0. In order to find the minimum value of Uc(θ,λ)
for a given θ , let us consider the optimization problem

minimize
x∈Ss+1

loge Uc(θ, x)

subject to f1(x) = 0. (66)

where S

s+1 is the constraint set, the used objective function is
loge Uc(θ, x) that is more convenient for mathematical calcu-
lation than Uc(θ, x). It is intuitively obvious that minimizing
Uc(θ, x) is equivalent to minimizing loge Uc(θ, x) because the
natural logarithm is a strictly increasing function.

The objective function loge Uc(θ, x) is not convex in the set
S

s+1, and the equality constraint function f1(x) is not affine,
thus resulting in a nonconvex problem. To the best of our
knowledge, such a problem may admit a local minimum, if it
can fortunately be handled by means of Lagrangian duality,
KKT condition, and bordered Hessian.

Introducing a dual variable λ ∈ R, we can form the
Lagrangian function

L(x, λ) = loge Uc(θ, x)+ λ f1(x), (67)

where loge Uc(θ, x) = ∑s
j=1 nR loge Be(x j ) + (t − s)

nR loge Be(x0).

The KKT condition for a solution of (66) to be the local
optimal is written as

f1(x∗) = γ (x∗)
nR

− (t − s)x∗
0 −

∑

1≤ j≤s

x∗
j = 0, (68)

λ∗ ≥ 0, (69)

λ∗ f1(x∗) = 0, (70)

∇ loge Uc(θ, x∗)+ λ∗∇ f1(x∗) = 0. (71)

Here the condition (70) is known as complementary slackness,
which can be interpreted as λ∗ > 0 ⇒ f1(x∗) = 0, or,
f1(x∗) < 0 ⇒ λ∗ = 0.

Consequently, the solution to the problem (66), that satisfies
the KKT condition (68)-(71), can be obtained as

x∗
0 = x∗

1 = · · · = x∗
s = 1 − 1

θ
,

γ (x∗) = tnR

(
1 − 1

θ

)
,

λ∗ = θnR, (72)

for both θ > 1 and 0 < θ < 1, in which case

loge Uc(θ, x∗) = tnR

[
loge Be

(
1 − 1

θ

)]
= tnR loge

(
θe1−θ),

or, equivalently, Uc(θ, x∗) = [
Be
(
1 − 1

θ

)]tnR = (
θe1−θ)tnR .

Furthermore, the bordered Hessian satisfies that [38]

(−1)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∂2 L(x∗, λ∗)
∂x0∂x0

· · · ∂2 L(x∗, λ∗)
∂x0∂xs

∂ f1(x∗)
∂x0

...
. . .

...
...

∂2 L(x∗, λ∗)
∂xs∂x0

· · · ∂2 L(x∗, λ∗)
∂xs∂xs

∂ f1(x∗)
∂xs

∂ f1(x∗)
∂x0

· · · ∂ f1(x∗)
∂xs

0

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

> 0,

(73)

which can be verified by letting

A11 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

∂2 L(x∗, λ∗)
∂x0∂x0

· · · ∂2 L(x∗, λ∗)
∂x0∂xs

...
. . .

...

∂2 L(x∗, λ∗)
∂xs∂x0

· · · ∂2 L(x∗, λ∗)
∂xs∂xs

⎤

⎥
⎥
⎥
⎥
⎥
⎦
, (74)

A21 = AT
12 =

[
∂ f1(x∗)
∂x0

· · · ∂ f1(x∗)
∂xs

]
, A22 = [

0
]
, and

using the following Lemma:

Lemma E.1: Suppose that P =
[

A11 A21
A12 A22

]
, where A11

and A22 are m × m and n × n square matrices, respectively.
If A11 is invertible, then |P| = |A11| ·

∣
∣
∣A22 − A21 A−1

11 A12

∣
∣
∣.

Proof: Since A11 is invertible, the below equality of block
matrix multiplication holds:
[

A11 A21
A12 A22

] [
Em −A−1

11 A12
O En

]

=
[

A11 OT

A12 A22 − A21 A−1
11 A12

]
, (75)
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where Em and En are m × m and n × n identity matrices,
respectively, and O denotes n × m matrix of zeros.

Thus far, we have validated that the solution x∗ in (72) gives
the strict local maximum, loge Uc(θ, x∗), see (73) for detailed
expression, because the KKT condition (68)-(71) is the nec-
essary condition for the extremum of loge Uc(θ, x) and (73)
is the sufficient condition for the strict local maximum.

Modifying the constraint set in (66) from S

s+1 to T

s+1 �
(−∞,−1]s+1, we have the below problem

minimize
x∈Ts+1

loge Uc(θ, x)

subject to f1(x) = 0, (76)

where loge Uc(θ, x) is convex function in the convex set T

s+1.
The equality constraint function f1(x) is not affine. This
means (76) is still a nonconvex problem. However, the relaxed
form of (76) becomes a convex problem, which is expressed
as

minimize
x∈Ts+1

loge Uc(θ, x)

subject to f1(x) ≤ 0. (77)

The KKT condition for the global optimal solution of (77)
is then written as [37]

f1(x∗) = γ (x∗)
nR

− (t − s)x∗
0

−
∑

1≤ j≤s

x∗
j ≤ 0, (78)

λ∗ ≥ 0, (79)

λ∗ f1(x∗) = 0, (80)

∇ loge Uc(θ, x∗)+ λ∗∇ f1(x∗) = 0. (81)

We find that, the solution x∗ and λ∗ in (72) can satisfy this
KKT condition as well. In case of 0 < θ ≤ 1/2, it holds true
that x∗ ∈ T

s+1, such that x∗ and λ∗ give rise to the global
minimum, loge Uc(θ, x∗) as expressed in (73), for the convex
problem (77) since ∇2 loge Uc(θ, x∗) ≥ 0 in the constraint set
T

s+1.
It shall be emphasized that, {x : f1(x) = 0} ⊂ {x :

f1(x) ≤ 0} and the optimal solution x∗ of the problem (77)
simultaneously satisfies the equality constraint in (76),
i.e., f1(x∗) = 0, such that x∗ is able to minimize loge Uc(θ, x)
in the problem (76) without violating the equality constraint,
i.e., x∗ is the optimal solution of (76) as well; this is the reason
for paying our attention to the problem (77). In summary,
if 0 < θ ≤ 1/2, we can obtain the global minimum of the
problem (76) by directly using that of the relaxed problem
(77), i.e., loge Uc(θ, x∗) in (73).
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