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Abstract—In massive multiple-input multiple-output
(MIMO) systems, it may not be power efficient to have a
pair of high-resolution analog-to-digital converters (ADCs) for
each antenna element. In this paper, a near maximum likelihood
(nML) detector for uplink multiuser massive MIMO systems is
proposed where each antenna is connected to a pair of one-bit
ADCs, i.e., one for each real and imaginary component of the
baseband signal. The exhaustive search over all the possible
transmitted vectors required in the original maximum likelihood
(ML) detection problem is relaxed to formulate an ML estimation
problem. Then, the ML estimation problem is converted into
a convex optimization problem which can be efficiently solved.
Using the solution, the base station can perform simple symbol-
by-symbol detection for the transmitted signals from multiple
users. To further improve detection performance, we also develop
a two-stage nML detector that exploits the structures of both
the original ML and the proposed (one-stage) nML detectors.
Numerical results show that the proposed nML detectors are
efficient enough to simultaneously support multiple uplink users
adopting higher-order constellations, e.g., 16 quadrature ampli-
tude modulation. Since our detectors exploit the channel state
information as part of the detection, an ML channel estimation
technique with one-bit ADCs that shares the same structure with
our proposed nML detector is also developed. The proposed
detectors and channel estimator provide a complete low power
solution for the uplink of a massive MIMO system.

Index Terms—Channel estimators, detectors, massive MIMO
systems, one-bit analog-to-digital converters (ADCs).

I. INTRODUCTION

M ASSIVE multiple-input multiple-output (MIMO) is a
transmission technique for cellular systems that lever-

ages a large number of base station antennas to support many
single antenna users [2]. With enough antennas, massive MIMO
can eliminate inter-user interference completely using matched
beamforming for downlink and matched combining for uplink
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if the base station has full channel state information (CSI).
Because of its simple beamforming and combining structures,
massive MIMO will be beneficial not only for cellular sys-
tems but also for other wireless communication systems, e.g.,
vehicular-to-everything (V2X) communications using many
antennas [3].

There are several practical constraints that are encountered
when implementing massive MIMO systems. Because of the
large number of antennas, it may not be possible to deploy
expensive and powerful hardware with small noise and distor-
tion at the base station. Prior work studied the impact of several
hardware impairments including phase-drifts due to non-ideal
oscillators and distortion noise caused by analog-to-digital con-
vertors (ADCs) for massive MIMO systems. It was shown in
[4]–[6] that having a large number of antennas helps to miti-
gate these hardware impairments, which confirms the benefit of
massive MIMO.

In this paper, we focus on uplink multiuser massive MIMO
systems using extremely low-resolution of one-bit ADCs at the
base station. Because the power consumption by ADCs grows
exponentially with their resolution level [7], [8], using one-bit
ADCs may be a practical way of implementing cost-efficient
and green massive MIMO systems. It is expected that using
one-bit ADCs is particulary beneficial for wideband communi-
cation systems (when properly handling frequency selectivity)
that require high sampling frequency, which will become com-
mon in millimeter wave (mmWave) communication systems
[9]. Adopting one-bit ADCs for uplink massive MIMO, how-
ever, is challenging because of the severe threshold applied to
the received signal.

Using low-resolution ADCs for wireless communications
has been investigated under various assumptions. It was shown
in [10] for one-bit ADCs and in [11] for low-resolution (one
to three bits) ADCs that the capacity maximizing transmit sig-
nals for single-input single-output (SISO) channel are discrete,
which is different from the unquantized output case. It was
shown in [12] that even a low-complexity suboptimal QPSK
detector with one-bit ADC suffers only 1–3 dB signal-to-noise-
ratio (SNR) loss compared to the unquantized case for SISO
channels. In [13], [14], it was shown that oversampling recov-
ers some of the loss in the SISO channel capacity incurred
by one-bit quantization. The mutual information of the MIMO
channel with quantized output was studied without optimizing
input distribution in [15] for one-bit ADCs and in [16], [17] for
low-resolution ADCs. The input distributions were optimized
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to maximize the achievable rate of the quantized MIMO
channel using one-bit ADCs in [18], [19]. Interestingly, the
impact of having low-resolution ADCs is not that severe. For
example, [17] showed that the rate loss due to using one-bit
ADCs is 1.5793 bits/s for 4×4 MIMO with a quadrature phase
shift keying (QPSK) constellation. It was proven in [18] that
the mutual information of MIMO with one-bit ADCs is only
2/π times smaller compared to that of the unquantized MIMO
case in the low SNR regime. With an optimized threshold, this
gap can vanish in the low SNR regime [20]. In [21], digital and
analog combiners using low-resolution ADCs were compared
in terms of the achievable rate for point-to-point mmWave sys-
tems where the derived achievable rates were tight only for the
low SNR regime.

The aforementioned work on quantized MIMO [15]–[21]
was restricted to point-to-point communications and focused
on studying capacity or designing optimal transmit signals for
quantized channel outputs using low-resolution ADCs without
proposing specific signal processing algorithms for detecting
the received signals. For point-to-point communications with
low, but more than one-bit resolution (e.g., 2-3 bits) ADCs,
a modified minimum mean square error (MMSE) detector
was proposed in [22] and later extended to an iterative deci-
sion feedback equalizer in [23]. It is possible to extend the
iterative detection technique developed in [23] to multiuser
scenarios. The iterative detector proposed in [23] exploits
the assumption of nearest neighbor error of adopted con-
stellation, which may not be effective for practical channel
models.

In this paper, we propose a practical near maximum like-
lihood (nML) detector for uplink multiuser massive MIMO
systems with one-bit ADCs. The complexity of the maxi-
mum likelihood (ML) detector grows exponentially with the
number of users, which makes it difficult to use for massive
MIMO with multiple users. The proposed nML detector, how-
ever, can be implemented with standard convex optimization
techniques with marginal performance degradation when the
number of receive antennas at the base station is large, and
supports multiple users with arbitrary constellation sizes. To
further improve performance, we also propose a two-stage nML
detector, which exploits the structures of both the original ML
detector and the one-stage nML detector. Numerical results
show that, with marginal additional complexity, the two-stage
nML detector can significantly improve the detection perfor-
mance and achieve almost the same performance with the
original ML detector.

There are several recent papers on massive MIMO with
low-resolution ADCs. It was shown in [24] and [25] that
linear detectors with one-bit ADCs work well for multiuser
scenarios with QPSK and 16 quadrature amplitude modula-
tion (QAM) constellations, respectively. An uplink multiuser
massive MIMO detector was developed in [26] but the detec-
tor was based on several bit ADCs and developed for the
spatial modulation transmission technique [27]. For general
symbol transmission in uplink massive MIMO systems with
one-bit ADCs, a message-passing algorithm-based multiuser
detector was proposed in [28] for special constellation struc-
tures. The detector was later extended to arbitrary constellations

in [29]. Our numerical studies show that our nML detector
works well with both perfect CSI and channel direction infor-
mation (CDI) while the detector in [29] experiences the per-
formance degradation with CDI when SNR is low. In [30], a
multiuser detector using low-resolution ADCs was developed
based on convex optimization, which has a similar structure
with our nML detector. The convex optimization process in
[30], however, is optimized separately for each constellation
while our nML detector is able to detect arbitrary constella-
tions without any modification. The mixed use of one-bit and
high-resolution ADCs in massive MIMO was analyzed in [31],
where it was found that using one-bit ADCs with a few high-
resolution ADCs can achieve similar performance with the
unquantized case. Joint channel and data estimation using low-
resolution ADCs was proposed in [32]. While the performance
was comparable to the case with perfect CSI, the computational
complexity of the joint technique [32] may still be too high to
be affordable in a commercial system.

Since our detector exploits CSI as part of the detection,
we also propose an ML channel estimation technique using
one-bit ADCs that is in line with our proposed nML detec-
tors. There has been related work on channel estimation with
low-resolution ADCs [33] and with one-bit ADCs [34]–[38].
In [34], [35], the expectation-maximization (EM) algorithm
was exploited to estimate channels. The problem solved in
[34], [35], however, is not convex, and the EM algorithm may
converge to a local optimal in the high SNR regime. The
work [36], [37] used generalized approximate message passing
(GAMP) algorithms for channel estimation with one-bit ADCs
where the techniques heavily relied on the sparsity of the target
vector. While the work in [35], [37] was not able to estimate the
norm of the channel due to the simple zero-threshold setting for
one-bit quantization, [36] adopted asymmetric one-bit quantiz-
ers to deliver the the norm information of the target vector. Our
ML channel estimator, which is an extension of [38], is shown
to estimate not only the channel direction but also the channel
norm and does not make an assumption about sparsity in the
channel.

Our contributions are summarized as follows.
• We propose an nML detector for uplink multiuser mas-

sive MIMO systems. The proposed nML detector is based
on the ML detector developed for distributed reception
in [39]. We show that the two problems, i.e., distributed
reception and multiuser detection, are essentially the
same problem, which makes it possible to exploit the
detectors from [39] for our multiuser detection problem.
The complexity of the ML detector in [39], however,
grows exponentially with the number of uplink users,
which prevents its use in massive MIMO with many users.
We reformulate the ML detector in [39] to derive an ML
estimator and convert the ML estimation problem into a
convex problem. Therefore, we can rely on efficient con-
vex optimization techniques to obtain an ML estimate and
perform symbol-by-symbol detection based on the ML
estimate.

• We implement a two-stage nML detector to further
improve the detection performance. The two-stage nML
detector exploits the structure of the original ML detector
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with the reduced candidate set constructed by the pro-
posed (one-stage) nML detector. Numerical results show
that the two-stage nML detector improves the detec-
tion performance significantly in the high SNR regime
and achieves similar performance with the original ML
detector.

• We derive the exact probability that two different transmit
vectors (after they have passed through the channel and
noise is added) result in the same quantized received sig-
nal with one-bit ADCs in a certain condition. The result
shows the relationship between the probability and the
numbers of antennas and users, where the probability of
having the same quantized outputs goes to zero as the
number of antennas goes to infinity.

• We propose an ML channel estimator that has the same
structure with the proposed nML detector. The proposed
estimator can estimate the direction and norm of the chan-
nel more accurately than other channel estimators using
one-bit ADCs. Because of the similar structure, it is pos-
sible to implement both the nML detector and the ML
channel estimator using the same algorithm.

The paper is organized as follows. We describe our system
model using one-bit ADCs in Section II. In Section III, we
briefly discuss the detectors which were originally developed
for distributed reception in [39]. Then, we propose our nML
detectors and present the asymptotic analyses in Section IV. We
propose an ML channel estimator in Section V. In Section VI,
we evaluate the proposed techniques by simulations, and the
conclusion follows in Section VII.

Notation: Lower and upper boldface letters represent col-
umn vectors and matrices, respectively. ‖a‖ is used to denote
the �2-norm of a vector a, and AT, A∗, A† denote the trans-
pose, Hermitian transpose, and pseudo inverse of the matrix
A, respectively. Re(b) and Im(b) represent the real and com-
plex part of a complex vector b, respectively. 0m is used for
the m × 1 all zero vector, and Im denotes the m × m identity
matrix. Cm×n and R

m×n represent the set of all m × n complex
and real matrices, respectively.

II. SYSTEM MODEL

We explain our system model and several assumptions that
are relevant to our detector design. We also define expressions
for one-bit ADCs in this section.

A. Massive MIMO Received Signal Model

We consider a uplink multiuser cellular system with Nc cells.
Each cell consists of a base station with Nr received anten-
nas and K users equipped with a single transmit antenna. All
K Nc users transmit independent data symbols simultaneously
to their serving base stations. Assuming all users transmit data
with power P , the received signal at the i-th base station yi =[
y1,i y2,i · · · yNr,i

]T is

yi = √
P

K∑
k=1

hi,ik xik + √
P

Nc∑
m=1
m �=i

K∑
k=1

hi,mk xmk + ni (1)

where hi,mk ∈ C
Nr×1 is the channel vector between the i-th

base station and the k-th user associated with the m-th base sta-
tion, xmk is the data symbol, which satisfies E [xmk] = 0 and
E
[|xmk |2

] = 1, transmitted from the k-th user supported by
the m-th base station, and ni ∼ CN(0Nr, σ

2INr) is the complex
additive white Gaussian noise (AWGN) at the i-th base station.

Before developing the detectors, we make the following
assumptions.

Assumption 1: The data symbols xik are from an M-ary
constellation S = {s1, · · · , sM } and have been normalized such
that

‖xi‖2 = K (2)

for all i where xi = [
xi1 xi2 · · · xi K

]T. If S is a phase shift key-
ing (PSK) constellation satisfying |sm |2 = 1 for all m, then the
norm constraint is trivially satisfied. For a QAM constellation,
the law of large numbers (LLN) gives

K∑
k=1

|xik |2 ≈ K (3)

as K becomes large if all users select their data symbols inde-
pendently and with equal probability within S (with proper
normalization). Although the norm constraint in (2) plays an
important role in implementing the proposed nML detector,
numerical results in Section VI shows that the nML detector
works well even with moderate numbers of users.

Assumption 2: We assume that each base station has perfect
local CSI with which to implement its detector. After imple-
menting the detectors, we relax this assumption in Section V
where we consider channel estimation techniques for one-
bit ADCs. We neglect pilot contamination during the channel
estimation procedure because the channel is already severely
distorted due to one-bit ADCs. Note that pilot contamination,
which contaminates the channel estimate, remains the only
channel impairment with full-resolution ADCs and extremely
large number of antennas [40], [41].

In addition to these assumptions, we first focus on the single
cell scenario because the detectors considered in this paper do
not exploit any kind of inter-cell cooperation. In Section IV-D,
we explain how the proposed detector can be adapted to a
multicell setting.

For the single cell scenario, the received signal y in (1)
becomes

y = √
P

K∑
k=1

hk xk + n = √
PHx + n, (4)

and the SNR is

ρ = P

σ 2
. (5)

We assume the base station knows ρ perfectly.

B. Received Signal Representation With One-Bit ADCs

We focus on a massive MIMO system that uses one-bit ADCs
for the real and imaginary parts of the each element of y. The
conceptual figure of our system is depicted in Fig. 1.
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Fig. 1. MU-MIMO with K users and Nr receive antennas. Each received signal
yn is processed with two one-bit ADCs.

The output of the n-th receive antenna after the one-bit ADCs
is given as

ŷn = sgn(Re(yn)) + jsgn(Im(yn)) (6)

where sgn(·) is the sign function which is defined as

sgn(x) =
{

1 if x ≥ 0

−1 if x < 0
. (7)

Therefore, we have

ŷn ∈ {1 + j,−1 + j,−1 − j, 1 − j} (8)

for 1 ≤ n ≤ Nr. The collection of ŷn is given as

ŷ = [
ŷ1 ŷ2 · · · ŷNr

]T
. (9)

III. POSSIBLE DETECTORS USING ONE-BIT ADCS

In this section, we reformulate the detectors for distributed
reception proposed in [39] into the uplink multiuser massive
MIMO setting. We also discuss their characteristics and limita-
tions. This discussion is useful for developing our detectors in
Section IV.

A. ML Detector Reformulation

Let gT
n ∈ C

1×K be the n-th row of the channel matrix H, i.e.,

H = [
g1 g2 · · · gNr

]T
. (10)

Note that gn is the channel between the K users and the n-th
receive antenna. Assuming the real and imaginary components
of the Gaussian noise are IID, it is useful when approaching
one-bit ADC problems to rewrite the signal model in the real
vector form instead of complex form as

GR,n =
[

Re(gn) Im(gn)

−Im(gn) Re(gn)

]T

=
[

gT
R,n,1

gT
R,n,2

]
∈ R

2×2K , (11)

nR,n =
[

Re(nn)

Im(nn)

]
=
[

nR,n,1
nR,n,2

]
∈ R

2×1, (12)

xR =
[

Re(x)

Im(x)

]
∈ R

2K×1 (13)

where

gR,n,1 =
[

Re(gn)

−Im(gn)

]
, gR,n,2 =

[
Im(gn)

Re(gn)

]
(14)

and

nR,n,i ∼ N

(
0,

σ 2

2

)
(15)

for all n and i . The received signal at the n-th receive antenna
can be also rewritten as

yR,n =
[

Re(yn)

Im(yn)

]
=
[

yR,n,1
yR,n,2

]
= √

PGR,nxR + nR,n, (16)

and the vectorized version of the quantized ŷk in the real
domain is given as

ŷR,n =
[

sgn(Re(yn))

sgn(Im(yn))

]
=
[

ŷR,n,1
ŷR,n,2

]
. (17)

Based on ŷR,n , the base station generates the sign-refined
channel matrix for the n-th receive antenna as

G̃R,n =
[̃

gT
R,n,1

g̃T
R,n,2

]
(18)

where g̃R,n,i is defined as

g̃R,n,i = ŷR,n,i gR,n,i . (19)

Note that ŷR,n,i = ±1 depending on the sign of yR,n,i . Define
SR to be

SR =
{[

Re(s1)

Im(s1)

]
, · · · ,

[
Re(sM )

Im(sM )

]}
(20)

where M is the size of the data symbol constellation S.
With these definitions and using similar logic from [39], the

ML detector can be defined as

x̂R,ML = argmax
x́R∈SK

R

2∏
i=1

Nr∏
n=1

�
(√

2ρg̃T
R,n,i x́R

)
(21)

where �(t) = ∫ t
−∞

1√
2π

e− τ2
2 dτ and SK

R is the K -ary Cartesian

product set of SR, which is ordered with the real parts of the
constellations first and the imaginary parts later. The

√
2 term

in (21) comes from the distribution of nR,n,i given in (15).

B. ZF-Type Detector Reformulation

By brute-force search, the complexity of the ML detector in
(21) is M K which grows exponentially with the number of users
K . To support a large number of K , the ZF-type detector was
proposed in [39]. The base station first obtains the ZF estimate
as

x̌ZF = H†ŷ. (22)
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Because the norm square of x̌ZF may not equal to K , the base
station normalizes x̌ZF as

x̄ZF = √
K

x̌ZF

‖x̌ZF‖ (23)

and performs symbol-by-symbol detection using x̄ZF as

x̂ZF,k = argmin
x́∈S

|x̄ZF,k − x́ |2 (24)

where x̄ZF,k is the k-th element of normalized x̄ZF. The nor-
malization is not an issue for PSK constellations; however, it is
crucial for QAM constellations.

It was shown numerically in [39] that ZF-type detectors sat-
urate at a higher error rate floor than ML detectors as SNR
increases; the error rate floors in both cases are inevitable due
to the one-bit ADCs. Therefore, we propose new detectors that
outperform the ZF-type detector and require less complexity
than the ML detector.

IV. NEAR ML DETECTOR IMPLEMENTATION

We derive our nML detector by converting the original ML
detection problem as a convex optimization problem. This can
be done by relaxing constraints on the transmitted vector. We
also analyze the nML detector in the asymptotic regimes and
derive the exact probability that two different transmit vec-
tors result in the same quantized signal (after they have passed
through the channel and noise is added) in a certain condition.
The relationship between the probability and the number of
receive antennas show that the probability goes to zero as the
number of antennas goes to infinity, which shows the benefit
of massive MIMO for one-bit ADCs. Then we implement the
two-stage nML detector to further improve the detection perfor-
mance. Finally, we extend the proposed detectors to a multicell
scenario.

A. Convex Optimization Formulation of nML Detector

Because of the norm constraint (2), we define the ML
estimator by relaxing the constraint x́R ∈ SK

R in (21) as

x̌(1)
R,ML = argmax

x́R∈R2K×1

‖x́R‖2=K

2∏
i=1

Nr∏
n=1

�
(√

2ρg̃T
R,n,i x́R

)
(25)

= argmax
x́R∈R2K×1

‖x́R‖2=K

2∑
i=1

Nr∑
n=1

log �
(√

2ρg̃T
R,n,i x́R

)
. (26)

It was shown in [39] that

x̌(1)
R,ML → xR (27)

in probability as Nr → ∞ for arbitrary ρ > 0. Therefore, if
(26) can be solved, then the detector is guaranteed to achieve
good performance when Nr is large. In fact, all of the properly
designed detectors including linear detectors become optimal as

Algorithm 1. Iterative algorithm to solve (28)

Initialization
1: Set the initial point x́(0)

R
2: Set

G̃R = [̃
gR,1,1 · · · g̃R,1,Nr g̃R,2,1 · · · g̃R,2,NR

]T

3: Set the step size κ and the termination threshold ε

Iterative update

4: While
∥∥∥x́(k)

R − x́(k−1)
R

∥∥∥ ≥ ε

∥∥∥x́(k−1)
R

∥∥∥
5: x́(k)

R = x́(k−1)
R + κG̃T

R� f
(

x́(k−1)
R

)
where the i-th element of � f (z) is

� f (z)i = 1√
2π

e
−ρ

∣∣∣̃gT
R,n,i z

∣∣∣2
�
(√

2ρg̃T
R,n,i z

)
6: If

∥∥∥x́(k)
R

∥∥∥2
> K

7: x́(k)
R = √

K
x́(k)

R∥∥∥x́(k)
R

∥∥∥
8: end If
9: end While

Nr → ∞ [2], [39], and (27) proves that the ML detector based
on (26) is indeed a proper detector.

The maximization in (26) is still not easy to solve in general.
The function �(·) is log-concave but the optimization problem
in (26) is not convex due to the norm constraint ‖x́R‖2 = K .
To sidestep this challenge, we relax the norm constraint as
‖x́R‖2 ≤ K and reformulate the problem as

x̌(2)
R,ML = argmax

x́R∈R2K×1

‖x́R‖2≤K

2∑
i=1

Nr∑
n=1

log �
(√

2ρg̃T
R,n,i x́R

)
(28)

which is a convex optimization problem that can be efficiently
solved [42]. Similar to [30], [43], we provide a simple yet
effective iterative approach to solve (28) in Algorithm 1.

In Step 1, we initialize to

x́(0)
R = √

K
G̃T

R12Nr∥∥G̃T
R12Nr

∥∥ (29)

to resemble the maximum ratio estimate. The quantization
using one-bit ADCs has been reflected in G̃R as shown in
(19), therefore, the maximum ratio estimate is based on the
all-one vector. Steps 6 and 7 are based on projected gradi-
ent method [44] to ensure the norm constraint. Note that a
similar iterative algorithm was proposed in [30]. While our
approach can support arbitrary constellations without any mod-
ification on Step 6 and 7, the constraint on the algorithm in [30]
is separately adapted to each constellation, i.e., for M-QAM
constellation, the constraint on each element of x́(k)

R is set to
[−(

√
M − 1)A, (

√
M − 1)A] in [30] where A is the average

power normalization factor.
After obtaining the estimate x̌(2)

R,ML, the base station needs to
perform normalization followed by symbol-by-symbol detec-
tion similar to the ZF-type detector in (24). If we let x̄R,ML,k be
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the k-th element of

x̄R,ML = √
K

x̌(2)
R,ML∥∥∥x̌(2)
R,ML

∥∥∥ , (30)

the nML symbol-by-symbol detection is

x̂nML,k = argmin
x́∈S

∣∣(x̄R,ML,k + j x̄R,ML,K+k) − x́
∣∣ (31)

considering the fact that x̄R,ML is a 2K × 1 real vector.
Remark 1: As also discussed in [30], the complexity of

Algorithm 1 is dominated by the number of iterations because
there are only two matrix-vector multiplications (one in the
initialization in (29) and the other in the iteration loop in
Algorithm 1) and numerical calculations to get � f (z)i in
the iterative update. The numerical calculations for updating
� f (z)i in each iteration prevent performing the direct compari-
son with the ZF-type detector but it is reasonable to assume that
the complexity of one iteration is less than that of the ZF-type
detector that requires matrix inversion. As shown in Section VI,
the number of iterations for Algorithm 1 to converge can be
moderate, e.g., less than 20.

Remark 2: Note that either nML detector based on (26) or
(28) is suboptimal compared to the original ML detector (21).
The proposed nML detector is based on the ML estimation (28)
over the 2K -dimensional real space with the norm constraint. It
can be the case that

2∑
i=1

Nr∑
n=1

log �
(√

2ρg̃T
R,n,i x̌

(2)
R,ML

)
(32)

>

2∑
i=1

Nr∑
n=1

log �
(√

2ρg̃T
R,n,i xR

)
(33)

>

2∑
i=1

Nr∑
n=1

log �
(√

2ρg̃T
R,n,i ẍR

)
(34)

with ∥∥∥xR − x̌(2)
R,ML

∥∥∥2
>

∥∥∥ẍR − x̌(2)
R,ML

∥∥∥2
(35)

where xR is the true transmitted vector and ẍR ∈ SK
R \ {xR}. In

words, it can happen that the original ML detector makes the
correct decision as in (33) and (34) while the estimated vector
x̌(2)

R,ML from (28) is closer to ẍR that is not the true transmit-
ted vector. The suboptimality, however, will not come into play
when Nr is large as shown in [39].

B. Analyses in Asymptotic Regimes

The estimates x̌(1)
R,ML in (26) and x̌(2)

R,ML in (28) may not be

the same in general because x̌(1)
R,ML is selected from a circle

‖x́R‖2 = K while x̌(2)
R,ML is selected from a ball ‖x́R‖2 ≤ K .

Note that (26) can have multiple local optimal solutions due to
non-convexity of the constraint. If we let X(1) be a set of all pos-
sible solutions of (26), the following lemma shows the relation
between X(1) and x̌(2)

R,ML in the high SNR regime.

Lemma 1: When ρ → ∞, we have

x̌(2)
R,ML ∈ X(1). (36)

Proof: Please see Appendix A. �
Lemma 1 shows that the nML detector based on (28) will

perform the same as in (26) with the relaxed norm constraint in
the high SNR regime.

It is necessary that different transmit vectors result in differ-
ent quantized received signals to avoid possible detection errors
because g̃R,n,i in (19) is based on the sign refinement from
the quantized received signal ŷR,n,i . Although it is difficult in
general, we can explicitly derive the probability of which two
different transmit vectors result in the same quantized received
signal for a special case.

Special case: Consider two transmit vectors x1 =[
x1 x2 · · · xK

]T and x2 = [−x1 x2 · · · xK
]T where xk ,

which is selected from a standard M-ary constellation S

with equal probability, is the transmit symbol of the k-th
user. The two received signals are y1 = √

PHx1 + n and
y2 = √

PHx2 + n. Define ŷ1 and ŷ2 as the quantized out-
puts of y1 and y2 using one-bit ADCs. Assume each entry
of H follows IID Rayleigh fading with unit variance and
n ∼ CN(0Nr , σ

2INr).
Proposition 1: For the special case,

Pr
(
ŷ1 = ŷ2

) =
⎛⎝ 2

π
arctan

√
(K − 1)P + σ 2

P

⎞⎠2Nr

. (37)

Proof: Please see Appendix B. �
The following corollary is a direct consequence of

Proposition 1.
Corollary 1: For the special case, Pr

(
ŷ1 = ŷ2

) → 0 as
Nr → ∞.

Corollary 1 shows that, for arbitrary SNR values, the two
transmit vectors from the special case give different quantized
signals as the number of receive antennas goes to infinity,
which shows the benefit of massive MIMO with one-bit ADCs.
Although it is hard to generalize Corollary 1 for arbitrary pair
of transmit vectors, we expect a similar result would hold in
general.

C. Two-Stage nML Detector

To improve the performance of nML, we also propose a two-
stage nML detector. The two-stage nML detector reduces the
number of candidate transmit vectors, based on the output of
the one-stage nML detector. Using the estimate x̄R,ML in (30)
and the detected symbol x̂nML,k in (31), we define the candidate
set of the k-th element

Xk =
{

x́ ∈ S

∣∣∣∣∣
∣∣(x̄R,ML,k + j x̄R,ML,K+k) − x́

∣∣∣∣(x̄R,ML,k + j x̄R,ML,K+k) − x̂nML,k
∣∣ < c

}
(38)

where c is a constant that controls the size of Xk . With Xk for
k = 1, . . . , K , we can define the reduced candidate set of the
transmit vectors as

X =
{[

x̌1 · · · x̌K
]T
∣∣∣ x̌k ∈ Xk,∀k

}
. (39)
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If we let

XR =
{[

Re
(
x́
)T Im

(
x́
)T
]T
∣∣∣∣ x́ ∈ X

}
, (40)

then the second stage of the two-stage nML detector can be
defined as

x̂R,two−nML = argmax
x́R∈XR

2∏
i=1

Nr∏
n=1

�
(√

2ρg̃T
R,n,i x́R

)
. (41)

The set X (or XR) allows testing possible transmit vectors that
are close to the estimate x̄R,nML. If we let the constant c → ∞,
the two-stage nML detector becomes the original ML detector.
With a proper value of c, the numerical results in Section VI
show that it is possible to effectively improve the detection
performance especially in the high SNR regime with marginal
additional computational complexity. The concept of the two-
stage nML detector is similar to that of sphere decoding that
exploits reduced search space.

D. Extension to Multicell Setting

For the multicell scenario, the inter-cell interference should
be taken into account for the proposed detectors. It is reason-
able to assume that the base station can accurately estimate the
long-term statistic of the inter-cell interference. Without having
any instantaneous CSI from out-of-cell users, however, the base
station will consider the inter-cell interference as additional
AWGN, i.e.,

√
P

Nc∑
m=1
m �=i

K∑
k=1

hi,mk xmk ∼ CN(0Nr , Pη2
i INr) (42)

where ηi captures the long-term inter-cell interference statistic,
e.g., pathloss and shadowing. Then the effective signal-to-
interference-noise ratio (SINR) at the i-th base station is

ρi,MC = P

Pη2
i + σ 2

, (43)

and the proposed detectors can be adapted to the multicell
scenario by substituting ρ in (28) and (41) with ρi,MC.

V. CHANNEL ESTIMATION WITH ONE-BIT ADCS

For a coherent detector, the CSI is normally obtained through
an estimate of the channel. In this section, we develop channel
estimation techniques for one-bit ADCs at the base station. We
focus on estimating gn , i.e., the channel between the receive
antenna n and K users, instead of hk .

We consider a block fading channel to develop channel esti-
mation techniques. We assume the channel is static for L
channel uses in a given fading block and changes independently
from block-to-block. The received signal at the n-th antenna for
the �-th channel use in the m-th fading block is given as

yn,m[�] = √
ρg∗

n,mxm[�] + wn,m[�]. (44)

Let the first T < L channel uses be devoted for a training
phase and the remaining L − T channel uses be dedicated to
a data communication phase. Put the first T received signals
during the training phase into a vector form as

yn,m,train = √
ρX∗

m,traingn,m + wn,m,train (45)

where

yn,m,train = [
yn,m[0] · · · yn,m[T − 1]

]∗ ∈ C
T ×1, (46)

Xm,train = [
xm[0] · · · xm[T − 1]

] ∈ C
K×T , (47)

wn,m,train = [
wn,m[0] · · · wn,m[T − 1]

]∗ ∈ C
T ×1. (48)

In the training phase, Xm,train is known to the base station
but gn,m must be estimated. While arbitrary training matrices
are possible, for simulation purpose in Section VI, we focus on
unitary training where Xm,train satisfies [45]

Xm,trainX∗
m,train = T IK if K < T . (49)

The normalization term T ensures the average transmit power
equals to P in each channel use.

Similar to the previous sections, we reformulate all expres-
sions into the real domain as

yR,n,m,train = √
ρXT

R,m,traingR,n,m + wR,n,m,train (50)

where

yR,n,m,train =
[

Re
(
yn,m,train

)
Im

(
yn,m,train

)] ∈ R
2T ×1, (51)

XR,m,train =
[

Re(Xm,train) −Im(Xm,train)

Im(Xm,train) Re(Xm,train)

]
∈ R

2K×2T ,

(52)

gR,n,m =
[

Re
(
gn,m

)
Im

(
gn,m

)] ∈ R
2K×1, (53)

wR,n,m,train =
[

Re
(
wn,m,train

)
Im

(
wn,m,train

)] ∈ R
2T ×1. (54)

It is important to point out that (50) has the same form as
(16) while the roles of the channel and the transmitted sig-
nal are reversed. Therefore, using the same techniques that we
exploited for the detectors, we can develop channel estimators
based on the one-bit ADC outputs and XR,m,train.

We define the i-th column of XR,m,train as xR,m,train,i and the
i-th output of the one-bit ADC as

ŷR,n,m,train,i = sgn(yR,n,m,train,i ) (55)

where yR,n,m,train,i is the i-th element of yR,n,m,train. Note that
there are 2T one-bit ADC outputs in total for the n-th receive
antenna, i.e., T outputs for each of the real and imaginary parts
of the received signal. Based on ŷR,k,m,train,i , the base station
performs the sign-refinement as

x̃R,m,train,i = ŷR,n,m,train,i xR,m,train,i , (56)
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and the ML channel estimator is given as

ǧR,n,m,ML = argmax
ǵR∈R2K×1

2T∏
i=1

�
(√

2ρx̃T
R,m,train,i ǵR

)
(57)

= argmax
ǵR∈R2K×1

2T∑
i=1

log
(
�
(√

2ρx̃T
R,m,train,i ǵR

))
.

(58)

Because �(·) is a log-concave function, and there is no con-
straint on ǵR, it is possible to solve (58) using standard con-
vex optimization methods (or suitably modified Algorithm 1).
Unfortunately, this channel estimator tends to overestimate the
norm ∥∥ǧR,n,m,ML

∥∥ >
∥∥gR,n,m

∥∥ (59)

due to the fact that log �(·) is an increasing function where
gR,n,m is the true channel vector.

To overcome this problem, we impose a norm constraint on
ǵR and convert (58) to

ǧR,n,m,ML = argmax
ǵR∈R2K×1

‖ǵR‖2≤K

2T∑
i=1

log
(
�
(√

2ρx̃T
R,m,train,i ǵR

))
(60)

using the fact that E

[∥∥gR,n,m
∥∥2
]

= K for most of channel

models. The norm constraint can be further optimized if the
base station knows the long-term statistic of the channel norm.

For comparison purposes, we also define a simple ZF-type
channel estimator as

ǧR,n,m,ZF = √
K

(
XT

R,m,train

)†
ŷR,n,m,train∥∥∥∥(XT

R,m,train

)†
ŷR,n,m,train

∥∥∥∥ (61)

which is forced to satisfy ‖ǧR,n,m,ZF‖2 = K . We numerically
compare our ML channel estimator and the ZF-type channel
estimator in Section VI.

VI. SIMULATION RESULTS

We perform Monte-Carlo simulations to evaluate the pro-
posed techniques. The one-stage nML detector is based on
Algorithm 1 with a termination threshold ε = 10−3 and step
size κ = 0.01. For the two-stage nML detector, we let the con-
stant c = 1.3 in (38). We first consider the single cell scenario
to compare detector performance. Then we take the multicell
scenario into account.

A. Single Cell Scenario

We assume IID Rayleigh fading channels, i.e., all elements
of H are distributed as CN(0, 1), although the distribution of
the channel was not explicitly incorporated into the proposed
detector designs. For the time being, we assume the base station

Fig. 2. SER vs. SNR (in dB) of four detectors with Nr = 32, K = 4, and M =
4 (QPSK). The original ML, the one-stage nML, the two-stage nML, and the
ZF-type detectors are compared.

has perfect CSI and evaluate the detectors. Later, we evaluate
the detectors with imperfect CSI. We use the average symbol
error rate (SER) which is defined as

SER = 1

K

K∑
n=1

E
[
Pr
(
x̂n �= xn|x sent, H, n, ρ, K , Nr, S

)]
(62)

for the performance metric where the expectation is taken over
x, H, and n.

We first compare the four detectors: 1) the original ML detec-
tor (21) that is based on exhaustive search over all possible
transmitted vectors, 2) the one-stage nML detector (28) that is
based on convex optimization, 3) the two-stage nML detector
explained in Section IV-C, and 4) the ZF-type detector. Due to
the computational complexity of the original ML detector, we
set K = 4, M = 4 (QPSK) for all users, and Nr = 32 which
may not be considered as massive MIMO. We plot SERs of
the four detectors in Fig. 2. The figure shows that the one-
stage nML detector is suboptimal compared to the original ML
detector as discussed in Remark 2 of Section IV-A while the
two-stage nML detector gives almost the same performance
with the original ML detector. Further, both the nML detectors
outperform the ZF-type detector.

In Fig. 3, we plot the SERs of the one- and two-stage nML
detectors, the ZF-type detector, and the detector based on the
GAMP algorithm from [29] according to SNR with K = 8,
M = 8 (8PSK), and different values of Nr. We have modified
the GAMP algorithm to have adaptive step sizes as in [46] for
better performance. We do not consider the original ML detec-
tor in this scenario because of its excessive complexity, i.e., the
detector needs to compare 88 = 224 possible transmit vectors.
The figure shows that the two-stage nML detector and GAMP
detector are comparable and outperform the one-stage nML and
ZF-type detectors with the same number of Nr. The ZF-type
detector suffers from an error rate floor while other detectors
do not have such floor until 10−5 SER. With small SERs, it is
possible to use weaker channel coding (with higher code rate or
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Fig. 3. SER vs. SNR in dB scale with M = 8 (8PSK), K = 8, and different
values of Nr. The GAMP detector is from [29].

Fig. 4. SER vs. SNR in dB scale with M = 16 (16QAM), K = 8, and different
values of Nr. The GAMP detector is from [29].

shorter block length) to improve the system throughput, which
has been shown using binary symmetric channels in [47].

We adopt the same system setup with Fig. 3 except a M = 16
(16QAM) constellation for data symbol in Fig. 4. The two-stage
nML detector and GAMP detector are still comparable; how-
ever, the two detectors also suffer from an error rate floor. With
Nr = 196, the error rate floors are mitigated for all detectors,
which shows the benefit of massive MIMO for using one-bit
ADCs.

Figs. 3 and 4 both show that the proposed detectors give
much better SER performance compared to the ZF-type detec-
tor with the same number of receive antennas, which means
that the proposed detectors are able to support more users than
the ZF-type detector with the same system setup. Therefore, if
the base station has sufficient computational power, it is always
beneficial to use the proposed detectors than the ZF-type detec-
tor. Note that the computational power at the base station is
related to the digital baseband processing in Fig. 1 and differ-
ent from having one-bit ADCs. Therefore, the benefit of using
one-bit ADCs, e.g., power consumption and cost, still holds for

TABLE I
AVERAGE NUMBER OF ITERATIONS FOR ALGORITHM 1 AND SIZE OF X IN

(39) WITH K = 8

the proposed detectors although higher computational power is
required for the digital baseband processing at the base station.

To evaluate the complexity of the proposed detectors, we
compare the average number of iterations for Algorithm 1 to
converge for the one-stage nML detector and the average size
of X in (39) for the two-stage nML detector, with K = 8 and
different values of M and Nr in Table I. It shows that Algorithm
1 requires less than 20 iterations to converge in average and the
additional comparison, i.e., the size of X, performed in the two-
stage nML detector is marginal. It is interesting that the iteration
number of Algorithm 1 decreases with the number of antennas,
which shows that the proposed detectors based on Algorithm 1
will become more efficient with large Nr.

Now, we evaluate the ML and ZF-type channel estimators
discussed in Section V. We focus on estimating gn,m , i.e., the
channel between the n-th receive antenna and K users. We
define the mean squared error (MSE) of a channel estimator
x as

MSEx = 1

K
E

[∥∥gn,m − ǧn,m,x
∥∥2
]
, (63)

and the normalized MSE (NMSE) as

NMSEx = 1

K
E

[∥∥∥∥ gn,m

‖gn,m‖ − ǧn,m,x

‖ǧn,m,x‖
∥∥∥∥2
]

, (64)

which are used as performance metrics. The expectations are
taken over gn,m . In Fig. 5, we compare the proposed ML
channel estimator to the ZF-type estimator and the expectation-
maximization (EM) method from [35] with different training
lengths T and SNR values with K = 8. Regarding MSE, the
proposed ML estimator outperforms other estimators for both
ρ = 0 and 20 dB cases. The EM method performs well only
when T is large with ρ = 0 dB and fails to estimate the channel
norm when ρ = 20 dB as also shown in [35]. The EM method
with the norm fixed to K gives better performance than the ZF-
type estimator when ρ = 0 dB while the two estimators become
exactly the same with ρ = 20 dB. Regarding NMSE, the pro-
posed ML estimator and the EM method (and the one with the
fixed norm as well) are comparable when ρ = 0 dB while the
ML estimator outperforms the EM method with ρ = 20 dB.

To verify the effect of channel estimation, we plot the SERs
of the two-stage nML detector and GAMP detector with dif-
ferent assumptions on CSI; perfect CSI, perfect CDI, and CDI
with error that is defined as

gn,m/‖gn,m‖ + √
NMSEen,m/‖en,m‖∥∥∥gn,m/‖gn,m‖ + √
NMSEen,m/‖en,m‖

∥∥∥ (65)

where the element of en,m is distributed as CN(0, 1). We set
K = 8, M = 16, Nr = 192, and NMSE = 10−2. It is shown
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Fig. 5. MSE and normalized MSE of different channel estimators with K = 8 and different values of T and SNR. Expectation-maximization (EM) estimation is
from [35], and “EM, fixed norm” is the same as EM except the norm square fixed to K .

Fig. 6. SER vs. SNR in dB scale with M = 16 (16QAM), K = 8, and Nr =
192. The two-stage nML detector and the GAMP detector from [29] are
compared with different assumptions on channel information.

in Fig. 6 that the two-stage nML detector outperforms the
GAMP detector using CDIs when SNR is low, which shows
that the GAMP detector requires more accurate channel norm
information than the proposed detector for low SNR values.

To compare the detectors in a practical setting, we combine
the detectors with a low-density-parity-check (LDPC) code. We
assume the base station has perfect CSI for this study. We adopt
a rate 1/2 LDPC code with the block length of 672 bits from
the IEEE 802.11ad standard [48]. After hard detection by the
detectors, the estimated symbols (or bits) are decoded using
the bit-flipping decoding algorithm [49]. The coded bit error
rates (BERs) of the one-stage nML detector and ZF-type detec-
tor according to SNR with K = 4, N = 64, and M = 8 are
shown in Fig. 7. The figure clearly shows that the nML detector
outperforms the ZF-type detector even for this practical set-
ting. Further improvements could be expected if further work
is put into deriving an appropriate soft decision decoding met-
ric, which requires the probability distribution of x̌(2)

R,ML in (28).

Fig. 7. Coded BER vs. SNR in dB scale with M = 8 (8PSK), K = 4, and Nr =
64. The proposed nML and ZF-type detectors are compared using the rate 1/2
LDPC code adopted in the IEEE 802.11ad standard.

It is also possible to exploit the approximated soft metric as in
[50], but we leave this for future work.

B. Multicell Scenario

For the last numerical study, we consider the multicell sce-
nario where the detailed simulation parameters are listed in
Table II. We consider two different user dropping scenarios.
1) All users except a typical user in the center cell are randomly
dropped within corresponding cells. The typical user is located
with the distance d (and a random angle per drop) from the base
station in the center cell. 2) All users except the users in the
center cell are randomly dropped within corresponding cells.
The users in the center cell are randomly dropped within the
range (d − 20 m, d + 20 m) from the center cell base station.
The second scenario can be considered as coordinated uplink
transmission with user scheduling that selects users with sim-
ilar received signal power while the first scenario corresponds
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TABLE II
MULTICELL SIMULATION PARAMETERS

Fig. 8. Coded BER vs. d (in meters) for the multicell setting with parameters in
Table II. Coordinated and uncoordinated user dropping scenarios are compared
for the nML and ZF-type detectors.

to uncoordinated uplink transmission. We consider coded BER
of the typical user for the first scenario while BERs of all K
users in the center cell are averaged for the second scenario. We
neglect shadowing effect and ηi in (42) is based on the distances
between the center cell base station and out-of-cell users.

The BER results for these two scenarios according the dis-
tance d are plotted in Fig. 8. We can see that the one-stage nML
detector outperforms the ZF-type detector for both user drop-
ping scenarios. As d increases, the BER performance of both
detectors becomes worse because of the reduced received signal
power. Note that the BER performance of the second scenario
is much better than that of the first scenario when d is large.
For large d, the received signal power of the typical user in the
first scenario is overwhelmed by other users’ received signals
(the near-far effect), resulting in poor BER performance. If all
users experience similar SINR as in the second scenario, how-
ever, the BER performance is quite good even with large d. This
shows that the nML detector will perform well with proper user
scheduling or uplink power control, which are already common
in current cellular systems. Note that the ZF-type detector suf-
fers from the notable error rate floor for the second scenario
when d is small (that corresponds to the high SNR regime
for the single cell scenario) while the proposed nML detector

does not have such floor until 10−5 BER. In the first scenario,
there is no error rate floor even for the ZF-type detector because
the received signal of the typical user overwhelms other users’
received signals.

VII. CONCLUSION

We proposed a unified framework of detection and chan-
nel estimation techniques for uplink multiuser massive MIMO
systems using a pair of one-bit ADCs at each antenna. The
proposed techniques are based on off-the-shelf convex opti-
mization methods, which make it easy to implement in practice.
We proposed two nML detectors, i.e., one-stage and two-stage
nML detectors, which give better performance than the ZF-type
detector for all range of SNR regimes and number of antennas.
The two-stage nML detector reduces the number of candidate
transmit vectors using the output of the one-stage nML detector
and exploits the ML detector structure to further improve detec-
tion performance of the one-stage nML detector. Numerical
studies showed that the proposed detectors are able to perform
well even with not-so-large number of antennas, robust to inac-
curate channel estimation, and outperform the ZF-type detector
for practical channel coded and multicell settings. We also pro-
posed a ML channel estimator that can effectively estimate not
only the direction but also the norm of the channel even with
one-bit ADCs. Because of the unified structure of the proposed
detectors and channel estimator, same hardware can be used for
both tasks, which make the proposed techniques more attractive
for uplink massive MIMO systems using one-bit ADCs.

There are several directions for future research. The proposed
detectors can be extended to frequency selective channel con-
sidering their possible use in mmWave systems, for example by
extending the results in [26], [51]. To make the proposed ML
channel estimator more practical, the training overhead should
be reduced. As in [52], [53], it may be possible for the proposed
ML channel estimator to exploit channel statistics, e.g., the tem-
poral and spatial correlation, to reduce the training overhead.
It would be also interesting to consider maximum a posteriori
(MAP) detector and channel estimator using one-bit ADCs and
compare them with the proposed techniques where MAP detec-
tor and channel estimator with low-resolution ADCs have been
studied in [51].

APPENDIX A
PROOF OF LEMMA 1

Recall the estimator in (28). When ρ → ∞,∣∣∣√2ρg̃T
R,n,i x́R

∣∣∣ → ∞ (66)

unless g̃T
R,n,i x́R = 0. Therefore, the estimator (28) finds x̌(2)

R,ML
that satisfies

g̃T
R,n,i x̌

(2)
R,ML > 0 (67)

for all 1 ≤ n ≤ Nr and 1 ≤ i ≤ 2 in the high SNR regime
because �(t) is an increasing function of t but upper bounded
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by 1. Then,

2∑
i=1

Nr∑
n=1

log �
(√

2ρg̃T
R,n,i x̌

(2)
R,ML

)
(68)

>

2∑
i=1

Nr∑
n=1

log �
(√

2ρg̃T
R,n,iαx̌(2)

R,ML

)
(69)

with arbitrary 0 < α < 1. Therefore, the norm square of x̌(2)
R,ML

always becomes K due to the norm constraint, and

x̌(2)
R,ML ∈ X(1) (70)

which finishes the proof.

APPENDIX B
PROOF OF PROPOSITION 1

First, we show that if

u ∼ N(0, σ 2
u ), v ∼ N(0, σ 2

v ), (71)

we have

Pr (sgn(u − v) = sgn(u + v)) (72)

=
∫ +∞

−∞
1√

2πσ 2
u

e
− u2

2σ2
u

∫ |u|

−|u|
1√

2πσ 2
v

e
− v2

2σ2
v dvdu (73)

= 1

πσuσv

∫ +∞

−∞
e
− u2

2σ2
u

∫ |u|

0
e
− v2

2σ2
v dvdu (74)

= 2

πσuσv

∫ +∞

0
e
− u2

2σ2
u

∫ u

0
e
− v2

2σ2
v dvdu (75)

(a)= 2

πσ 2
v

∫ +∞

0
e
− w2

2σ2
v

∫ σu
σv

w

0
e
− v2

σ2
v dvdw (76)

= 2

π
arctan

σu

σv
, (77)

where (a) follows by letting u � w σu
σv

.
To prove Proposition 1, note that

√
PHx1 + n = √

Ph1x1 + √
PH′x′ + n, (78)√

PHx2 + n = −√
Ph1x1 + √

PH′x′ + n (79)

where

H′ = [
h2 h3 · · · hK

]
, (80)

x′ = [
x2 x3 · · · xK

]T
. (81)

Because of the assumptions on H and xk , we have
√

Ph1x1 ∼ CN(0Nr , PINr), (82)√
PH′x′ + n ∼ CN(0Nr , ((K − 1)P + σ 2)INr). (83)

Therefore, the requirement of ŷ1 = ŷ2 can be decomposed into
2Nr independent equations sgn(u − v) = sgn(u + v), which
gives

Pr
(
ŷ1 = ŷ2

) =
⎛⎝ 2

π
arctan

√
(K − 1)P + σ 2

P

⎞⎠2Nr

. (84)
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