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Code Design for Iterative Decoding
of Multilevel Codes

Yi Wang and Alister G. Burr, Member, IEEE

Abstract—The code design problem for multilevel coded modu-
lation with iterative decoding (MLCM-ID) has been left unsolved
over a decade. In this paper, we define the code design criterion
for MLCM-ID based on a novel concept—parametrically-mapped
EXIT (PM-EXIT) function. We derive the EXIT functions for
MLCM-ID, and present the mathematical work by which the three
area theorems of PM-EXIT function are proved. This gives theo-
retical support of the curve-fitting techniques used in MLCM-ID,
and also provides firm proof that the PM-EXIT function design
rule allows in principle capacity-achieving code assignment. The
simulation results perfectly match the theoretical analysis, and
also confirm that the design rule proposed fully exploits the flex-
ibility of MLCM-ID in the choice of codes. Both in theory and
simulations, our code design is verified.

Index Terms—Multilevel codes, iterative decoding, EXIT
functions.

I. INTRODUCTION

THE fundamental principle of a bandwidth-efficient multi-
level coded modulation (MLCM) scheme is to use differ-

ent rate binary component codes for the protection of each bit
level. It has been demonstrated [1] that the channel capacity
can be achieved by multilevel coded modulation and over-
all maximum-likelihood decoding (MLD). However, MLCM-
MLD is unfeasible due to the prohibitive computational costs.
A good tradeoff between capacity-achieving performance and
decoding complexity is multistage decoding [2]–[4], which is
in principle capable of achieving capacity if the code rates
selected for each level approach the respective equivalent chan-
nel capacity [1]. An alternative [5], [6] to MLCM-MSD is
MLCM-ID which employs iterative decoding to reduce the
error multiplicity in a probabilistic sense. In comparison to
MLCM-MSD, MLCM-ID allows simpler codes to be used in
achieving the constellation constrained capacity (CCC), i.e., the
maximum capacity of a system with a specific constellation of
the transmitted symbols, and also more flexible code choice at
each level. We refer to [5], [7] for the detailed discussions.
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A. Problem Statements

For conventional MLCM, Wachsmann et al. have shown
some feasible code design rules in their landmark paper [1];
they are, the capacity design rule, balanced distance rule, cod-
ing exponent rule, cut-off rate rule and equal error probability
rule. All these rate design rules restrict the maximum rate for
each level. If the code rate assigned at each level exceeds
their corresponding maximum rate, it is in principle impossible
to achieve reliable transmission over an AWGN channel. For
MLCM-ID, the authors have shown [5] that one merit of
MLCM-ID over MLCM is that it allows a wider choice of
codes, which increases the flexibility in the design of code.
However Isaka and Imai [5] also pointed out that code design
for MLCM-ID is not easy. The principal constraints are:

1) The convergence behaviour of iterative decoding has to
be evaluated in multidimensional space [5].

2) The code design rule (CDR) should allow a wider class1

of code choice at each level.
3) The overall code rates should approach CCC as closely

as possible. We expect that the code design rule allows in
principle capacity lossless design2 for MLCM-ID.

4) The allocated code rates must be limited to the rate
bounding region of the constellation mapping, as de-
scribed in Condition 2 of Theorem 2 in [1].

5) The rate and EXIT property of the code must be jointly
considered to achieve full convergence.

Constraint 1 mentioned in [5] imposes the main technical
difficulty in the design of codes for MLCM-ID. Constraint 2
follows from the fact that MLCM-ID allows more flexible code
choice at each level compared to the non-iterative case [5], and
hence the code design rule should be subject to this constraint.
The CDR should be also subject to constraint 3 to ensure that
the overall rate approaches the capacity. Furthermore, the CDR
should be subject to constraint 4 where the rates assigned at
each level must be limited to the theoretical rate region given in
[1]. Constraint 5 follows from the basic principle of the EXIT
chart curve-fitting technique [8].

As far as the authors know, the code design problem for
MLCM-ID is still open, and the only approach so far available
is that given in [9] which is based on a set of three dimensional
(3D) EXIT charts [10] (which is a special case of the code
design proposed here), giving only a single solution to the
code design problem. Note that a multi-dimensional EXIT

1A wider range of selection of code rates and types.
2The CDR should allow capacity to be achieved.
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chart analysis has previously been proposed for the conver-
gence analysis of multiple concatenated turbo codes [11], [12]
which uses multiple parallel concatenated component codes.
Exploiting this concept, we specifically design a different 3D
EXIT chart for MLCM-ID. The design approach in [9] does not
exploit the full potential of flexible code selection in MLCM-
ID. Therefore, a general and efficient code design rule for
MLCM-ID has not been solved.

B. Contributions

The aim of this paper is to introduce an easy-to-use code
design rule for MLCM-ID, which fully exploits the flexibility
in the choice of codes, allows theoretically the overall rate
achieving CCC, and also has full convergence guaranteed. The
contributions of this paper are summarized as:

1) We introduce the novel concept of the parametrically-
mapped EXIT (PM-EXIT) function which resolves a
set of complex multidimensional EXIT functions into
separate 2D EXIT functions.

2) We propose a code design theorem and define a code
design rule for MLCM-ID. The proposed code design
rule relaxes the five aforementioned constraints, and now
the complex code design problem reduces to a simple
parametric function selection problem.

3) We derive analytically a general form of the multi-variate
bit level extrinsic information transfer (MV-BL-EXIT)
function for multilevel codes based on the a priori binary
erasure channel (BEC).

4) We prove three area theorems based on the analytical
results, which gives theoretical support for our code
design rule, and also prove that the PM-EXIT function
rule allows in principle capacity lossless multilevel code
design.

5) We verify the code design rule and theorems presented,
further by means of simulations.

6) We show the possible parametric function selections in
the design of the PM-EXIT functions.

C. Notation Definitions

We first define some notations used throughout this paper: C
and R denote the set of complex numbers and real numbers, re-
spectively. a\i � [a0, · · · , ai−1, ai+1, · · · , am−1] for a length-
(m − 1) vector; Ḟ2 � {0, 1}, Ḟ2 ∈ Z; F2 denotes a binary finite
field. The bold italic A represents the vector-valued random
variables. The lowercase a or a represents the scalar or vector
realization of random variable A or A. f ′(·) represents the first
derivative of function f (·).

Section II briefly describes the MLCM-ID structure and
the operation of the demodulator/decoder. In Section III, we
derive the MV-BL-EXIT functions for multilevel codes based
on the a priori BECs. Section IV states and proves, with the
aid of the 3D EXIT chart, the code design theorem on the
conditions for convergence of MLCM-ID. Area theorems are
proved in Section V, which confirms that in principle CCC
can be achieved based on MLCM-ID and the code design

Fig. 1. System model of MLCM-ID.

rule proposed. Section VI first investigates the influence of
the mapping in MLCM-ID and then deals with the simulation
examples and analysis.

II. SYSTEM MODEL

In this section, the system structure and two iterative de-
coding modes of MLCM-ID are described. At the transmit-
ter, information bits of the ith level enter the corresponding
encoder Ei, i = 0, 1 · · · , m − 1, and these coded bits are then
interleaved by a random interleaver πi, where m = log2(M) and
M is the number of constellation points. For simplicity, a 3-level
MLCM-ID structure is illustrated in Fig. 1. The interleaved
bits Xi form binary address vectors X = [X0, X1, . . . , Xm−1],
xi ∈ F2, x ∈ Fm

2 which are mapped to the complex symbol
S = M(X) from a 2m-ary signal constellation ζ , based on
a bijective mapping function M : X → S. The symbol S is
transmitted over the complex AWGN channel. We denote X\i

as the powerset of the index set I of X\i. At the receiver,
given the matched filter output Y , the demodulator calculates
the extrinsic L-value for the ith level which is then fed into the
corresponding decoder Di. If no a priori knowledge of the other
bits is available, the posterior probability for Xi = xi, at the ith

level is given by

Pr(Xi =xi|Y)=
∑
s∈ζ i

xi

Pr(S=s|Y)= 1

2m−1

∑
s∈ζ i

xi

Pr(Y|S = s)

Pr(Y)
(1)

where ζ i
xi

denotes the subset of symbol set ζ whose bit labels
have the value Xi = xi at the ith position; e.g., if xi = 1, then
ζ i

xi
= {S = M(X) | ∀x ∈ Fm

2 , xi = 1}. We also denote s� ∈
F2, � = 0, 1, · · · , m − 1, the bit value at the �th level of the
constellation point s. Then, in the case where the a priori
knowledge of other bits is available:

Pr(Xi = xi|Y) =
∑
s∈ζ i

xi

P(Y|S = s)
∏m−1

�=0,� �=i Pra(X� = s�)

P(Y)
(2)

The decoding modes available are iteration-aided parallel
independent decoding (IA-PID) and multistage decoding (IA-
MSD). For the first mode, the demodulator calculates the extrin-
sic probability for each level simultaneously. Then, with the aid
of the output L-value, Le

dem,i = log2(Pe(Xi = 1)/Pe(Xi = 0)),
each decoder computes the new metrics Le

dec,i independently
and simultaneously, which in turn serve as the a priori L-value
for the demodulator. Here, La·,· and Le·,· represent the a priori and
extrinsic L-value of the corresponding decoder/demodulator at
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a particular level. An alternative is multistage decoding. We
assume that multistage decoding proceeds from the lowest level
to the highest level. At the first stage of the first iteration,
the demodulator first calculates the extrinsic probability of the
code bit at level 0 using equation (1), where the m − 1 a priori
L-value, [La

dem,1, · · · , La
dem,m−1] are zeros at the first stage. The

output Le
dem,0 is deinterleaved and passes through the associated

decoder 0 to produce Le
dec,0. The updated La

dem,0 along with
[La

dem,2 · · · , La
dem,m−1] update Le

dem,1. This process is repeated
and all levels are activated in turn for the second and subsequent
iterations.

III. MULTI-VARIATE BIT-LEVEL EXTRINSIC

INFORMATION AND COMBINED INFORMATION

The EXIT chart is a powerful technique which is applied
for the convergence analysis of iterative systems. The EXIT
function is commonly obtained as shown in [10], where the
a priori channel was assumed to be the Binary-Input AWGN
(BiAWGN) channel. EXIT functions were also investigated
based on the other a priori channel models, such as BEC and
binary symmetric channel (BSC). For example, by exploiting
the concept of information combining [13], the authors in
[13], [14] derived the EXIT functions for single parity check
codes and repetition codes based on the a priori BEC and
BSC, respectively. In [15], based on the BEC, the authors
proved the area properties of the EXIT functions for several
classes of codes,3 giving theoretical support for the curve fitting
technique.

In this section, we derive the EXIT function for a particular
bit level of multilevel codes based on the a priori BEC, where
all level’s code bits are coupled by the constraint of complex
constellation mapping, rather than the single parity check or
repetition constraints. Due to the constellation mapping con-
straint, the extrinsic information for the ith code bit depends
on the channel observation, and the m − 1 a priori information
Ia

dem,\i = [Ia
dem,0, · · · , Ia

dem,i−1, Ia
dem,i+1, · · · , Ia

dem,m−1], where

Ia
dem,i denotes the a priori information of the ith level of the

demodulator.
Let all a priori channels for coded bits X\i be independent

BECs, with erasure probabilities δ\i. Xi, i ∈ {1, 2, · · · , m − 1}

3Experimental evidence shows that area properties holding for the BEC also
apply to the Bi-AWGN channel [15].

is either perfectly received or erased. We define Vj as a discrete
random variable with Bernoulli distribution,

Vj =
{

1 if Xj is perfectly received: probability 1 − δj

0 if Xj is erased: probability δj

The probability function of Vj is p(vj) = P(Vj = vj) =
δ

1−vj
j (1 − δj)

vj , j = 0, · · · , m − 1, j �= i. Each random variable

in V\i ∈ Ḟ
m−1
2 is assumed to be independent due to the inde-

pendence of the a priori BECs, and their multivariate distri-
bution is:

pV\i(v\i) = P(V\i = v\i) =
∏

j=0,··· ,m−1,j �=i

δ
1−vj
j (1 − δj)

vj (3)

where Ḟ
m−1
2 is a set including all 2m−1 possible realizations

for vector-valued random variable V\i. Each element in Ḟ
m−1
2

can be mapped to the corresponding element of the power-
set X\i under a mapping function F(·) such that F(v\i) ∈
X\i (note that F(·) is both one-to-one and onto). For ex-
ample, given m = 3 and i = 0, F(v1 = 1, v2 = 0) := F(V1 =
v1, V2 = v2)|v1=1,v2=0 → X1.

The capacity of the BEC depends linearly on the erasure
probability [16], Ia

dem,j = 1 − δj. Hence the joint probability
function in (3) becomes:

pV\i(v\i) = P(V\i = v\i)

=
m−1∏

j=0,j �=i

(
1 − Ia

dem,j

)1−vj
(

Ia
dem,j

)vj
(4)

The extrinsic information Ie
dem,i for the ith level of multi-

level codes is the expected value of the conditional mutual
information I(Y; Xi|F(V\i)) with respect to the joint probability
function of V\i

Ie
dem,i = E{V\i}

[
I
(
Y; Xi|F(V\i)

)]
(5)

=
∑

∀v\i∈ Ḟ
m−1
2

I
(
Y; Xi|F(v\i)

)
pV\i(v\i) (6)

where I(Y; Xi|F(V\i)) is given in (7) and (8), shown at the
bottom of the page. Here K is a set including all possible

I
(
Y; Xi|F(v\i)

) = E{Xi,F(v\i),Y}
[

log2
P

(
Y, Xi|F(v\i)

)
P

(
Y|F(v\i)

)
P

(
Xi|F(v\i)

)
]

= 1

2λ+1

∑
∀xi∈F2

∑
F(v\i)∈K

∫
C

P
(
Y|F(v\i), Xi = xi

)
log2

P
(
Y|F(v\i), Xi = xi

)
1
2

∑
xi∈F2

P
(
Y|F(v\i), Xi = xi

)dY (7)

P
(
Y|F(v\i), Xi

) = 1

2m−1−λ

∑
s∈ζ i

Xi,F(v\i)

P(Y|S = s) (8)
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realizations of code bits F(v\i), and λ = log2 |K|; ζ i
xi,F(v\i)

denotes the subset of symbols s ∈ ζ whose bit labels have the
value xi and F(v\i) in the corresponding positions.

Definition 1: For an m-level multilevel code, the MV-
BL-EXIT function f e

MBL,i of the ith level at a fixed SNR is
defined as:

f e
MBL,i : Ia

dem,\i → Ie
dem,i

and mathematically can be expressed as:

f e
MBL,i

(
Ia

dem,\i

)
=

∑
∀v\i∈ Ḟ

m−1
2

I
(
Y; Xi|F(v\i)

)
pV\i(v\i) (9)

based on the a priori BEC.
Equation (9) is a multinomial with m − 1 variables Ia

dem,\i.
When all elements of Ia

dem,\i are replaced by a single a priori in-

formation variable Iapri, thus, Ia
dem,j = Iapri for j = 0, · · · , m −

1, j �= i, we get the BL-EXIT function.
Definition 2: For an m-level multilevel code, the BL-EXIT

function f e
BL,i of the ith level at a fixed SNR is defined as:

f e
BL,i : Iapri → Ie

dem,i

and mathematically can be expressed as:

f e
BL,i(I

apri) =
∑

∀v\i∈ Ḟ
m−1
2

I
(
Y; Xi|F(v\i)

)

× (1 − Iapri)

m−1∑
j=0,j �=i

(1−vj)

Iapri

m−1∑
j=0,j �=i

vj

(10)

based on the a priori BEC.
Equation (10) is a degree m − 1 monomial with variable Iapri.

I(Y; Xi|F(vi)) includes the physical channel information and is
a fixed value when SNR, constellation, and mapping are known.
Note that the convergence behaviour is typically analyzed based
on the known SNR, constellation, and mapping. I(Y; Xi|F(vi))

can be evaluated using numerical integration. For example, by
using Monte Carlo integration over equation (10), (7), and (8),
we plot the BL-EXIT functions for three levels of 8PSK with set
partitioning (SP) mapping at SNR = 7 dB, which is illustrated
in Fig. 2.

As stated above, the convergence analysis for MLCM-ID is
not easy since the extrinsic information of a particular level
is determined by the m − 1 a priori information signals, thus
Ie
dem,i = f e

MBL,i(I
a
dem,\i). We hope to simplify the convergence

analysis and hence define a single information variable having
equivalent effect as the m − 1 a priori information variables
Ia

dem,\i on the output extrinsic information Ie
dem,i. In other

words, when all elements in Ia
dem,\i are equal to this single

information value (which is called the combined information),
the same Ie

dem,i can be obtained. We give the detailed definition
of the combined information as follows:

Definition 3: For an m-level multilevel code, the combined
information Icomb

i ∈ [0, 1] of the m − 1 a priori information

Fig. 2. Monte Carlo Integration Results for BL-EXIT functions based on its
definition in (10), and equations (7) and (8). 8PSK; Set Partitioning Mapping;
SNR = 7 dB.

Ia
dem,\i is defined as:

Icomb
i = f e

BL,i
−1

(
f e
MBL,i

(
Ia

dem,\i

))
(11)

Definition 4: ∀z1 ∈ [0, 1], ∀z2 ∈ [0, 1], if z1 > z2, we have
f (z1) > f (z2) and df (z)

dz exists for z ∈ [0, 1], function f (·) is
called the monotonically increasing continuous (MIC) function.

We have proved, in Theorem 1 of a companion paper [17],
that f e

BL,i is an MIC function (by which the existence of f e
BL,i

−1

is implied), and there exists one and only one Icomb
i ∈ [0, 1]

given the (m − 1) a priori information Ia
dem,\i.

IV. CODE DESIGN THEORY

One specific code design criterion for MLCM-ID has been
shown in [9], stating that code of each level should be selected
such that its swapped EXIT function closely matches the corre-
sponding BL-EXIT function. Although this criterion gives only
one code assignment possibility, it has shown its effectiveness
in solving the multilevel code design problem using a two-
dimensional EXIT chart. In this paper we explore a general
code design rule which allows a wide class of code design and
hence fully exploits the inherent flexibility of MLCM-ID in the
choice of codes. Of course, we still hope to allocate a code at
each level with the aid of the 2D curve fitting technique which
has shown its robustness in the design of codes for iterative
systems. Hence our aim is:

Aim: To establish a 2D EXIT function for each level of
the multilevel demodulator, with the two dimensions being
the a priori and extrinsic information of the decoder at the
corresponding level.

A. Parametrically-Mapped EXIT Function

Things become easy if the a priori information of all levels
is associated with one variable. Based on this assumption, we
found that a simple mathematical model would be very useful
to solve this problem. The model is the parametric equation.
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Fig. 3. Examples of 3D trajectories based on parametric equation in (12) for a
3-level multilevel code.

Hence we express the a priori information of each level of the
multilevel demodulator in the form of:

Ia
dem,0 = g0(t̆),

...

Ia
dem,m−1 = gm−1(t̆); t̆ ∈ [0, 1] (12)

where the parametric functions (PFs) gi(t̆) for i = 0, 1, · · · ,

m − 1, must fulfill two conditions:

1) gi(t̆) is an MIC function;
2) gi(t̆) ∈ [0, 1].

Note that the two conditions potentially imply that gi(0) = 0
and gi(1) = 1.

To elaborate a little further, we plot trajectories based on
(12) in an m-dimensional orthonormal basis Om, where each
dimension represents Ia

dem,i, i = 0, 1, · · · , m − 1. Each of tra-
jectories is defined as the locus of a point Q whose coordinates
satisfy the conditions of (12). Fig. 3 shows three trajectories
(blue, red and black) based on the PFs of Examples 1, 2 and
3 in Section VI-B, respectively. The three a priori information
variables form a unit cube and point Q(Ia

dem,0, Ia
dem,1, Ia

dem,2)

moves from the origin (0,0,0) and finally converges at (1,1,1)
following the trajectory defined by the selected a group of
PFs. When t̆ increases from 0 to 1, the a priori information
Ia
dem,i at each level achieves full convergence. Note the green

discontinuous trajectory, which gives a geometrical explanation
of the principle for conventional MSD. Thus, Ia

dem,0 needs to
reach 1 after the first stage of decoding, and given this, Ia

dem,1
needs to reach 1 after the second stage of decoding, and given
the first two stages are perfectly decoded, Ia

dem,2 is capable
of reaching (1,1,1) which guarantees reliable decoding. Hence
Q moves to (1,1,1) following the green trajectory. Note that
“Ia

dem,0 reaches 1” means that bits are perfectly decoded at
level 0. If the decoding of any previous stage is not perfect,
the green trajectory will not be able to reach (1,1,1) and the

decoding performance is degraded therefore. However, if point
Q moves following the continuous trajectories, e.g., the red one,
this problem can be easily avoided. Any trajectory defined by
PFs of (12) corresponds to one possible way of code choice in
MLCM-ID, and the flexibility can be easily seen since there are
infinite number of continuous trajectories moving from (0, 0, 0)
to (1, 1, 1).

The extrinsic information of the multilevel demodulator at
the ith level depends on Ia

dem,\i—the a priori information of
all levels except Ia

dem,i. Ia
dem,i is the extrinsic information of

the decoder at the ith level. Hence, given an m-dimensional
trajectory defined by (12) in space Om, its m − 1 coordinates
determine Ie

dem,i, and the remaining coordinate is related to

the output of the decoder at the ith level. Therefore the m
coordinates (Ia

dem,0, · · · , Ia
dem,m−1) are associated with both the

extrinsic information of the demodulator and the decoder, at the
ith level. Based on parametric equation in (12), we have:

Ie
dem,i = f e

MBL,i

(
g\i(t̆)

)
(13)

gi(t̆) = fdec,i
(
Ia
dec,i

)
(14)

fdec,i is the transfer function of the decoder at the ith level. A
2D EXIT function has been defined in (13) for the ith level of a
multilevel demodulator. In order to achieve the aim mentioned
in the beginning of this section, the argument in (13) should
be replaced by the extrinsic information of the decoder of the
ith level. Hence, let t = gi(t̆), t ∈ [0, 1], equations (13) and (14)
become:

İe
dem,i = f e

MBL,i

(
g\i

(
g−1

i (t)
))

︸ ︷︷ ︸
Ia

dem,\i

(15)

t = fdec,i
(
Ia
dec,i

)
(16)

Note that t represents the extrinsic information output from
the decoder of the ith level. Based on equation (15), we give the
definition of the PM-EXIT function:

Definition 5: The PM-EXIT function f e
PM,i for the ith level

of an m-level multilevel demodulator represents the relation
between the input t and output İe

dem,i, denoted by:

f e
PM,i : t �−→ İe

dem,i;
f e
PM,i := f e

MBL,i

(
g\i

(
g−1

i (t)
))

We refer to g\i(g
−1
i (t)) and İe

dem,i as the parametrically mapped
a priori information vector for the demodulator and the Para-
metrically Mapped Extrinsic Information (PMEI) of the ith

level, respectively. It is clear that when g0(t̆) = g1(t̆) = · · · =
gm−1(t̆) which corresponds to the diagonal line in Om, then
f e
MBL,i(g\i(g

−1
i (t))) = f e

BL(t). Hence the BL-EXIT function is
a special case of the PM-EXIT function. Any trajectory in Om

defined by parametric equation (12) corresponds to a group of m
PM-EXIT functions for m levels. This also potentially implies
there are any number of possible PM-EXIT functions because
of the wide range of choice of parametric equations resulting in
infinite possible trajectories in Om based on (12).
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B. 3D EXIT Chart and Convergence Analysis Based on
PM-EXIT Function

To obtain the PM-EXIT function of the ith level, we manually
produce the a priori L-value ∈ R for each the jth level based
on a particular a priori binary channel model (e.g. BiAWGN),
with the channel parameter chosen to provide the required
parametrically mapped a priori information value gj(g

−1
i (t))

for j = 0, 1, · · · , m − 1, j �= i. The mutual information of the
output L-value at the ith level is the PMEI. Similarly we can
also obtain the EXIT function for the decoder, but without the
parametrically mapped operation. In the following we show
how to analyze the convergence behaviour of MLCM-ID based
on the PM-EXIT function and the decoder EXIT function.

In a BICM-ID [18], [19] system, the convergence behaviour
can be observed through a two-dimensional staircase trajectory
which in fact reflects information exchange between the de-
modulator and decoder. We also expect to analyse the conver-
gence characteristic of MLCM-ID by observing the information
exchange between the PM-EXIT function and decoder EXIT
function at each level. At real iterative detection environment,
the decoder updates its extrinsic information at each level, such
that PMEI of the ith level is determined by (m − 1) variables
Ie

dec,\i, expressed as:

İe
dem,i = f e

MBL,i

(
g0

(
g−1

i

(
Ie
dec,0

))
, · · · , gi−1

(
g−1

i

(
Ie
dec,i−1

))
,

gi+1

(
g−1

i

(
Ie
dec,i+1

))
, · · · , gm−1

(
g−1

i

(
Ie
dec,m−1

)))
(17)

Obviously there are (m − 1) variables determining PMEI,
and it is not easy to construct an EXIT space. However, return-
ing to the concept of combined information, as aforementioned
in Section III and equation (17), we can construct a three-
dimensional EXIT space, which is beneficial to the convergence
analysis of MLCM-ID. First we define the parametrically-
mapped combined information (PMCI) as follows:

Definition 6: For an m-level multilevel code, the PMCI of the
m − 1 extrinsic information Ie

dec,\i is defined in (18), shown at
the bottom of the page, and the PMCI function is defined as:

fPMCI,i : Ie
dec,\i → İcomb

i

Note that f e
PM,i is also an MIC function which is in fact a

straightforward extension of f e
BL,i, hence equation (18) is well

defined. Now, we are able to construct a 3D EXIT chart for each
level, with three dimensions Ie

dec,i (x-axis), İcomb
i (y-axis) and

İe
dem,i (z-axis), respectively. Fig. 4 shows an example of the 3D

EXIT chart for level 0 of a 3-level MLCM-ID with the modified
set partitioning (MSP) [19] mapping. 3D EXIT charts for other
levels have a similar form to level 0. As observed in Fig. 4, the
PM-EXIT function and the decoder EXIT function are plotted
in 3 dimensions and hence form the EXIT surfaces. The PM-
EXIT surface of the ith level, shown as a grid of dotted lines,

Fig. 4. 3D-EXIT chart for level 0 of MLCM-ID at Es/N0 = 7 dB; MSP; 8PSK;
AWGN channel; The PM-EXIT surfaces are based on an arbitrary selection of

parametric functions: f0(t) = t
3
5 , f1(t) = t

19
50 and f2(t) = t2.

is determined by the input t = İcomb
i using (15) which gives

İe
dem,i, and hence is independent of Ie

dec,i (x-axis). The decoder
EXIT surface, shown as a grid of solid lines, is determined by
İe
dem,i which gives Ie

dec,i and is independent of İcomb
i (y-axis).

The PM-EXIT function of the ith level is the projection of the
intersection curve between the diagonal plane (vertical plane
marked with a grid of dash-dotted lines) and the PM-EXIT
surface onto the (x, z) plane.

C. Code Design Theorem

Theorem 1: In a 2m-ary digital modulation scheme, full
convergence can be achieved by multilevel encoding with code
rates Ri, i = 0, · · · , (m − 1), and iteration-aided multistage
decoding or iteration-aided parallel independent decoding, if
the condition below is fulfilled:

At each level, a code is allocated to ensure there is an open
tunnel between its EXIT function and the corresponding PM-
EXIT function, where each level’s PM-EXIT function f e

PM,i, i =
0, 1, · · · , m − 1, is generated on the basis of a group of selected
parametric equations in (12).

Proof: Let fINT,i(·) denote a function whose curve is
the projection of the intersection curve between the PM-EXIT
surface and the decoder surface of the ith level onto the (x, y)
plane of the 3D EXIT chart. Then, we have:

Ie,(l)
dec,i = fINT,i

(
İcomb
i,(l−1)

)
(19)

İcomb
i,(l) = fPMCI,i

(
Ie,(l)

dec,\i

)
(20)

where (l) denotes the lth iteration, e.g, İcomb
i,(l) denotes the ob-

tained PMCI of the ith level at the lth iteration. In initial stage,

İcomb
i = f e

PM,i
−1

(
f e
MBL,i

(
g0

(
g−1

i

(
Ie
dec,0

))
, · · · , gi−1

(
g−1

i

(
Ie
dec,i−1

))
, gi+1

(
g−1

i

(
Ie
dec,i+1

))
, · · · , gm−1

(
g−1

i

(
Ie
dec,m−1

))))
(18)
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∀i, İcomb
i,(0) = 0, Ie,(0)

dec,i = 0. We first analyze parallel independent

decoding. Given Icomb
i,(0) , equation (19) produces Ie,(1)

dec,i which must

be larger than Ie,(0)
dec,i = 0, provided this condition is fulfilled.

Note that Ie,(1)
dec,i increases simultaneously for all levels. Due to the

increase of Ie,(1)
dec,i at all levels, we obtain Icomb

i,(1) based on equation

(20). Since ∀i, Ie,(1)
dec,i > Ie,(0)

dec,i and fPMCI,i is the MIC function of

Ie
dec,\i, we have İcomb

i,(1) > İcomb
i,(0) .

At the second iteration where l = 2, we can obtain Ie,(2)
dec,i

from equation (19) because we know İcomb
i,(1) . Provided this

condition is fulfilled, fINT,i(·) is an MIC function, and since
İcomb
i,(1) > İcomb

i,(0) , we have Ie,(2)
dec,i > Ie,(1)

dec,i for all levels. This further

results in İcomb
i,(2) > İcomb

i,(1) based on equation (20). It is clear

that Ie,(l)
dec,i and İcomb

i,(l) are iteratively exchanged among m pairs
of equations (19) and (20), (one pair for each level) and
provided this condition is fulfilled they will both increase in
each iteration until Ie,(l)

dec,i = 1 and İcomb
i,(l) = 1, where the target

point (1, 1, I(Y; Xi|X\i)) (denoted as Di) is reached (see Fig. 4),
and full convergence is achieved at each level. Codes ensuring
full convergence for IA-PID must guarantee full convergence
for IA-MSD, since the higher levels receive soft information
corresponding to the decision of previous stage decoder at
each iteration in IA-MSD, where İcomb

i,(l) |IA-MSD ≥ İcomb
i,(l) |IA-PID,

Ie,(l)
dec,i|IA-MSD ≥ Ie,(l)

dec,i|IA-PID.
As shown in Section IV-A, there is a trajectory in space Om

which is associated with functions f e
PM,i and fdec,i of each level,

since variable t in (15) and (16) identifies m coordinates of this
trajectory. Once the point Di is reached for i = 0, 1, · · · , m − 1,
the code assigned at each level ensures full convergence, hence
t = Ie

dec,i = 1 in (15) and (16), which further results in g0(1) =
· · · , gm−1(1) = 1, where point Q reaches (1, · · · , 1) based on
this trajectory. In terms of the convergence characteristic of the
trajectory defined in (12), when codes assigned on the basis of
this trajectory achieve full convergence at each level, they also
ensure full convergence between the respective EXIT surfaces
and the BL-EXIT surfaces constructed by the diagonal trajec-
tory in Om, since point Q is capable of reaching (1, · · · , 1)

following diagonal trajectory with the shortest path. This means
that code assigned at each level guarantees full convergence of
MLCM-ID. �

Provided the condition of Theorem 1 is fulfilled, code rates
are limited to the theoretical rate region [1] and satisfy Shan-
non’s noisy-channel coding theorem which are regarded as the
necessary conditions to ensure full convergence. This is proved
in the next section.

V. AREA THEORY

The EXIT chart is widely known as a very efficient and
powerful tool in the design of iterative system, e.g., BICM-ID,
Turbo codes and concatenated system, because it reduces the
design problem into simple curve fitting problem. In this sec-
tion, we prove three area theorems for the proposed PM-EXIT
functions. This gives theoretical support for both Theorem 1
and the code design rule presented at the end of this section.

A. Area Theorem of BL-EXIT Function

Let A(i)
BL, i = 0, · · · , (m − 1) be the area under the BL-EXIT

function of the ith level. According to Definition 2, the area A(i)
BL

is the result from the integration of f e
BL,i in the domain [0, 1]:

A(i)
BL =

∫ 1

0
f e
BL,i(t)dt

and mathematically is expressed as (21), shown at the bottom
of the page.

Theorem 2A: In a 2m-ary digital modulation scheme, the sum
of the areas A(i)

BL, i = 0, · · · , (m − 1), is equal to the CCC, thus:

I(Y; X0, · · · , Xm−1) =
m−1∑
i=0

A(i)
BL (23)

Proof: See Appendix A. �

B. Area Theorem of PM-EXIT Function

Theorem 2B: In a 2m-ary digital modulation scheme, if A(i)
PM

is the area under the PM-EXIT function of the ith level, the sum
of the areas A(i)

PM for i = 0, 1, · · · , (m − 1) is equal to the CCC,
thus:

I(Y; X0, · · · , Xm−1) =
m−1∑
i=0

A(i)
PM (24)

Proof: According to the Definition 5, A(i)
PM can be ex-

pressed as:

A(i)
PM =

∫ 1

0
f e
PM,i(t)dt

=
∫ 1

0
f e
MBL,i

(
g\i

(
g−1

i (t)
))

dt

Ai
BL =

1∫
0

∑
∀v\i∈ Ḟ

m−1
2

I
(
Y; Xi|F(v\i)

)
(1 − t)

m−1∑
j=0,j �=i

(1−vj)

t

m−1∑
j=0,j �=i

vj

dt (21)

Ai
PM =

∫ 1

0

∑
∀v\i∈ Ḟ

m−1
2

I
(
Y; Xi|F(v\i)

) m−1∏
j=0,j �=i

(
1 − gj

(
g−1

i (t)
))(1−vj)

gj

(
g−1

i (t)
)vj

dt (22)
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Based on equation (9), A(i)
PM can be written in the form of

(22), shown at the bottom of the previous page. The details of
the proof are given in Appendix B. �

Theorem 2B makes an important information theoretic point
about PM-EXIT functions. Thus the sum of area under each
level PM-EXIT function is always equal to the constella-
tion constrained capacity, and is independent of the selection
of the parametric functions. This directly proves that Theo-
rem 1 ensures the overall code rate is less than the capac-
ity

∑m−1
i=0 R(i) ≤ I(Y; X0, X1, · · · , Xm−1), and hence preserves

Shannon’s noisy-channel coding theorem.
Theorem 2C: The area A(i)

PM satisfies the following condition:∑
i∈JA

(i)
PM ≤ I(Y; {Xi|i ∈ J}|{Xj|j ∈ J}), for all possible sets

J ⊂ {0, · · · , m − 1} of indices, where J is the complementary
set of J.

Proof: For simplicity, let us consider a three-level mul-
tilevel code. As Theorem 2B stated, the maximum sum-area∑m−1

i=0 A(i)
PM is equal to CCC,

A(0)
PM + A(1)

PM + A(2)
PM = I(Y; X0X1X2)

We know gj(g
−1
i (t = 0)) = 0, gj(g

−1
i (t = 1)) = 1, and f e

PM,i is

an MIC function, area A(i)
PM is bounded as

f e
PM,i(0) · 1 ≤ A(i)

PM ≤ f e
PM,i(1) · 1

Here, f e
PM,i(0) = I(Y; Xi) and f e

PM,i(1) = I(Y; Xi|X\i), and
hence:

I(Y; Xi) ≤ A(i)
PM ≤ I(Y; Xi|X\i) (25)

The maximum rate at the ith level is given by I(Y; Xi|X\i). For
m = 3, this means that

A(0)
PM ≤ I(Y; X0|X1X2)

A(1)
PM ≤ I(Y; X1|X0X2)

A(2)
PM ≤ I(Y; X2|X0X1)

Applying (25), we have

I(Y; X0X1X2) − A(i)
PM ≤ I(Y; X0X1X2) − I(Y; Xi) (26)

m−1∑
j=0,j �=i

A(j)
PM ≤ I(Y; X\i|Xi) (27)

where the left and right sides of (27) follow from the Theorem
2B and chain rule of mutual information, respectively. Using
the same arguments, the results for a 3-level multilevel code can
be readily extended to arbitrary m-level multilevel codes. This
proves Theorem 2C. �

Theorem 2C also proves that Theorem 1 ensures that code
rates assigned at each level are limited to the rate bounding
region. A set of possible rate bounds for 8PSK MSP mapping
are shown in Fig. 5. We describe the code design method as
follows:

Code Design Rule (PM-EXIT Function Rule): For a 2m-ary
digital modulation scheme the code at the ith, i = 0, 1, · · · ,

(m − 1) protection level of an MLCM-ID scheme should be

Fig. 5. Maximum achievable rates versus Es/N0 for 8PSK; MSP; AWGN
channel.

chosen such that its EXIT function closely matches4 the cor-
responding PM-EXIT function.

The area theorems of the PM-EXIT function give theoretical
support for the curve-fitting techniques used in MLCM-ID, and
confirm that the PM-EXIT function rule allows: 1. in principle
capacity-lossless code design; 2. codes to be limited to the rate
region; 3. 2D curve-fitting solution. The code design process
thus amounts to the two processes:

1) choosing a group of MIC parametric functions defined in
(12), and obtain the PM-EXIT function for each level.

2) selecting codes such that their EXIT functions closely
match the corresponding PM-EXIT functions.

Fig. 7 shows a flow chart to describe the procedures of the
PM-EXIT function rule.

VI. MAPPING INFLUENCE, EXAMPLES AND DISCUSSIONS

A. Influence of the Mapping in MLCM-ID

The index assignment of the mapping affects the BER per-
formance and the flexibility of code selection at each level.
We refer to the points (1, I(Y; Xi|X\i)) and (1, I(Y; Xi)) of
the PM-EXIT function as the full iteration gain (FIG) point
and no iteration gain (NIG) point, respectively. The best BER
performance for each individual level is determined by the
corresponding FIG point. A better overall BER performance
can be achieved if the FIG point at each level approaches
(1,1). The flexibility in the choice of codes depends on the
relative ordinate value of the FIG and NIG points. A mapping
having a larger value of |I(Y; Xi|X\i) − I(Y; Xi)| at the ith level,
i = 0, 1, · · · , (m − 1), provides a wider region of variation and
this typically means that we are able to assign codes for this
level with more flexibility.

4“Match” means that the swapped decoder EXIT function should keep an
open tunnel with the corresponding PM-EXIT function. This guarantees that the
decoder extrinsic information approaches 1 after sufficient number of iterations.
“Closely” means that the area of the open tunnel should be as small as possible
since it represents the capacity loss. Typically this area is within 5% of the total
area of the EXIT chart.
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Fig. 6. The BL-EXIT and PM-EXIT functions for Example 1.

Fig. 7. A flow chart illustrating the procedures of the PM-EXIT function rule.

B. Examples and Discussion

We first exemplify the practical design procedure by using
some appropriate parametric functions and the overall BER
performance is then evaluated. The throughput of MLCM-ID
may be expressed as η = ∑m−1

i=0 R(i) bits per channel use.
Eb/N0|dB = Es/N0|dB − 10 log10 η, where N0 is the noise
power spectral density; Eb and Es denote the transmit energy
per information bit and per channel use, respectively. We take
convolutional codes as examples to verify our code design rule.
The convolutional decoders in all simulations are based on the
maximum a posteriori criterion and the BCJR algorithm [20].
The first three examples are based on 8PSK with MSP mapping,
but we also consider 16QAM with SP mapping in Example 4.
Trajectories of the parametric functions of Examples 1–3 were
shown in Fig. 3.

Example 1: Assume only power functions are employed. We
arbitrarily choose powers for three functions, such as g0(t̆) =
t̆

3
5 , g1(t̆) = t̆

19
50 and g2(t̆) = t̆2, to make a more convincing

verification of the PM-EXIT function rule.5 Fig. 6 shows the
corresponding PM-EXIT curves at Es/N0 = 7 dB. (In the se-
quel, all the PM-EXIT curves and decoder EXIT curves are
obtained by using the a priori BiAWGN channel). Dotted lines
represent the corresponding BL-EXIT curves. It is obvious that
the shapes of the BL-EXIT functions at all levels are distorted,
which forms the PM-EXIT functions. It is observed that in this
case, the PM-EXIT curve has a convex shape for level 2, but a
concave shape for level 1. For level 0, the PM-EXIT curve is at
first convex, and then concave.

We evaluate the area Ai
PM via numerical integration based on

Definition 5, and the result complies with Theorem 2B and 2C.
Codes are assigned at each level in terms of the PM-EXIT func-

5Note that we use in this example a group of arbitrarily selected parametric
functions to confirm that for any a group of parametric functions satisfying the
two conditions described in Section IV-A, the PM-EXIT function rule relaxes
the 5 constraints mentioned in Section I and ensures full convergence

tion rule. The EXIT curves of the decoder are represented as
the dashed lines in Fig. 6, with rates R(2) = 13

14 , R(1) = 9
13 and

R(0) = 1
2 for each level (see Table I for code details). Fig. 8(a)

shows the attainable BER performance using IA-PID at overall
throughput R = 2.12 bits/symbol. Since each decoder EXIT
curve keeps a narrow open tunnel6 with the corresponding PM-
EXIT curves at Eb/N0 = 7 − 10 log10(2.12) ≈ 3.74 dB, this
ensures full convergence at each level after sufficient iterations.
As shown in Fig. 8(a), a sharp “turbo cliff” reaches an overall
BER of 4.6 × 10−5 at Eb/N0 = 3.74 dB with 20 iterations. This
result is consistent with Theorem 1. An error floor arises after
Eb/N0 = 3.74 dB, because the convolutional code is employed
at each level. In the case where capacity-achieving codes, e.g.,
sparse graph codes [21] are used, this can easily be avoided. In
Example 3 we show the design of MLCM-ID using the turbo
code (one family of sparse graph codes). However the removal
of the error floor is not the principal objective of this paper, and
we refer to, e.g., [22] for the possible solution.

Fig. 8(b) shows the BER performance of IA-MSD, with
the same component codes as in Fig. 8(a). The overall BER
performance of IA-MSD is the same as IA-PID at Eb/N0 =
3.74 dB with 12 iterations and block length 1.82 × 105, since
the same point Di for i = 0, 1, · · · , m − 1 is reached when
full convergence is achieved. It is shown that CCC is closely
approached for both IA-PID and IA-MSD, with the overall code
rate 2.12 bits/symbol. Hence, based on the PM-EXIT function
rule, we have designed codes for MLCM-ID allowing the over-
all rate only 0.09 bits/symbol (or 0.5 dB) from the capacity, at
BER = 4.6 × 10−5. Note that IA-MSD requires less number of
iterations to achieve the full convergence than IA-PID, since the
higher levels receive soft information corresponding to the de-
cisions of previous stage decoders at each iteration in IA-MSD.
When the block length is reduced to 3640, there is still turbo
cliff with sufficient number of iterations, but the performance
is slightly worse since the error correction capability of the
convolutional code is reduced when the block length decreases.

We have shown in the above example that MLCM-ID
achieves low BER = 4.6 × 10−5 at a rate which is only 0.09
bits/symbol from CCC. This is attributed to the enhanced flexi-
bility of MLCM-ID in the choice of codes, and the fact that the
PM-EXIT function rule fully exploits this property. Hence, it
becomes easy to achieve reliable transmission at a rate closer to
CCC, when compared to e.g., bit-interleaved coded modulation
with iterative decoding (BICM-ID). Analysis and design of
BICM-ID basically relies on a simple 2-dimensional EXIT
chart. In order to guarantee the full convergence, the swapped
decoder EXIT function should match the EXIT function of
the demodulator. We consider a BICM-ID system with 8PSK
MSP mapping. The demodulator EXIT function over AWGN
channel is fixed when we set again Es/N0 = 7 dB (the same as
Example 1). We expect to find a code satisfying 2 conditions: 1.
the code rate RBICM = 0.71; this allows the overall throughput
approximately the same as Example 1. 2. the swapped decoder
EXIT function matches the EXIT function of the demodulator.

6In all examples, we try to assign codes such that the tunnel is narrow.
Hence the simulation results are convincing in support of the area theorems
and design rule.
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TABLE I
PARAMETERS OF THE COMPONENT CODE USED FOR EACH EXAMPLE a

Fig. 8. (a) BER against Eb/N0 of IA-PID, Block length 1.82 × 105. (b) BER against Eb/N0 of IA-MSD for Example 1. Block length 1.82 × 105 or 3640; AWGN
channel; 8PSK; MSP. Details of the component codes are summarized in Table I. (a) IA-PID. (b)IA-MSD.

After exhaustive search, we cannot find a code which strictly
meet these two requirements. This is not surprising. The shapes
of the two EXIT functions are quite different but we need them
to match as closely as possible since the overall throughput is

very close to CCC at Es/N0 = 7 dB. This is not an easy task,
and becomes very difficult when higher throughput is required.
Note that for BICM-ID, we cannot distort the demodulator
EXIT function as we do the PM-EXIT function in MLCM-ID.
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Fig. 9. (a) The BL-EXIT and PM-EXIT functions for Example 2. (b) BER against Eb/N0 of IA-MSD for Example 2. Block length 105 or 3000; AWGN channel;
8PSK; MSP. Details of the component codes are summarized in Table I. (a) EXIT chart. (b) BER performance.

We pick one code (with memory-6) which so far gives the best
match to the EXIT function of the demodulator, where the two
EXIT curves intersect at a point slightly lower than the FIG
point. Hence we anticipate that there will be a turbo cliff (with
sufficient iterations) reaching an overall BER worse than that
for MLCM-ID of Example 1. The BER simulations of BICM-
ID in Fig. 8(b) are well consistent with our anticipation. The
BER reaches 6 × 10−4 at around 3.8 dB, and there is 3.5 dB
loss at BER = 10−5 compared to MLCM-ID. The block length
of the simulated BICM-ID is still 1.82 × 105. Note that the
overall number of trellis states for BICM-ID is larger than that
for MLCM-ID, but this does not help much. Hence, MLCM-
ID showed its ability to approach capacity, with the aid of the
PM-EXIT function design rule. The shape of the PM-EXIT
functions becomes quite flexible in terms of the parametric
functions selected, and this has obtained the actual gain.

We also give comparisons between MLCM-ID and turbo
coded BICM. Again, we use 8PSK with MSP mapping. The
component convolutional code of the turbo code has memory-
5 and rate RT-BICM = 0.71. The number of internal iteration of
the turbo code is 7. There is a loss of approximately 1.5 dB over
MLCM-ID at BER = 10−5.

Example 2: Assuming a high rate code is required for
level 1, we may choose a group of parametric functions with
the following form, g1(t̆) = t̆τ , τ > 1, g0(t̆) = t̆ and g2(t̆) = t̆.
We arbitrarily select τ = 1.8 and the corresponding PM-EXIT
functions are shown in Fig. 9(a). As expected, the PM-EXIT
curve of level 1 is convex, which enables a higher rate code to be
used at this level. Again, we design code for each level based on
the proposed code design rule, with rates R(0) = 9

20 , R(1) = 39
50

and R(2) = 17
20 and their EXIT curves well match the corre-

sponding PM-EXIT curves. Fig. 9(b) shows the corresponding
BER performance while IA-MSD is employed. The turbo cliff
reaches an overall BER 5 × 10−5 at Eb/N0 = 3.81 dB, with
overall code rates 2.08 bits/symbol which is 0.13 bits/symbol
(or 0.7 dB) from the capacity, using 12 iterations.

In this example, we also compare MLCM-ID with BICM-
ID. We need to find a rate-0.69 code (which gives the same

overall rate as MLCM-ID) for BICM-ID, where its swapped
EXIT function matches the EXIT function of the demodulator
at Es/N0 = 7 dB. The computer search returns a memory-6
convolutional code that meets the conditions. Since the overall
rate is smaller than Example 1, it is relatively easier to design
the code in this example when compared to the code design of
BICM-ID in Example 1. This is consistent with our conclusion
in Example 1. The BER performance is shown in Fig. 9(b).
The overall BER of BICM-ID reaches approximately 3 × 10−4

with block length 105 at Eb/N0 = 3.9 dB, which is still worse
than MLCM-ID.

Example 3: Here we address the design of MLCM-ID us-
ing capacity-achieving codes, in this case turbo-codes. Since
the swapped EXIT function of the turbo code shows a near-
horizontal characteristic, we can easily assign a code rate close
to the maximum achievable rate I(Y, Xi|X\i) of the ith level. For
example, to assign a code at the 0th level with rate approaching
I(Y, X0|X1X2), we choose the parametric functions: g0(t̆) = t̆20,
g1(t̆) = t̆, and g2(t̆) = t̆. The corresponding PM-EXIT func-
tions are shown in Fig. 10(a) at Es/N0 = 7 dB. The PM-
EXIT curve of the 0th level has a convex shape which is near-
horizontal and passes through the point (1, I(Y, X0|X1X2)). The
PM-EXIT functions of the other levels must be at concave
(which is necessary following Theorem 2B) and hence the
allowable rates for these two levels are decreased. Based on
the PM-EXIT function design rule, we assign a turbo code
with rate R(0) = 0.73 at level 0, which closely approaches
the corresponding I(Y, X0|X1X2) = 0.79, while the code rates
assigned for the other two levels are R(1) = 0.56 and R(2) =
0.76. Note that, a small rate-loss arises since the area below the
swapped EXIT function of the turbo code is slightly larger than
the actual rate [23]. Since these codes are designed at Es/N0 =
7 dB and their EXIT functions closely match the corresponding
PM-EXIT functions, we expect that there will be a sharp turbo
cliff within Eb/N0 = 3.88 dB. Fig. 10(b) clearly confirms our
anticipation and again verifies the PM-EXIT function rule. The
designed MLCM-ID performs within 0.9 dB of CCC at BER =
10−6 after 5 iterations.
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Fig. 10. (a) The BL-EXIT and PM-EXIT functions for Example 3. (b) BER against Eb/N0 of IA-MSD for Example 3. Block length 105; AWGN channel; 8PSK;
MSP. Details of the component codes are summarized in Table I. (a) EXIT chart. (b) BER performance.

Fig. 11. (a) The BL-EXIT and PM-EXIT functions for Example 4. (b) BER against Eb/N0 of IA-MSD for Example 4. Block length 1.4 × 105 or 2000; AWGN
channel; 8PSK; MSP. Details of the component codes are summarized in Table I. (a) EXIT chart. (b) BER performance.

Example 4: In this example we apply the PM-EXIT function
rule to a higher order MLCM-ID scheme, i.e., 16QAM (with
set partitioning mapping). In order to further verify that the
PM-EXIT function rule allows flexible choice of codes at each
level, we expect to assign a high rate code for level 0. This
typically becomes difficult for non-iterative MSD in terms of
the capacity design rule presented in [1]. We choose a group of
the parametric functions: g0(t̆) = t̆5, g1(t̆) = t̆1.1, g2(t̆) = t̆ and
g3(t̆) = t̆, to make the PM-EXIT function of level 0 convex.
Fig. 11(a) illustrates the BL-EXIT and PM-EXIT functions
at Es/N0 = 10 dB. Since the PM-EXIT function of level 0
has a slope near horizontal, we employ a turbo code as the
component code for this level. Again, we design codes for each
level strictly following the PM-EXIT function rule. Thus, the
EXIT function of the code should match the corresponding
PM-EXIT function as closely as possible. The resultant code
rates are R(0)/R(1)/R(2)/R(3) = 0.61/0.67/0.80/ 13

14 , giving
an overall rate R ≈ 3 bis/symbol (since R is slightly over 3
bits/symbol). The details of the selected codes are summarised

in Table I. In [1, Fig. 11], the authors give simulation results
for 16QAM based on the non-iterative MSD. The code rates
designed for each level are R(0)

MSD/R(1)
MSD/R(2)

MSD/R(3)
MSD =

0.29/0.75/0.96/1. Note that the code rate for level 0 is limited
to I(Y; X0) = 0.36 bits/symbol in terms of the capacity rule,
and hence the authors assigned a rate-0.29 turbo code for that
level, where the rate is less than half of the code rate R(0) of
MLCM-ID. This clearly exemplifies what we mean by “flexible
code design based on the PM-EXIT function rule in MLCM-
ID.” We should notice that level 3 is left uncoded. This in-
creases the overall throughput whereas the overall performance
is dominated by level 3. Hence the decoding performance of
the previous stages must be sufficiently good to avoid the error
propagation to the uncoded level which normally results in se-
vere performance degradation. In order to avoid error propaga-
tion, the authors assume perfect decoding at the lower levels in
that example. Thus, the correct transmitted bits at lower levels
are directly fed into higher stages (without using the estimates
of the previous stage). In example 4, we employ turbo code



2416 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 63, NO. 7, JULY 2015

only for level 0. The other three levels use convolutional codes.
It is observed in Fig. 11(b) that a sharp turbo cliff reaching
BER = 2.5 × 10−5 occurs at Eb/N0 = Es/N0 − 10 log10(3) =
5.23 dB. The results are well consistent with the anticipation
of Fig. 11(a), which verifies the PM-EXIT function rule for a
4-level multilevel code. Example 4 (one turbo code & three
convolutional codes) achieves overall BER performance similar
to Fig. 11 of [1] (with 3 turbo codes) at 10−5, but note that this
is based on an unfair comparison since MSD does not use the
estimated bits. It is reasonable to consider that the performance
of Example 4 will be better than Fig. 11 of [1] if the estimates
of the lower levels are used for decoding the higher levels. This
is not surprising since MLCM-ID often performs as well as
maximum likelihood decoding [5], but the conventional MSD
for finite block length is suboptimal. It may be interesting
to investigate more details between MSD and MLCM-ID in
terms of other aspects, but we will not give more discussions
here because it is beyond the scope of this paper. However,
based on the aforementioned facts, the PM-EXIT function rule
allows MLCM-ID to approach closer to CCC than MSD. This
is indeed the actual gain of MLCM-ID over MSD.

Note that MSD needs capacity-achieving codes (e.g., turbo
[24] and LDPC [25], [26]) to produce good performance. How-
ever here we do not emphasize the performance comparison
between the traditional MLCM and MLCM-ID, but refer to
[1], [5], [7] for the detailed analysis. In this paper we have
given some simulation results which demonstrate the proposed
code design rule, using only convolutional and turbo codes
as examples. However, this code design rule is in principle
feasible for other types of binary channel codes provided that
the corresponding decoder is soft-in soft-out.

C. Selection of the Parametric Functions

There are many possible parametric functions gi(t̆), e.g.,
gi(t̆) = α1(t̆)τ1 + · · · + αn(t̆)τn , α1 + · · · + αn = 1, α1, · · · ,

αn ≥ 0, τ1, · · · , τn ≥ 0. Varied selection of parametric func-
tions provides diverse code design, which indicates that a wide
class of code choice for MLCM-ID is available on the basis of
the PM-EXIT function rule. As mentioned above, since a group
of parametric functions is capable of changing the shape of the
PM-EXIT function at each level, this in fact directly affects the
allowable code rate at the corresponding level. The PM-EXIT
function rule potentially implies that when the area under the
PM-EXIT function increases, we can assign a higher rate code
at that level, and vice versa.

Taking power functions e.g., gi(t̆) = tωi into account, empir-
ically we found that code rates are determined by the relative
power of each parametric function. Typically the power func-
tion having the maximum power results in a convex shape for
the PM-EXIT function, and hence allows higher code rate at
this level. By contrast, the power function having the minimum
power reduces the allowable code rate for this level.

The selection of the parametric function is based on the
practical requirement of the code rate at each level. We show
the selection approach based on a 3-level multilevel as follows:

1) If we need to increase the code rate for a level, e.g., level
1, powers should be selected such that ω1 > ω0, ω1 > ω2.

2) If we need to assign code for a level, e.g., level 0,
with rate approaching the maximum achievable code rate
I(Y; X0|X1X2), then ω0 � ω1, ω0 � ω2.

3) If higher code rates are required at two levels, e.g., level
1 and 2, then the parametric functions should be selected
such that ω2 > ω0, ω1 > ω0.

4) If we need to increase rate of level 0, but decrease rate of
level 1, then ω0 > ω1, ω0 > ω2, ω1 < ω2.

In example 2, we need a high rate code at level 1, which means
that the parametric functions should be selected in terms of
criterion 1. In example 3, we want to assign a code at level
0, with rate approaching the maximum achievable rate at that
level. Hence, criterion 2 is used for guidance.

Using the same principle, we may choose parametric func-
tions for any m-level multilevel code, m > 3, based on the prac-
tical code rate requirements. There are no parametric functions
which can simultaneously increase or reduce the allowable code
rate for all levels since the overall rate is equal to CCC (see
Theorem 2B). This also shows the optimality of the PM-EXIT
function design rule from the aspect of capacity, where any of a
group of parametric functions gives the optimal code design in
terms of capacity. Note that BER of the multilevel demodulator
is independent of the parametric function selection, because the
end point of the PM-EXIT function of each level is always the
FIG point of that level, regardless of which parametric functions
are selected.

Empirically, we also found the number of required iterations
achieving full convergence is dominated by the overall rate se-
lected. Typically more iterations are needed to achieve reliable
transmission at higher code rate.

It is interesting to examine the gap between CCC and the
overall code rate selected in terms of the PM-EXIT function
rule. Following the area theorems developed in Section V, CCC
is equal to

∑m−1
i=0 A(i)

PM, where A(i)
PM denotes the area under

the PM-EXIT function of the ith level. This implies that the
sum area of the open tunnels between each levels’ PM-EXIT
function and the swapped decoder EXIT function represents
the overall capacity loss. Hence codes designed in terms of
the PM-EXIT function rule are capable of approaching CCC.
It would be interesting to do further research on the PM-EXIT
function, e.g.,

• To design a PM-EXIT function which has a shape sim-
ilar to the corresponding swapped EXIT function of
the component code. This will lead to better matching
between the two curves at each level, and it becomes
easier to choose codes approaching capacity and reduce
the capacity loss. This also potentially indicates another
merit of the PM-EXIT function rule.

• To investigate code design for other types of parametric
functions.

These are interesting topics for the future research and may
lead to new techniques for multilevel codes. Essentially the
concept of the PM-EXIT functions, and the idea of parametric
representation may motivate more research in other communi-
cations areas.



WANG AND BURR: CODE DESIGN FOR ITERATIVE DECODING OF MULTILEVEL CODES 2417

VII. CONCLUSION

We have first shown the analytical derivation for the EXIT
characteristic of multilevel codes. Then, taking Theorem 1,
and three area theorems into account, we have shown that
the PM-EXIT function rule is a simple code design method
that in principle allows capacity-achieving transmission, full
exploitation of the inherent flexibilities in the choice of codes,
and full convergence. Area properties of the PM-EXIT function
were derived, giving the theoretical support for the PM-EXIT
function rule. We have shown by these means that the PM-
EXIT function rule proposed for MLCM-ID is easy to use.
Simulation results verify our theorems and design rule, and
show that MLCM-ID is capable of closely approaching CCC,
with the aid of the PM-EXIT function rule.

APPENDIX A
THE PROOF OF THEOREM 2A

Following equation (21), the area A(i)
BL can be derived in

(28)–(30), shown at the bottom of the page. Theintegral of
(28) is a special case of the Beta function, or can be evaluated
by Euler’s integral of the first kind. For simplicity, we prove
equation (23) by considering a 3-level multilevel code, m = 3.
Then A(0)

BL can be expressed by (31), shown at the bottom of

the page, and similarly, A(1)
BL and A(2)

BL can be obtained in a
similar way. According to the chain rule of mutual informa-
tion, I(Y; X0X1X2) have m! expansions [see (32), shown at the
bottom of the page].

Summing these expansions and dividing the results by m!,
we obtain (33), shown at the bottom of the page. Using (31)

A(i)
BL =

∫ 1

0

∑
∀v\i∈ Ḟ

m−1
2

I
(
Y; Xi|F(v\i)

)
(1 − t)

m−1∑
j=0,j �=i

(1−vj)

t

m−1∑
j=0,j �=i

vj

dt (28)

=
∑

∀v\i∈ Ḟ
m−1
2

I
(
Y; Xi|F(v\i)

)
(

m−1∑
j=0,j �=i

(1 − vj)

)
!
(

m−1∑
j=0,j �=i

vj

)
!

m! (29)

=
∑

∀v\i∈ Ḟ
m−1
2

I
(
Y; Xi|F(v\i)

)
(

m − 1 −
m−1∑

j=0,j �=i
vj

)
!
(

m−1∑
j=0,j �=i

vj

)
!

m(m − 1)!

=
∑

∀v\i∈ Ḟ
m−1
2

I
(
Y; Xi|F(v\i)

) 1

m

(
m − 1∑m−1
j=0,j �=i vj

) (30)

A(0)
BL =

∑
∀(v1,v2)∈ Ḟ

m−1
2

I
(
Y; X0|F(v\0)

) 1

m
( m−1
v1+v2

) = 1

3

⎡
⎣I(Y; X0) + 1

2

∑
j=1,2

I(Y; X0|Xj) + I(Y; X0|X1X2)

⎤
⎦ (31)

I(Y; X0X1X2)= I(Y; X0)+I(Y; X1|X0)+I(Y; X2|X0X1)

= I(Y; X0)+I(Y; X2|X0)+I(Y; X1|X0X2)

...

= I(Y; X2)+I(Y; X1|X2)+I(Y; X0|X1X2) (32)

I(Y; X0X1X2) = 1

3

⎡
⎣ 2∑

i=0

I(Y; Xi) + 1

2

⎛
⎝ ∑

j=1,2

I(Y; X0|Xj) +
∑

j=0,2

I(Y; X1|Xj) +
∑

j=0,1

I(Y; X2|Xj)

⎞
⎠ +

2∑
i=0

I(Y; Xi|X\i)

⎤
⎦ (33)
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and (33), we obtain

I(R; X0X1X2) = A(0)
BL + A(1)

BL + A(2)
BL (34)

These results can be readily extended to any integer values of
m, and Theorem 2A is thus proved.

APPENDIX B
THE PROOF OF THEOREM 2B

Following the partial proof in Theorem 2B, equation (22) can
be modified to (35), via some mathematical manipulation,
shown at the bottom of the page. For simplicity, we assume
m=3. However, the result can be immediately extended to
any modulation order m. We define some notations to simplify
the tedious mutual information expression: I(Y; X0)= a0, I(Y;
X0|X1)= b0, I(Y; X0|X2)= c0, I(Y;X0|X1X2)=d0, I(Y;X1)=
a1, I(Y;X1|X0)=b1, I(Y;X1|X2)= c1, I(Y; X1|X0X2) = d1, I(Y;
X2) = a2, I(Y; X2|X0) = b2, I(Y; X2|X1) = c2 and I(Y; X2|
X0X1) = d2. After some mathematical operations based on

equation (35), the sum of the area A(i)
PM, i = 0,1,2 can be derived

in the form of (36), shown at the bottom of the page, which
can also be further manipulated to (37), shown at the bottom of
the page.

From the chain rule of mutual information (32), we can get:

b0 −a0 = b1 −a1; c1 −a1 = c2 −a2; b2 −a2 = c0 −a0 (38)

a0 +d0 −b0 −c0 = a1 +d1 −b1 −c1 = a2 +d2 −b2 −c2 (39)

Based on (38) and (39), we are able to further derive equation
(37) which is shown in (40), shown at the bottom of the page.
Nowthe final result in (40) proves Theorem 2B.

In summary, we have proven that for any group of parametric
function gi(t), i = 0, 1, · · · , m − 1, the sum-area under all PM-
EXIT functions is equal to the CCC. It is enough to prove
Theorem 2B based on m = 3 since the proof for any higher
modulation orders m > 3 is simply a repetition of the process
of the current proof, but it is more tedious. The proof is
representative and Theorem 2B is thus proved.

A(i)
PM =

∫ 1

0

∑
∀v\i∈ Ḟ

m−1
2

I
(
Y; Xi|F(v\i)

) m−1∏
j=0,j �=i

(
1 − gj(t̆)

)(1−vj)
(
gj(t̆)

)vj dgi(t̆) (35)

A(0)
PM + A(1)

PM + A(2)
PM =

∫ 1

0
a0 + (b0 − a0)g1(t̆) + (c0 − a0)g2(t̆) + (a0 + d0 − b0 − c0)g1(t̆)g2(t̆)dg0(t̆)

+
∫ 1

0
a1 + (b1 − a1)g0(t̆) + (c1 − a1)g2(t̆) + (a1 + d1 − b1 − c1)g0(t̆)g2(t̆)dg1(t̆)

+
∫ 1

0
a2 + (b2 − a2)g0(t̆) + (c2 − a2)g1(t̆) + (a2 + d2 − b2 − c2)g0(t̆)g1(t̆)dg2(t̆) (36)

A(0)
PM + A(1)

PM + A(2)
PM =a0g0(t̆) |10 +

∫ 1

0
(b0 − a0)g1(t̆)dg0(t̆) +

∫ 1

0
(c0 − a0)g2(t̆)dg0(t̆)

+
∫ 1

0
(a0 + d0 − b0 − c0)g1(t̆)g2(t̆)dg0(t̆)

+ a1g1(t̆) |10 +
∫ 1

0
(b1 − a1)g0(t̆)dg1(t̆) +

∫ 1

0
(c1 − a1)g2(t̆)dg1(t̆)

+
∫ 1

0
(a1 + d1 − b1 − c1)g0(t̆)g2(t̆)dg1(t̆)

+ a2g2(t̆) |10 +
∫ 1

0
(b2 − a2)g0(t̆)dg2(t̆) +

∫ 1

0
(c2 − a2)g1(t̆)dg2(t̆)

+
∫

_01(a2 + d2 − b2 − c2)g0(t̆)g1(t̆)dg2(t̆) (37)

A(0)
PM + A(1)

PM + A(2)
PM

=(a0 + a1 + a2) + (b0 − a0)
(
g1(t̆)g0(t̆)

) |10 +(c1 − a1)
(
g2(t̆)g1(t̆)

) |10
+ (b2 − a2)

(
g0(t̆)g2(t̆)

) |10 +(a0 + d0 − b0 − c0)
(
g0(t̆)g1(t̆)g2(t̆)

) |10=(a0 + a1 + a2) + (b0 − a0) + (c1 − a1) + (b2 − a2) + (a0 + d0 − b0 − c0)

=c1 + b2 + a0 + d0 − c0 = a2 + c1 + d0 = I(Y; X2) + I(Y; X1|X2) + I(Y; X0|X1X2)

=I(Y; X0X1X2) (40)
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