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Constructions of Binary MDS Array Codes with
Optimal Repair/Access Bandwidth

Lei Li, Xinchun Yu, Liang Chen, Yuanyuan Dong, and Yuan Luo

Abstract—Maximum distance separable (MDS) codes are com-
monly deployed in distributed storage systems as they provide
the maximum failure tolerance for some given redundancy. The
repair problem of MDS codes has drawn much attention and
various constructions of MDS array codes with optimal repair
bandwidth have been proposed in the last decade. However,
few of the existing codes are constructed over the binary field.
In this paper, we propose new constructions of binary MDS
array codes with optimal repair (or access) bandwidth for single-
node failure. Specifically, by stacking multiple Blaum-Roth code
instances of which the parity-check matrices are judiciously
designed, we obtain three families of binary MDS array codes
with optimal repair bandwidth; using the permutation matrices
as building blocks, we also construct two families of binary MDS
array codes with optimal access bandwidth. Moreover, error-
resilient capability while achieving the lower bound on repair (or
access) bandwidth is obtained when the number of helper nodes
d < n − 1. All the codes in this paper are constructed over a
particular ring of binary polynomials. Consequently, computation
operations involved in the encoding, decoding and node repair
procedures for these codes are only XORs and cyclic shifts,
avoiding complex multiplications and divisions over large finite
fields.

Index Terms—Distributed storage system, repair bandwidth,
optimal access, MSR codes, binary MDS codes.

I. INTRODUCTION

D ISTRIBUTED storage systems (DSS) are built upon a
large number of individually unreliable nodes to store

and analyze massive amount of data, where transient and
permanent node failures may occur as daily events. To provide
reliability and availability in the face of node failures, the
system need to store some redundant data. The traditional
mechanism for introducing redundancy in DSS, such as the
Google File System [2], Hadoop Distributed File System [3],
and Microsoft Azure [4], is replication. Clearly, the replication
scheme will be very costly as the amount of data is increasing
exponentially. Error-correcting codes (ECC) have been intro-
duced into DSS as a viable alternative to replication since
they can achieve higher reliability for some given redundancy.
An important class of ECC that are widely deployed in DSS
are maximum distance separable (MDS) codes, which achieve
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the optimal trade-off between storage efficiency and fault
tolerance. For a file of size M, the system using an (n, k)
MDS code first divides the file into k equal-size packets,
and then encodes them into n packets which are distributed
over n distinct storage nodes. The MDS property guarantees
reconstruction of the original file as long as any k out of
these n packets are accessible. For systems using an (n, k)
MDS code, the failed node can be repair by accessing and
communicating an amount of data equal to the size of the
original file with the help of any k out of the surviving nodes.
However, this is not “efficient” for single-node failure in that
the amount of data communicated, named repair bandwidth,
is k times of the amount of data lost.

The repair problem was first formulated in the seminal work
[5], wherein a trade-off between storage and repair bandwidth
was derived. The two extremal points on the optimal trade-
off curve, corresponding to the best storage efficiency and
the minimum repair bandwidth, are called minimum storage
regenerating (MSR) codes and minimum bandwidth regenerat-
ing (MBR) codes, respectively. MSR codes have drawn much
attraction due to their optimal storage efficiency and various
constructions of MSR codes have been proposed in the last
decade. The reader can refer to [6]–[20] for details.

Among the failures, single-node failure is the most common
scenario in real-world storage systems [21], and it is important
to construct codes that can repair any node efficiently. Most of
the existing MSR codes are constructed over some finite field
whose size can not be too small. Thus, a lot of multiplications
and divisions over the field are needed during node repair
and file reconstruction procedures. In the present paper, we
focus on the single-node repair and construct binary MDS
array codes with optimal repair bandwidth, i.e., the field used
is F2.

Few binary MDS array codes with optimal repair bandwidth
have been proposed in the literature [22], [23]. In [22], the
authors proposed a general transformation framework to con-
struct binary MDS array codes with optimal repair bandwidth
for k + 1 ≤ d ≤ n − 1, where some of the helper nodes
are specific. In [23], another generic transformation that can
convert any (n, k) binary MDS array code into a new one with
r = n − k chosen nodes having optimal repair bandwidth.
After multiple transformations, the original binary MDS array
code becomes a binary MDS array code with optimal repair
bandwidth for all nodes where the number of helper nodes
d is n − 1. Note that the codes in [22] and [23] also have
the optimal-access property, i.e., the amount of data accessed
during node repair is equal to the minimum amount of data
that need to be communicated.
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Motivated by the code constructions over nonbinary fields
in [24], we propose new constructions of binary MDS array
codes with optimal repair/access bandwidth. Specifically, by
stacking multiple Blaum-Roth code instances, we construct
three families of binary MDS array codes, named C1, C2
and C3, with optimal repair bandwidth. Code C1 achieves the
optimal repair bandwidth for d = n − 1, and with a slight
modification to C1, we obtain code C2 which has optimal
repair bandwidth for any arbitrary fixed d ∈ [k + 1, n − 1].
Through some further modification to C2, we arrive at the
construction of C3 which has optimal repair bandwidth for
multiple values of d ∈ [k + 1, n − 1] simultaneously. Using
the permutation matrices, we construct two families of codes
C4 and C5 with optimal access bandwidth, respectively, for
arbitrary fixed d ∈ [k + 1, n − 1] and for multiple values of
d ∈ [k+1, n−1] simultaneously. We note that codes C1, C2 and
C3 were presented at the 2023 IEEE International Symposium
on Information Theory [1].

The remainder of the paper is organized as follows. Sec-
tion II presents some necessary preliminaries. Binary MDS
array codes with optimal repair bandwidth and binary MDS
array codes with optimal access bandwidth are constructed
in Section III and Section IV, respectively. Evaluations and
comparisons are made in Section V. Finally, Section VI draws
the conclusion.

II. PRELIMINARIES

Given two integers i and j with i < j, denote by [i]
and [i, j] two ordered sets {1, 2, · · · , i} and {i, i+ 1, · · · , j},
respectively. For an (n, k) code, denote by r := n − k the
number of parity nodes. Following the literature of codes
for distributed storage, we use the words coordinate and
node interchangeably. As a result, repairing failed nodes in
a distributed storage system can be viewed as correcting
erasures of a codeword. In this paper, the boldface 0 is to
denote a zero vector, and the plain 0 is to denote a scalar 0.
Given M distinct positive integers i1, i2, . . . , iM , denote by
lcm(i1, i2, . . . , iM ) and gcd(i1, i2, . . . , iM ), respectively, the
least common multiple and the greatest common divisor of
these integers.

A. A binary polynomial ring

For a prime p and the binary field F2, let R be the ring of
polynomials of degree < p − 1 over F2 with multiplication
taken modulo 1 + x+ x2 + · · ·+ xp−1, i.e., R = F2[x]/(1 +
x+ x2 + · · ·+ xp−1). Let R∗ denote the multiplicative group
of polynomials in R, which are relatively prime to 1 + x +
x2 + · · ·+ xp−1. Clearly, the multiplication operation in R is
commutative.

In this paper, we use special elements in R∗ to construct the
codes with desired properties. So, it is beneficial to introduce
some of the elements in R∗ here. First observe that x ∈ R∗

since gcd(x, 1 + x + x2 + · · · + xp−1) = 1. Consequently,
for any i ∈ [p − 2], we have xi ∈ R∗. Note that xp − 1 =
(x− 1)(1+x+x2 + · · ·+xp−1) and for i ∈ [p− 2], we have

gcd(xi − 1, xp − 1) = xgcd(i,p) − 1 = x− 1.

Since p is not the characteristic of F2, we have that 1 is not a
root of 1 + x+ x2 + · · ·+ xp−1 = 0, i.e., gcd(x− 1, 1 + x+
x2 + · · · + xp−1) = 1. As a result, we have gcd(xi − 1, 1 +
x+ x2 + · · ·+ xp−1) = 1, meaning xi − 1 ∈ R∗ and xi − xj

is also in R∗ with i ̸= j ∈ [p− 2].

B. Blaum-Roth codes

An (n, k, l) binary array code can be viewed as a set of
matrices of size l × n over F2. Let p be a prime number,
a Blaum-Roth code CBR is a code over the polynomial
ring R. Each codeword in CBR is a (p − 1) × n array
(matrix) c[i, a] where i ∈ [n] and a ∈ [0, p − 1]. The
p − 1 bits ci,0, ci,1, . . . , ci,p−2 in the i-th column of the
array represent a polynomial in R, which can be written as
ci(x) = ci,0 + ci,1 · x + ci,2 · x2 + · · · + ci,p−2 · xp−2. For
r ≤ n ≤ p, an (n, n − r, p − 1) Blaum-Roth code is defined
by its parity-check matrix

HBR =


1 1 1 · · · 1

1 x x2
... xn−1

...
...

...
...

...
1 xr−1 x2(r−1) · · · x(n−1)(r−1)

 , (1)

where 1, x, x2, . . . , xn−1 are n distinct nonzero elements that
have multiplicative inverse in R. Note that the matrix HBR can
be defined by 1, x, x2, . . . , xn−1 and we call these n elements
the “evaluation points” of the (n, k, l) Blaum-Roth code.

Lemma 1: Every r columns of HBR are linearly indepen-
dent over the ring R.
Proof of Lemma 1 is omitted and the reader can refer to [25]
for more details.

Since every r columns in HBR are linearly independent over
R, we have that code CBR is a code of length n, dimension
n− r and minimum distance r + 1 over R. Thus, code CBR

is MDS code.

C. Lower bounds on repair/access bandwidth of MDS codes

An (n, k, l) MDS array code can tolerate any r = n − k
erasures because any k coordinates of a codeword can recon-
struct the whole codeword, meaning that the storage system is
reliable even when r storage nodes are failed. However, when
there is only one failed node, downloading data from k nodes
to repair the failed node is not efficient in terms of repair
bandwidth. Specifically, the amount of data communicated
during node repair procedure is kl, which is k times the
amount l of data stored on the failed node.

In [5], the authors analysed the information flow graph
of storage systems and derived the lower bound on repair
bandwidth γ of any (n, k, l) MDS code for single-node repair.
The bound is also called cut-set bound and can be written as

γ ≥ dl

d− k + 1
, (2)

where d ∈ [k, n−1] is the number of helper nodes. The optimal
repair bandwidth will decrease as the number of helper nodes
d increases. In particular, when d = n− 1, the optimal repair
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bandwidth of an (n, k, l) MDS code gets the minimum value,
which is (n−1)l

n−k .
In [26], error-resilient capability was considered in the re-

pair process of single-node failure, i.e., there maybe erroneous
or malicious nodes among the helper nodes. For e ≤ n−k

2 , it
is proved that the lower bound on the repair bandwidth γe
for single-node failure with e-error resilient capability can be
written as

γe ≥
dl

d− 2e− k + 1
, (3)

where d is the number of helper nodes, among which there
are e errors.

III. BINARY MDS ARRAY CODES WITH OPTIMAL REPAIR
BANDWIDTH

In this section, we present explicit constructions of three
families of codes, named C1, C2, C3, over the binary polyno-
mial ring R = F2[x]/(1 + x+ · · ·+ xp−1).

Given integers n, r and a prime p, let C ⊂ Rrn×n be an
(n, k = n− r, l) binary MDS array code with l = (p− 1)rn.
Node i ∈ [n] stores coordinate Ci ∈ Rrn of the codeword
(C1, C2, . . . , Cn), where Ci is a column vector consisting of
rn polynomials in R. In the present paper, we define a code
by its parity-check equations as follows:

C = {(C1, C2, . . . , Cn) :

n∑
i=1

Ht,iCi = 0}, (4)

where Ht,i, t ∈ [0, r − 1], i ∈ [n] are rn × rn matrices over
R. The parity-check matrix H of code C can be written as

H =


H0,1 H0,2 · · · H0,n

H1,1 H1,2 · · · H1,n

...
...

...
...

Hr−1,1 Hr−1,2 · · · Hr−1,n

 . (5)

We note that the sub-packetization levels of the codes in the
present paper are different and are not necessarily equal to
(p− 1)rn.

A. Binary MDS array code with optimal repair bandwidth for
d = n− 1

In this subsection, we present construction of binary MDS
array codes with optimal repair bandwidth for d = n − 1.
Before presenting the general code construction, we give toy
examples to highlight the main ideas behind the construction.

To illustrate how the repair bandwidth is reduced simply
by stacking multiple Blaum-Roth code instances, we first
give an example code with (n = 4, k = 2). This example
code is obtained by stacking two Blaum-Roth codes whose
“evaluation points” are x1,1 = x, x2 = x2, x3 = x3, x4 = x4

and x1,2 = x5, x2 = x2, x3 = x3, x4 = x4, respectively.
These five “evaluation points” are chosen from the binary
polynomial ring R = F2[x]/(1 + x + · · · + x6). The parity-
check equations can be written as

xt
1,1c1,1 +

4∑
i=2

xt
ici,1 = 0, (6)

and

xt
1,2c1,2 +

4∑
i=2

xt
ici,2 = 0 (7)

where t ∈ [0, 1]. Summing up equations (6) and (7), we have

xt
1,1c1,1 + xt

1,2c1,2 +

4∑
i=2

xt
i(ci,1 + ci,2) = 0 (8)

where t ∈ [0, 1]. Obviously, equation (8) defines a new Blaum-
Roth code with (n = 5, k = 3) whose “evaluation points” are
x1,1, x1,2, x2, x3, x4 and we can transfer {ci,1 + ci,2}i∈[2,4] to
repair the first node. The repair bandwidth for repairing the
first node is 3(p−1) bits, which is half of the trivial repair of
Reed-Solomon code and achieves the lower bound on repair
bandwidth. In the following Example 1, we present a code that
has optimal repair bandwidth for all nodes.

Example 1. We take n = 4, k = 2 for example and
the binary MDS array code C(n = 4, k = 2, l) can be
defined by a set of matrices {Ht,i : t ∈ [0, 1], i ∈ [4]}
according to equation (4). Instead of constructing rn = 8
matrices, by making Ht,i = Ht

i , we only need n = 4
matrices {Hi : i ∈ [4]} to define the code. Let p = 11 and
l = (p − 1)rn = 160, the code C(4, 2, 160) is obtained by
stacking rn = 16 Blaum-Roth codes with parameter (4, 2, 11),
whose “evaluation points” are chosen from a set of rn = 8
elements {xi,j = x4j+i}i∈[4],j∈[0,1] that have multiplicative
inverse in R = F2[x]/(1+x+x2+ · · ·+x10). For a ∈ [0, 15],
the “evaluation points” of the a-th Blaum-Roth code are
x1,a1

, x2,a2
, x3,a3

, x4,a4
where (a4, a3, a2, a1) is the binary

expansion of a. For example, when a = 5 = (0, 1, 0, 1), the
“evaluation points” of the corresponding Blaum-Roth code are
x1,1, x2,0, x3,1, x4,0 = x5, x2, x7, x4.

The above example shows the core structure of the codes
constructed in this section. We now present the general con-
struction and analyze the repair bandwidth in the sequel.

Construction 1 (C1): Given integers n and r, let l = (p −
1)rn and {xi,j = xjn+i}i∈[n],j∈[0,r−1] be a set of rn distinct
nonzero elements in the polynomial ring R = F2[x]/(1+ x+
· · · + xp−1), where p is a prime and p − 2 ≥ rn. Code C1
defined by (4) is constructed by taking Ht,i = Ht

i with

Hi =

rn−1∑
a=0

xi,ai
eae

T
a , i ∈ [n].

Here, ea ∈ Rrn is a column vector whose a-th entry is 1
and the other entries are 0s. Note that a ∈ [0, rn − 1] is also
represented by its r-ary expansion, i.e.,

a = (an, an−1, . . . , a1) =

n∑
i=1

ai · ri−1

where ai ∈ [0, r − 1].
It is not hard to verify that Hi is an rn×rn diagonal matrix

whose a-th diagonal entry is xi,ai = xain+i ∈ R. Codeword
coordinate Ci in (4) is a column vector of length l = (p−1)rn

over F2 and it can also be viewed as a column vector of length
rn over R. Specifically, Ci = (ci,0, ci,1, . . . , ci,rn−1)

T where
ci,a, a ∈ [0, rn − 1], is a vector of length p− 1 over F2. For
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brevity of writing, we use ci,a, the a-th entry in Ci, to denote
both a vector of length p− 1 over F2 and a polynomial in R.
For any a ∈ [0, rn− 1], we can write down the corresponding
parity-check equations in (4) as

n∑
i=1

xt
i,ai

ci,a = 0, t ∈ [0, r − 1]. (9)

The code constructed in Construction 1 is named C1 in this
paper. We now give the first theorem claiming the code C1 has
optimal repair bandwidth for d = n− 1.

Theorem 1: Code C1 achieves the lower bound (2) on repair
bandwidth for single-node repair.

Proof: Assume node i ∈ [n] is failed and let

a(i, u) = (an, . . . , ai+1, u, ai−1, . . . , a1)

where u ∈ [0, r− 1]. According to (9), for fixed u and a(i, u)
we have

xt
i,uci,a(i,u)+

∑
j∈[n]\{i}

xt
j,aj

cj,a(i,u) = 0, t ∈ [0, r−1]. (10)

Summing up (10) over u = 0, 1, . . . , r − 1, we have

xt
i,0ci,a(i,0) + xt

i,1ci,a(i,1) + · · ·+ xt
i,r−1ci,a(i,r−1)

+
∑

j∈[n]\{i}

xt
j,aj

(

r−1∑
u=0

cj,a(i,u)) = 0, t ∈ [0, r − 1],
(11)

where
∑r−1

u=0 cj,a(i,u) is the data communicated from helper
node j and can be denoted as Di,a

j . According to (1), we can
see that formula (11) defines an (n+r−1, n−1, p−1) binary
MDS array code whose parity-check matrix can be written as

1 1 · · · 1 1 · · · 1
xi,0 xi,1 · · · xi,r−1 xj1,aj1

· · · xjn−1,ajn−1

...
...

...
...

...
...

...
xr−1
i,0 xr−1

i,1 · · · xr−1
i,r−1 xr−1

j1,aj1
· · · xr−1

jn−1,ajn−1

 .

(12)
Thus, the lost data {ci,a(i,0), ci,a(i,1), . . . , ci,a(i,r−1)} can be
obtained by downloading {Di,a

j : j ∈ [n]\{i}} from the n−1
helper nodes where p− 1 bits are downloaded on each node.
For the overall repair of Ci, note that Ci can be partitioned
into rn−1 disjoint sets, each of which can be written as
{ci,a(i,0), ci,a(i,1), . . . , ci,a(i,r−1)} for some a ∈ [0, rn−1] and
each set can be repaired by downloading p−1 bits from every
helper node. As a result, a total number of (p−1)rn−1 bits are
communicated from each helper node for the overall repair of
Ci, achieving the lower bound (2) on repair bandwidth.

We now analyze the MDS property of code C1 by giving
the following Property 1.

Property 1: Code C1 is an MDS array code.
Proof: For any a ∈ [0, rn−1], rewrite (9) in matrix form

and we have
1 1 . . . 1

x1,a1 x2,a2 · · · xn,an

...
...

...
...

xr−1
1,a1

xr−1
2,a2

· · · xr−1
n,an



c1,a
c2,a

...
cn,a

 = 0. (13)

It is clear that formula (13) defines an (n, n− r, p− 1) binary
MDS code according to Lemma 1. Thus, any k = n − r
out of n coordinates in the codeword (c1,a, c2,a, . . . , cn,a) can
reconstruct the whole codeword. The MDS property of code
C1 follows since this holds for all a ∈ [0, rn − 1].

Remark 1: The MDS property of code C1 is obtained
by selecting rn special polynomials of form xi, i.e. powers
of x in R and the optimal repair bandwidth is achieved
through rn combinations of these special polynomials. With
this technique, we can construct the other two families of codes
C2 and C3 by some modifications of C1.

B. Binary MDS array code with optimal repair bandwidth for
arbitrary d ∈ [k + 1, n− 1]

In this subsection, we show that Construction 1 can be
slightly modified to construct code with optimal repair band-
width for arbitrary d ∈ [k + 1, n− 1].

Construction 2 (C2): For integers n and k, let s = d−k+1
where k + 1 ≤ d ≤ n − 1. Let l = (p − 1)sn and {xi,j =
xjn+i}i∈[n],j∈[0,s−1] be a set of sn distinct nonzero elements
in the polynomial ring R = F2[x]/(1 + x + · · · + xp−1),
where p is a prime and p − 2 ≥ sn. Code C2 defined by (4)
is constructed by taking Ht,i = Ht

i with

Hi =

sn−1∑
a=0

xi,ai
eae

T
a , i ∈ [n].

Here, ea ∈ Rsn is a column vector whose a-th entry is 1
and the other entries are 0s. Also, a ∈ [0, sn − 1] is repre-
sented by its s-ary expansion, i.e., a = (an, an−1, . . . , a1) =∑n

i=1 ai · si−1 where ai ∈ [0, s− 1]. The code constructed in
Construction 2 is named C2 in this paper.

Theorem 2: Code C2 achieves the lower bound (2) on repair
bandwidth for arbitrary d ∈ [k + 1, n− 1].

Proof: The proof follows the similar arguments to that
of Theorem 1 and we present it in detail to make it more
comprehensive. Assume node i ∈ [n] is failed and let a(i, u) =
(an, . . . , ai+1, u, ai−1, . . . , a1) where u ∈ [0, s−1]. Since the
parity-check matrix is a diagonal matrix over R, we can write
down the parity-check equations for any a ∈ [0, sn − 1] as

xt
i,ai

ci,a +
∑

j∈[n]\{i}

xt
j,aj

cj,a = 0, t ∈ [0, r − 1]. (14)

For fixed u ∈ [0, s− 1] and a(i, u), we have

xt
i,uci,a +

∑
j∈[n]\{i}

xt
j,aj

cj,a(i,u) = 0, t ∈ [0, r − 1]. (15)

Summing up (15) over u = 0, 1, . . . , s− 1, we have

xt
i,0ci,a(i,0) + xt

i,1ci,a(i,1) + · · ·+ xt
i,s−1ci,a(i,s−1)

+
∑

j∈[n]\{i}

xt
j,aj

(

s−1∑
u=0

cj,a(i,u)) = 0, t ∈ [0, r − 1],
(16)

where
∑s−1

u=0 cj,a(i,u) is the data communicated from helper
node j and can be denoted as Di,a

j . According to Lemma 1,
we can see that formula (16) defines an (s + n − 1, s + n −
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1 − r, p − 1) = (d + r, d, p − 1) binary MDS code whose
parity-check matrix can be written as

1 1 · · · 1 1 · · · 1
xi,0 xi,1 · · · xi,s−1 xj,aj1

· · · xjn−1,ajn−1

...
...

...
...

...
...

...
xr−1
i,0 xr−1

i,1 · · · xr−1
i,s−1 xr−1

j1,aj1
· · · xr−1

jn−1,ajn−1

 .

(17)
Thus, the lost data {ci,a(i,0), ci,a(i,1), . . . , ci,a(i,s−1)} can be
obtained by downloading Di,a

j from any d out of n − 1
helper nodes where p− 1 bits are downloaded on each node.
For the overall repair of Ci, note that Ci can be partitioned
into sn−1 disjoint sets, each of which can be written as
{ci,a(i,0), ci,a(i,1), . . . , ci,a(i,s−1)} for some a ∈ [0, sn−1] and
each set can be repaired by downloading p− 1 bits from each
helper node. Consequently, a total number of (p−1)sn−1 bits
are communicated from each helper node for the overall repair
of Ci, achieving the lower bound (2) on repair bandwidth for
arbitrary fixed d ∈ [k + 1, n− 1].

Property 2: Code C2 is an MDS array code.
Proof: The proof follows the same arguments as that in

the proof of Property 1 and is omitted.
In the above repair procedure, we notice that only d out

of the n− 1 surviving nodes are accessed to recover the lost
bits and the other data in the remaining n − 1 − d nodes
are “wasted”. When there are more than d nodes taking part
in the repair procedure, we find that code C2 possesses the
error-resilient capability while achieving the corresponding
lower bound (3) on repair bandwidth. The following remark
describes this error-resilient capability in detail.

Remark 2: By (16) and (17) we conclude that (ci,a(i,0),
ci,a(i,1), . . . , ci,a(i,s−1), D

i,a
j1

, Di,a
j2

, . . . , Di,a
jn−1

) is a codeword
of a (d + r, d, p − 1) binary MDS array code for any a ∈
[0, sn−1] and the minimum distance of this code is r+1. Thus,
for an integer e such that e ≤ r

2 , any d+ 2e out of the n− 1

remaining coordinates {Di,a
j : j ∈ [n]\{i}} can reconstruct

the codeword as long as the number of erroneous coordinates
in the d+2e coordinates is not greater than e. As a result, for
any i ∈ [n], Ci can be repaired by connecting any d+2e helper
nodes and downloading (p−1)sn−1 bits on each node as long
as the number of erroneous nodes among the helper nodes is
not greater than e. In total, there are (d+2e)l

d−k+1 bits communicated
to repair a failed node. Thus, code C2 achieves the lower bound
on repair bandwidth for any fixed d ∈ [k + 1, n − 1] with e
error-resilient capability where e ≤ r

2 .

C. Binary MDS array code with optimal repair bandwidth for
multiple values of d ∈ [k + 1, n− 1] simultaneously

In the previous two subsections, we constructed binary MDS
array codes with optimal repair bandwidth for some fixed d,
meaning that d has only one value in [k + 1, n − 1]. In the
present subsection, we construct codes with optimal repair
bandwidth for multiple values of d simultaneously by using
previous constructions as building blocks.

Construction 3 (C3): For integers n, k and M distinct
integers d1, d2, . . . , dM such that dm ∈ [k+1, n−1],m ∈ [M ],
let s = lcm(d1 − k + 1, d2 − k + 1, . . . , dM − k + 1).

Let l = (p − 1)sn and {xi,j = xjn+i}i∈[n],j∈[0,s−1] be a
set of sn distinct nonzero elements in the polynomial ring
R = F2[x]/(1 + x + · · · + xp−1), where p is a prime and
p − 2 ≥ sn. Code C3 defined by (4) is constructed by taking
Ht,i = Ht

i with

Hi =

sn−1∑
a=0

xi,ai
eae

T
a , i ∈ [n].

Here, ea ∈ Rsn is a column vector whose a-th entry is 1
and the other entries are 0s. Also, a ∈ [0, sn − 1] is repre-
sented by its s-ary expansion, i.e., a = (an, an−1, . . . , a1) =∑n

i=1 ai · si−1 where ai ∈ [0, s− 1]. The code constructed in
Construction 3 is named C3 in this paper.

Theorem 3: Code C3 achieves the lower bound (2) on repair
bandwidth for d1, d2, . . . , dM ∈ [k+1, n− 1] simultaneously.

Proof: For any m ∈ [M ], the set [0, s − 1] can be
partitioned into s/sm disjoint subsets I1 = [0, sm − 1], I2 =
[sm, 2sm − 1], . . . , Is/sm = [(s/sm − 1)sm, s− 1] as sm | s,
i.e., for any δ ∈ [s/sm], |Iδ| = sm. Assume node i ∈ [n] is
failed and let a(i, u) = (an, . . . , ai+1, u, ai−1, . . . , a1) where
u ∈ [0, s − 1]. The parity-check matrix of code C3 consists
of rn diagonal matrices of size sn × sn over R and for any
a ∈ [0, sn − 1] we can write down the corresponding parity-
check equations as

xt
i,ai

ci,a +
∑

j∈[n]\{i}

xt
j,aj

cj,a = 0, t ∈ [0, r − 1]. (18)

For fixed u ∈ Iδ, δ ∈ [s/sm] and a(i, u), we have

xt
i,uci,a(i,u)+

∑
j∈[n]\{i}

xt
j,aj

cj,a(i,u) = 0, t ∈ [0, r−1]. (19)

Summing up (19) over u ∈ Iδ , we have∑
u∈Iδ

xt
i,uci,a(i,u) +

∑
j∈[n]\{i}

xt
j,aj

(
∑
u∈Iδ

cj,a(i,u)) = 0,

t ∈ [0, r − 1],

(20)

where
∑

u∈Iδ
cj,a(i,u) is the data communicated from helper

node j and can be denoted as Di,a,δ
j . According to Lemma 1, it

is not hard to see that formula (20) defines a (dm+r, dm, p−1)
binary MDS array code. Thus, any dm out of the n− 1 coor-
dinates {Di,a,δ

j : j ∈ [n]\{i}} can reconstruct the lost coordi-
nates {ci,a(i,u) : u ∈ Iδ} where p− 1 bits are downloaded on
each helper node. By setting δ = 1, 2, . . . , s/sm, we conclude
that {ci,a(i,0), ci,a(i,1), . . . , ci,a(i,s−1)} can be repaired by
downloading (p−1)s/sm bits on each of the dm helper nodes.
Note that Ci can be partitioned into sn−1 disjoint sets, each
of which can be written as {ci,a(i,0), ci,a(i,1), . . . , ci,a(i,s−1)}
for some a ∈ [0, sn − 1]. As a result, for the overall repair of
Ci, a total number of (p − 1)sn/sm bits are communicated
from each of the dm helper nodes, achieving the lower bound
(2) on repair bandwidth for dm. The proof is completed since
this holds for any m ∈ [M ].

Property 3: Code C3 is an MDS array code.
Proof: The proof follows the same arguments as that in

the proof of Property 1 and is omitted.
Similar to code C2, code C3 possesses the error-resilient ca-

pability while achieving lower bound (3) on repair bandwidth
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for several values of d ∈ [k+1, n−1] simultaneously. Details
about this error-resilient capability of code C3 are given in the
following remark.

Remark 3: Since formula (20) defines a (dm + r, dm, p −
1) binary MDS array code with minimum distance equal to
r+1, we conclude for any integer e such that e ≤ r

2 , the lost
bits {ci,a(i,u) : u ∈ Iδ} can be recovered by connecting any
dm+2e out of the n−1 coordinates {Di,a,δ

j : j ∈ [n]\{i}} as
long as the number of erroneous coordinates in the dm + 2e
coordinates is not greater than e. As a result, for any i ∈ [n]
and e ≤ r

2 , Ci can be repaired by connecting any dm + 2e
helper nodes and downloading (p − 1)sn/sm bits on each
node as long as the number of erroneous nodes is not greater
than e. Thus, code C3 achieves the lower bound (3) on repair
bandwidth for all dm,m ∈ [M ] with e-error resilient capability
where e ≤ r

2 .
Through a further slight modification of Construction 3, as

presented in the following remark, we obtain the binary MSR
code for all values of d ∈ [k + 1, n− 1] simultaneously.

Remark 4: By substituting s in Construction 3 with s =
lcm(2, . . . , r), we can obtain binary MDS array code which
achieves the lower bound (2). The resultant code also achieves
the lower bound (3) on repair bandwidth for all values of d ∈
[k + 1, n− 1] simultaneously with e-error resilient capability
where e ≤ r

2 .

IV. BINARY MDS ARRAY CODES WITH OPTIMAL ACCESS
BANDWIDTH

In the previous section, we constructed three families of
binary MDS array codes with optimal repair bandwidth. How-
ever, one can find that despite the amount of data communi-
cated through the storage network achieves the lower bound,
all the data stored on the helper nodes are accessed to repair
the failed node. As a result, the total number of data accessed
is d/k > 1 times of that in the trivial repair of an MDS code,
which will consume massive disk I/Os.

In this section, we construct binary MDS array codes with
optimal-access property, i.e., the amount of data accessed
during node repair is equal to the minimum amount of data
that need to be communicated. Specifically, two families of
codes C4 and C5 are presented, which achieve the optimal
access bandwidth for arbitrary fixed d ∈ [k+1, n−1] and for
multiple values of d ∈ [k + 1, n− 1], respectively. The codes
in this section are also constructed over the binary polynomial
ring R = F2[x]/(1 + x+ x2 + · · ·+ xp−1).

A. Binary MDS array code with optimal access bandwidth for
arbitrary d ∈ [k + 1, n− 1]

In this subsection, by using some special permutation ma-
trices over R as building blocks, we construct binary MDS
array code with optimal access bandwidth for arbitrary fixed
d ∈ [k + 1, n − 1]. Now we give a toy example to highlight
the main ideas of the general construction.

Example 2. We take n = 4, k = 2, d = 3 for example and
the binary MDS array code C(n = 4, k = 2, l) can be defined
by a set of matrices {Ht,i : t ∈ [0, 1], i ∈ [4]} according to (4).
Instead of constructing rn = 8 matrices, by making Ht,i =

Ht
i , we only need n = 4 matrices {Hi : i ∈ [4]} to define the

code. Let p = 7 and l = (p− 1)(d− k + 1)n = 96, the code
C(4, 2, 96) is obtained by constructing 4 permutation matrices
{Hi : i ∈ [4]} of size 16 × 16 over the binary polynomial
ring R = F2[x]/(1 + x+ x2 + · · ·+ x6). Specifically, for H1

and a = (a4, a3, a2, a1) ∈ [0, 15], the a(1, ai ⊕ 1)-th entry
in the a-th row of H1 is x1 if a1 = 0 and 1 if a1 ̸= 0. For
example, given a = 0 = (0, 0, 0, 0), the (0, 0, 0, 1) = 1-st
entry in the 0-th row of H1 is x; given a = 1 = (0, 0, 0, 1),
the (0, 0, 0, 0) = 0-th entry in the 1-st row of H1 is 1. The
four permutation matrices H1, H2, H3, H4 are presented as
follows.



0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 x 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 x 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 x 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 x 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 x 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 x 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0


︸ ︷︷ ︸

H1



0 0 x2 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 x2 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 x2 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 x2 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 x2 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 x2 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 x2 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x2

0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0


︸ ︷︷ ︸

H2



0 0 0 0 x3 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 x3 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 x3 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 x3 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 x3 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 x3 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 x3 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x3

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0


︸ ︷︷ ︸

H3

0 0 0 0 0 0 0 0 x4 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 x4 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 x4 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 x4 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 x4 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 x4 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 x4 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 x4

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0


︸ ︷︷ ︸

H4

The above example shows the core structure of the codes
constructed in this section. We present the general construction
and analyze the access bandwidth in the sequel.
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Construction 4 (C4): For integers n, k and d, let s = d−k+1
and l = (p− 1)sn where p is a prime with p− 2 ≥ n. Code
C4 defined by (4) is constructed by taking Ht,i = Ht

i with

Hi =

sn−1∑
a=0

xi,ai
eae

T
a(i,ai⊕1), i ∈ [n],

where ⊕ denotes the operation of addition modulo s, {xi,0 =
xi}i∈[n] is a set of n distinct nonzero elements in the polyno-
mial ring R and xi,u = 1 ∈ R for i ∈ [n], u ∈ [s− 1]. Here,
ea ∈ Rsn is a column vector whose a-th entry is 1 and the
other entries are 0s. Note that a ∈ [0, sn − 1] is also repre-
sented by its s-ary expansion, i.e., a = (an, an−1, . . . , a1) =∑n

i=1 ai × si−1 where ai ∈ [0, s− 1]. The code constructed
in Construction 4 is named C4 in this paper.

It is not hard to verify that for ∀i ∈ [n], Hi is an sn × sn

permutation matrix over R and the a(i, ai⊕1)-th entry in the
a-th row of the matrix is xi or 1 for a ∈ [0, sn − 1], meaning
that Hi is invertible in R. To find the structure of Ht

i where
t ∈ [0, s− 1], we first compute the square of Hi as

H2
i = (

sn−1∑
a=0

xi,aieae
T
a(i,ai⊕1))(

sn−1∑
b=0

xi,biebe
T
b(i,bi⊕1))

=

sn−1∑
a=0

sn−1∑
b=0

xi,aixi,bieae
T
a(i,ai⊕1)ebe

T
b(i,bi⊕1)

=

sn−1∑
a=0

b=a(i,ai⊕1)

xi,ai
xi,bieae

T
b(i,bi⊕1)

=

sn−1∑
a=0

xi,ai
xi,ai⊕1eae

T
a(i,ai⊕2).

Similarly, for i ∈ [n] and t ∈ [0, s− 1], we have

Ht
i =

sn−1∑
a=0

xi,ai,teae
T
a(i,ai⊕t), (21)

where xi,u,0 = 1 ∈ R, and xi,u,t =
∏u⊕(t−1)

v=u xi,v for u ∈
[0, s − 1] and t ∈ [s − 1]. Clearly, for ∀i ∈ [n] and ∀t ∈
[0, s − 1], Ht

i is also an sn × sn permutation matrix whose
nonzero entries are all invertible in R.

Before unveiling the optimal access property of the code
C4 during node repair, we introduce two properties of the
permutation matrix of Hi, i ∈ [n] and an invertible block
matrix over R, respectively, in the following two lemmas.

Lemma 2: For any i, j ∈ [n] with i ̸= j, HiHj = HjHi

and Hi −Hj is invertible over R.

Proof: According to the construction of Hi, it is easy to

find that

HiHj = (

sn−1∑
a=0

xi,ai
eae

T
a(i,ai⊕1))(

sn−1∑
b=0

xj,bjebe
T
b(j,bj⊕1))

=

sn−1∑
a=0

sn−1∑
b=0

xi,ai
xj,bjeae

T
a(i,ai⊕1)ebe

T
b(j,bj⊕1)

=

sn−1∑
a=0

b=a(i,ai⊕1)

xi,ai
xj,bjeae

T
b(j,bj⊕1)

=

sn−1∑
a=0

xi,ai
xj,aj

eae
T
a(i,j,ai⊕1,aj⊕1) = HjHi,

where a(i, j, ai⊕1, aj ⊕1) is obtained by replacing ai and aj
by ai ⊕ 1 and aj ⊕ 1, respectively. Note that the proof relies
on the commutative property of xi · xj = xj · xi in R.

To prove the second part of the lemma that Hi −
Hj is invertible, we assume Hif = Hjf , where f =

(f0, f1, · · · , fsn−1)
T =

∑sn−1
a=0 faea is a column vector of

length sn − 1 over R. Clearly, we have

Hif = (

sn−1∑
a=0

xi,ai
eae

T
a(i,ai⊕1))(

sn−1∑
b=0

fbeb)

=

sn−1∑
a=0

sn−1∑
b=0

xi,ai
eafbe

T
a(i,ai⊕1)eb

=

sn−1∑
a=0

b=a(i,ai⊕1)

xi,ai
fbea

=

sn−1∑
a=0

xi,ai
fa(i,ai⊕1)ea

and similarly,

Hjf =

sn−1∑
a=0

xj,aj
fa(j,aj⊕1)ea.

Thus, for ∀a ∈ [0, sn − 1] we have

xi,aifa(i,ai⊕1) = xj,ajfa(j,aj⊕1). (22)

Since xi,ai
∈ R∗ has a multiplicative inverse x−1

i,ai
in R for

all i ∈ [n] and a ∈ [0, sn − 1], multiplying (22) by x−1
i,ai

, we
obtain

fa(i,ai⊕1) = x−1
i,ai

xj,aj
fa(j,aj⊕1)

and
fa = x−1

i,ai⊖1xj,aj
fa(i,j,ai⊖1,aj⊕1).

Expanding fa(j,aj⊕1) recursively, we have

fa = x−1
i,ai⊖1xj,aj

x−1
i,ai⊖2xj,aj⊕1fa(i,j,ai⊖2,aj⊕2) = · · ·

= x−1
i,ai⊖1xj,aj

· · ·x−1
i,ai⊖sxj,aj⊕(s−1)fa(i,j,ai⊖s,aj⊕s)

= (

s−1∏
u=0

xi,u)
−1(

s−1∏
u=0

xj,u)fa = (xi)−1xjfa,

where the commutative property of multiplication over R is
used. Note that for i, j with 1 ≤ i, j ≤ n ≤ p and i ̸= j,
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(xi)−1xj = xp−i+j ̸= 1. Thus, Hif = Hjf implies f = 0,
meaning Hi −Hj is invertible over R.

Lemma 3: Let A1, A2, · · · , Am be m(≥ 2) invertible matri-
ces of size l×l over R where AiAj = AjAi for all i, j ∈ [m].
The following block matrix

Bm =


I I · · · I
A1 A2 · · · Am

...
...

...
...

Am−1
1 Am−1

2 · · · Am−1
m

 ,

where I is an l× l diagonal matrix over R with the diagonal
entries equal to 1, is invertible if Ai −Aj is invertible for all
i, j ∈ [m].

Proof: The proof of Lemma (3) can be obtained by
following the similar induction procedure to that in [24] and
we omit the details for the sake of brevity.

Now we unveil the optimal access property of code C4 in
the following theorem.

Theorem 4: For n, k and arbitrary fixed d ∈ [k + 1, n− 1],
code C4 achieves the lower bound (2) on repair bandwidth
with optimal access property.

Proof: For ∀i ∈ [n], Hi is an sn×sn permutation matrix
over R, and the parity-check equations can be written as

n∑
i=1

xi,ai,tci,a(i,ai⊕t) = 0, (23)

where a ∈ [0, sn − 1], t ∈ [0, r − 1]. Assume node i is failed,
rewrite the equation (23) as

xi,ai,tci,a(i,ai⊕t) +
∑

j∈[n]\{i}

xj,aj ,tcj,a(j,aj⊕t) = 0. (24)

From (24) we can see that the data {ci,a : ai = t} can be
computed once we know the data {cj,a : j ∈ [n]\{i}, ai = 0}.
Since (24) holds for any t ∈ [0, s − 1] ⊆ [0, r − 1], knowing
the set {cj,a : j ∈ [n]\{i}, ai = 0} is sufficient to repair all
the data Ci stored on node i.

We now define an injection gi from [0, sn−1−1] to [0, sn−1]
as

gi(a) = (an−1, an−2, · · · , ai, 0, ai−1, · · · , a1), (25)

where a ∈ [0, sn−1−1] can be written as (an−1, an−2, · · · , a1)
in the s-ary form.
Let C ′

j = (cj,gi(0), cj,gi(1), · · · , cj,gi(sn−1−1))
T ∈ Rsn−1

for
j ∈ [n]\{i}. According to (21), we have

Hs
j =

sn−1∑
a=0

(

u⊕(s−1)∏
v=u

xj,v)eae
T
a(j,aj⊕s) =

sn−1∑
a=0

xjeae
T
a = xjI

for j ∈ [n]. For w ∈ [0, r − s− 1], we have
n∑

j=1

Hw
j Cj = 0 (26)

and

0 =

n∑
j=1

Hw+s
j Cj =

n∑
j=1

xjHw
j (27)

according to (4) with Hw,j = Hw
j . Multiplying (26) by xi ∈

R∗ and substracting the result from (27), we obtain
n∑

j=1

(xj − xi)Hw
j Cj =

∑
j∈[n]\{i}

(xj − xi)Hw
j Cj = 0, (28)

where w ∈ [0, r−s−1]. For a ∈ [0, sn−1−1], let e′a ∈ Rsn−1

be a column vector whose a-th entry is 1 ∈ R and the other
entries are 0 ∈ R. For j ∈ [n]\{i}, let Aj be an sn−1 × sn−1

matrix over R which is computed as

Aj =

{∑sn−1−1
a=0 xj,aj

e′a(e
′
a(j,aj⊕1))

T , j ∈ [i− 1],∑sn−1−1
a=0 xj+1,aj

e′a(e
′
a(j,aj⊕1))

T , j ∈ [i, n− 1].

It can be verified that for j ∈ [i − 1], Aj is a permutation
matrix and the a(j, aj ⊕ 1)-th entry in the a-th row of the
matrix is xj or 1; for j ∈ [i, n− 1], Aj is also a permutation
matrix and the a(j, aj ⊕ 1)-th entry in the a-th row of the
matrix is xj+1 or 1, where a ∈ [0, sn−1 − 1]. According to
(28), we have

i−1∑
j=1

(xj − xi)Aw
j C

′
j +

n−1∑
j=i

(xj+1 − xi)Aw
j C

′
j = 0 (29)

where w ∈ [0, r − s − 1]. With the commutative property of
multiplication in R, we can rewrite (29) as

i−1∑
j=1

Aw
j (x

j − xi)C ′
j +

n−1∑
j=i

Aw
j (x

j+1 − xi)C ′
j+1 = 0 (30)

for all w ∈ [0, r − s − 1]. Following the similar arguments
to that in the proof of Lemma 2, one can verify that for any
j1, j2 ∈ [n − 1] with j1 ̸= j2, Aj1Aj2 = Aj2Aj1 and the
matrix Aj1 − Aj2 is invertible over R. According to Lemma
3, any r − s− 1 columns of the block matrix

I I · · · I
A1 A2 · · · An−1

...
...

...
...

Ar−s−1
1 Ar−s−1

2 · · · Ar−s−1
n−1


is invertible over R. Thus,(

(x− xi)C ′
1, (x

2 − xi)C ′
2, · · · , (xi−1 − xi)C ′

i−1,

(xi+1 − xi)C ′
i+1, · · · , (xn−1 − xi)C ′

n

)
is a codeword of an (n − 1, n − 1 − (r − s − 1), sn−1) =
(n − 1, d, (p − 1)sn−1) MDS array code. For j ∈ [i − 1],
(xj − xi) always has a multiplicative inverse in R and
so does (xj+1 − xi) for j ∈ [i + 1, n]. As a result,
(C ′

1, C
′
2, · · · , C ′

i−1, C
′
i+1, · · · , C ′

n) is also a codeword of an
(n− 1, d, (p− 1)sn−1) MDS array code.

Clearly, any d out of the n − 1 coordinates {C ′
j : j ∈

[n]\{i}} are sufficient to reconstruct the whole codeword, and
with (25), the set {cj,a : j ∈ [n]\{i}, ai = 0} is further
obtained. Finally, Ci is recovered by (24). It is not hard to
verify that in the above procedure, there are d(p−1)sn−1 bits
accessed and communicated, achieving the lower bound (2)
on repair bandwidth for arbitrary fixed d ∈ [k + 1, n− 1].

Property 4: Code C4 is an MDS array code.
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Proof: The MDS property of C4 can be directly obtained
according to Lemma 2 and Lemma 3.

During the repair of node Ci, i ∈ [n], since
(C ′

1, C
′
2, · · · , C ′

i−1, C
′
i+1, · · · , C ′

n) forms an MDS array
code, we claim that code C4 possesses the error-resilient
capability while achieving the lower bound (3) on repair
bandwidth with optimal access property. The following
remark presents the error-resilient capability of code C4 in
detail.

Remark 5: Since (C ′
1, C

′
2, · · · , C ′

i−1, C
′
i+1, · · · , C ′

n) forms
an (n − 1, d, (p − 1)sn−1) MDS array code, any d + 2e out
of the n − 1 remaining coordinates {C ′

j : j ∈ [n]\{i}} can
reconstruct the codeword as long as the number of erroneous
coordinates among the d+2e coordinates is not greater than e.
Thus, the recovery of the whole coordinate Ci is guaranteed
by (24). In total, there are (p − 1)(d + 2e)sn−1 = (d+2e)l

d−k+1
bits are accessed and communicated during the repair of Ci,
achieving the lower bound (3) on access bandwidth for any
fixed d ∈ [k+1, n− 1] with e error-resilient capability where
e ≤ n−1−d

2 .

B. Binary MDS array code with optimal access bandwidth for
multiple values of d ∈ [k + 1, n− 1] simultaneously

In this subsection, we present the construction of binary
MDS code with optimal access property for multiple values of
d ∈ [k+1, n−1] simultaneously through a slight modification
to code C4.

Construction 5 (C5): For integers n, k and M distinct
integers d1, d2, . . . , dM such that dm ∈ [k + 1, n − 1] for
∀m ∈ [M ]. Let s = lcm(d1−k+1, d2−k+1, . . . , dM−k+1)
and l = (p− 1)sn where p is a prime with p− 2 ≥ n. Code
C5 defined by (4) is constructed by taking Ht,i = Ht

i with

Hi =

sn−1∑
a=0

xi,aieae
T
a(i,ai⊕1), i ∈ [n],

where ⊕ denotes the operation of addition modulo s, {xi,0 =
xi}i∈[n] is a set of n distinct elements in R and xi,u = 1 ∈ R
for i ∈ [n], u ∈ [s − 1]. Here, ea ∈ Rsn is a column vector
whose a-th entry is 1 and the other entries are 0s. Note that
a ∈ [0, rn − 1] is also represented by its s-ary expansion, i.e.,
a = (an, an−1, . . . , a1) =

∑n
i=1 ai ·si−1 where ai ∈ [0, s−1].

The code constructed in Construction 5 is named C5 in this
paper.

Similar to code C4, for code C5, it can be verified that for
any i ∈ [n], Hi is an sn × sn permutation matrix and the
a(i, ai ⊕ 1)-th entry in the a-th row of the matrix is xi or 1
for a ∈ [0, sn − 1], meaning that Hi is invertible in R. The
power of Hi, i.e., Ht

i , is also an sn × sn permutation matrix
whose nonzero entries are all invertible in R.

Theorem 5: Code C5 achieves the lower bound (2) on repair
bandwidth with optimal access property for d1, d2, . . . , dM
simultaneously.

Proof: For any a ∈ [0, sn − 1], the parity-check equation
of code C5 can be written as

n∑
i=1

xi,ai,tci,a(ai⊕t) = 0, (31)

where xi,u,0 = 1 ∈ R, and xi,u,t =
∏u⊕(t−1)

v=u xi,v for u ∈
[0, s− 1] and t ∈ [0, r − 1].

For dm,m ∈ [M ], let sm = dm−k+1 and the set [0, s−1]
can be partitioned into s/sm disjoint subsets I1 = [0, sm −
1], I2 = [sm, 2sm − 1], . . . , Is/sm = [(s/sm − 1)sm, s− 1] as
sm | s, i.e., for any δ ∈ [s/sm], |Iδ| = sm. Without loss of
generality, we only consider the repair of node n here. Rewrite
the parity-check equation (31) as

xn,an,tcn,a(n,an⊕t) +

n−1∑
j=1

xj,aj ,tcj,a(j,aj⊕t) = 0. (32)

For δ ∈ [s/sm], with (32) one can verify that the values of
{cn,a : an = (δ − 1)sm + t} can be obtained from {cj,a :
j ∈ [n − 1], ai = (δ − 1)sm}. Since this holds for any t ∈
[0, sm − 1] ⊆ [0, r − 1], the values of {cn,a : an ∈ Iδ}
can be obtained from {cj,a : j ∈ [n − 1], ai = (δ − 1)sm}.
For the overall repair recovery of Ci, we only need to know
{cj,a : j ∈ [n − 1], ai = (δ − 1)sm, δ ∈ [s/sm]}. Define an
injection gi from [0, sn/sm − 1] to [0, sn − 1] as

gi(a) = (sman, an−1, . . . , a1),

where a ∈ [0, sn/sm−1] can be written as (an, an−1, · · · , a1)
in the s-ary form.

Define C ′
j = (cj,gi(0), cj,gi(1), . . . , cj,gi(sn/sm−1))

T for all
j ∈ [n− 1]. We want to prove that (C ′

1, C
′
2, . . . , C

′
n−1) forms

an (n − 1, dm, (p − 1)sn/sm) binary MDS array code. Note
that for any w ∈ [0, r − sm − 1], we have

n∑
j=1

Hw
j Cj = 0 (33)

and
n∑

j=1

Hw+sm
j Cj = 0. (34)

Multiplying (33) by Hsm
n and substracting the result from (34),

we have
n−1∑
j=1

(Hsm
j −Hsm

n )Hw
j Cj = 0 (35)

for all w ∈ [0, r − sm − 1]. For a ∈ [0, sn/sm − 1], let e′a ∈
Rsn/sm be a column vector whose a-th entry is 1 ∈ R and
the other entries are 0 ∈ R. For j ∈ [n − 1], let Aj be an
sn/sm × sn/sm matrix over R which is computed as

Aj =

sn/sm−1∑
a=0

xj,aj
e′a(e

′
a(j,aj⊕1))

T , j ∈ [n− 1],

and

An =

sn/sm−1∑
a=0

(

sman+sm−1∏
u=sman

xn,u)e
′
a(e

′
a(n,(sman⊕sm)/sm))

T .

With (35) and gi, we have

n−1∑
j=1

(Asm
j −An)A

w
j C

′
j = 0 (36)
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for all w ∈ [0, r − sm − 1]. Note that for all j ∈ [n− 1], we
have

AjAn =

sn/sm−1∑
a=0

xj,aj
e′a(e

′
a(j,aj+1))

T


sn/sm−1∑

b=0

(

smbn+sm−1∏
u=smbn

xn,u)e
′
b(e

′
b(n,(smbn⊕sm)/sm))

T


=

sn/sm−1∑
a=0

sn/sm−1∑
b=0

xj,aj

(
smbn+sm−1∏

u=smbn

xn,u

)

e′a
(
ea(j,aj+1)

)T
e′b

(
e′b(n,(smbn⊕sm)/sm)

)T
=

sn/sm−1∑
a=0

b=(j,aj+1)

xj,aj
(

smbn+sm−1∏
u=smbn

xn,u)e
′
a

(e′b(n,(smbn⊕sm)/sm))
T

=

sn/sm−1∑
a=0

xj,aj
(

smbn+sm−1∏
u=smbn

xn,u)e
′
a

(e′a(j,n,aj+1,(smbn⊕sm)/sm))
T = AnAj

where a(j, n, aj+1, (smbn⊕sm)/sm) is obtained by replacing
aj and an by aj +1 and (smbn⊕ sm)/sm, respectively. With
this multiplication commutative property, equation (36) can be
rewritten as

n−1∑
j=1

Aw
j (A

sm
j −An)C

′
j = 0, (37)

where w ∈ [0, r−sm−1]. Following the similar arguments to
that in the proof of Lemma (2), one can verify that Aj1Aj2 =
Aj2Aj1 and Aj1 − Aj2 is invertible over R for all j1 ̸= j2 ∈
[n−1]. According to Lemma (3), equation (37) defines an (n−
1, dm, (p − 1)sn/sm) binary MDS array code whose parity-
check equations in matrix form can be written as


I I · · · I
A1 A2 · · · An−1

...
...

...
...

Ar−sm−1
1 Ar−sm−1

2 · · · Ar−sm−1
n−1

 .

Specifically,

(
(Asm

1 −An)C
′
1, (A

sm
2 −An)C

′
2, . . . , (A

sm
n−1 −An)C

′
n−1

)
forms an (n − 1, dm, (p − 1)sn/sm) binary MDS array
code. To further obtain that (C ′

1, C
′
2, . . . , C

′
n−1) forms an

(n − 1, dm, (p − 1)sn/sm) MDS code, we need to prove
that Asm

j − An is invertible over R for all j ∈ [n − 1]. We
now assume that Asm

j f = Anf for some j ∈ [n − 1], where
f = (f0, f1, . . . , fsn/sm−1) =

∑sn/sm−1
a=0 fae

′
a ∈ Rsn/sm is a

column vector of length sn/sm over R. Since

Asm
j f = (

sn/sm−1∑
a=0

xj,aj
e′a(e

′
a(j,aj⊕1))

T )sm(

sn/sm−1∑
b=0

fbe
′
b)

= (

sn/sm−1∑
a=0

(

aj⊕(sm−1)∏
u=aj

xj,u)e
′
a(e

′
a(j,aj⊕sm))

T )

(

sn/sm−1∑
b=0

fbe
′
b)

=

sn/sm−1∑
a=0

(

aj⊕(sm−1)∏
u=aj

xj,u)fa(j,aj⊕sm)e
′
a

and

Anf =

sn/sm−1∑
a=0

(

sman+sm−1∏
u=sman

xn,u)e
′
a

(e′a(n,(sman⊕sm)/sm))
T (

sn/sm−1∑
b=0

fbe
′
b)

=

sn/sm−1∑
a=0

(

sman+sm−1∏
u=sman

xn,u)fa(n,(sman⊕sm)/sm)

,

we have

(

aj⊕(sm−1)∏
u=aj

xj,u)fa(j,aj⊕sm) =

(

sman+sm−1∏
u=sman

xn,u)fa(n,(sman⊕sm)/sm)

for all a ∈ [0, sn/sm−1]. Since xj,u ∈ R∗ has a multiplicative
inverse x−1

j,u in R for all j ∈ [n − 1] and u ∈ [0, s − 1], we
obtain

fa(j,aj⊕sm) = (

aj⊕(sm−1)∏
u=aj

xj,u)
−1(

sman+sm−1∏
u=sman

xn,u)

fa(n,(sman⊕sm)/sm)

and

fa = (

aj⊖1∏
u=aj⊖sm

xj,u)
−1(

sman+sm−1∏
u=sman

xn,u)

fa(j,n,aj⊖sm,(sman⊕sm)/sm).

Expanding fa(j,n,aj⊖sm,(sman⊕sm)/sm) recursively, we have

fa = (

aj⊖1∏
u=aj⊖sm

xj,u)
−1(

sman+sm−1∏
u=sman

xn,u)(

aj⊖(sm+1)∏
u=aj⊖2sm

xj,u)
−1

(

sman⊕sm+sm−1∏
u=sman⊕sm

xn,u)fa(j,n,aj⊖2sm,(sman⊕2sm)/sm)

= · · · = (

s−1∏
u=0

xj,u)
−1(

s−1∏
u=0

xn,u)fa = (xj)−1xnfa

for all a ∈ [0, sn/sm]. Note that for all j ∈ [n − 1],
(xj)−1xn = xp−j+n ̸= 1, meaning fa = 0 ∈ R. Thus,
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Asm
j f = Anf implies f = 0, i.e., Asm

j −An is invertible over
R for all j ∈ [n− 1].

Property 5: Code C5 is an MDS array code.
Proof: Similar to code C4, the MDS property of code C5

can be directly obtained according to Lemma 2 and Lemma
3.

During the repair of node Ci, i ∈ [n], since (C ′
1, C

′
2, . . . ,

C ′
i−1, C

′
i+1, . . . , C

′
n) forms an (n − 1, dm, (p − 1)sn/sm)

binary MDS array code, we conclude that code C5 possesses
the error-resilient capability while achieving the lower bound
(3) with optimal access property. The details are presented in
the following remark.

Remark 6: Since (C ′
1, C

′
2, . . . , C

′
i−1, C

′
i+1, . . . , C

′
n) forms

an (n − 1, dm, (p − 1)sn/sm) MDS code, any dm + 2e
out of the (n − 1) coordinates can reconstruct the whole
codeword as long as the number of erroneous coordinates
among the dm + 2e coordinates is not greater than e. The
recovery of coordinate Ci is guaranteed by (32) where a total
amount of (p − 1)(sn/sm) = (dm+2e)l

dm−k+1 bits are accessed
and communicated, achieving the lower bound (3) on access
bandwidth for all dm,m ∈ [M ] simultaneously.

Through a further slight modification of Construction 5, as
presented in the following remark, we obtain the binary MSR
code with optimal access property for all d ∈ [k + 1, n − 1]
simultaneously.

Remark 7: By substituting s in Construction 5 with s =
lcm(2, . . . , r), we can obtain binary MDS array code which
achieves the lower bound (2) with optimal access property.
The resultant code also achieves the lower bound (3) on access
bandwidth for all values of dm ∈ [k+1, n−1] simultaneously
with e-error resilient capability as long as dm + 2e ≤ n− 1.

V. EVALUATION

In this section, we evaluate the proposed codes in terms of
encoding and decoding complexity. We also make comparisons
of our codes with some existing codes in the literature.

According to (9), (14) and (18), the three families of codes
in Section III are constructed by stacking multiple Blaum-Roth
codes whose parity-check matrices are judiciously designed.
We now analyze the encoding and decoding complexity of
these codes. Without loss of generality, we take code C1 for
example and rewrite the parity-check equations for any a ∈
[0, rn − 1] in matrix form. Also, we assume that the first k
nodes are information nodes and the last r = n− k nodes are
parity nodes. From (13), we can obtain

1 1 . . . 1
xk+1,ak+1

xk+2,ak+2
· · · xn,an

...
...

...
...

xr−1
k+1,ak+1

xr−1
k+2,ak+2

· · · xr−1
n,an



ck+1,a

ck+2,a

...
cn,a



= −


1 1 . . . 1

x1,a1
x2,a2

· · · xk,ak

...
...

...
...

xr−1
1,a1

xr−1
2,a2

· · · xr−1
k,ak



c1,a
c2,a

...
ck,a

 .

(38)

As a result, instead of inverting an rn+1 × rn+1 matrix over
R, we only need to invert the r × r matrix for rn times to

finish encoding. Similarly, the decoding procedure also only
involves the inversion of r×r matrix over R. Besides, the fast
encoding and decoding algorithms of Blaum-Roth codes can
be directly used in the implementation of these three families
of codes. Note that both encoding and decoding procedures of
these codes can be completed in parallel since the computation
operations for different a ∈ [0, rn − 1] are independent.

We now analyze the encoding and decoding complexity
of the codes C4 and C5 constructed in Section IV. Without
loss of generality, we take code C4 with d = n − 1 for
example. Given any b1, b2, . . . , bk ∈ [0, r − 1], note that the
rr+1 unknown elements {ci,a : i ∈ [k+1, n], ai = bi} appear
in exactly rr+1 equations in (23) and these rr+1 equations
only contain these rr+1 unknown elements. As a result, these
rr+1 unknown elements can be obtained by inverting the
corresponding rr+1 × rr+1 matrix over R. Similarly, the
decoding of code C4 with d = n − 1 also only involves the
inversion of rr+1 × rr+1 matrices for rk times, instead of the
inversion of an rn+1 × rn+1 matrix over R. Both encoding
and decoding of these codes can be completed in parallel since
the rk matrix inversion operations are independent.

The most related works to the present paper are [24], [10],
[22], [23] and [27]. We now make comparisons of our codes
with these codes respectively to end this section.

The codes in [24] and our codes share the same core struc-
ture and the main differences between them are in two folds.
First, codes in [24] are constructed over finite fields while
our codes are constructed over binary field. Consequently,
multiplications and divisions over finite field are avoided,
which is good for code implementation on hardware since
XORs and cyclic shifts can be finished fast. Second, for codes
in [24], entries in the parity-check matrices are chosen from
arbitrary distinct nonzero elements in a finite field, while we
choose elements of special form, i.e., powers of x, in the
polynomial ring R = F2[x]/(1 + x + x2 + · · · + xp−1) to
guarantee the MDS property. One may argue that the MSR
codes in [24] constructed over the finite field F2m can be
easily converted to binary MSR codes as the field F2m is
isomorphism to the vector space Fm

2 . However, this conversion
can not avoid operations over the field, i.e., the encoding and
decoding of the resulting codes still involve multiplication and
divisions over the field F2m , which are usually implemented
through look-up table. We choose the special elements (powers
of x) in the R to construct the codes, which will facilitate
the encoding and decoding procedures as the fast (advanced)
encoding/decoding algorithm of Blaum-Roth code can be
directly used.

The binary MDS array codes constructed in [10] achieve
the optimal repair bandwidth only for information nodes while
the codes in the present paper has optimal repair/access repair
bandwidth for both information nodes and parity nodes. More-
over, the codes in [10] have fixed redundancy, i.e., r = 2. It is
important to construct codes with a wider range of redundancy
choices to satisfy different fault tolerance requirements and the
codes in this paper works for any choice of redundancy.

The codes in [22] are binary MDS array codes with opti-
mal access bandwidth, which are constructed over the same
polynomial ring as in this paper. Compared with our work in
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this paper, the codes in [22] fall short mainly in two folds.
First, the codes in [22] only have one repair degree, i.e., the
number of helper nodes d is fixed while our codes C3 and
C5 work for multiple values of d simultaneously. Second, for
some d < n− 1, a subset of the helper nodes are specific for
the codes in [22], while arbitrary d out of the n− 1 surviving
nodes can help repair the failed nodes for the codes in this
paper. We want to note that the “arbitrary d” property provides
more flexibility in helper node choice and may be important
in situations where some nodes are too busy to help repair the
failed node.

The codes in [23] are also binary MDS array codes with
optimal access bandwidth, which are constructed through the
similar pairwise coulping technique as used in [22]. The main
difference between [22] and [23] is the coulping function. The
codes in [23] only work for d = n− 1 while our codes work
for any d ∈ [k + 1, n − 1]. Note that the transformation in
[23] can be directly used to generate codes with d < n − 1.
However, as the authors in [23] explained, the resulting codes
will lack the “arbitrary d” property. Thus, the case of d < n−1
and the d helper nodes can be arbitrarily chosen is their future
work, which is done in the present paper.

The codes in [27] are binary MDS array codes with very
small sub-packetization level of l = (p−1)r while the optimal
repair bandwidth is sacrificed. It is worth mentioning that the
sub-packetization level (column length of the array code) of
our codes is much larger than that of the codes in [22] and
[23]. Thus, constructing binary MDS array codes with small
sub-packetization level is part of our future work.

VI. CONCLUSION

In this paper, we proposed new constructions of binary
MDS array codes with optimal repair/access bandwidth. By
stacking multiple Blaum-Roth codes whose parity-check ma-
trices are judiciously designed, we constructed three binary
MDS array codes with optimal repair bandwidth. The fast
encoding and decoding algorithms of Blaum-Roth codes can
be directly used in the implementation of these codes. With
the help of permutation matrices, we constructed two families
of binary MDS array codes with optimal access bandwidth.
For d ∈ [k + 1, n − 1], all the codes can achieve the lower
bound on optimal repair/access bandwidth with error-resilient
capability. Note that the sub-packetization level of the codes
in this paper is very large, and constructions of binary MDS
array codes with small sub-packetization level is part of our
future work.
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