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Abstract—Energy harvesting can enable a reconfigurable intel-
ligent surface (RIS) to self-sustain its operations without relying
on external power sources. In this paper, we consider the problem
of energy harvesting for RISs in the absence of coordination
with the ambient RF source. We propose a series of sequential
phase-alignment algorithms that maximize the received power
based on only power measurements. We prove the convergence
of the proposed algorithm to the optimal value for the noiseless
scenario. However, for the noisy scenario, we propose a linear
least squares estimator. We prove that within the class of linear
estimators, the optimal set of measurement phases are equally-
spaced phases. To evaluate the performance of the proposed
method, we introduce a random phase update algorithm as
a benchmark. Our simulation results show that the proposed
algorithms outperform the random phase update method in
terms of achieved power after convergence while requiring fewer
measurements per phase update. Using simulations, we show
that in a noiseless scenario with a discrete set of possible
phase shifts for the RIS elements, the proposed method is sub-
optimal, achieving a higher value than the random algorithm
but not exactly the maximum feasible value that we obtained by
exhaustive search.

Index Terms—Energy harvesting, phased array, reconfigurable
intelligent surface, zero-energy devices.

I. INTRODUCTION

FUTURE wireless networks should provide seamless con-
nectivity for the rapidly growing number of devices and

services [2]–[4]. If wireless networks are implemented in the
same manner as before, the energy consumption would keep
increasing dramatically with the traffic volume. From both
carbon footprint and energy consumption perspectives, it is
a necessity to develop energy-saving techniques that can be
implemented in the network nodes, including low-power and
zero-energy devices [5]–[7].

Traditional wireless networks have no control of the radio
propagation environment. Providing connectivity for regions
with low signal-to-noise ratio (SNR) comes at the cost of de-
ploying more sophisticated transmission schemes, more radio
resources such as antennas and spectrum and consequently
consuming more energy [8], [9].

With the emergence of the reconfigurable intelligent sur-
faces (RISs), several limiting factors associated with the prop-
agation environment can be eliminated. A RIS can manipulate
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the propagation environment to increase the signal strength
in the desired direction and guide the electromagnetic (EM)
waves toward the receiver via engineered reflections [10]–[13].
The RIS is primarily envisioned for providing coverage for
regions that are blocked by objects [9].

For instance, a RIS can be deployed in a city with dense
buildings and poor line-of-sight (LoS) conditions, or it can
also be deployed in homes, where the walls obstruct the signal
path.

We can also see the concept of RIS as an alternative to tra-
ditional relays, which have similar use cases. RISs offer some
unique advantages that make them a promising technology for
the future of wireless communication systems. RISs can be
better than traditional relays in terms of energy efficiency, as
they do not require power-hungry amplifiers and can use low-
power hardware components. Moreover, RISs do not introduce
significant latency into the communication system, making
them well-suited for applications such as augmented reality
and the Internet of things (IoT). Last but not least, RISs can
be integrated into existing wireless communication systems
with minimal changes, making them a cost-effective solution
for improving the performance of existing networks.1 These
advantages make RISs a promising technology for improving
the performance of wireless communication systems [14],
[15]. However, RISs come with their own set of challenges,
such as limited bandwidth, the risk of generating interference
to some users, cumbersome configuration, and a higher cost of
deployment and maintenance. Ultimately, the choice between
traditional relays and RISs depends on a careful weighing of
these factors and an understanding of the specific needs and
goals of each situation.

In the presence of a wired power supply, RIS may not
have clear benefits compared to relays and small base stations
(BSs), and the respective advantages are debatable [16]. How-
ever, if the RIS is self-sustainable, it opens up new deployment
possibilities where there is no competition. This is where
energy harvesting (EH) comes into play. By harvesting energy
from radio frequency (RF) signals that are already present
in the environment, the RIS can operate without relying on
external power sources [17]–[19]. This is particularly bene-
ficial in situations where the RIS is deployed in remote or
inaccessible locations where it can be difficult or expensive
to provide a continuous power source. In [15], the authors
developed a model for the RIS power consumption that is
based on the number of elements and their phase resolution

1Relays of the repeater type have the latter two advantages, but have a
substantially higher energy consumption than RISs.
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capability. Higher phase resolution in the RIS increases the
complexity and the power consumption [20].

There are other related works. The study [21] considers a
hybrid-relaying scheme empowered by a self-sustainable RIS
to simultaneously improve the downlink energy transmission
and uplink information transmission. The authors proposed
time-switching and power-splitting schemes for RIS operation.
The paper [22] proposes a novel framework for wireless
power transfer (WPT) system using a RIS to improve power
transfer efficiency. The proposed framework employs indepen-
dent beamforming to replace conventional joint beamforming,
which results in higher efficiency. In [23], a RIS-aided simulta-
neous terahertz information and power transfer is proposed to
maximize the sum data rate of the information users while
ensuring that the power harvesting requirements of energy
users and the RIS are met.

In [24], the authors propose a multi-functional RIS (MF-
RIS) that utilizes RF energy to support reflection and am-
plification of incident signals. The MF-RIS mitigates double-
fading attenuation experienced by passive RISs [25]. The study
[26] considers an RIS-assisted simultaneous wireless infor-
mation and power transfer (SWIPT) scheme that integrates
the RIS with non-coherent differential chaos shift keying to
compensate for energy loss. The authors analyze the bit error
rate (BER) and energy shortage probability of the scheme over
the multipath Rayleigh fading channel. Finally, in [27], the
authors consider a RIS-assisted data transmission from a multi-
antenna access point (AP) to a receiver. The system operation
is cyclic, and in each cycle, there are two operational phases:
1) the RIS array harvests energy from the transmitter. 2) In
return, RIS assists the AP to transmit its data to the receiver.

The state-of-the-art techniques consider perfect channel
state information (CSI) at the RIS, which is obtained by co-
ordination between the transmitters and the RIS. The existing
solutions require extra hardware (i.e., multiple RF receivers
to measure both amplitude and phase to obtain CSI) and
signaling, which in turn increases the energy consumption and
cost of the RIS.

We consider a different scenario, where the RIS must con-
figure itself without any RF receivers. The proposed method
makes power measurements in the EH units and uses them to
maximize the harvesting power iteratively.

Our preliminary results in [1] present an amplitude-based
sequential optimization of energy harvesting with RISs for
the noiseless scenario using continuous phase control. In
this paper, we analyze the impact of noise on the phase
alignment algorithm and present a linear phase estimator that
can be embedded in our proposed sequential phase alignment
algorithm. We derive the optimal set of measurement phases
within the class of linear estimators. Also, we formulate the
problem for a discrete phase control scheme in a noiseless
scenario. The main contributions of this paper, as compared
to the previous works, are as follows:

• We propose a series of sequential phase-alignment algo-
rithms to maximize the received power at the harvesting
unit based on power measurements, in different situations.

• We prove the optimality of the proposed algorithm ana-
lytically for the noiseless scenario with continuous phase

control.
• We formulate the corresponding problem for a noiseless

scenario with discrete phase control and propose a heuris-
tic sequential phase alignment algorithm inspired by the
continuous phase control algorithm.

• We extend the result to noisy scenarios and propose a
simple linear estimator, that can be embedded in our pro-
posed sequential phase alignment algorithm. We optimize
the phase measurement configurations for the proposed
linear estimator, and we prove that equally spaced phases
are optimal.

• Our simulation results show that the proposed algorithm
greatly outperforms the benchmark random phase-update
method in terms of the number of required measurements
to achieve the optimum.

The remainder of this paper is organized as follows. Sec-
tion II describes the RIS hardware architecture, two different
EH schemes in the RIS, and the phase alignment problem.
Section III presents the proposed phase estimators for the
received power maximization by tuning the phase of a RIS
element. Section IV describes the proposed abstract model of
the RIS operation and the proposed solution for continuous
and discrete phase control scenarios. Simulation results are
presented in Section V, while Section VI provides our con-
clusions.

Notations: We denote sets by upper-case script letters, e.g.,
S, or upper-case Greek letters, e.g., Ω. The only exceptions
are the sets of natural numbers, real numbers, and complex
numbers that we represent with N, R, and C, respectively.
The cardinality of a set S is represented by |S|. Vectors
are indicated by lower-case bold-face letters, e.g., x, and
xi denotes the ith element of x. We represent matrices by
upper-case bold-face letters, e.g., A, and [A]m,n indicates the
element of A with row number m and column number n. The
identity matrix of size n is denoted by In. The expectation
and covariance operators are represented by E(·) and Cov(·),
respectively. Also, EX(·) denotes the expectation operation
with respect to the random variable X. We represent random
variables with upright upper-case letters, e.g., X, and we de-
note random vectors with upright upper-case bold-face letters,
e.g., X. Also, we use pX(x) to indicate the probability density
function (PDF) of a continuous random variable X at x. We
use 1 to represent the all-one vector. The curled inequality
⪰ indicates componentwise inequality between vectors. We
also use =∆ to indicate an equal by definition sign. With tr(·)
and (·)T, we denote the trace and transpose operators. The
operator diag(x) returns a square diagonal matrix with the
elements of vector x on the main diagonal. We denote the
imaginary unit by j =∆

√
−1. We represent the conjugate of a

complex number z with z∗. However, we denote the optimal
solution with the superscript ⋆, e.g., x⋆. Also, the operation
Arg (z) returns the principal value of the argument of z that
lies within the interval (−π, π], while arg (z) returns the set
of all possible values of the argument of z.

II. PROBLEM DESCRIPTION

This section presents 1) the RIS device architecture, 2) the
EH schemes, and 3) the phase alignment problem for RIS-
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Fig. 1. Hardware structure of a RIS.

assisted EH.

A. RIS Hardware Architecture

Fig. 1 illustrates the hardware architecture of a typical
RIS. The front layer consists of several metal elements that
are printed on a dielectric substrate and arranged in a two-
dimensional array to reflect the incoming signals. The size of
the elements is typically smaller than the wavelength of the
signal of interest [28]–[30]. For each patch element, there is
a controllable circuit that is used to adjust the phase of the
reflected signals and direct the signal in the desired direction.

There is a copper layer behind the dielectric substrate to re-
duce the RF waves leakage from the back [31], [32]. There is a
control circuit board that can control the reflection amplitudes
and phase shifts of the patch elements. The RIS controller
can communicate with the network components such as BSs
via a connectivity interface to receive the reflection state
configuration [9], [33], [34]. Finally, the RIS requires a power
supply to adjust the phases and then maintain the desired
reflection state.

B. Energy Harvesting Schemes

In general, an RIS can harvest RF energy directly or
indirectly from an ambient RF source. We will describe these
scenarios below and later show that they lead to system models
of the same kind.

1) Direct EH: The RIS elements are capable of both
reflecting and receiving the incident EM waves. During the
harvesting phase, the RIS operates in the reception mode,
where it combines the received signals from each element with
some phase shifts.2 The RIS can use the harvested energy to
fully sustain its operation or, if the energy is insufficient, it
can decrease the consumption from other energy sources, as
a first step toward achieving a zero-energy RIS system. The
abstract model of the direct EH operation is shown in Fig. 2a.

2There is a type of metasurface implementation called holographic beam-
forming that can pass the incident EM waves from one side to the other. The
metamaterial can add adjustable phase shifts, similar to a phased array, but
with a different implementation [35].

2) Indirect EH: The RIS is generally deployed and de-
signed to reflect the EM waves towards a desired location
(typically a receiver location). Inspired by this principle, the
EH device can alternatively be deployed in front of the RIS
(at a short distance), and the phases of the RIS elements can
be aligned so they combine constructively at the location of
the EH device. This device then can return the energy to the
RIS via a cable. The concept of indirect EH is demonstrated
in Fig. 2b.

The EH device is equipped with an RF power sensor to
measure the power level of a signal. There are different types
of RF sensors. It might be based on semiconductor devices
like diodes that respond to changes in input power. The
signal is then passed through an analog-to-digital converter
(ADC), which converts the analog RF signal into a digital
representation that can be processed by digital circuits and
microcontrollers.

The indirect approach is also applicable for simultaneously
transmitting and reflecting (STAR) RIS [36] as long as the
harvesting unit is on one side of the RIS.

C. Problem Description for Energy Harvesting

We consider a scenario of EH from an ambient RF source3

by an RIS with no prior CSI, and there is no coordination
between the RIS and the RF transmitter. We assume that
the transmit power and the location of the transmitter are
unknown.4

For both the considered schemes, the measured RF power
by the RIS (EH device) has the following expression

Y =

∣∣∣∣∣
N∑

n=1

zne
jϑn +W

∣∣∣∣∣
2

, (1)

where zn ∈ C for each 1 ≤ n ≤ N . In (1), zn not only
includes all channel gains between transmitters and the energy
harvester (except the adjustable phase shift ϑn), but also takes
into account the transmission power. Also, ϑn ∈ [0, 2π) is
the adjustable phase shift of the nth element of the RIS.
The random variables W and Y represent the received noise
and the measured received power, respectively [12], [37]. The
measured received power can be obtained from the reading of
the power in the EH device.5

The key difference between the direct and indirect EH
schemes is in how the parameters in (1) are selected. For all
1≤n≤N , we have

zn =∆
{√

Pthn, Direct EH,√
Pthngn, Indirect EH,

(2)

3The proposed model is valid for multiple transmitters under one of these
conditions: 1) During the power measurements for the phase update of an
element, the amplitude of the transmitted signals from multiple RF sources
remain constant. 2) All RF sources transmit the same narrowband signal.

4This scenario is more practical (compared to a scenario with coordination
between the transmitter and the RIS) as the transmitter may not be designed
to coordinate the CSI with the RIS or only do it when it requests that the RIS
is supporting its data transmissions.

5Power measurements can be obtained from the input of the EH unit using a
circuit such as a voltmeter. Alternatively, power measurements can be applied
at the output of the EH unit by compensating for the nonlinear harvesting
conversion efficiency.
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Fig. 2. Energy harvesting schemes.

where hn ∈ C and gn ∈ C are the channel gains from the
transmitter to the RIS element n and from the RIS element n
to the EH device in the indirect case, respectively. The transmit
power is denoted by Pt.

We assume no CSI is available at the RIS controller (i.e.,
zn is unavailable to the RIS). This scenario is more general
compared to a scenario with coordination between the trans-
mitters and the RIS, since the transmitter might lack a protocol
to reach the RIS and can even be unaware of its existence.6

The values of {zn}Nn=1 depend on the geometry and propa-
gation environment and can be estimated by measuring ampli-
tude and phase using RF receiver circuits. Since the RIS lack
such RF chains, the RIS cannot estimate the amplitudes and
phases. Hence, the values of {zn}Nn=1 will remain unknown to
the RIS. On the other hand, with power measurement at the
EH device, the RIS can measure the combined power from
all elements for any feasible phase configuration. We will
utilize such power measurements in this paper. The general
optimization problem is to maximize the received RF power7

by finding proper phase shifts ϑ=∆ [ϑ1, . . . , ϑN ]
T for the RIS.

III. PROPOSED PHASE ESTIMATION ALGORITHMS

In this section, we will explore how we can maximize
the received power in (1) with respect to the RIS phase
configuration ϑ. For given values of z1, . . . , zN , the closed-
form optimal phase configuration is known. However, the
z-coefficients are unavailable in our setup. Hence, we will
explore how we can estimate them using a sequence of power
measurements. Before considering the general scheme in the
next section, we start with the basic single-phase scenario,
where we maximize the received power with respect to a single
phase coefficient. We assume that zejϑ is one of the terms in

6In general, the transmitter doesn’t need to be the BS. The BS can request
a particular phase configuration for RIS-aided data transmission, but this is
not what is needed to enable energy harvesting.

7Note that the harvested RF power is a nonlinear function of the received
RF power that is called the conversion efficiency function. We consider the
problem of choosing optimal phase shift ϑ⋆ for the RIS elements to maximize
the harvesting RF power. However, since the conversion efficiency function
is generally an increasing function, the optimal solution for maximization of
the harvesting RF power is equivalent to the one for the maximization of the
measured received RF power.

(1), and z0 is the summation of all other terms. Therefore, the
received power becomes

Y =∆
∣∣z0 + zejϑ +W

∣∣2 , (3)

where W ∼ CN
(
0, σ2

)
and Y is a random variable due to the

noise. We know that E
(
Y2
)
=
∣∣z0 + zejϑ

∣∣2 + σ2. Therefore,
the optimal phase shift that maximizes the mean received
power is

ϑ⋆ = arg (z0)− arg (z). (4)

If we measure the received power for L different phase
configurations from the set of measurement phases Φ =∆

{φ1, . . . , φL}, the measured received powers become

Yl =
∆
∣∣z0 + zejφl +Wl

∣∣2
=
(√

xTal + W̃r,l

)2
+ W̃2

i,l, ∀1≤ l≤L, (5)

where

x =∆
[
|z0|2 + |z|2 , 2Re(z0z∗), 2 Im(z0z

∗)
]T

, (6)

al =
∆ [1, cos (φl), sin (φl)]

T, Wl ∼ CN
(
0, σ2

)
, and W̃r,l and

W̃i,l are independent and identically distributed (i.i.d.) random
variables following N

(
0, σ2/2

)
.

We observe from (5) that the conditional distribution of Yl

given the channel is non-central Chi-squared distributed with
two degrees of freedom. Also, Y1,Y2, . . . ,YL are indepen-
dent random variables. Therefore, Y =∆ [Y1,Y2, . . . ,YL]

T has
the mean

µ =∆ E(Y) = Ax+ σ21, (7)

and covariance

Σ =∆ Cov(Y) = 2σ2 diag(Ax) + σ4IL, (8)

where
A =∆ [a1, . . . ,aL]

T. (9)

Consequently, Yl has the conditional PDF

pYl|X(y|x) = 1

σ2
exp

(
−y + xTal

σ2

)
I0

(
2
√
xTaly

σ2

)
, (10)

for all 1≤ l≤L, where I0(·) is the zero-order modified Bessel
function of the first kind.
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The noncentral Chi-squared PDF is a log-concave function
[38]. Moreover, a composition with affine mapping preserves
the concavity [39]. Hence, pYl|X(y|x) in (10) is log-concave
with respect to x. If we conduct multiple measurements for
the measurement phases from Φ, then we will have the joint
PDF

pY|X(y|x) =
L∏

l=1

pYl|X(yl|x). (11)

The log-concavity is preserved under multiplication. Hence,
pY|X(y|x) in (11) is log-concave with respect to x.

We can estimate x using a maximum likelihood (ML)
estimator [40] as

x̂ =∆ argmax
x∈Dx

pY|X(y|x)

= argmin
x∈Dx

L∑
l=1

(
xTal

σ2
− log

(
I0

(
2
√
xTalyl
σ2

)))
, (12)

where Dx is the domain of feasible values for x. Notice that,
in (12), we took the logarithm and reversed the sign. Since
pY|X(y|x) is log-concave with respect to x, the objective
function in (12) becomes a convex function with respect to
x.

If we denote the optimal solution to problem (12) as x̂, an
estimate of the optimal phase shift can be calculated as

ϑ̂ = arg (x̂2 + jx̂3). (13)

It should be noted that ϑ̂ is not the ML estimate of the optimal
phase shift.8

A. ML Estimator

To find the ML estimate of x, we need to solve the following
convex optimization problem:

minimize
x

L∑
l=1

(
xTal

σ2
− log

(
I0

(
2
√
xTalyl
σ2

)))
(14a)

subject to x1 ≥
√
x2
2 + x2

3, (14b)

where (14b) is due to the definition of x, and it is a second-
order cone constraint; that is, a convex constraint [39]. More-
over, (14b) implies xTal ≥ 0 for all 1≤ l≤L.

One can solve the problem (14) using standard convex
optimization algorithms, such as the interior-point method, and
then use (13) to estimate the phase shift.9

B. Linear Estimator

In this section, we propose a linear least squares esti-
mator of x. From (5), the squared difference between the
received power y and the noiseless signal can be expressed

8The optimization problem for the ML estimation of the optimal phase shift
is non-convex, hence it was not considered in this analysis.

9At high SNR, one can use the approximation I0(x) ≈ ex/
√
2πx and

substitute it in (14a). The approximation makes the optimization problem
simpler and numerically tractable, as the logarithmic and exponential terms
cancel each other out.

as
∑L

l=1(yl − xTal)
2. Hence, the least squares estimate is

obtained as

x̂ =∆ argmin
x

L∑
l=1

(
yl − xTal

)2
= A†y, (15)

where A† is the Moore–Penrose inverse of A defined as A† =∆(
ATA

)−1
AT.

The performance of the linear estimator in (15) depends on
the choice of the matrix A, which in turn is a function of the
set of measurement phases Φ. Our goal is to determine the
best Φ that minimizes the mean squared error (MSE) MSE =∆

E(∥X̂− x∥2) of the estimator.
To compute the MSE of the estimator for an arbitrary

matrix A, we need to find the expected values of E
(
X̂
)

and

E
(
X̂

T
X̂
)

. The mean of X̂ is

E
(
X̂
)
= A†E(Y) = A† (Ax+ σ21

)
= x+ σ2A†1, (16)

where it can be easily demonstrated that A†1 = [1, 0, 0]T.
Thus, the linear estimator proposed in (15) is biased for x1

and unbiased for x2 and x3. Despite the bias in x̂1, the
phase estimation is not affected as the optimal phase shift
is a function of x2 and x3.

Furthermore, we have

E
(
X̂

T
X̂
)
= E

((
A†Y

)T (
A†Y

))
= E

(
YT

(
A†)T A†Y

)
= tr

((
A†)T A†Σ

)
+ µT

(
A†)T A†µ

= tr
((

A†)TA†Σ
)
+ xTx+ 2σ2x1 + σ4

= 2σ2 tr
((
A†)TA† diag(Ax)

)
+σ4 tr

((
A†)TA†

)
+ xTx+ 2σ2x1 + σ4, (17)

where µ and Σ are defined in (7) and (8), respectively.
Using (16) and (17), the MSE for a given x becomes

MSE =∆ E
(∥∥∥X̂− x

∥∥∥2) = E
((

X̂− x
)T (

X̂− x
))

= E
(
X̂

T
X̂
)
− 2xTE

(
X̂
)
+ xTx

= 2σ2tr
((
A†)TA†diag(Ax)

)
+σ4 tr

((
A†)TA†

)
+σ4. (18)

Since the RIS doesn’t know the values of z0 and z, from the
RIS perspective, x is a random variable and therefore should
be denoted as X. The objective is to find a matrix A that
minimizes the expected MSE with respect to X. Assuming
that the random variables X2 and X3 are independent and
follow a zero-mean symmetric distribution,10 we can express
the following for any matrix A with the structure given in (9)

EX(diag(AX)) = E(X1)IL. (19)

Therefore,

EX(MSE) = σ2
(
tr
((

A†)TA†
) (

2E(X1)+σ2
)
+σ2

)
, (20)

10As z0 and z are unknown to the RIS, from the RIS perspective, z0 and z
are random variables and the relative angle between them follows a symmetric
distribution with a mean of zero.
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where based on the definition of X in (6), we have E(X1) ≥ 0.
Hence, to minimize EX(MSE) with respect to A, we should
minimize tr

((
A†)TA†

)
with respect to A.

We can decompose A using the singular value decomposi-
tion (SVD) as A = UDV T, where U is an L× 3 real semi-
unitary matrix, D =∆ diag

(
[d1, d2, d3]

T
)

is a 3 × 3 diagonal
matrix with non-negative real numbers on the diagonal, V is
an 3× 3 real unitary matrix. Thus, we have

tr
((

A†)TA†
)
=tr

((
ATA

)−1
)
=tr

(
D−2

)
=

3∑
i=1

1

d2i
. (21)

To minimize the expression in (21), we state the following
theorem.

Theorem 1. Assuming L ≥ 3, and φ = (φ1, . . . , φL), and A
be an L × 3 matrix such that [A]l,1 = 1, [A]l,2 = cos (φl),
and [A]l,3 = sin (φl) for all 1 ≤ l ≤ L. If A has nonzero
singular values of d1, d2, d3, then

φ⋆=∆ argmin
φ

3∑
i=1

1

d2i
=
[
φ0, φ0+

2π
L , . . . , φ0+

2π(L−1)
L

]T
, (22)

where φ0 ∈ R. Additionally, d⋆1 =
√
L, d⋆2 = d⋆3 =

√
L/2.

Proof. The proof is provided in Appendix A.

The optimal A⋆ can be constructed by substituting the
optimal measurement phases obtained from Theorem 1 into
(9). Hence, we have

A⋆†
=

1

L
diag

(
[1, 2, 2]

T
)
A⋆T

, (23)

and from (13), (15), and (23), we have

ϑ̂ = arg

(
L∑

l=1

yle
j2π(l−1)/L

)
. (24)

Remark 1. As the covariance of the observation vector Y is
a function of the parameter x (8), the conventional best linear
unbiased estimator (BLUE) does not exist [41]. However, one
can define a modified BLUE-based estimator that, instead of
minimizing the MSE, minimizes the expected MSE with respect
to the parameter X. Assuming that X2 and X3 are independent
and follow zero-mean symmetric distributions, the modified
BLUE-based estimator gives the same estimates of x2 and x3

as (15). Therefore, the phase estimation is not affected as the
optimal phase shift is a function of x2 and x3.

C. Empirical RMSE of the Estimators

In the previous section, the proposed ML estimator in (14)
was optimal for the estimation of x, but, it was sub-optimal
for estimating ϑ = arg (x2 + j x3). Additionally, the linear
estimator was sub-optimal for estimating ϑ as it minimizes
the MSE with respect to x, not ϑ. In this section, we evaluate
the root mean squared error (RMSE) of the estimations of the
parameter ϑ for linear and ML estimators using Monte Carlo
simulations. We consider the set of measurement phases Φ =

{
0, 2π

3 , 4π
3

}
for both estimators. For this numerical evaluation,

we define the SNR as

SNR =∆
|z0|2 + |z|2

2σ2
. (25)

Without loss of generality, we assume that z0 = 1. Hence,
according to (4), we have ϑ = − arg (z). We explore different
values for |z|, ϑ (i.e., − arg (z)), and the SNR to encompass
different parameter scenarios. To calculate the RMSE, we
constrain ϑ̂ within the range −π + ϑ < ϑ̂ ≤ π + ϑ.

As seen in Fig. 3, for the considered Φ, the RMSE of the ML
and linear estimators closely track each other and vary with
the actual value of the parameter ϑ. Additionally, we observe
an increase in the respective RMSE values for |z| = 1, |z| = 3,
and |z| = 10.

Thus, the linear and ML estimators perform similarly in
terms of RMSE for the phase estimation. Additionally, the
ML estimator has two drawbacks: it requires knowledge of the
noise variance and its solution involves complicated modified
Bessel functions. Therefore, we consider the linear estimator
to develop the multi-phase control algorithm.

Remark 2. Since the proposed estimation techniques do not
have any CSI or any a priori distribution of the channel values
and only consider the conditional received power distribution,
they are general regardless of the channel distributions.

IV. PROPOSED PHASE ALIGNMENT SCHEMES

In this section, we investigate the problem of maximizing
the received RF power using a dynamic sequence of power
measurements. We propose a model for the RIS EH operations
and we consider two different scenarios: 1. continuous phase
control, where the RIS elements can add any continuous phase
shifts to the incident RF signal; 2. discrete phase control,
where the RIS elements can only add phase shifts from a
predefined discrete set. For each scenario, we propose an
algorithm to find the optimal phase of RIS elements.

A simplified model of the operation of an RIS with an EH
module is shown in Fig. 4. The network entity manager can
assess the network environment, including but not limited to
the network demand, the SNR, and power measurements from
the RIS, and determine if the RIS should function to provide
connectivity or to harvest energy. Within the RIS controller,
the preferred phase of each element can be determined based
on its functionality, and the controller can adjust the phase
of the elements accordingly. The energy harvester can be
located either outside or inside the RIS surface. It sends power
measurements to a phase alignment algorithm implemented
in the network entity manager module. These values can
be used by the network entity manager to decide whether
the RIS should be in energy harvesting or data transmission
mode. After reaching an appropriate phase configuration, the
harvested energy can be fed back to the power supply to be
used by the RIS.

A. Continuous Phase Control
1) Noiseless Scenario: We begin by considering an ideal

noiseless scheme, where the RIS is capable of adding contin-
uous phase shifts to the incident EM waves. In the absence of
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Fig. 4. The abstract proposed model of the operation of a RIS with an EH
module.

the noise, the received powers become deterministic. There-
fore, there is no need to apply any phase estimation technique.
In Theorem 2, we show that with three power measurements,
we can determine the optimal phase shift without any error.
First, we state Theorem 2, and based on that, we develop our
proposed algorithm that requires no a priori CSI.

Theorem 2. Let f : R→ R be a function of the form

f(ϑ) =
∣∣z0 + zejϑ

∣∣2 ,
where z0, z ∈ C. Without knowing the explicit values of
z0 and z, the optimal variable ϑ⋆ that maximizes f(·)
can be computed based on the measurement vector y =∆

[f(φ1), f(φ2), f(φ3)]
T as ϑ⋆ = arg (x2 + jx3), where x =∆

A−1y. The matrix A is defined as

A =∆

1 cos (φ1) sin (φ1)
1 cos (φ2) sin (φ2)
1 cos (φ3) sin (φ3)

 . (26)

Note that φ1, φ2, φ3 ∈ [0, 2π) must be selected such that
det(A) ̸= 0.

Proof. The proof is provided in Appendix B.

In general, Theorem 2 allows for the computation of the
optimal phase shift using only three measurements, without

Algorithm 1: The proposed phase-alignment algorithm
for power maximization
Input: The number of RIS elements N and the

number of iterations M
Output: Near-optimal phase vector ϑ⋆ that maximizes

the received power.
Initialize: ϑ← ϑ0, m← 0, and en is a vector, where

the component n is 1 and all other components are 0.
while m < M do

m← m+ 1;
for n← 1 to N do

y1 ← the measured power for the phase
configuration ϑ;

y2 ← the measured power for the phase
configuration ϑ+ π

2 en;
y3 ← the measured power for the phase

configuration ϑ+ πen;
ϑ← ϑ+ arg(y1 − y3 + j (2y2 − y1 − y3)) en;

end
end
ϑ⋆ ← ϑ;

requiring knowledge of the explicit expression of the function.
Specifically, for the measurement phases φ1 = 0, φ2 = π/2,
and φ3 = π, a simple expression for the optimal phase shift
can be obtained as follows:

ϑ⋆ = arg (y1 − y3 + j (2y2 − y1 − y3)). (27)

Algorithm 1 is a sequential, iterative phase update algo-
rithm. At each iteration, adjusting the phase of each element
requires measuring the received power for three different
phase configurations. This is the minimum number of power
measurements that can be used for this purpose. The algorithm
updates the phase of one element using (27), then proceeds to
the next element until all N elements have had their phases
updated. In this algorithm, the process is repeated M times, but
in practice, it can also be terminated earlier if some additional
stopping criterion is satisfied.

In the inner loop of Algorithm 1, the number of operations
remains constant regardless of the number of elements in the
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Fig. 5. Visualization of the proposed algorithm in different steps for a toy
example with N = 3.

RIS (i.e., N ). Given that both the inner and outer loops iterate
N and M times, respectively, the algorithm’s complexity can
be expressed as O(MN).

Fig. 5 presents a toy example that demonstrates the different
steps of the proposed algorithm. The figure shows that, ini-
tially, the vectors are misaligned, leading to a relatively small
amplitude of their sum compared to a scenario where they are
aligned in the same direction. The algorithm rotates the phase
of each vector to match the sum of the others. As the algorithm
progresses and reaches the end of the second iteration, the
vectors become almost aligned in the same direction, resulting
in a nearly maximum amplitude of their sum.

Theorem 3. The proposed Algorithm 1 converges to the

maximum value of the function f(ϑ) =
∣∣∣∑N

n=1 zne
jϑn

∣∣∣2 as
M →∞.

Proof. The proof is provided in Appendix C.

2) Noisy Scenario: In this section, we address the problem
of phase alignment in noisy environments. We start by consid-
ering a single-phase control scenario and presenting estimators
for the optimal phase shift. Subsequently, we extend this to the
multiple-phase control scenario.

In Section IV-A1, we developed Algorithm 1 to address
the noiseless scenario by extending the single-phase control
approach to the multiple-phase control scenario. Theorem 3
proves the convergence of Algorithm 1 to the optimal solution.
In the noisy scenario, a similar extension can be made.

In this section, we propose a sub-optimal sequential algo-
rithm that aims at maximizing the mean received power. For
a phase configuration ϑ = (ϑ1, ϑ2, . . . , ϑN ), the measured
received power in the presence of the noise is

Y =

∣∣∣∣∣
N∑

n=1

zne
jϑn +W

∣∣∣∣∣
2

, (28)

where W ∼ CN
(
0, σ2

)
, and Y is the measured power and it

is a random variable due to the noise. We define the average
SNR per element as

SNR =∆

∑N
n=1 E

(
|Zn|2

)
Nσ2

. (29)

Algorithm 2: Linear phase-alignment algorithm for
power maximization in the presence of noise
Input: The number of RIS elements N , the number of

iterations is M , and set of measurement phases
Φ = {φ1, φ2, . . . , φL}.

Output: Near-optimal phase vector ϑ⋆ that maximizes
the mean received power.

Initialize: ϑ← ϑ0, m← 0, and en is a vector, where
the component n is 1 and all other components are 0.

for l← 1 to L do
al ← [1, cos (φl) , sin (φl)]

T;
end
A← [a1, . . . ,aL]

T;
while m < M do

m← m+ 1;
for n← 1 to N do

y ← [0, . . . , 0]
T;

for l← 1 to L do
yl ← the measured power for the phase

configuration ϑ+ φlen;
end
x̂← A†y;
ϑ← ϑ+ arg (x̂2 + jx̂3)en;

end
end
ϑ⋆ ← ϑ;

In Section III, we considered the single-phase control sce-
nario in the presence of noise. In the multi-phase control
scenario with noise, we will make a similar extension as in
Algorithm 1 to achieve Algorithm 2. In each iteration of this
proposed algorithm, adjusting a single phase requires L mea-
surements. The algorithm updates the phase of one element
using (15) and (13), then proceeds to the next element until
all N elements have had their phases updated. To adjust all the
phases once, a total of L×N measurements are required. This
process is repeated M times. We further simplify the solution
by using optimal measurement phases in Algorithm 3, where
we apply (24) for the phase update of each element.

Regarding the complexity of Algorithm 2 and Algorithm 3,
the number of operations within the inner loop scales linearly
with L. Furthermore, with the inner and outer loops iterating
N and M times, respectively, the algorithm’s complexity can
be represented as O(MNL).

Algorithm 3 is computationally more efficient than Algo-
rithm 2, as it performs the vector multiplication yTb instead
of the matrix multiplication A†y.

B. Discrete Phase Control

In practice, with the current technology, a RIS element can
only apply a phase shift that takes a value from a finite set of
possible phase shifts Ω. We define this set as

Ω =∆
{
ω1, ω2, . . . , ω|Ω|

}
,

where ωk ∈ [0, 2π) for all 1≤ k≤ |Ω|, and ωk ̸= ωk′ for all
1≤k, k′≤|Ω| and k ̸= k′.
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Algorithm 3: Optimal linear phase-alignment algo-
rithm for power maximization in the presence of noise

Input: The number of RIS elements N , the number of
iterations M , and the number of measurement phases
L.

Output: Near-optimal phase vector ϑ⋆ that maximizes
the mean received power.

Initialize: ϑ← ϑ0, m← 0, and en is a vector, where
the component n is 1 and all other components are 0.
b←

[
1, ej2π/L, . . . , ej2π(L−1)/L

]T
;

while m < M do
m← m+ 1;
for n← 1 to N do

y ← [0, . . . , 0]
T;

for l← 1 to L do
yl ← the measured power for the phase

configuration ϑ+ 2π(l−1)
L en;

end
ϑ← ϑ+ arg

(
yTb

)
en;

end
end
ϑ⋆ ← ϑ;

The problem of finding the optimal phase-shifts for the RIS
elements that maximize the received power becomes

maximize
ϑ ∈ ΩN

f(ϑ), (30)

where f(ϑ) =∆
∣∣∣∑N

n=1 zne
jϑn

∣∣∣2. In general, the problem (30)
might have more than one solution. For instance, when the
set Ω is closed under modular 2π addition, assuming ϑ⋆ is a
solution, one can easily show that all the members of the set
{ϑ⋆ + 1ωk mod 2π : 1≤k≤|Ω|} are also solutions.

Below, we introduce a modified discrete version of the
Theorem 2.

Theorem 4. Let f : Ω→ R be a function with the expression

f(ϑ) =
∣∣z0 + zejϑ

∣∣2 ,
where z0, z ∈ C are explicitly unknown. For |Ω| ≥ 3, the input
variable ϑ = ωk⋆ maximizes f(·), where

k⋆ =∆ argmin
1≤k≤|Ω|

min (ζk, 2π − ζk), (31)

ζk=
∆ϑ⋆−ωk mod 2π for all 1≤k≤|Ω|, and ϑ⋆ is the optimal

continuous phase shift that is computed using Theorem 2.

Proof. The proof is provided in Appendix D.

We utilize Theorem 4 to propose the Algorithm 4 for the
discrete scenario, which is a modified version of Algorithm 1.
The new Algorithm 4 is a natural extension of Algorithm 1
for the discrete phase-shift scenario, but it is not necessarily
optimal.

The number of operations within the inner loop of Algo-
rithm 4 scales linearly with |Ω|. Moreover, with the inner

Algorithm 4: The proposed discrete phase-alignment
algorithm for power maximization
Input: The number of RIS elements N , the number of

iterations M , and the set of possible phase shifts
Ω =

{
ω1, ω2, . . . , ω|Ω|

}
.

Output: Near-optimal phase vector ϑ⋆ ∈ ΩN that
maximizes the received power.

Initialize: ϑ← ϑ0 ∈ ΩN , m← 0, and en is an
N -dimensional vector, where the component n is 1
and all other components are 0. Select three
measurement phase shifts φ1, φ2, φ3 ∈ Ω, such that
sin (φ1 − φ3) + sin (φ2 − φ1) + sin (φ3 − φ2) ̸= 0.

A←

1 cos (φ1) sin (φ1)
1 cos (φ2) sin (φ2)
1 cos (φ3) sin (φ3)

;

while m < M do
m← m+ 1;
ϑold ← ϑ;
for n← 1 to N do

y1 ← the measured power for the phase
configuration ϑ+ (φ1 − ϑn) en;
y2 ← the measured power for the phase

configuration ϑ+ (φ2 − ϑn) en;
y3 ← the measured power for the phase

configuration ϑ+ (φ3 − ϑn) en;
x← A−1y;
α← arg (x2 + jx3) + ϑn;
for k ← 1 to |Ω| do

ζk ← α− ωk mod 2π;
end
k⋆ ← argmin

1≤k≤|Ω|
min (ζk, 2π − ζk);

ϑ← ϑ+ (ωk⋆ − ϑn) en;
end
if ϑold = ϑ then

break;
end

end
ϑ⋆ ← ϑ;

and outer loops iterating N and M times, respectively, the
algorithm’s complexity can be expressed as O(MN |Ω|).

Theorem 5. The proposed Algorithm 4 converges as M →∞.

Proof. The proof is provided in Appendix E.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our proposed
algorithm and compare it to a random phase update method
using Monte-Carlo simulations. We consider a RIS with 100
elements and generate random complex Gaussian distributed
values with unit variance for {Zn}Nn=1.

A. Benchmark: Random Algorithm

Since there is no prior work to compare against, we use
a random algorithm as the benchmark for the proposed algo-
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rithm. The basic concept is that, at each step, the algorithm
picks a single element of the RIS sequentially and assigns
a random phase value from a uniform distribution over the
interval [0, 2π) in the continuous scenario or over the set Ω
in the discrete scenario. In the discrete scenario, we ensure
that the new random phase differs from the previously used
one. The new power measurement is then compared to the
previous one. If the power increases, the algorithm updates
the phase and moves on to the next element. If the measured
power decreases, the algorithm maintains the previous phase
and proceeds to the next element.

B. Performance Evaluation

We define the normalized achieved power (NAP) as the
actually received power divided by the theoretically maximum
received power level. More formally, the NAP is defined as

NAP =∆

∣∣∣∑N
n=1 Zne

jϑn

∣∣∣2(∑N
n=1 |Zn|

)2 , (32)

where ϑ is the used RIS phase configuration for different
methods. Furthermore, the mean normalized achieved power
(MNAP) is defined as MNAP =∆ E(NAP).

Fig. 6 illustrates the MNAP versus the number of power
measurements for the proposed Algorithm 3 and random
benchmark method under different SNR conditions. The re-
sults are applicable to both indirect and direct EH, but we
stress that the former typically leads to lower SNRs due to the
extra pathloss. The proposed method uses three measurements
per phase update (L = 3) of each element and converges to
its final value after 300 measurements (i.e., LN ), while the
random one requires ten times more measurements as it has
a slow convergence rate. We notice that the proposed method
converges equally fast at any SNR, while the convergence rate
decreases for the random method when the SNR increases.
Importantly, the proposed method converges to a solution
with a higher RF power than the random one. The MNAP
increases with the SNR. Therefore, with three measurements
per phase update, it can’t reach its full potential in terms of
receiving power from the ambient RF source. At low SNRs,
the proposed method does not reach the maximum theoretical
power. This happens because the MSE of the phase estimation
does not decrease at each step, preventing the algorithm from
converging to the theoretically optimal phase configuration.
To overcome this issue, we can increase the number of
measurements per phase update (L) in order to reduce the MSE
of the phase estimation. The MNAP of the proposed method
at SNR → ∞ can be regarded as a genie-aided phase update
within the framework of our sequential algorithm. Moreover,
with access to CSI, we can achieve MNAP = 1. Thus, it can
be considered as the upper bound with genie-aided assistance.

Fig. 7 shows the cumulative distribution function (CDF)
of the relative achieved power for both the proposed and
random algorithms, compared to the optimum in noiseless
scenario. The randomness in the proposed method is due to
the random channel realization, while in the random method it
is due to both random channel realizations and random phase
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for the proposed Algorithm 3 (L = 3) and random method, and for various
SNRs.
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Fig. 7. The CDF of the normalized achieved power for the proposed
Algorithm 1 and random method in noiseless scenario.

updates. We conducted 1000 simulations with randomly gen-
erated channels. The results indicate that one iteration of the
proposed algorithm achieves significantly better performance
than the random method achieves after ten iterations. Although
the proposed algorithm still performs slightly better than the
random one after fifty iterations (e.g., on the average, as also
shown in Fig. 6), the latter provides a CDF curve with smaller
variations.

In Fig. 8, the impact of the number of measurements per
phase update (L) on the MNAP of the proposed Algorithm 3
and the random method is shown. It can be observed that as
L increases, the performance improves and the RIS achieves
higher power. For example, at SNR = −10 dB, the MNAP is
0.09 for the random method, while for the proposed method
with L = 3, L = 10, L = 30, and L = 100, the MNAPs are
0.14, 0.31, 0.54, 0.75, respectively. The convergence to the
final value of the proposed algorithm occurs after almost NL
measurements. This increase in the number of measurements
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of the proposed Algorithm 3 and the random method.

leads to an increase in the NAP at low SNRs but also increases
the latency. Hence, there is a trade-off between the NAP and
the number of measurements. For instance, at SNR = 10 dB,
the NAP for the proposed method with L = 3 is 0.94. In
this case, additional measurements may not be necessary as
they only slightly improve the NAP. For low SNRs scenarios,
if the limit is 1000 measurements, for a RIS with N = 100
elements, choosing L = 10 is more advantageous compared
to L = 3, as it achieves more power.

It is worth mentioning that RIS is envisioned to be deployed
in environments where the channel between the transmitter
and the receiver is weak. However, we deploy RIS in a place
where the channel between the transmitter and the RIS and the
channel between RIS and the receiver are both strong. Hence,
the low SNR from the transmitter to the receiver does not
imply the low SNR from the transmitter to the RIS. On the
contrary, a RIS might only be effective if it has a relatively
strong channel to both the transmitter and receiver [12]. Thus,
the SNR can be sufficiently high to configure the RIS as
proposed in this paper.

In Fig. 9, we evaluate the performance of the proposed
Algorithm 4 in the absence of the noise, considering a discrete
set of possible phase shifts Ω = {0, π/2, π, 3π/2}. The
number of RIS elements is N = 10. We compare the NAP
of the proposed method to that of the random phase update
method and the maximum feasible value (calculated using
a brute-force method). The error bars indicate a 95 percent
confidence interval. At the beginning, the random method
achieves higher power, due to having one phase update per
measurement, compared to the proposed method’s one phase
update per three measurements (L = 3). However, as the RIS
takes more measurements, the proposed method outperforms
the random one. The proposed method converges to a higher
value than the random algorithm, but not exactly to the
maximum feasible value. Therefore, our proposed method is
sub-optimal for the discrete, noiseless scenario. We did not
consider a larger number of RIS elements as the number of
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Fig. 9. Mean normalized achieved power for the proposed Algorithm
4 and random method versus the number of measurements. The number
of RIS elements is N = 10, and the set of possible phase shifts is
Ω = {0, π/2, π, 3π/2}. The maximum feasible value for the discrete scheme
is shown with the black solid line and the error bars represent the 95 percent
confidence interval.

possible phase configurations to find the maximum feasible
value grows exponentially with N (i.e., |Ω|N ).

To get a sense of the amount of power a device can harvest
using RIS, let’s consider a scenario where an RIS surface
is situated on the xy plane, with its center positioned at
the origin. The elements form a grid with resolution λ/2,
where we consider λ = 0.125m (In this setup, a RIS with
256 elements occupies an area of 1m2). Furthermore, we
consider an isotropic RF source with a transmit power of 1W
at [0,−3, 4]T and an EH device at [0, 1, 2]T (i.e., an example
of indirect EH). We compute the channel gains between the
RIS elements and the transmit and receive antennas by taking
into account the near-field and polarization effects [42].

We assume the following sigmoidal function for the EH
conversion efficiency.

η(x) =∆
Psat ·

((
1 + e−a(x−b)

)−1 −
(
1 + eab

)−1
)

x ·
(
1− (1 + eab)

−1
) , (33)

where Psat implies the output harvesting saturation power.
Constants a and b are associated with detailed circuit specifica-
tions, including factors like resistance, capacitance, and diode
turn-on voltage. We adopt a = 30, b = 0.07, and Psat = 0.1W,
and the unit of the input power x is Watt [43].

Fig. 10 illustrates the mean harvested power versus the
number of RIS elements for the proposed Algorithm 3 and
the random method (both after reaching convergence). We also
considered a genie-aided scheme with available CSI. As ob-
served, increasing the number of RIS elements (i.e., expanding
the surface area) leads to an increase in harvested power until
it reaches saturation. The saturation power, which is less than
the saturation power of the harvesting device (i.e., 20 dBm),
occurs due to the limited power that an infinitely large RIS
surface can reflect toward a receiver [42]. Alternatively, if the
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Fig. 10. Impact of the number of the RIS elements and SNR on the harvested
power of the proposed Algorithm 3 and the random method (both after
reaching convergence).

transmit power were sufficiently large, saturation could result
from the harvesting device.

Furthermore, an optimality gap in mean harvested power is
observed between the genie-aided method and the proposed
and random methods, and this gap becomes smaller at higher
SNRs.

The gap in mean harvested power between the proposed
method and the random method demonstrates the superiority
of the proposed method. For instance, for a RIS with 1024
elements (i.e., a surface 4m2), the gap between the proposed
method and random method at the SNR of −20 dB is 2.27 dB,
which is significant. It is worth mentioning that the proposed
method converges with less number measurements than the
random method (as shown previously in Fig. 6).

VI. CONCLUSIONS

This paper has presented a method for energy harvesting at a
RIS from an ambient RF source in the absence of coordination
with the source. The objective was to maximize the received
power by adjusting the phases of the RIS elements based
only on power measurements, obtained without having a RF
receiver. The proposed sequential algorithm outperformed the
random phase update method in terms of achieved power after
convergence, while requiring fewer measurements. Also, it is
proved to converge to the optimum for the noiseless continuous
phase scenario. The impact of the number of measurements per
phase update on the achieved power was evaluated, showing
that increasing the number of measurements leads to improved
performance, although the amount of improvement depends
on the SNR of the system. A higher number of measurements
leads to significant improvement in received power in low SNR
regimes but is unnecessary in high SNR regimes where three
measurements provide a near-optimal solution. Besides, EH is
beneficiary when the signal is strong and the SNR is large. For
a discrete, noiseless scenario, the proposed method was found
to be near-optimal, achieving a higher power than the random

algorithm but not exactly the maximum feasible power. In
future work, we plan to extend this study to consider more
general scenarios. For example, the proposed method can be
used to estimate the channel to the transmitter and thereby
enable RIS configuration for data transmission without the
involvement of the BS.

APPENDIX A
PROOF OF THEOREM 1

The matrix ATA for a given measurement phase vector φ
is

ATA=∆L

 1 r1cos(δ1) r1sin(δ1)

r1cos(δ1)
1+r2cos(δ2)

2
r2sin(δ2)

2

r1sin(δ1)
r2sin(δ2)

2
1−r2cos(δ2)

2

 , (34)

where r1e
jδ1 =∆

∑L
l=1 e

jφl/L and r2e
jδ2 =∆

∑L
l=1 e

j2φl/L.
The equation for the eigenvalues of ATA is
det
(
ATA− λI3

)
= 0, where we know λi = d2i for

1≤ i≤3. After some mathematical manipulations, we get

ρ =∆
3∑

i=1

1

d2i
=

5− 4r21 − r22
L(1−2r21− r22 +2r21r2 cos (δ2−2δ1))

, (35)

and since ρ ≥ 0 and 0≤r1, r2≤1, we should have

1−2r21− r22 +2r21r2cos (δ2−2δ1) > 0. (36)

From 0≤r1, r2≤1 and Lemma 6 with α = 0.4, we have

0.4r22 + 0.6r21 ≥ r21r2 ⇐⇒

2r22 + 3r21 − 5r21r2 cos (δ2 − 2δ1) ≥ 0
(36)⇐⇒

5− 4r21 − r22
1−2r21− r22 +2r21r2cos (δ2−2δ1)

≥ 5
(35)⇐⇒

ρ ≥ 5

L
, (37)

where the equality holds when r1 = r2 = 0. According to
Lemma 7, if φ⋆ = (φ0, φ0+2π/L, . . . , φ0+2π (L−1) /L),
then r1 = r2 = 0, making it an optimal solution that
minimizes ρ. Also, when r1 = r2 = 0, we have ATA =

diag
(
[L,L/2, L/2]

T
)

. Therefore, d⋆1 =
√
L, d⋆2 = d⋆3 =√

L/2.

Lemma 6. Given 0≤α≤0.5 and M > 0, for any 0≤x, y≤
M , we have

αx2 + (1− α) y2 ≥ xy2

M
. (38)

Proof. For x = 0 or y = 0, (38) holds. Lets consider 0 <
x, y≤M , assuming g(x) =∆ αxM−2 + (1− α)x−1, we have
g′′(x) ≥ 0. Hence, g(·) is a convex function. We can compute
the optimum solution to minimize g(·) by solving g′(x⋆) =

0. Hence, we get x⋆ = M
√

1−α
α . From 0 ≤ α ≤ 0.5, we

have x⋆ ≥M . Therefore, the minimum value of g(·) over the
interval (0,M ] occurs at the boundary x = M , and we have
g(M) = 1/M . Hence,

αx2 + (1− α) y2 ≥ xy2g(x) ≥ xy2g(M) =
xy2

M
, (39)

and the proof is complete.
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Lemma 7. Assuming L ≥ 3, φ0 ∈ R, and φl = φ0 +
2π (l − 1) /L for all 1≤ l≤L, we have

L∑
l=1

ejφl =

L∑
l=1

ej2φl = 0. (40)

Proof. For L ≥ 2, we have
∑L

l=1 e
jφl =ejφ0

∑L
l=1 e

j2π(l−1)
L =

ejφ0 1−ej2π(l−1)

1−e
j2π
L

= 0, and for L ≥ 3, we have
∑L

l=1 e
j2φl =

ej2φ0
∑L

l=1 e
j4π(l−1)

L = ej2φ0 1−ej4π(l−1)

1−e
j4π
L

= 0, and the proof is

complete.

APPENDIX B
PROOF OF THEOREM 2

Let us define x =∆
[
|z0|2 + |z|2 , 2Re(z0z∗), 2 Im(z0z

∗)
]T

.
The variable ϑ⋆ that maximizes f(·) is given by

ϑ⋆ = arg (z0)− arg (z) = arg (z0z
∗)

= arg (Re(z0z
∗) + j Im(z0z

∗)) = arg (x2 + jx3).

Therefore, we can compute the optimal phase shift from
x. We show that one can compute x using the re-
ceived power from three different measurements. By ex-
panding the function f(φl), we get f(φl) = |z0|2+ |z|2+
2Re (z0z

∗)cos (φl)+2 Im (z0z
∗)sin (φl) = aT

l x, where al =
∆

[1, cos (φl), sin (φl)]
T, for 1 ≤ l ≤ 3. Assuming A =∆

[a1,a2,a3]
T, and y = [f(φ1), f(φ2), f(φ3)]

T, we have
Ax = y, or x = A−1y for det(A) ̸= 0.

APPENDIX C
PROOF OF THEOREM 3

We denote the phase-shift vector generated by the algorithm
at iteration m up to the element n with ϑk, where k = mN+n.
We prove that for a given N , limk→∞ f

(
ϑk
)
= maxϑ f(ϑ).

For any integer 1≤n≤N and an integer k ≥ 1, we define

wk
n =∆

∑N
i=1
i ̸=n

zie
jϑk

i . Hence, we have f
(
ϑk
)
=
∣∣∣wk

n+zne
jϑk

n

∣∣∣2.

At the phase update k+1, the algorithm only updates the phase

of the element n (wk+1
n =wk

n) as f
(
ϑk+1

)
=
∣∣∣wk

n+zne
jϑk+1

n

∣∣∣2.
According to the Theorem 2, we have

f
(
ϑk+1

)
=
∣∣∣wk

n+zne
jϑk+1

n

∣∣∣2≥ ∣∣∣wk
n+zne

jϑk
n

∣∣∣2=f
(
ϑk
)
. (41)

Therefore, f
(
ϑ1
)
, f
(
ϑ2
)
, . . . form an increasing sequence.

Moreover, the maximum value of f(·) is
(∑N

n=1 |zn|
)2

,

hence, the set F =∆
{
f
(
ϑk
)
: k ∈ N

}
is upper bounded by(∑N

n=1 |zn|
)2

. Therefore, according to the monotone con-
vergence theorem [44], we have limk→∞ f

(
ϑk
)
= supF ≤(∑N

n=1 |zn|
)2

. If we show that supF =
(∑N

n=1 |zn|
)2

, the

proof is complete. Lets define ϑ⋆ =∆ limk→∞ ϑk. For the phase
shift vector ϑ⋆, any further phase update will not increase
f(·). In other words, for updating element n, we should
apply Theorem 2 to the function f(ϑ⋆) =

∣∣w⋆
n + zne

jϑ⋆
n

∣∣2,
where w⋆

n =∆
∑N

i=1
i ̸=n

zie
jϑ⋆

i . Since any further update will not

increase the value of f(·), therefore for all 1 ≤ n ≤ N , we

have Arg
(
zne

jϑ⋆
n

)
= Arg (w⋆

n). Using Lemma 8, we have
Arg

(
z1e

jϑ⋆
1

)
= Arg

(
z2e

jϑ⋆
2

)
= · · · = Arg

(
zNejϑ

⋆
N

)
, or

Arg (z1) + ϑ⋆
1 = · · · = Arg (zN ) + ϑ⋆

N = ϑ0 mod 2π.
Therefore, we have ϑ⋆

n = ϑ0 − arg (zn), for all 1≤ n≤N ,
that are the phase shifts that maximize f(·).

Lemma 8. Assume for each 1 ≤ n ≤ N , un =∆
∑N

i=1
i̸=n

zi, if

Arg (zn) = Arg (un) for all 1 ≤ n ≤ N , then Arg (z1) =
Arg (z2) = · · · = Arg (zN ).

Proof. For 1≤m,n≤N and m ̸= n, we have Arg (zm) =
Arg (um) and Arg (zn) = Arg (un), therefore, for some real
positive cm and cn, we have zm = cmum and zn = cnun . As-
suming um,n =∆

∑N
i=1

i̸=m,n
zk, we have zm = cm (zn + um,n)

and zn = cn (zm + um,n). After some algebraic manipu-
lations, we obtain zm = cm(1+cn)

cn(1+cm)zn. Hence, Arg (zm) =

Arg (zn) and the proof is complete.

APPENDIX D
PROOF OF THEOREM 4

We know ϑ⋆ = arg (z0) − arg (z) is the optimal variable
for the continuous domain. For a discrete domain Ω ={
ω1, ω2, . . . , ω|Ω|

}
, the variable ϑ = ωk⋆ maximizes f(·),

where

k⋆= argmax
1≤k≤|Ω|

∣∣z0 + zejωk
∣∣2 = argmax

1≤k≤|Ω|
Re
(
z0z

∗e−jωk
)

= argmax
1≤k≤|Ω|

Re
(
|z0z∗| ej(ϑ

⋆−ωk)
)
= argmax

1≤k≤|Ω|
cos (ϑ⋆− ωk)

= argmax
1≤k≤|Ω|

cos (ζk) = argmax
1≤k≤|Ω|

cos (min (ζk, 2π − ζk))

= argmin
1≤k≤|Ω|

min (ζk, 2π − ζk) , (42)

where ζk =∆ ϑ⋆ − ωk mod 2π.

APPENDIX E
PROOF OF THEOREM 5

Algorithm 4 intends to maximize f(ϑ) = |
∑N

i=1 zie
jϑi |2

with discrete phase-shifts. We denote the phase-shift vector
generated by the algorithm at iteration m up to the element n
with ϑk, where k = mN+n. We will prove that the sequence
f
(
ϑ1
)
, f
(
ϑ2
)
, . . . converges.

For any integer 1≤n≤N and an integer k ≥ 1, we define
wk

n =∆
∑N

i=1
i̸=n

zie
jϑk

i . Hence, we have f
(
ϑk
)
= |wk

n+zne
jϑk

n |2.

At the phase update k+1, the algorithm only updates the phase
of the element n (wk+1

n =wk
n) as f

(
ϑk+1

)
= |wk

n+zne
jϑk+1

n |2.
According to the Theorem 4, we have

f
(
ϑk+1

)
=
∣∣∣wk

n+zne
jϑk+1

n

∣∣∣2≥ ∣∣∣wk
n+zne

jϑk
n

∣∣∣2=f
(
ϑk
)
. (43)

Therefore, f
(
ϑ1
)
, f
(
ϑ2
)
, . . . form a monotonically increas-

ing sequence. Moreover, the maximum value of f(·) is
(
∑N

n=1 |zn|)2, hence, the set F =∆
{
f
(
ϑk
)
: k ∈ N

}
is upper

bounded by (
∑N

n=1 |zn|)2. Therefore, according to the mono-
tone convergence theorem [44], we have limk→∞ f

(
ϑk
)
=

supF ≤ (
∑N

n=1 |zn|)2.
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