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Abstract—We propose a novel joint channel and data estima-
tion (JCDE) algorithm via bilinear Gaussian belief propagation
(BiGaBP) for massive multi-user MIMO (MU-MIMO) systems
with non-orthogonal pilot sequences. The contribution aims to
reduce significantly the communication overhead required for
channel acquisition by enabling the use of short non-orthogonal
pilots, while maintaining multi-user detection (MUD) capability.
Bilinear generalized approximate message passing (BiGAMP),
which is systematically derived by extending approximate mes-
sage passing (AMP) to the bilinear inference problem (BIP),
provides computationally efficient approximate implementations
of large-scale JCDE via sum-product algorithm (SPA); however,
as the pilot length decreases, the estimation accuracy is severely
degraded. To tackle this issue, the proposed BiGaBP algorithm
generalizes BiGAMP by relaxing its dependence on the large-
system limit approximation and leveraging the belief propagation
(BP) concept. In addition, a novel belief scaling method complying
with the data detection accuracy for each iteration step is
designed to avoid the divergence behavior of iterative estimation
in the early iterations due to the use of non-orthogonal pilots, es-
pecially in insufficient large-system conditions. Simulation results
show that the proposed method outperforms the state-of-the-art
schemes and approaches the performance of idealized (genie-
aided) scheme in terms of mean square error (MSE) and bit
error rate (BER) performances.

Index Terms—Massive multi-user MIMO, Bayesian bilinear
inference, belief propagation, BiGAMP, belief scaling

I. INTRODUCTION

Massive multiple-input multiple-output (MIMO) systems
have been considered as one of the key technologies for
the fifth generation (5G) advanced and sixth generation (6G)
networks, which promise significant performance improve-
ments in many aspects, such as spectral efficiency, detection
reliability, and energy efficiency [1]–[3]. In particular, massive
multi-user MIMO (MU-MIMO) technology, where a base
station (BS) is equipped with massive number of antenna
arrays, can simultaneously serve a massive amount of wireless
links, and brings enormous connectivity in the uplink access
[4], [5]. Under such a scenario, low-complexity and large-scale
multi-user detection (MUD) consisting of high-dimensional
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channel estimation and subsequent data detection play a key
role in the operation of massive MU-MIMO [6], [7].

Conventional MUD is composed of the following two steps,
channel estimation based on a pilot (training) sequence and
subsequent data detection based on estimated channel state
information (CSI). To obtain highly accurate CSI knowledge
with this scheme, orthogonal pilot sequences must be used
under the assumption that the pilot length Kp is, at least, larger
than the maximum number of uplink users M communicat-
ing simultaneously [8]. This implies that the communication
overhead required for CSI acquisition increases rapidly with
the number of simultaneous connections, which means that it
might be infeasible to obtain accurate CSI in the case of fast-
fading environments due to its short channel coherence time
[9], [10]. In addition, the facile use of short non-orthogonal
pilots (Kp < M ) for channel estimation results in rank-
deficient conditions in the estimated channel, leading to severe
performance deterioration in subsequent data detection.

One promising solution to shorten the pilot length without
sacrificing the estimation accuracy is joint channel and data
estimation (JCDE) [11]–[14]. By exploiting the statistical
quasi-orthogonality of data sequences, JCDE takes advantage
of estimated data symbols as equivalent soft pilot symbols,
providing significant improvements in system performance.
The classical JCDE scheme assumes the exchange of log-
likelihood ratios (LLRs) between the signal detector and
channel decoder based on the turbo-principle [11], [12], where
the reliability of tentative data symbols is enhanced at every
iteration through an error correction process and then used as
additional pilot symbols. However, iterative decoding increases
power consumption and causes severe processing delays,
which have been obstacles to the practical use of these typical
JCDE algorithms. To address this issue, the JCDE scheme
based on Bayesian message passing (MP) without requiring
channel decoding at every iteration has been investigated [15],
[16].

The most common algorithm of this approach is bilinear
generalized approximate message passing (BiGAMP) [15],
which is derived by approximating the sum-product algorithm
(SPA) designed for the bilinear inference problem (BIP)
according to the generalized approximate message passing
(GAMP) framework [17], [18] in the large-system limit1.
However, the original GAMP has been proposed in the context
of linear inference problems (LIPs), which is appropriately

1The system limit condition, where input and output dimensions, M and
N , and symbol lengths K, respectively, are infinity for given compression
rates ρ1 , N/M and ρ2 , K/M .
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designed on the premise of a bipartite factor graph (FG)
consisting of factor nodes (FNs) and variable nodes (VNs)
corresponding to observations and unknown parameters, re-
spectively. This makes it difficult to straightforwardly extend
GAMP to the BIP which is represented by a tripartite FG
consisting of FNs and two VNs. Therefore, the BiGAMP
algorithm in [15], which is derived by extending the GAMP
algorithm to the BIP forcibly, cannot properly decouple the
self-feedback between the two VNs across iterations using
the Onsager correction term [16]. Another problem is that in
aligning the resultant message update rules to correspond with
the GAMP rules, the approximation accuracy assumed in the
derivation of each message is not consistent throughout the
algorithm. Because of the above inconveniences, the JCDE
algorithm via BiGAMP in [15] can achieve high estimation
accuracy only when a sufficient system size can be assumed
and prior information, e.g., sufficiently long pilots, is available
[19].

On the one hand, while accepting the drawback of BiGAMP
described above, some methodologies have been proposed to
achieve robust signal recovery by incorporating the knowledge
of problem structure into the MP rules. In [20]–[22], for
instance, the sparse structure of massive MIMO channel in
the beam domain brought about by a limited range of angle
of arrival (AoA) is exploited as additional prior information
to mitigate the under-determined condition of MUD.

On the other hand, in an attempt to solve the drawback of
BiGAMP described above, the authors in [16] focus on the
FG structure of BIP and propose to modify the MP rule of
BiGAMP itself. Specifically, by interpreting a tripartite graph
corresponding to BIP as consisting of two bipartite graphs,
and by designing the MP rule while considering both the
self-feedback that occurs in each bipartite graph and the self-
feedback that occurs in information exchange between the
graphs, this enables us to derive appropriate Onsager correc-
tion terms. The resulting MP rule is a reasonable extension of
the GAMP framework to BIP, eliminating the mathematical
inconsistencies found in the conventional BiGAMP algorithm.
Through numerical simulations, it has been shown in [16]
that the modified algorithm achieves more robust performance
against changes in system size than the conventional alterna-
tives. However, poor convergence behavior due to mismatch
with the asymptotic conditions in the large-system limit is
still unavoidable. The mitigation of this behavior requires the
introduction of successive MP mechanism that results in an
increase in the processing delay [16].

Inspired by these works, we proposed the JCDE algorithm
via bilinear Gaussian belief propagation (BiGaBP) in [23]2 to
achieve more robust signal recovery in more realistic system
sizes, with the same order of complexity as BiGAMP. The
core idea of the proposed method is to relax approximations in
the algorithm derivation process. Gaussian belief propagation
(GaBP) [24], [25] relies only on scalar Gaussian approxima-
tion (SGA) based on mild central limit theorem (CLT), in
contrast to the much harder asymptotic conditions required

2This conference paper is an earlier version of this article, which was
presented at the IEEE GLOBECOM 2020.

by the GAMP algorithm. Indeed, the GAMP algorithm in
the context of LIPs is proven to be systematically derived
from a rigorous approximation of the GaBP algorithm in
the large-system limit condition [26]. The proposed BiGaBP
algorithm, which can be systematically derived by extending
the GaBP framework to BIPs, also relies only on SGA,
which provides more stable iterative convergence behavior
in insufficient system sizes even when using non-orthogonal
pilots [23]. The BiGaBP framework was recently employed in
the receiver design of cell-free massive MIMO (CF-mMIMO)
systems adopting low-resolution analog-to-digital converters
(ADCs) [27], the joint activity and channel estimation (JACE)
scheme of extra-large MIMO (XL-MIMO) systems [28], and
the receiver design of grant-free (GF) access [29], and in all of
them the BiGaBP-based approaches were shown to outperform
earlier state-of-the-art schemes.

However, there are no literature that mention in detail the
differences and relationships among the algorithmic structures
of BiGAMP [15], modified BiGAMP [16], and BiGaBP. The
performance comparison via computer simulations presented
in the literature [23] was done only in a limited problem
setting in a specific system configuration; hence, its systematic
position and effective scope have not yet been fully reported.
Therefore, to validate the efficacy of the BiGaBP framework to
design the JCDE algorithm, this article extends our conference
paper [23] by presenting a detailed process flow of the JCDE
algorithm via BiGaBP with a novel belief scaling method, clar-
ifying the relationship between BiGAMP, and then providing
a detailed simulation analysis of estimation performance.

The contributions of the article are summarized as follows3:
• A novel JCDE algorithm via BiGaBP is presented. The

derivation relies only on the SGA in conformity with mild
CLT, whose underlying assumptions are much softer than
the large-system limit assumption on which the BiGAMP
algorithm heavily relies, is presented. In addition, to
suppress unstable iterative convergence behavior due to
using non-orthogonal pilots, we also propose a new
belief scaling method that extends adaptively scaled belief
(ASB), which was proposed in [25], [26], [33] so as
to improve detection capability of the MP algorithm in
LIPs, to BIPs. Specifically, the proposed scaling method
combines the beliefs of the pilot and data parts prop-
agated on the FG with different weights depending on
the number of iterations, thereby suppressing iterative
divergence behavior in the first stage of iteration, which
is a problem when using non-orthogonal pilots. Note
that this extension is only valid for BiGaBP which can
suppress the self-feedback via generating extrinsic values
based on the belief propagation (BP) regime rather than
Onsager term.

• To clarify that BiGaBP is truly a relaxed approxima-
tion version of BiGAMP, we prove that the BiGAMP
algorithm in [16] can be derived by approximating the

3Please note that higher-complexity alternatives based on bilinear adaptive
vector AMP (BAd-VAMP), which is an extension of vector AMP (VAMP)
[30] to BIP [31], [32], will not be considered in this article, as they require
matrix inversion operation in each iteration process, and therefore do not offer
the same scalability potential of the technique proposed here.
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BiGaBP algorithm in asymptotic conditions of the large-
system limit. Furthermore, we compare the BiGAMP
algorithms proposed in [15] and [16], respectively, to
identify differences in algorithm structure resulting from
the different interpretations of FGs described above.

• To confirm the efficacy of the JCDE algorithm via
BiGaBP in massive MU-MIMO systems, we compare
the performance of conventional and proposed methods
on various system parameters. Our numerical results are
presented in terms of normalized mean square error
(NMSE) of estimated quantities and bit error rate (BER).
In addition to evaluating performance as a function of
conventional signal-to-noise ratio (SNR), we also evaluate
the estimation performance for different pilot length and
data length settings. The simulation results are shown
to outperform the current state-of-the-art for any system
parameter and approach the performance of an ideal-
ized scheme in which channel coefficients are perfectly
known.

Finally, this section concludes by discussing deep learning
(DL)-based JCDE schemes that have been attracting attention
in recent years and then clarifying the position of the proposed
method relative to these methods. Starting with the proposal
of the direct demodulation technique without prior explicit
channel estimation was proposed for orthogonal frequency-
division multiplexing (OFDM) systems in [34], the JCDE
methods using deep neural networks (DNNs)-based channel
equalization, have been actively investigated [35]–[37]. More
recently, the DL-based JCDE algorithms incorporate model-
driven algorithm design, such as the deep unfolding (DU)
technique [38], have been proposed for various systems in
[39]–[41]. These methods have been reported to achieve
more efficient learning by leveraging domain knowledge and
can achieve better performance at lower learning cost than
the traditional black-box counterparts, especially in massive
MIMO scenarios. As a template for such DU-aided methods,
this article contributes to provide a novel framework to design
a more robust JCDE algorithm.

Notation: Throughout this paper, vectors, and matrices
are denoted by lower- and upper-case bold-face letters, re-
spectively. The conjugate, transpose, and conjugate transpose
operators are denoted by ·∗, ·T, and ·H, respectively. Pa|b[a|b]
and pa|b(a|b) respectively represent the conditional probability
mass function (PMF) and the probability density function
(PDF) of a realization a of random variable a given the
occurrence of a realization b of random variable b. Ea{·} is
the expected value of random variable a. Ea|b=b{·} denotes the
conditional expectation of random variable a given the occur-
rence of a realization b of random variable b. Ca×b denotes a
complex field of size a×b. CN (ẋ; a, b) indicates that ẋ obeys
a complex-valued Gaussian process with mean a and variance
b.
∑B
i 6=b ai means the operation of adding the elements of

ai corresponding to i ∈ {1, · · · , b− 1, b+ 1, · · · , B}. Ia
represents an a × a square identity matrix. tr [·] denotes the
trace of the matrix and |·|F denotes the Frobenius norm. [A]ab
is the (a, b) element in the matrix A.

∫
a
f(a) is an indefinite

integral of f(a).

II. PRELIMINARIES

A. Signal Model
Consider a single-cell massive MU-MIMO system, where

a BS has N receive (RX) antennas and M (≤ N) user
equipment (UE) devices are equipped with a single transmit
(TX) antenna. At the k-th discrete time instance, the m-th UE
transmits a TX symbol xmk, which represents one among Q
constellation points X , {χ1, · · · , χq, · · · , χQ}. The average
energy density of constellations in X is denoted by Es.
Denoting the TX vector at the k-th discrete time instance by
xk , [x1k, . . . , xmk, . . . , xMk]

T ∈ XM×1, the RX symbol
received at the n-th RX antenna under the assumption of
frequency-flat and slow-fading is given by

yk , [y1k, . . . , ynk, . . . , yNk]
T

= Hxk +wk, (1)

where H ∈ CN×M denotes an N × M MIMO channel
matrix, where the (n,m) element, hnm, obeys CN (hnm; 0, φ),
with φ = 1/N , owing to slow TX power control. The
complex additive white Gaussian noise (AWGN) vector is
denoted by wk , [w1k, . . . , wnk, . . . , wNk]

T ∈ CN×1 obey
CN (wnk; 0, N0), where N0 is the noise spectral density, and
thus the covariance matrix of wk is given by Ew

{
wkw

H
k

}
=

N0IN .
Then, the spatial-temporal matrices can be

expressed as X , [x1, . . . ,xk, . . . ,xK ] ∈ CM×K ,
Y , [y1, . . . ,yk, . . . ,yK ] ∈ CN×K , and
W , [w1, . . . ,wk, . . . ,wK ] ∈ CN×K . Assuming that
the channel matrix H is constant during K successive
transmissions, concatenating K successive RX vectors
yields the following compact spatial-temporal RX signal
representation as

Y = HX +W . (2)

In the TX symbol matrix X , each UE device forms a frame
with a length of K symbols, which includes Kp pilot symbols
with the index kp ∈ Kp , {1, · · · ,Kp} and Kd data
symbols with the index kd ∈ Kd , {Kp + 1, · · · ,K},
i.e., K = Kp + Kd. Consequently, the spatial-temporal
matrices can be sub-divided into pilot and data parts as
follows: X , [Xp,Xd] , (Xp ∈ CM×Kp ,Xd ∈ CM×Kd),
Y , [Yp,Yd] , (Yp ∈ CN×Kp ,Yd ∈ CN×Kd), and W ,
[Wp,Wd] , (Wp ∈ CN×Kp ,Wd ∈ CN×Kd). The goal of the
JCDE algorithm is to detect the intended TX symbol matrix
Xd and accurately estimate the channel matrix H , out of the
spatial-temporal RX matrix Y and pilot matrix Xp.

B. Channel Estimation Using Spatial Filtering
In this subsection, we briefly review basic channel estima-

tion techniques based on spatial filtering using Xp to obtain
the initial estimates input to the JCDE algorithm.

1) Least square (LS): When using orthogonal pilots (Kp ≥
M ), the channel estimator based on the LS criterion is given
by

ĤLS = arg min
Ḣ

∣∣∣Yp − ḢXp

∣∣∣2
F

= YpX
†
p, (3)

where X†p , XH
p

[
XpX

H
p

]−1
is Moore-Penrose pseudo-

inverse of Xp. The linear filtering error is uniformly superim-
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: FNs for RX signal 

: VNs for channel  

: VNs for data symbol 

: VNs for pilot symbol

(a) Tripartite FG for BIP: (N,M,Kp,Kd) = (4, 3, 2, 2).

VNs for data (Combining / Replica Generation)

FNs (Soft IC / Belief Generation)

VNs for channel (Combining / Replica Generation)

Soft replicas :Beliefs :

Beliefs :Soft replicas :

Output :

Input :

Output :

(b) Beliefs exchanged between FNs and VNs.

Fig. 1. Schematic of the belief propagation process in the proposed BiGaBP
algorithm.

posed on the estimates; hence, the mean square error (MSE)
of each element in HLS can be expressed as

ψ̂hLS =
1

MN
· EWp

{∣∣∣ĤLS −H
∣∣∣2
F

}
=

N0

EsKp
. (4)

2) Minimum norm solution (MNS): When using short non-
orthogonal pilots (Kp < M ), we can no longer compute X†p
due to the underdetermined condition. Instead, one can use the
MNS to find a unique solution, which is given by the Lagrange
multiplier method as

ĤMNS = arg min
Ḣ

∣∣∣Ḣ∣∣∣2
F

s.t. Yp = ḢXp +Wp

= YpX
‡
p, (5)

where X‡p ,
[
XH

p Xp

]−1
XH

p . Similarly, the MSE of each
element is given by

ψ̂hMNS =
1

MN
· EWp,H

{∣∣∣ĤMNS −H
∣∣∣2
F

}
=

φ

M
tr
[
(Gp−IM )H(Gp−IM )

]
+
N0

M
tr
[[
XH

p Xp

]−1
]
, (6)

where Gp , Xp

[
XH

p Xp

]−1
XH

p is a resolution matrix.
From (6), severe estimation error is inevitable in channel
estimation based on the MNS owing to the off-diagonal
elements in Gp, which is caused by the non-orthogonality
of Xp.

III. BILINEAR GAUSSIAN BELIEF PROPAGATION

This section describes a MUD process based on a BiGaBP
mechanism to design JCDE receivers for massive MU-MIMO
systems. Fig. 1a shows the tripartite FG consisting of FNs
and two VNs, which correspond to the channel coefficients
and TX symbols, respectively. The edges between nodes
indicate dependencies between corresponding variables, and
the information is propagated and exchanged across these

edges to perform bilinear inference. In addition, Fig. 1b shows
the entities of the propagation information and the direction
in which they propagate between each node. As can be seen
from these figures, the estimation procedure of the proposed
method is performed by exchanging beliefs (i.e., likelihood
information reflecting estimation reliability) and soft replicas
(i.e., tentative estimates) on the tripartite FG.

To elaborate, in the FNs, soft interference cancellation (Soft
IC) is performed on each RX symbol using the soft replicas
of H and X estimated in the previous iteration. Then, the
beliefs are computed based on the Soft IC outputs, which are
propagated to the VNs. In the VNs, the beliefs from the FNs
are combined following the typical BP regime [24] to generate
extrinsic likelihood information. Then, the soft replicas of
H and X are computed on the basis of the conditional
expectation, given the beliefs, which are used in the FNs at
the next iteration step.

We emphasize that all belief distributions propagated from
FNs to VNs are approximated by a scalar Gaussian distribution
based on CLT, so that only information on the mean and
variance of the estimated belief distribution is actually required
[25]. That is, please note that the entities of the beliefs are their
mean and variance values, as shown in Fig. 1b.

For latter convenience, let us define the soft replicas of xmk
and hnm as {x̂n,mk,∀n} and

{
ĥk,nm,∀k

}
, respectively, such

that their MSEs can be respectively expressed as

ψxn,mk ,Exmk

{
|xmk−x̂n,mk|2

}
= Ex̃n,mk

{
|x̃n,mk|2

}
,∀n, (7a)

ψhk,nm,Ehnm

{∣∣∣hnm−ĥk,nm∣∣∣2}=Eh̃k,nm

{∣∣∣h̃k,nm∣∣∣2},∀k, (7b)

where x̃n,mk , xmk − x̂n,mk and h̃k,nm , hnm − ĥk,nm
denote the estimation errors, respectively.

Herein, the JCDE algorithm for estimating xmk and hnm is
focused upon. Please note that in practice the following pro-
cess is performed on all the RX indices in parallel to estimate
all channel coefficients and TX symbols simultaneously.

A. FNs: Soft IC and Belief Generation
Let us start with the Soft IC for the (n, k) symbol in Y ,

ynk, with the aid of the soft replicas
{
x̂n,mk, ĥk,nm,∀m

}
generated in the previous iteration step. At the first iteration
(t = 1), the soft replicas are appropriately initialized. In the
detection of an arbitrary TX symbol xmk, the cancellation
process is expressed as

ỹm,nk = ynk −
M∑
i6=m

ĥk,nix̂n,ik︸ ︷︷ ︸
Inter-UE interference cancellation

= ĥk,nmxmk+

M∑
i 6=m

(
hnixik−ĥk,nix̂n,ik

)
+h̃k,nmxmk+wnk︸ ︷︷ ︸

,νx
m,nk: Residual interference plus noise

.

(8)

Under large-system conditions, the residual interference-plus-
noise component in (8) can be approximated as a complex
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Gaussian variable in conformity with CLT; this approximation
is referred to as SGA [1]. Accordingly, under an SGA of the
effective noise νxm,nk, the conditional PDF of ỹm,nk, given
xmk, can be expressed as

pỹm,nk|xmk
(ỹm,nk|xmk) ∝ exp

−
∣∣∣ỹm,nk − ĥk,nmxmk∣∣∣2

ξxm,nk

 ,
(9)

with

ξxm,nk = E{hnm,∀m},{xik,∀i6=m},wnk|xmk=xmk

{∣∣νxm,nk∣∣2}
=

M∑
i 6=m

{∣∣∣ĥk,ni∣∣∣2 ψxn,ik +
(
|x̂n,ik|2 + ψxn,ik

)
ψhk,ni

}
+ |xmk|2ψhk,nm +N0, (10)

where |xmk|2 = Es when the modulation scheme is phase-
shift keying (PSK). Even when using quadrature amplitude
modulation (QAM) signaling, we may approximately use the
true variance, i.e., |xmk|2 ≈ Exmk

{
|xmk|2

}
= Es.

In a similar manner, the estimation of an arbitrary channel
coefficient hnm can be obtained. When using QAM, under
SGA conditions in (8), the conditional PDF of ỹm,nk, given
hnm, can be expressed as

pỹm,nk|hnm
(ỹm,nk|hnm) ∝ exp

[
−|ỹm,nk − hnmx̂n,mk|

2

ξhm,nk

]
,

(11)

with

ξhm,nk =

M∑
i 6=m

{∣∣∣ĥk,ni∣∣∣2 ψxn,ik +
(
|x̂n,ik|2 + ψxn,ik

)
ψhk,ni

}
+|hnm|2ψxk,nm +N0, (12)

where the instantaneous channel gain |hnm|2 is not available;
hence, we here approximately use the true variance, i.e.,
|hnm|2 ≈ Ehnm

{
|hnm|2

}
= φ.

B. VNs: Belief Combining and Replica Generation

Assuming a high-precision SGA of the effective noise
components in {ỹm,nk,∀n}, the beliefs corresponding to
xmk are combined over all the RX indices except for
the n-th RX index, which results in the extrinsic belief
pr̂n,mk|xmk

(r̂n,mk|xmk) for xmk. This is expressed as

pr̂n,mk|xmk
(r̂n,mk|xmk) =

N∏
i 6=n

pỹm,ik|xmk
(ỹm,ik|xmk)

∝ exp

− N∑
i6=n

∣∣∣ỹm,ik − ĥk,imxmk∣∣∣2
ξxm,ik


∝ exp

[
−|xmk − r̂n,mk|

2

ψrn,mk

]
, (13)

where

r̂n,mk = ψrn,mk

N∑
i6=n

ĥ∗k,imỹm,ik

ξxm,ik
, ψrn,mk =

 N∑
i 6=n

∣∣∣ĥk,im∣∣∣2
ξxm,ik


−1

.

(14)
The extrinsic combining operation in (13) enables significantly
suppress the correlation between ynk and r̂n,mk by removing
the belief propagated from the n-th FN, ỹm,nk, from the
extrinsic belief and decoupling the self-noise regression due
to wnk. Consequently, the trapping of the iterative process in
a poor local solution can be avoided.

In a similar manner, the extrinsic belief
pq̂k,nm|hnm

(q̂k,nm|hnm) for hnm is expressed as

pq̂k,nm|hnm
(q̂k,nm|hnm) =

K∏
i 6=k

pỹm,ni|hnm
(ỹm,ni|hnm)

∝ exp

[
−|hnm − q̂k,nm|

2

ψqk,nm

]
, (15)

where

q̂k,nm = ψqk,nm

K∑
i 6=k

x̂∗n,miỹm,ni

ξhm,ni
, ψqk,nm =

 K∑
i 6=k

|x̂n,mi|2

ξhm,ni

−1

.

(16)

Assuming that the effective noise components in
{r̂n,mk,∀m, k} are not correlated to each other under
SGA conditions, using Bayes’ rule, the soft replica of xmk
and its MSE can be in general obtained from the symbol-wise
conditional expectation, given r̂n,mk, as

x̂n,mk , Exmk |̂rn,mk=r̂n,mk
{xmk}

=
∑
χq∈X

χq · pr̂n,mk|xmk
(r̂n,mk|χq) pxmk

(χq)∑
χ′q∈X

pr̂n,mk|xmk

(
r̂n,mk|χ′q

)
pxmk

(
χ′q
) , (17a)

ψxn,mk , Exmk |̂rn,mk=r̂n,mk

{
|x̃mk|2

}
=
∑
χq∈X

|χq|2 · pr̂n,mk|xmk
(r̂n,mk|χq) pxmk

(χq)∑
χ′q∈X

pr̂n,mk|xmk

(
r̂n,mk|χ′q

)
pxmk

(
χ′q
)−|x̂n,mk|2,

(17b)

where the denominators in the summation is introduced for
normalization purpose.

In Gray-coded quadrature PSK (QPSK) signaling, i.e., X =
{±cx±jcx}, cx =

√
Es/2, with pxmk

(χq) = 1/Q, ∀χq ∈ X ,
(17) can be readily obtained by the following denoiser as [42]

x̂n,mk , fx

(
r̂n,mk, ψ

r
n,mk

)
= cx ·

(
tanh

[
2cx
<{r̂n,mk}
ψrn,mk

]
+ j tanh

[
2cx
={r̂n,mk}
ψrn,mk

])
,

(18a)
ψxn,mk , Vx

(
r̂n,mk, ψ

r
n,mk

)
= Es − |x̂n,mk|2 . (18b)

In a similar manner, the soft replica of hnm can be obtained
from the coefficient-wise conditional expectation, given q̂k,nm,
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Fig. 2. The dynamics of fASB(·) with γ = 1, 3, and 9, as a function of
r̂n,mk , in Gray-coded QPSK signaling.

as

ĥk,nm , Ehnm|q̂k,nm=q̂k,nm
{hnm}

=

∫
hnm

hnm
pq̂k,nm|hnm

(q̂k,nm|hnm) phnm
(hnm)∫

h′nm
pq̂k,nm|hnm

(q̂k,nm|h′nm) phnm
(h′nm)

. (19)

When hnm obeys CN (hnm; 0, φ), using the Gaussian-PDF
multiplication rule [15], yields

ĥk,nm

= C

∫
hnm

hnm · CN
(
hnm; q̂k,nm, ψ

q
k,nm

)
·CN (hnm; 0, φ)

= C ′
∫
hnm

hnm · CN

(
hnm;

φq̂k,nm
ψqk,nm + φ

,
φψqk,nm
ψqk,nm + φ

)
, (20)

where C and C ′ are Pearl’s normalization constants. From
(20), the soft replica of ĥnm and its MSE are expressed as

ĥk,nm , fh(q̂k,nm, ψ
q
k,nm) =

φq̂k,nm
ψqk,nm + φ

, (21a)

ψhk,nm , Vh(q̂k,nm, ψ
q
k,nm) =

φψqk,nm
ψqk,nm + φ

. (21b)

Thus, here the entire processing in the JCDE algorithm via
GaBP is completed.

C. Design of ASB for JCDE via BiGaBP

Although the large-system approximation assumption is
relaxed in BiGaBP schemes compared to the conventional
BiGAMP, the operating principle of BiGaBP still depends on
an accurate SGA of residual interference components in (8).
When this approximation accuracy is not sufficient due to,
e.g., physical limitations of the receiver, mismatches between
the SGA and the stochastic behavior of actual effective noise
may result in belief outlier [25]. This makes it hard to
generate accurate soft replicas using the denoiser functions of
(18) and (21), causing performance deterioration due to error
propagation [43], especially during earlier iterations of the
JCDE algorithms and/or in systems with short non-orthogonal
pilots.

As a simple and highly effective solution to mitigate such
potential issues, belief damping [19], [44], which prevents the
algorithm from converging to local minima and belief scaling
[25], [26], [45], which controls convergence speed, have been
proposed. In this subsection, we propose an extension of ASB
[25], [26], a belief scaling method designed for the Bayesian

linear inference via low-complexity MP algorithms, to BIPs
to further improve the convergence property of the JCDE
algorithm via BiGaBP.

1) ASB for data detection: The main cause of signifi-
cant performance deterioration in data detection via the MP
algorithms under insufficient large-system conditions is the
error propagation of erroneous hard-decision symbols as the
soft replicas due to the input of the aforementioned beliefs
outliers to the denoiser function of (18a). This is due to the
fact that the variance ψrn,mk in (18a) gives the shape of the
optimal denoiser function only when the algorithm is operating
with ideal behavior and thus cannot properly handle belief
outliers. To address this issue, the ASB introduces a parameter
instead of ψrn,mk to adjust the denoiser function according
to the iteration number, while taking into consideration the
instantaneous CSI. In QPSK signaling, when using ASB, the
denoiser functions of (18) can be replaced with [25]

x̂n,mk , fASB (r̂n,mk, γ)

= cx ·
(

tanh

[
γ

cx
<{r̂n,mk}

]
+j tanh

[
γ

cx
={r̂n,mk}

])
, (22a)

ψxn,mk , VASB (r̂n,mk, γ) = Es − |x̂n,mk|2 , (22b)

where γ is the scaling parameter. According to [25], the
scaling parameter is designed to be a monotonic increasing
function of the number of iterations, i.e., γ(t) = τ0 + τ1 ·

(
t
T

)
,

where (t) indicates the variable at the t-th iteration step, T
is the maximum number of iterations, and (τ0, τ1) are the
predetermined parameters.

Fig. 2 shows the dynamics of fASB (r̂n,mk, γ) as a function
of r̂n,mk with different scaling parameters, which indicates
that the scaling parameter changes the slope of the denoiser
function, instead of ψrn,mk in (18a), enabling adjustment of
the iterative convergence speed of the algorithm. In the early
iterations, γ is set to lower values to prevent convergence to
local minima due to the erroneous hard-decision symbols, and
in the later iterations, γ is set to higher values to facilitate the
convergence of the algorithm.

2) ASB for channel estimation: Next, we consider how
ASB for channel estimation should be designed. From (22a),
it is found that the scaling parameter in ASB is multiplied
by the log-likelihood, i.e., r̂n,mk, with respect to the detected
symbol. In addition, belief combining for channel estimation
is performed for discrete-time indices k ∈ K as shown in
(15); however, it is not reasonable to multiply the beliefs
propagated from the discrete-time indices corresponding to the
pilot symbols and to those corresponding to the data symbols,
by the same scaling parameter. This is because they should
have different statistical properties throughout the iterative
process, as described later.

Based on the above, a straight extension of ASB for data
detection to channel estimation would replace the extrinsic
belief in (15) with

pq̌k,nm|hnm
(q̌k,nm|hnm)

=

 ∏
i∈Kp\k

[
pỹm,ni|hnm

(ỹm,ni|hnm)
]α
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×

 ∏
i∈Kd\k

[
pỹm,ni|hnm

(ỹm,ni|hnm)
]β

∝ exp

[
−|hnm − q̌k,nm|

2

ψ̌qk,nm

]
, (23)

with

q̌k,nm = ψ̌qk,nm ·

α ∑
i∈Kp\k

x∗miỹm,ni
ξhm,ni

+β
∑

i∈Kd\k

x̂∗n,miỹm,ni

ξhm,ni

 ,

(24a)

ψ̌qk,nm =

α ∑
i∈Kp\k

|xmi|2

ξhm,ni
+ β

∑
i∈Kd\k

|x̂n,mi|2

ξhm,ni

−1

, (24b)

where α and β are scaling parameters corresponding to the
pilot and data parts, respectively. From (24), α and β are
responsible for adjusting the ratio of the beliefs propagated
from the pilot and data parts, and (23) coincides with (15)
if and only if α = β = 1. It is also worth mentioning that
when α = β, q̌k,nm in (24a) coincides with q̂k,nm in (16),
and only ψqk,nm is multiplied by the scaling parameter, i.e.,
ψ̌qk,nm = αψqk,nm, which is equivalent to the operation to
change the slope in the denoiser function of fh(q̂k,nm, ψ̌

q
k,nm)

as well as the ASB mechanism for data detection adjusting the
equivalent variance of extrinsic beliefs, as can be inferred from
(22). Since fh(q̂k,nm, ψ̌

q
k,nm) is a simple linear function of

q̂k,nm, it is not suitable for adjusting the iterative convergence
speed by the scaling parameters taking advantage of the non-
linearity of denoiser function. Instead, we can utilize the
scaling parameters, α and β, as weight parameters to stabilize
the convergence behavior of iterative estimation in the early
iteration steps.

From (24), the beliefs propagated from the VNs corre-
sponding to the pilot symbols contain only the estimated
channel coefficient uncertainty, while the beliefs propagated
from the VNs corresponding to the data symbols contain both
the estimated channel coefficient and estimated data symbol
uncertainty. In other words, the reliability of the former beliefs
is much higher than that of the latter beliefs, especially in the
early iteration steps when the reliability of detected symbols,
i.e., soft replicas of {xmk,∀(m, k)}, is low.

In light of the above, it may be possible to suppress the
divergence behavior of iterative estimation by setting α and β
to large and small values, respectively, in the early iteration
steps. As the iterative process increases the reliability of
the soft replicas, gradually decreasing the value of α and
gradually increasing the value of β can facilitate the iterative
convergence of the algorithm; thus, it is reasonable for the
dynamics of α and β to be monotonically decreasing and
monotonically increasing functions, respectively, with respect
to the number of iterations. In addition, the dynamics of α and
β should satisfy the following two requirements: a) α = β = 1
at the final iteration step so as to converge to the fixed point of
the original BiGaBP algorithm, and b) Kp+Kd = αKp+βKd

so as to change the weights between the pilot and data parts
without varying the scale of the extrinsic belief.

Algorithm 1 - JCDE algorithm via BiGaBP with belief
damping and scaling

Input: Y , Xp, Ĥ , ψ̂h, T
Output: {x̂mk,∀(k ∈ Kd,m)}, {ĥnm,∀(m,n)}

1: ∀(k ∈ Kp,m, n, t) : x̂n,mk(t) = [Xp]mk , ψ
x
n,mk(t) = 0

2: ∀(k ∈ Kd,m, n) : x̂n,mk(1) = 0, ψxn,mk(1) = Es

3: ∀(k,m, n) : ĥk,nm(1) =
[
Ĥ
]
nm

, ψhk,nm(1) = ψ̂h

4: for t = 1 to T do
/* FNs */

5: ∀(k,m, n) : ỹm,nk(t) = ynk −
∑M
i 6=m ĥk,ni(t)x̂n,ik(t)

6: ∀(k,m, n) : ξym,nk(t) =
∑M
i6=m

{
|ĥk,ni(t)|2ψxn,ik(t)

+ψhk,ni(t)
(
|x̂n,ik(t)|2 + ψxn,ik(t)

)}
+N0

7: ∀(k ∈ Kd,m, n) : ξxm,nk(t) = ξym,nk(t) + Esψ
h
k,nm(t)

8: ∀(k,m, n) : ξhm,nk(t) = ξym,nk(t) + φψxn,mk(t)

/* VNs */

9: ∀(k ∈ Kd,m, n) : ψrn,mk(t) =
(∑N

i 6=n
|ĥk,im(t)|2
ξxm,ik(t)

)−1

10:
∀(k ∈ Kd,m, n) : r̂n,mk(t)

= ψrn,mk(t)
∑N
i 6=n

ĥ∗k,im(t)ỹm,ik(t)

ξxm,ik(t)

11: ∀(k ∈ Kd,m, n) : x̂n,mk(t+ 1)
= η · fASB (r̂n,mk(t), γ(t)) + (1− η) · x̂n,mk(t)

12: ∀(k ∈ Kd,m, n) : ψxn,mk(t+ 1)
= η · VASB (r̂n,mk(t), γ(t)) + (1− η) ·ψxn,mk(t)

13:
∀(k,m, n) : ψ̌qk,nm(t)

=
(
α(t)

∑
i∈Kp\k

|xmi(t)|2
ξhm,ni(t)

+β(t)
∑
i∈Kd\k

|x̂n,mi(t)|2

ξhm,ni(t)

)−1

14:

∀(k,m, n) : q̌k,nm(t)

= ψ̌qk,nm(t) ·
(
α(t)

∑
i∈Kp\k

x∗mi(t)ỹm,ni(t)

ξhm,ni(t)

+β(t)
∑
i∈Kd\k

x̂∗n,mi(t)ỹm,ni(t)

ξhm,ni(t)

)
15: ∀(k,m, n) : ĥk,nm(t+ 1)

= η · fh(q̌k,nm(t), ψ̌qk,nm(t)) + (1− η) · ĥk,nm(t)

16: ∀(k,m, n) : ψhk,nm(t+ 1)

= η · Vh(q̌k,nm(t), ψ̌qk,nm(t)) + (1− η) · ψhk,nm(t)

17: if
∑
k,n,m |ĥk,nm|2/(K ·N ·M) = τBiGaBP ·φ then T ← t

and break . Stop criterion
18: end if
19: end for

/* Decision */

20: ∀(k ∈ Kd,m) : ψrmk =
(∑N

i=1
|ĥk,im(T )|2
ξxm,ik(T )

)−1

21: ∀(k ∈ Kd,m) : x̂mk

= arg max
χq∈X

∣∣∣∣χq − ψrmk∑N
i=1

ĥ∗k,im(T )ỹm,ik(T )

ξxm,ik(T )

∣∣∣∣
22: ∀(m,n) : ψ̌qnm =

(∑K
i=1

|x̂mi(T )|2
ξhm,ni(T )

)−1

23: ∀(m,n) : q̌nm = ψ̌qnm ·
(∑K

i=1
x̂∗mi(T )ỹm,ni(T )

ξhm,ni(T )

)
24: ∀(m,n) : ĥnm = fh(q̌nm, ψ̌

q
nm)

Based on the above, if a simple linear function is chosen as
the monotonic function, the dynamics of scaling parameters is
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given by a function of the number of iterations as

α(t) = 1 + (1− β(t)) ·
(
Kd

Kp

)
, (25a)

β(t) = τ2 + (1− τ2) ·
(
t

T

)
, (25b)

where 0 ≤ τ2 ≤ 1 is the predetermined parameter to
determine the initial value of β, i.e., β(0). The operation
of ASB for channel estimation can be interpreted as a soft
scheduling strategy for belief update, where the reliability
of the beliefs is sequentially enhanced from the nodes near
the VNs corresponding to the pilot symbols to the whole of
the FG via iterative processes, leading to stabilization of the
convergence behavior of BiGaBP.

D. Algorithmic Description

The pseudo-code of the JCDE algorithm via BiGaBP with
belief damping and scaling is given in Alg. 1. Besides the
RX matrix Y and the pilot matrix Xp, the algorithm requires
the initial estimates of the channel coefficients Ĥ and their
MSEs ψ̂h, which are given by the spatial filtering based on
MNS or LS criteria according to the pilot length, as described
in Section II-B, outputting the hard-decision estimates of
the TX matrix and the estimates of the channel coefficients.
The belief damping [15], [19], [44] is also introduced in
lines 11, 12, 15, and 16 to prevent the convergence to local
minima by averaging the current beliefs based on the past
information, where η ∈ [0, 1] is a damping factor. Unlike [15],
the introduction is changed to apply the damping process only
once for each belief, to be consistent with the MP rule.

In addition, as the most vital algorithmic structural differ-
ence between BiGaBP and conventional BiGAMP, lines 9,
10, 13, and 14 corresponding to the self-feedback removal
mechanism via extrinsic belief generation are highlighted with
gray boxes in Alg. 1.

IV. DERIVATION OF BIGAMP FROM BIGABP

In this section, we prove that the BiGaBP algorithm pre-
sented in Section III can be rigorously approximated under
the large-system limit assumption, i.e., N,M,K → ∞ for a
given compression ratio ρ1 , N/M, ρ2 , K/M , to derive
the BiGAMP algorithm proposed in [16]. We then compare
these algorithms to the original BiGAMP algorithm proposed
in [15] and elaborate on the differences in the algorithmic
structure. It is worth noting here that in both references [15]
and [16], the BiGAMP algorithm is derived by approximating
the linear inference via SPA in the large-system limit; however,
the derivation process from the BiGaBP algorithm, i.e., the
bilinear inference algorithm designed based on the GaBP
framework [24], has not yet been reported explicitly, to the
best of our knowledge.

Since the process of data detection and channel estimation
is the same except for the soft replica generation, the approx-
imation process is described mainly using the data detection
part of the BiGaBP algorithm. To make the process across
iterations easier to understand, (t) is used in this section. The
derivation process of BiGAMP from BiGaBP consists of three

processes: a) approximation of the second-order moments, b)
approximation of the first-order moments, and c) closing the
loop of the algorithm.

A. Approximation of Second-Order Moments

Let us consider the process at the t-th iteration step. First,
the variance ξxm,nk(t) in (10) can be rewritten as (26), shown at
the top of the next page, where the third term in (26) converges
almost surely to zero as N →∞ in the asymptotic conditions.
Similar to (26), the variance ψrn,mk(t) in (14) can be rewritten
as

1

ψrn,mk(t)
=

N∑
i=1

∣∣∣ĥk,im(t)
∣∣∣2

ξxik(t)︸ ︷︷ ︸
, 1/ψrmk(t)

+O(N−1). (27)

From the above, the variance, i.e. the second-order moment,
can be approximated with the accuracy of O(1), removing the
dependence of the index n or m, respectively.

B. Approximation of First-Order Moments

Next, using (26) and (27), the first-order moments is ap-
proximated with the accuracy of O(1). The Soft IC output
ỹm,nk(t) in (8) can be rewritten as

ỹm,nk(t) = ynk −
M∑
i=1

ĥk,ni(t)x̂n,ik(t) + ĥk,ni(t)x̂n,ik(t)

= ynk(t)− p̂nk(t)︸ ︷︷ ︸
, ỹnk(t)

+ĥk,ni(t)x̂n,ik(t), (28)

with the soft replica of interference components,

p̂nk(t) ,
M∑
i=1

ĥk,ni(t)x̂n,ik(t). (29)

Substituting (28) into (14), the expected value r̂n,mk(t) can
be rewritten as

r̂n,mk(t) = ψrmk(t)

N∑
i6=n

ĥ∗k,im(t)ỹm,ik(t)

ξxik(t)

= r̂mk(t)− ψrmk(t)
ĥ∗k,nm(t)ỹnk(t)

ξxnk(t)
+O(N−1), (30)

with

r̂mk(t) , ψrmk(t)

N∑
i=1

|ĥ∗k,im(t)|2x̂i,mk(t)

ξxik(t)

+ψrmk(t)

N∑
i=1

ĥ∗k,im(t)ỹik(t)

ξxik(t)
, (31)

where the second term in (30) is the component that is
removed in the extrinsic belief combining in the BiGaBP
algorithm.

Let us see how this self-feedback component is handled in
the BiGAMP algorithm. Consider a Taylor series expansion of
the denoiser function in (18a) about the point r̂mk(t), the soft
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ξxm,nk(t) =

M∑
i=1

{∣∣∣ĥk,ni(t)∣∣∣2 ψxn,ik(t) +
(
|x̂n,ik(t)|2 + ψxn,ik(t)

)
ψhk,ni(t)

}
+N0︸ ︷︷ ︸

, ξxnk(t)

+O(N−1), (26)

replica used in the next iteration x̂n,mk(t+1) can be expressed
as

x̂n,mk(t+ 1) = fx

(
r̂n,mk(t), ψrn,mk(t)

)
= fx (r̂mk(t), ψrmk(t)) +O(N−1)

−ψrmk(t)
∂fx (r̂mk(t), ψrmk(t))

∂r̂mk(t)

ĥ∗k,nm(t)ỹnk(t)

ξxnk(t)

−ψrmk(t)
∂fx (r̂mk(t), ψrmk(t))

∂r̂∗mk(t)

ĥk,nm(t)ỹ∗nk(t)

ξxnk(t)
. (32)

When using the Bayes-optimal denoiser function as fx (·), i.e.,
the denoiser function in (17a), (32) can be rewritten as

x̂n,mk(t+ 1)

= x̂mk(t+ 1)−ψxmk(t+ 1)
ĥ∗k,nm(t)ỹnk(t)

ξxnk(t)
+O(N−1), (33)

where x̂mk(t + 1) , fx (r̂mk(t), ψrmk(t)) and ψxmk(t + 1) ,
Vx (r̂mk(t), ψrmk(t)). The second term in (33) denotes the self-
feedback component propagating to the next iteration step
through the denoiser function. Note that (32) can be rewritten
in a simpler form as in (33) if and only if the denoiser function
is designed according to the Bayes optimal criterion so that
the identity between the expectation and variance holds [16];
otherwise, the Wirtinger derivatives in equation (32) must be
calculated, as in [46]. In a similar manner, ĥk,nm can be
rewritten as

ĥk,nm(t+ 1)

= ĥnm(t+ 1)−ψhnm(t+ 1)
x̂∗n,mk(t)ỹnk(t)

ξhnk(t)
+O(N−1), (34)

where hnm(t + 1) , fh (q̂nm(t), ψqnm(t)) and ψhnm(t + 1) ,
Vh (q̂nm(t), ψqnm(t)).

C. Closing Loop

Finally, the loop is closed by replacing x̂n,mk and ĥk,nm
with x̂mk and ĥnm, respectively, throughout the MP rule. From
(33) and (34),

x̂n,mk(t+ 1)

= x̂mk(t+ 1)−ψxmk(t+ 1)
ĥ∗nm(t)ỹnk(t)

ξxnk(t)
+O(N−1), (35)

ĥk,nm(t+ 1)

= ĥnm(t+ 1)−ψhnm(t+ 1)
x̂∗mk(t)ỹnk(t)

ξhnk(t)
+O(N−1), (36)

and ψxn,mk(t) = ψxmk(t)+O(N−1) and ψhk,nm(t) = ψhnm(t)+
O(N−1).

Substituting (35) and (36) into (26), ξxnk(t) can be rewritten
as

ξxnk(t) =

M∑
i=1

{∣∣∣ĥni(t)∣∣∣2 ψxik(t) +
(
|x̂ik(t)|2 + ψxik(t)

)
ψhni(t)

}
+N0 +O(N−

1
2 ), (37)

Similarly, ψrmk(t) in (27) can be rewritten as

1

ψrmk(t)
=

N∑
i=1

∣∣∣ĥim(t)
∣∣∣2

ξxik(t)
+O(N−

1
2 ). (38)

Substituting (35) and (36) into (29), p̂nk(t) can be rewritten
as (39), shown at the top of the next page, where the third
term in (39) is the Onsager correction term, which is found to
be responsible for predicting and canceling the self-feedback
component in the large-system limit assumption, from the
derivation process so far.

Similarly, substituting (35) and (36) into (31), r̂mk(t) can
be rewritten as

r̂mk(t) = x̂mk(t) + ψrmk(t)

N∑
i=1

ĥ∗k,im(t)ỹik(t)

ξxik(t)
+O(N−1/2)

= x̂mk(t) + ψrmk(t)

N∑
i=1

ĥ∗im(t)ỹik(t)

ξxik(t)
+O(N−1/2)

−ψrmk(t)x̂mk(t− 1)

N∑
i=1

ψhim(t)ỹik(t)ỹ∗ik(t− 1)

ξxik(t)ξhik(t− 1)︸ ︷︷ ︸
Onsager correction term

, (40)

where the fourth term in (40) is the Onsager correction term
for the VNs. The above discussion is equally applicable for
the channel estimation part.

Under the large-system limit assumption, the derivation of
the JCDE algorithm via BiGAMP proposed in [16] is com-
pleted by asymptotically setting the remainder terms to zero.
The pseudo-code is given in Alg. 2, where belief damping is
introduced in lines 14–15 and 19–20 as in [16].

D. Differences in Algorithmic Structure from BiGAMP [15]

Finally, we clarify the differences between the JCDE al-
gorithm via the original BiGAMP proposed in [15] and
JCDE algorithm via BiGAMP [16] derived above, in terms of
algorithmic structure. Due to space limitations, the derivation
of the original BiGAMP algorithm [15] is omitted and offered
only in a summarized form in the pseudo-code of Alg. 3.
Focusing on the points that differ from Alg. 2, first, line 8
in Alg. 3 is the Onsager correction term, which is obtained
by approximating (39) as |x̂mk(t)|2 = x̂mk(t)x̂∗mk(t − 1)
and |ĥnm(t)|2 = ĥnm(t)ĥ∗nm(t − 1). Next, in lines 14 and
18, the output of the ramp function is used to calculate
the equivalent gains of the soft replicas in the VNs, which
is derived as a result of approximating the expectation and
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p̂nk(t) =

M∑
i=1

ĥni(t)x̂ik(t)−

(
ỹnk(t)

ξxnk(t)

M∑
i=1

ĥni(t)ĥ
∗
ni(t− 1)ψxik(t) +

ỹnk(t)

ξhnk(t)

M∑
i=1

x̂ik(t)x̂∗ik(t− 1)ψhni(t)

)
︸ ︷︷ ︸

Onsager correction term

+O(N−
1
2 ), (39)

Algorithm 2 - JCDE algorithm via BiGAMP [16]

Input: Y , Xp, Ĥ , ψ̂h, T
Output: {x̂mk,∀(k ∈ Kd,m)}, {ĥnm,∀(m,n)}

1: ∀(k ∈ Kp,m, t) : x̂mk(t) = [Xp]mk , ψ
x
mk(t) = 0

2: ∀(k ∈ Kd,m) : x̂mk(1) = 0, ψxmk(1) = Es

3: ∀(m,n) : ĥnm(1) =
[
Ĥ
]
nm

, ψhnm(1) = ψ̂h

4: ∀(k, n) : ŝnk(0) = 0
5: for t = 1 to T do

/* FNs */
6: ∀(k, n) : ξ

p

nk(t) =
∑M
i=1

{
ψhni(t)x̂ik(t)x̂∗ik(t− 1)

+ĥni(t)ĥ
∗
ni(t− 1)ψxik(t)

}
7: ∀(k, n) : ξpnk(t) =

∑M
i=1

{
|ĥni(t)|2ψxik(t)

+ψhni(t)
(
|x̂ik(t)|2 + ψxik(t)

)}
8: ∀(k, n) : p̂nk(t) =

∑M
i=1 ĥni(t)x̂ik(t)− ξpnk(t)ŝnk(t− 1)

9: ∀(k, n) : ξsnk(t) = 1
ξpnk(t)+N0

10: ∀(k, n) : ŝnk(t) = ynk−p̂nk(t)
ξpnk(t)+N0

/* VNs */
11: ∀(k ∈ Kd,m) : ψrmk(t) =

(∑N
i=1 |ĥim(t)|2ξsik(t)

)−1

12: ∀(k ∈ Kd,m) : rmk(t)
= x̂mk(t) + ψrmk(t)

∑N
i=1 ĥ

∗
im(t)ŝik(t)

13: ∀(k ∈ Kd,m) : r̂mk(t)
= rmk(t)−ψrmk(t)x̂mk(t−1)

∑N
i=1 ψ

h
im(t)ŝik(t)ŝ∗ik(t−1)

14: ∀(k ∈ Kd,m) : x̂mk(t+ 1)
= η ·fx (r̂mk(t), ψrmk(t))+(1−η) · x̂mk(t)

15: ∀(k ∈ Kd,m) : ψxmk(t+ 1)
= η ·Vx (r̂mk(t), ψrmk(t))+(1−η) ·ψxmk(t)

16: ∀(m,n) : ψqnm(t) =
(∑K

i=1 |x̂mi(t)|
2
ξsni(t)

)−1

17: ∀(m,n) : qnm(t) = ĥnm(t) + ψqnm(t)
∑K
i=1 x̂

∗
mi(t)ŝni(t)

18: ∀(m,n) : q̂nm(t)
= qnm(t)−ψqnm(t)ĥnm(t−1)

∑K
i=1ψ

x
mi(t)ŝni(t)ŝ

∗
ni(t−1)

19: ∀(m,n) : ĥnm(t+ 1)
= η ·fh (q̂nm(t), ψqnm(t))+(1−η) · ĥnm(t)

20: ∀(m,n) : ψhnm(t+ 1)
= η ·Vh (q̂nm(t), ψqnm(t))+(1−η)·ψhnm(t)

21: if
∑
n,m |ĥnm|2/(N ·M) = τBiGAMP ·φ then T ← t and

break . Stop criterion
22: end if
23: end for
24: ∀(k ∈ Kd,m) : x̂mk = arg min

χq∈X
|χq − r̂mk(T )|

25: ∀(m,n) : ĥnm = fh(q̂nm(T ), ψ̂qnm(T ))

variance of the beliefs with different precision. Therefore, if
the large-system limit assumptions are not tightly satisfied,
these mathematical inconsistencies cause stochastic misalign-
ments between the belief expectation and variance, leading to
unstable convergence behavior of iterative estimation. Finally,

Algorithm 3 - JCDE algorithm via BiGAMP [15]

Input: Y , Xp, Ĥ , ψ̂h, T
Output: {x̂mk,∀(k ∈ Kd,m)}, {ĥnm,∀(m,n)}

1: ∀(k ∈ Kp,m, t) : x̂mk(t) = [Xp]mk , ψ
x
mk(t) = 0

2: ∀(k ∈ Kd,m) : x̂mk(1) = 0, ψxmk(1) = Es

3: ∀(m,n) : ĥnm(1) =
[
Ĥ
]
nm

, ψhnm(1) = ψ̂h

4: ∀(k, n) : ŝnk(0) = 0
5: for t = 1 to T do

/* FNs */
6: ∀(k, n) : ξ

p

nk(t)

= η
∑M
i=1

{
|ĥni(t)|2ψxik(t) + ψhni(t)|x̂ik(t)|2

}
+(1− η) · ξpnk(t− 1)

7: ∀(k, n) : ξpnk(t) = η
(
ξ
p

nk(t) +
∑M
i=1 ψ

h
ni(t)ψ

x
ik(t)

)
+(1− η) · ξpnk(t− 1)

8: ∀(k, n) : p̂nk(t) =
∑M
i=1 ĥni(t)x̂ik(t)− ξpnk(t)ŝnk(t− 1)

9: ∀(k, n) : ξsnk(t) = η 1
ξpnk(t)+N0

+ (1− η) · ξsnk(t− 1)

10: ∀(k, n) : ŝnk(t) = η ynk−p̂nk(t)
ξpnk(t)+N0

+ (1− η) · ŝnk(t− 1)

/* VNs */
11: ∀(k ∈ Kd,m) : xmk(t) = η · x̂mk(t)+(1−η) ·xmk(t−1)
12: ∀(m,n) : hnm(t) = η · ĥnm(t) + (1− η) · hnm(t− 1)

13: ∀(k ∈ Kd,m) : ψrmk(t) =
(∑N

i=1 |him(t)|2ξsik(t)
)−1

14: ∀(k ∈ Kd,m) : gxmk(t)

= max
(

1− ψrmk(t)
∑N
i=1 ψ

h
im(t)ξsik(t), 0

)
15: ∀(k ∈ Kd,m) : r̂mk(t)

= gxmk(t)xmk(t) + ψrmk(t)
∑N
i=1 h

∗
im(t)ŝik(t)

16: ∀(k ∈ Kd,m) : x̂mk(t+ 1) = fx (r̂mk(t), ψrmk(t))
17: ∀(k ∈ Kd,m) : ψxmk(t+ 1) = Vx (r̂mk(t), ψrmk(t))

18: ∀(m,n) : ψqnm(t) =
(∑K

i=1 |xmi(t)|
2
ξsni(t)

)−1

19: ∀(m,n) : ghnm(t)

= max
(

1− ψqnm(t)
∑K
i=1 ψ

x
mi(t)ξ

s
ni(t), 0

)
20: ∀(m,n) : q̂nm(t)

= ghnm(t)hnm(t) +ψqnm(t)
∑K
i=1 x

∗
mi(t)ŝni(t)

21: ∀(m,n) : ĥnm(t+ 1) = fh (q̂nm(t), ψqnm(t))
22: ∀(m,n) : ψhnm(t+ 1) = Vh (q̂nm(t), ψqnm(t))
23: if

∑
n,m |ĥnm|2/(N ·M) = τBiGAMP ·φ then T ← t and

break . Stop criterion
24: end if
25: end for
26: ∀(k ∈ Kd,m) : x̂mk = arg min

χq∈X
|χq − r̂mk(T )|

27: ∀(m,n) : ĥnm = fh(q̂nm(T ), ψ̂qnm(T ))

the biggest difference in algorithmic structure is the absence
of the Onsager correction term in the VNs in Alg. 3 to
make the algorithm structure in the VNs closer to the linear
inference algorithm via GAMP [18]. However, as described
above, the Onsager correction term is intended to cancel the
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self-feedback, and the original BiGAMP algorithm without
this mechanism cannot completely decouple the self-feedback
of beliefs across iterations between the VNs. This is the main
reason why the BiGAMP algorithm proposed in [16] can
achieve more robust signal recovery than the original scheme
[15].

V. PERFORMANCE ASSESSMENT

Computer simulations were conducted to demonstrate the
performances of the proposed JCDE algorithm via BiGaBP for
uplink MUD in massive MU-MIMO systems. In all subsequent
simulations, the average RX power from each TX antenna was
assumed to be identical on the basis of slow TX power control
as mentioned in Section II-A, and the time and frequency syn-
chronization was assumed to be perfect. The pilot sequences,
i.e., rows ofXp, are given by Zadoff-Chu sequences [47], [48].
In cases when Kp ≥M , orthogonal pilot sequences are used,
while in cases when Kp < M , the codebook of pilot sequences
is given by the rows of a matrix constructed from an M ×Kp

sub-matrix of an M×M orthogonal pilot matrix consisting of
Zadoff-Chu sequences. Gray-coded QPSK-modulated signals
were used for Xd, and the channel code is not used. As for
algorithmic parameters, the damping factor η was set to 0.5
in all the JCDE algorithms, the predetermined parameters in
ASB4 were set to (τ0, τ1) = (1, 4) in γ(t) and τ2 = 0.4
in β(t), respectively, and the maximum number of iterations
was set constant to T = 32, although other criteria based on
convergence could also be employed. A stop criterion was
introduced for each JCDE algorithm to avoid divergence of
estimates caused by unstable convergence behavior, and the
predetermined parameter for the stop criterion was set to
τBiGaBP = τBiGAMP = 5 in all the JCDE algorithms. In
addition, we define the compression ratio as the ratio between
the pilot length Kp and the number of UE devices M ; thus,
κ , Kp/M .

A. BER Performance

Our first set of results is given in Fig. 3, where the
performances in terms of BER as a function of the SNR, of
the massive MU-MIMO systems with short non-orthogonal
pilots in uncorrelated Rayleigh fading channels, i.e., hn,m ∼
CN (hn,m; 0, 1/N),∀(n,m), are compared:
• MMSE: Baseline two-stage receiver consisting of spatial

filtering-based channel estimation presented in Section II-
B and linear minimum mean square error (MMSE)-based
data detection.

• GaBP: Two-stage receiver consisting of spatial filtering-
based channel estimation presented in Section II-B and
GaBP-based data detection [24], [25].

• BiGAMP (Alg.3): JCDE receiver based on BiGAMP [15]
presented in Alg. 3.

• BiGAMP (Alg.2): JCDE receiver based on modified
BiGAMP [16] presented in Alg. 2.

4Several simulations were conducted to find the sub-optimal parameters
for minimizing the BER at SNR = 10 dB in the setting of Fig. 3 shown on
the next page. Learning optimization of these scaling parameters as trainable
parameters using DU techniques [38] remains as future work. For further
details, we refer the readers to [49].

• BiGaBP (Alg.1): Proposed JCDE receiver based on Bi-
GaBP presented in Alg. 1.

• GaBP w/ perfect CSI: Genie-aided scheme in which the
perfect CSI is known at the receiver.

The results in Fig. 3 show the BER performance in massive
MU-MIMO systems with ρ1 , N/M = 2, κ , Kp/M =
0.625, and Kd = 256. The two-stage MUD schemes,
“MMSE” and “GaBP,” fail to detect MIMO signals reliably
(BER > 10−1) due to fatal errors in channel estimation using
MNS under severe underdetermined conditions of κ = 0.625.
On the one hand, “BiGAMP (Alg. 3)” can improve estima-
tion accuracy significantly by taking advantage of the quasi-
orthogonality of data structure. However, its performance
deviates significantly from “GaBP w/ perfect CSI” because
the mismatches between the finite MIMO system and large-
system limit assumptions break the mathematical consistency
in the MP rule. On the other hand, “BiGAMP (Alg. 2)” can
further improve the performance owing to the MP rule that
enables suppression of the harmful effect of the self-feedback
with higher precision. However, there remains a non-negligible
degradation from the Genie-aided performance, and the high-
level error floor is inevitable due to poor initial estimation
accuracy caused by the non-orthogonal pilots, especially in
Fig. 3a, where the system size is relatively small. In contrast,
our proposed “BiGaBP (Alg. 1)” significantly outperforms
both “BiGAMP (Alg. 2)” and “BiGAMP (Alg. 3)” at the
operating SNR with the same computational complexity and
approaches the Genie-aided performance without suffering
from error floors, owing to the ASB mechanism. Remarkably,
the degradation at BER = 10−4 is less than 1.0 dB for both
configurations.

As shown in Section IV, BiGAMP is derived as a rigorous
approximation of BiGaBP in the large-system limit; therefore,
the performance difference between these two methods de-
creases as the system size increases. In fact, as can be seen
from the comparison in Figs. 3a and 3b, the gain of the
proposed method compared to “BiGAMP (Alg. 2)” becomes
smaller, especially in the low SNR region. However, this
apparently small difference is due to burst errors in symbol
blocks, which have a significant impact on transmission perfor-
mance in the actual systems. In addition, as will be discussed
later in Section V-D, when spatial correlation exists among
the fading coefficients, the improvement by our proposal is
significant, even for massive configurations.

B. NMSE Performance

Next, we evaluate the channel estimation performance in
terms of the NMSE of the channel estimates, defined as

NMSE(Ĥ) , EH

[
|H−Ĥ|2

F

|H|2F

]
. In addition to “BiGAMP (Alg.

2),” “BiGAMP (Alg. 3),” and “BiGaBP (Alg. 1),” the following
performances are compared:

• MNS: Baseline MNS-based channel estimator.
• MMSE limit: Genie-aided scheme in which the perfect

knowledge of Xd is provided as prior information at each
iteration of the JCDE algorithm [27], [50]. Provides an
absolute lower bound in terms of the NMSE performance.
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Fig. 3. BER performances of MU-MIMO systems: ratio of pilot length κ fixed at 0.625.
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Fig. 4. NMSE performances of MU-MIMO systems: ratio of pilot length κ fixed at 0.625.

Fig. 4 shows the NMSE performance, where the system
parameters are the same as in Fig. 3. As expected from the
results in Fig. 3, serious estimation errors occur in “MSE,”
indicating that increasing the SNR does not improve the
NMSE performance significantly due to prohibitive inter-pilot
interference with κ = 0.625. Although “BiGAMP (Alg. 3)”
can improve the performance by relaxing the underdetermined
conditions by the JCDE mechanism, its operation becomes
unstable when the system size is small, and its operation at
low SNR induces divergence behavior of iterative estimation,
making it difficult to achieve highly accurate channel estima-
tion. Note that the concave shape of the MSE curve in the
low SNR region in Fig. 4b is due to the stopping criterion
for iterative divergence behavior. Next, “BiGAMP (Alg. 2)”
can alleviate this inconvenience, but still deviates from the
lower bound. In contrast, “BiGaBP (Alg. 1)” operates robustly
even in the low SNR region and approaches the Genie-aided
performance, “MMSE-limit,” in the high SNR region for both
configurations.
C. Robustness to Changes in Symbol Length

Let us shift our focus to the robustness of the proposed
method to changes in frame configurations. Fig. 5 shows the
BER performance as a function of κ (, Kp/M), where the
other system parameters are the same as in Fig. 3. The SNR
is fixed at 10 dB and 9 dB in Figs. 5a and 5b, respectively.
For both configurations, it is clearly confirmed that the pro-
posed method can work at lower κ than the BiGAMP-based

counterparts. More specifically, “BiGaBP (Alg. 1)” approaches
the Genie-aided performance, “GaBP w/ perfect CSI,” up to
about κ = 0.7 in Fig. 5a and κ = 0.6 in Fig. 5b, indicating
that the improvement from the conventional methods becomes
significant, especially when the system size is small.

Fig. 6 shows the BER performance as a function of Kd.
Intuitively, it would seem that the longer Kd, the better the
orthogonality of the pilot-plus-data sequence and the better
the estimation performance. In fact, when using orthogonal
pilots, the channel estimation performance improves due to
the improved diversity gain over the discrete-time dimension
as Kd increases. However, since we use non-orthogonal pilots
in Fig. 6, the initial channel estimation accuracy is poor; hence,
the convergence behavior of iterative estimation becomes
unstable due to error propagation if Kd is too large. As a
result, it is not necessarily advantageous to increase Kd for
the BiGAMP-based methods that average beliefs in the large
system limit, and the performance degrades when Kd is set
very long, e.g., 512. “BiGaBP (Alg. 1)” can alleviate the
above problem by the MP rule that does not rely on belief
averaging using the large-system limit approximation and the
ASB mechanism for stabilizing convergence. Consequently, as
Kd increases, the performance improves and asymptotically
approaches the Genie-aided reference.
D. Robustness to Correlated Massive MIMO Channels

In practice, employing a large number of antennas at a BS
leads to spatial correlation among fading coefficients; hence,
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Fig. 5. BER performances of MU-MIMO systems as a function of the pilot length.
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Fig. 6. BER performances of MU-MIMO systems as a function of the data length.

it is vital to confirm that our method works well even in
correlated channels. In this article, we use two channel models:
the geometric one-ring model [27], [51], [52] and the finite
path model [53]–[55], which are commonly used to represent
spatial correlation among fading coefficients in massive MIMO
scenarios.

1) Geometric one-ring model: In practice, the wireless
channels between the BS and the UE exhibit a small angular
spread from the perspective of the BS, as a result of local
scatterers around the UE and the high placement of the
BS antennas [33], [51], [52], [56]. Assuming diffuse 2–D
field of isotropic scatters around UEs, the (i, j) element of
the RX spatial correlation matrix for the m-th UE, Θm ,
Ehm

{
hmh

H
m

}
∈ CN×N is given by

[Θm]i,j =
1

∆θm

∫ θmax
m

θmin
m

exp [jπ(i− j) cos(θ)] dθ, (41)

which denotes the correlation coefficient between the i-th and
j-th RX antenna elements. Here, waves arrive from the m-
th UE with an angular spread ∆θm , θmax

m − θmin
m , and

the antenna element spacing is fixed to half the wavelength.
The m-th column vector of H is computed by hm =

Θ
1/2
m νm,νm ∼ CN (νm;0, φIN ).
Fig. 7a shows the BER performance of massive MU-MIMO

systems in correlated channels following the one-ring model,
where (N,M) = (64, 16) and the other system parameters
were the same as in Fig. 3. A sector antenna of 120 degrees

opening was considered. The angular spread for each UE was
set to 30 degrees. The UEs were naturally partitioned into 8
segments with M/8 UEs randomly dropped in each segment.

Although the ratio of the number of spatially multiplexed
streams to the number of receive antennas is ρ1 , N/M = 4,
a configuration that is relatively easy to obtain diversity
gain, the BiGAMP-based JCDE algorithms are not able to
provide highly accurate estimation due to the high level
of error floor. This is because the correlation among the
fading coefficients greatly degrades the accuracy of the large-
system limit approximation, making it difficult to decouple the
self-feedback across iterations due to the Onsager correction
term. In contrast, the BiGaBP-based JCDE algorithm, which
relies only on SGA based on mild CLT, is relatively robust
against correlation among fading coefficients, and significant
performance improvement can be achieved by adjusting the
convergence speed with the assistance of the proposed ASB.
Specifically, our method can achieve BER = 10−4, and the
degradation from the lower-bound reference is suppressed to
within 1.0 dB at BER = 10−4.

2) Finite path model: Since the geometric one-ring model
assumes infinite scatterers around every UE as found in
(41), the Gaussianity is relatively high; however, such a rich
scattering environment cannot always occur in practice. For
example, in millimeter-wave (mmWave) wireless communica-
tions, where diffraction and scattering rarely occur, the number
of paths arriving at the receiver is limited [57], [58]. To
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Fig. 7. BER performance of MU-MIMO systems in correlated channels with (N,M,Kp,Kd) = (64, 16, 10, 256).
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Fig. 8. Complexity analysis of JCDE algorithm as a function of M with κ = 0.625, N = 64, K = 256 and T = 32.

represent such wireless channels, the finite path model is often
utilized. Assuming that L propagation paths arrive at the BS
from each UE, the m-th column vector of H can be expressed
as [53]–[55]

hm =
1√
L

L∑
l=1

gl,m · s (Ωl,m) , (42)

where gl,m ∼ CN (gl,m; 0, φ) is the channel gain along the l-th
path of the m-th UE. This is obtained from the steering vec-
tor s (Ωl,m) , [1, exp [jπΩl,m] , . . . , exp [jπ (N − 1)Ωl,m]]

T.
where Ωl,m , cos θl,m with θl,m denoting the azimuth angle
of the l-th propagation path of the m-th UE. The antenna
element space is fixed to half the wavelength.

Fig. 7b shows the BER performance of massive MU-MIMO
systems in correlated channels following the finite path model.
A sector antenna with a 120 degrees opening was considered,
and the UE devices were randomly dropped in the above
angular region around the BS. The number of paths was set
to L = 8.

As can be inferred from the results of Fig. 7a, the BiGAMP-
based JCDE algorithms fail to provide highly accurate esti-
mation and suffer from a high level of error floor with BER
> 10−2. The lower the Gaussianity of the massive MIMO
channel, the greater the discrepancy between the Onsager
correction term and the actual self-feedback value, which
causes error propagation and significantly degrades the iter-

ative convergence property. In contrast, the proposed method
can significantly reduce the error floor level, achieving BER
= 10−4. The deviation from the lower-bound reference is also
suppressed within 2.0 dB at BER = 10−3, confirming that the
self-feedback cancellation by exchanging extrinsic values and
adjusting the iterative convergence speed by ASB are effective
for highly accurate estimation in such deterministic wireless
channels.

E. Complexity Analysis

First, the computational complexity of each JCDE algorithm
was evaluated in terms of the number of real multiplica-
tion operations required to detect data symbols and estimate
channel coefficients. To evaluate the approximate number of
real multiplication operations, we adopt the following basic
assumptions presented in [59].

Fig. 8a shows the number of real multiplication operations
as a function of the number of UE devices M , and the
compression ratio is fixed to κ , Kp/M = 0.625. The
dominant factors determining the computational complexity
in the conventional BiGAMP-based methods are the process
to compute p̂nk(t), q̂nm(t), and r̂mk(t) in Alg. 2 (and Alg. 3),
whose complexity is of order O(MNK) per iteration, which
is similar to that of the proposed BiGaBP-based method. This
fact is confirmed by the results in Fig. 8a, which shows that
the proposed method can significantly improve the estimation
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accuracy without largely increasing the amount of computa-
tion. More specifically, at M = 32, “BiGaBP (Alg. 1)” can
operate at about twice the computational cost of “BiGAMP
(Alg. 3)” and about 1.5 times that of “BiGAMP (Alg. 2),”
respectively.

For a more practical evaluation, Fig. 8b shows the av-
erage execution time5 for each JCDE algorithm to detect
data symbols and estimate channel coefficients. When the
programs were actually executed and their execution times
were compared, as shown in Fig. 8b, the results show that the
relative relationship between the proposed and conventional
methods is a similar trend to that shown in Fig. 8a in terms
of the number of multiplication operations.

The above results show that BiGAMP and BiGaBP have
a similar complexity order, but in terms of more practical
processing cost, BiGAMP, which can reduce the number of
beliefs propagated by the large-system limit approximation,
can achieve lower computational cost. However, considering
that BiGAMP are extremely vulnerable to insufficient system
size and channel correlations, and that BiGaBP can signifi-
cantly improve performance and achieve performance close
to the lower-bound reference in many cases, the proposed
method can be seen to achieve an excellent trade-off between
estimation capability and computational cost.

VI. CONCLUSION

In this paper, we proposed a novel JCDE scheme via Bi-
GaBP for uplink massive MU-MIMO systems with short non-
orthogonal pilots. The proposed BiGaBP framework operates
based on the SGA under CLT, which is a milder assumption
than the large-system limit condition the BiGAMP algorithm
relies on. In addition, the ASB mechanism is extended to
BIPs, realizing stable convergent behavior of JCDE when
using non-orthogonal pilots. It is also shown that BiGAMP
is derived by approximating BiGaBP under the large-system
limit assumption, and the relationship between the original
BiGAMP framework and the proposed scheme is clarified. The
numerical results show that our proposed method outperforms
the state-of-the-art scheme and approaches the performance of
the idealized scheme for a variety of system parameters.
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