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Abstract—Over-the-air computation (AirComp) is a well-
known technique by which several wireless devices transmit by
analog amplitude modulation to achieve a sum of their transmit
signals at a common receiver. The underlying physical principle
is the superposition property of the radio waves. Since such
superposition is analog and in amplitude, it is natural that
AirComp uses analog amplitude modulations. Unfortunately, this
is impractical because most wireless devices today use digital
modulations. It would be highly desirable to use digital commu-
nications because of their numerous benefits, such as error cor-
rection, synchronization, acquisition of channel state information,
and widespread use. However, when we use digital modulations
for AirComp, a general belief is that the superposition property
of the radio waves returns a meaningless overlapping of the
digital signals. In this paper, we break through such beliefs
and propose an entirely new digital channel computing method
named ChannelComp, which can use digital as well as analog
modulations. We propose a feasibility optimization problem
that ascertains the optimal modulation for computing arbitrary
functions over-the-air. Additionally, we propose pre-coders to
adapt existing digital modulation schemes for computing the
function over the multiple access channel. The simulation results
verify the superior performance of ChannelComp compared to
AirComp, particularly for the product functions, with more than
10 dB improvement of the computation error.

I. INTRODUCTION

To realize the ubiquitous connectivity from the Internet
of Things (IoT), the generations of wireless communications
have been accompanied by a paradigm shift from human-
type communications towards machine-type communications.
On the one hand, the number of IoT devices is predicted
to reach 75 billion by 2025 [2], much higher than that of
mobile phone users. On the other hand, the various IoT
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TABLE I: Reference list of commonly used variables in this survey. Ordered by case
and alphabetically.

Variable Definition

Df Domain set of function f
Rf Range set of function f
Rs Set of all possible constellation points

T p¨q Tabular mapping to compute function f
Ekp¨q Encoder at node k
f Desired function

f piq Value of output i of desired function f
hk Channel coefficient between node k and the center point
K Number of nodes in the network
q Number of quantization level
s⃗i The induced value over-the-air corresponding to f piq

x⃗k Modulated signal of node k
y⃗ The received value at the center point
z⃗ Additive white Gaussian noise

applications based on machine learning (ML) are set to emerge
in 6G [3], and these require the collection, transmission,
and calculation of enormous amounts of data from many
devices. Consequently, extensive connectivity needs to scale
up radio and computation resources, which means swamping
the capacity of the current systems. To improve the support
of emerging compute-intensive ML applications, e.g., virtual
reality, edge computing, federated edge learning, the over-the-
air computation (AirComp) method is a promising concept
to simultaneously collect and compute data at the edge net-
work [4]–[7].

AirComp leverages the waveform superposition property of
the multi-access channel (MAC) to realize the aggregation
of data simultaneously transmitted by devices, allowing each
device to access all radio resources, unlike the standard
transmit-then-compute scheme. Moreover, AirComp integrates
communication and computation steps, providing ultra-fast
wireless data aggregation in IoT networks with high-spectrum
efficiency. AirComp reduces the required energy of each
device for transmission while it can bring a high rate of
communication of that device by harnessing interference to
help functional computation. Besides preserving the privacy
and security of data, the coverage area can also be enlarged
since more devices can transmit simultaneously.

A. Literature review

Two different AirComp approaches exist in the literature:
the uncoded analog aggregation [6], [11] and coded digital
AirComp [12], [13]. The coded approaches use the linearity
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TABLE II: Digital computation over-the-air methods for a star network with K nodes.

Methods Bandwidth/Computation Modulation scheme Function

ChannelComp (proposed) 1 Any digital modulation Any
AirComp [5] 1 Analog amplitude modulation Nomographic

OFDMA K Any digital modulation Any
OBDA [8] 1 BPSK and QPSK Sign

OBDA-FSK [9] 2 FSK Sign
OAC-Balanced [10] « log q PAM Mean

of nested lattice codes to encode the input data for obtaining
computation over Gaussian channels [14], [15]. The analog
AirComp has been widely studied and progressed from dif-
ferent points of view, such as information theory [6], signal
processing [5], transceiver design [16], channel state infor-
mation acquisition [17], or synchronization issues [18]. Com-
pared with standard schemes, analog technique AirComp can
dramatically reduce the required communication resources,
particularly in distributed learning, where it has also attracted
growing attention for federated edge learning systems [19],
[20].

Although AirComp is a promising concept for data aggrega-
tion in communication systems (e.g., federated edge learning),
it entirely depends on analog communication, which is difficult
for reliable communications due to channel ramifications [10].
Furthermore, AirComp needs analog hardware systems for
utilizing analog modulations, which is a drawback due to
the limited number of current wireless devices that support
analog modulations. Accordingly, the use of digital modu-
lation is deemed more advantageous due to its outstanding
properties in channel correction, source, and channel coding,
and widespread adoption. This, however, is believed to be
extremely difficult due to that the overlapping of digitally
modulated signals returns, in general, meaningless or incom-
prehensible signals for function computation [4], [21], [22].

Recently, there have been some attempts to devise digital
aggregation methods, e.g., one-bit broadband digital aggrega-
tion (OBDA) [8] and the other-based majority vote frequency-
shift keying (FSK) [9]. Moreover, in [23], a phase asyn-
chronous OFDM-based version of OBDA has been proposed
by designing joint channel decoding and aggregation decoders
tailored for digital AirComp. Further, AirComp’s non-coherent
communication solution for single and multi-cell using pulse-
position modulation and FSK have been studied in [9], [24],
[25]. All the aforementioned OBDA studies are limited to
specific functions (sign or summation function) or specific ML
training procedures (signSGD problem [26] for computing ma-
jority vote). Note that [10] has proposed to utilize the balanced
number systems to compute the summation function while
incurring higher bandwidth usage than the standard OBDA
method due to allocating frequency for transmitting every
quantized level. Similarly, another encoding-based numeral
system is proposed in [27], where the decimal representation
of the input bits is mapped to a pulse amplitude modulation
(PAM) symbol to achieve a processing gain. The most repre-
sentative methods of the AirComp literature are summarised
in Table II, including their bandwidth usage, computation, and
which functions can be computed.

Consequently, unlike function computations in the AirComp

method, existing attempts to use digital modulations with
AirComp cannot compute larger classes of functions beyond
Nomographic functions [15], [28] and are unsuitable for
general digital modulations beyond the simple BPSK or FSK.
Indeed, the existing digital aggregation methods enforce ana-
log AirComp over digital communication. Such enforcement
works in very few, and particular cases of digital modulations
where it appears highly inefficient regarding communication
resource usage, such as satellite communications [29], un-
manned aerial vehicles [30], distributed consensus [31].

In this paper, we propose a new channel computation
method termed ChannelComp that is fully compatible with ex-
isting digital communication systems, such as those currently
available on any smartphone or IoT system. We investigate
the broad set of functions that ChannelComp can compute,
and we investigate how ChannelComp makes it possible for
digital modulation schemes to perform computations.

B. Contributions

How do we design or adapt modulations so that a valid com-
putation is performed over-the-air? We answer this question by
proposing the ChannelComp method. This paper establishes
the conditions for computing functions over-the-air using dig-
ital modulation. For a given function, these conditions lead to
feasibility optimization problems whose solutions give us the
parameters of the modulation yielding acceptable computation
over-the-air. Moreover, we show how to adapt existing digital
or analog modulation schemes using pre-coders to compute the
desired function over the MAC. Note that the rationale behind
ChannelComp draws from the benefits of digital modulations,
yet its scope can also be extended to encompass analog
modulations.

Specifically, our contributions are as follows:
‚ ChannelComp: we propose and establish a novel

method, the ChannelComp method, to calculate any func-
tion over the MAC by digital communications.

‚ Simple communication architecture: one of the key
benefits of ChannelComp is its innate compatibility with
existing digital systems. By contrast, if we wish to
implement AirComp on existing digital systems, it is
necessary to enforce analog communication systems to
work on top of current digital systems, which is very
difficult and impractical [21], [32].

‚ Tractable complexity: we investigate the fundamental
limits for valid computations over MAC and devise an
optimization to find the parameters of the digital mod-
ulation, which is an NP-hard problem. To address such
complexity, we propose a convex relaxation that can be
solved using a solver such as CVX [33].

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2023.3324999

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



3

T p¨q fpx1, . . . , xKq

x1

... y⃗

z⃗

ř

pkhkx⃗k

...

x⃗1

...

x⃗K

h1

hK

Qp¨q

xK Qp¨q

x̃1

...
...

E1p¨q

x̃K

p1x⃗1

...

pK x⃗K

p1

...pK

EKp¨q

Figure 1: The proposed ChannelComp method. Here xk , x̃k , x⃗k are the input, quantized, and modulated values at node k in the network, respectively. The edge server, or
computation point, receives y⃗ “

řK
k“1 hkpkx⃗k ` z⃗ by the superposition nature of waves. Here, z⃗ denotes the noise at the receiver, and hk represents the channel attenuation

between node k and the CP server. The tabular mapping T py⃗q maps (or decodes) the value of y⃗ into the value of function f corresponding to the function’s inputs xk’s. The
scheme can also apply to analog modulations.

‚ All finite-valued functions: ChannelComp can compute
any function with a finite cardinality input domain, which
is the case of any digital system because of the digital
representation of values. As long as it is possible to
count the output of the function, ChannelComp allows
us to compute the desired function. For instance, to
compute the function that returns the maximum of its
input variables, the AirComp method uses the log sum
function to approximate the maximum, which returns
an approximate value. By contrast, ChannelComp, for a
finite input domain of the function, can calculate exactly
the maximum of the given input variables.

‚ Any digital modulations: ChannelComp is not only
compatible with digital modulation such as quadratic
phase shift key (QPSK), quadrature amplitude modu-
lation (QAM) 4, 16, 64, . . ., but also FSK modulation,
amplitude-shift keying (ASK), or phase modulation (PM),
and other digital modulations.

‚ Low latency: ChannelComp provides a wireless aggre-
gation communication system as fast as the AirComp
or even faster. This is because ChannelComp adapts the
parameters of the digital modulation format such that the
receiver computes the desired function, leading to a low
latency computation over-the-air.

Besides the mentioned benefits, in the numerical experi-
ments we present in this paper, ChannelComp outperforms
AirComp in terms of computation error for various criti-
cal functions while consuming the same communication re-
sources. For example, for computing the product function,
ChannelComp obtains a 10 dB performance improvement
compared to AirComp in terms of the normalized mean square
error without using analog modulations while relying only on
currently widespread digital modulations.

C. Organization of the paper

The rest of the paper is organized as follows: in Section II,
we explain the system model and present the ChannelComp
method. Then, we investigate the fundamental limits of the
ChannelComp computation over the MAC in Section III.
Next, based on our obtained fundamental limits, we char-
acterize in Section IV how to select the digital modulation
formats for computing the desired function over the MAC
with AWGN and fading effects over the wireless channel. We
further describe the receiver architecture for ChannelComp in

Section IV-C. We present the numerical results and the per-
formance comparison between ChannelComp, AirComp, and
the traditional OFDMA in Section V. Finally, we conclude the
paper in Section VI.

D. Notation

Throughout this paper, scalars are denoted by lowercase
letters x, vectors and matrices by lower x, and upper-
case boldface letters X , respectively. We use x⃗ to represent
modulated band-pass signals. Operators are represented by
calligraphic notations such as X . The transpose and Hermitian
of a matrix X are represented by XT and XH, respectively.
We further use b to show the Kronecker product. For a vector
x, }x}1 and }x}8 are defined as the element-wise ℓ1 and ℓ8

norms, respectively. We define }X}2 and }X}F as the spectral
and Frobenius of the matrix X , respectively. Also, }X}1Ñ1 is
defined as maxjPrNs

ř

i |xi,j | where xi,j denotes pi, jq element
of matrix X .

We define Rf as the range of function f , and its cardinality
by |Rf |. For an integer N , rN s corresponds to the set
t1, 2, . . . , Nu. The finite field of size q with subset of the
integers t0, 1, 2, . . . , q ´ 1u is represented by Fq Ă Z. We
use X ľ 0 to show that X is a positive semidefinite matrix.
Finally, we define the diag : CN ÞÑ CNˆN operator for a
vector x P CN that puts the input vector on the output matrix
main diagonal and zero elsewhere.

II. SYSTEM MODEL AND METHOD FORMULATION

Consider a communication network in which there exists
a computation point (CP) server with K nodes. The nodes
communicate with the CP through a shared communica-
tion channel. The CP aims to compute the desired function
fpx1, x2, . . . , xKq whose input xk P Fq is a value owned by
node k. In particular, we assume that the nodes transmit xk’s
by digital communications. In such digital communication
systems, all the nodes transmit their values over the MAC
to compute the function f at the CP.

To perform a digital transmission, the usual procedure
is the following: each value xk is quantized into a scalar
x̃k :“ Qpxkq with q possible values, where Qp¨q is the
quantizer and q equals 2 to the power of the number of
quantization bits. Then, the resultant vector is mapped into
the digitally modulated signal x⃗k using encoder Ekp¨q, i.e.,
x⃗k “ Ekpx̃kq. The signal x⃗k is what node k transmits
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Figure 2: QPSK for 2 bit quantization and two nodes K “ 2. On the left, there are two
constellations (each per node); on the right, the resulting constellation at CP under the
assumption of a noise-free channel.

over the communication channel. Since all the nodes transmit
simultaneously1 and over the same frequency or codes, the
CP server receives the summation of all x⃗k’s, over the MAC
during the one-time slot [1], i.e.

y⃗ “

K
ÿ

k“1

hkpkx⃗k ` z⃗, (1)

where y⃗ is physically generated by the superposition nature
of electromagnetic waves, hk denotes the channel coefficient
between node k and the CP server, pk is the transmit power
used by node k, and z⃗ is a receiver noise that the receivers
unavoidably experience. Following the usual modeling in
digital communications, we model such noise as an additive
white Gaussian noise (AWGN) process with zero-mean and
variance σ2

z , which is circularly symmetric. To compute the
function f , we need to use mapping (Tabular mapping) T py⃗q

based on the resultant constellation diagram of signal y⃗ (see
Figure 1). Note that this system model is identical to the
AirComp system model over the MAC [5], except for digital
modulation, instead of analog modulation, to communicate
and for the trivial tabular mapping. Hence, this system model
facilitates low-latency communication for a large number of
nodes, as demonstrated by [4]. Moreover, the ChannelComp
system model can perform general function computations
faster than AirComp, as the measured value obtained via
tabular mapping T p¨q corresponds exactly to the computation
result, whereas the desired value in AirComp requires post-
coders for computation [15].

Note that each digital value x⃗k is selected from finite q
possible outputs of Qp¨q, thereby the received signal y⃗ has
finite constellation points in the absence of AWGN. The
summation in (1) induces a specific constellation diagram of
y⃗ that depends on the number of nodes K and on which
modulations have been used for each x⃗k. Note that such a
resulting constellation diagram is a deformation of the original
constellation diagram of the transmitting nodes. Figure 2
shows this deformation for the case of using QPSK for two

1It is assumed that the synchronization among all the nodes and the CP is
perfect. However, the existing techniques of AirComp for solving imperfect
synchronization, e.g., [34] can be applied to our system model due to its
similarity to the AirComp model.

Over-the-air

⃗́1 1⃗

⃗́2 0⃗ 2⃗

0 1 2

T1 : y⃗ ÞÑ x1 ` x2

x⃗2 “

⃗́1 1⃗
x⃗1 “

T2 : y⃗ ÞÑ x1x2

100

0 1

0 1
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Figure 3: The sum and product computation using the BPSK modulation. The correspon-
dence between the constellation points and the corresponding input/output values may
differ based on the defined function. The corresponding values for the summation and
product functions are represented using green and blue color codes, respectively.

nodes, i.e., K “ 2. Recall that our goal is to compute the
desired function f . Then, the mapping T py⃗q must be deter-
mined such that its output approaches the value of function f
as much as possible. Mathematically, at time t, the modulation
vectors x⃗1, . . . , x⃗K with the map T can be found from the
following optimization

T ˚, x⃗˚
1 , . . . , x⃗

˚
K “ argmin

T ,x⃗1,...,x⃗K

ÿ

x1,...,xKPDf

ˇ

ˇ

ˇ
fpx1, . . . , xK q́ T

`

y⃗
˘

ˇ

ˇ

ˇ

2

,

(2)

where Df is the domain of function f . To illustrate optimiza-
tion problem (2), let us consider a simple case with BPSK
modulation where the scalar value xk is one-bit quantized to
x̃k P t0, 1u. Then, we have x̃k “ xk`ek, where ek denotes the
quantization error at node k. Hence, the resultant modulated
symbol is

x⃗k “ Ekpx̃kq “

#

Ac, if x̃k “ 1,

´Ac, if x̃k “ 0.
(3)

Here, Ac is the amplitude of the carrier signal2. Then, as-
suming a noiseless MAC, the received signal by the CP
experiences a constellation formed by the summation of
y⃗ “

řK
k“1 Ekpxkq. For computing the summation function

fpx1, x2q “ x1 ` x2, the tabular T1 is a simple map
that assigns values of the constellation diagram of y⃗ to the
corresponding output of f , i.e.,

T1pt ⃗́2uq “ 0, T1pt⃗0uq “ 1, T1pt⃗2uq “ 2, (4)

see Figure 3. Similarly, for the product function fpxq “ x1x2,
we can check that this function can be computed by using the
following tabular map T2,

T2pt ⃗́2uq “ 0, T2pt⃗0uq “ 0, T2pt⃗2uq “ 1. (5)

This example is shown in Figure 3 using blue color. Therefore,
we are able to compute a binary summation and product over

2We let E p¨q be any modulation, whether it has an analog or digital carrier
or if the input of the data is digital or analog. For the digital carriers, such as
PAM and pulse position modulation (PPM), we can encode and decode the
digital data for each symbol per time. For the analog data, the quantization
step (see Figure 1) allows us to perform the ChannelComp method for either
analog modulation, such as amplitude modulation (AM), PM, and frequency
modulations (FM), or digital modulation, such as ASK, PSK, FSK, and QAM.
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the noiseless MAC. As long as input data are finite points, the
resultant overlapped signal would read to finite constellation
points, which lets the desired function f be computed by
designing the proper Tabular mapping T to map the finite
constellation points to the output of function f . In this regime,
the communication system does not need to be changed, and
the only requirement is to add a quantizer to the transmitter
and a Tabular mapping to the receiver side.

However, if we increase the order of modulation, e.g., to
QAM 16, the constellation points shaped by nodes cannot
be uniquely mapped to either summation or product function.
Moreover, even for a low-order modulation such as BPSK,
computing the simple function fpx1, x2q “ x1 ` 2x2 is
not possible (without errors). In the following section, we
overcome this limitation and propose a method to adapt
modulations to compute any function.

From the previous examples, the question is: which func-
tions are computable using the ChannelComp communication
architecture? Therefore, in the next section, we investigate the
characteristics of the modulation and desired function f .

III. PRELIMINARY RESULTS FOR NOISELESS MACS

In this section, we introduce the basic ideas of Channel-
Comp, and we give some preliminary results for noiseless
MACs, symmetric functions, and the special case where all
the nodes use an identical modulation. Based on these results,
in the next section, we present ChannelComp for general
functions, not necessarily symmetric, and for the case where
the nodes are allowed to use different modulations.

In the following, we establish the important result that when
identical modulation encoders are used, i.e., Ekp¨q :“ E p¨q for
all k P rKs, it restricts the degrees of freedom in Equation (1).
Consequently, this limits the class of functions that can be
computed over the MAC. Hence, utilizing identical modulation
enforces a class of functions f with specific features. Further-
more, we propose a necessary condition on the function f to
compute it by ChannelComp uniquely by using an appropriate
tabular mapping T .

Proposition 1 (Necessary condition). Let the K multivariate
function fpx1, x2, . . . , xKq with domain Df , where xk P Df

for k P rKs be a symmetric function, i.e.,

fpx1, . . . , xKq “ fpπpx1q, . . . , πpxKqq, (6)

for all possible permutations by π : t1, . . . ,Ku ÞÑ t1, . . . ,Ku.
Let each node use the identical modulation E . Then, function f
can be computed by the constellation diagram of

řK
k“1 E pxkq.

Proof. The proof is by contradiction. We assume that K “ 2,
and that fpx1, x2q is an asymmetric function, i.e., fpa, bq ‰

fpb, aq where a, b P Df . Then, for a case where x1 “ a and
x2 “ b, we have a⃗ and b⃗ as modulated signal and a⃗` b⃗ would
be received by the CP, respectively. For the reverse scenario,
i.e., x1 “ b and x2 “ a the CP also observes a⃗` b⃗. Therefore,
we have the same constellation point for different values of
the asymmetric function f , and it is impossible to assign the
same vector a⃗ ` b⃗ to the two different values of fpa, bq and
fpb, aq.

x1 x2 x1x2 x⃗1 ` x⃗2

0 0 0 0⃗

0 1 0 1⃗

1 1 1 2⃗

0 2 0 2⃗

0 3 0 3⃗

1 2 2 3⃗

1 3 3 4⃗

2 2 4 4⃗

TABLE III: A counterexample showing that the symmetric property is insufficient for a
correct computation with identical modulations.

Corollary 1. The condition in Proposition 1 becomes suffi-
cient for function f with binary domain, i.e., xK P t0, 1u.
Hence, any symmetric function f with binary domains can be
computed perfectly via one-bit communication.

Remark 1. In Proposition 1, we do not make assumptions
on the modulation and the domain. Therefore, the proposition
is valid for arbitrary modulation with different bits for each
node as long as the modulations are identical.

To see why the condition in Proposition 1 is not suffi-
cient in general, one can check a simple product function
fpx1, x2q “ x1x2, where the nodes use the PAM modulation
with two bits. Then, some of the function’s outputs f overlap
their constellation points. Table III shows this case in detail.
In Table III, E p¨q is the PAM modulation, and x1x2 is
a symmetric function concerning x1 and x2. This function
cannot be computed because a conflict occurs on points 2⃗, 3⃗
and 4⃗. The constellation points 2⃗, 3⃗ and 4⃗ need to be assigned
simultaneously to the three different values t0, 1u, t0, 2u and
t3, 4u, respectively.

To give more insights, let us consider the summation
řK

k“1 E pxkq as a function that maps the qK points in the
domain of a function to a lower number of constellation points
over-the-air. Then, we establish in the following Proposition 2
the lower and upper bound on the cardinality of Rs when
using identical modulation.

Proposition 2. Let Rs be the range set of summation
řK

k“1 x⃗k

and Rf be the range of desired function f . Assume that we
have K different modulation points x⃗k, k “ 1, . . . ,K, where
each one consists of q distinct points in 2D space. Then,
the aggregation of the modulated signals, i.e.,

řK
k“1 E pxkq

cannot impose lower than pq ´ 1qK ` 1 number of distinct
constellation points and greater than

`

K`q´1
q´1

˘

. Therefore, the
following lower and upper bounds for the range of summation
Rs holds

pq ´ 1qK ` 1 ď |Rs| ď

ˆ

K ` q ´ 1

q ´ 1

˙

. (7)

Proof. See appendix A.

The upper and lower bounds in Proposition 2 are the
limitations of the range of the symmetric functions. As a result,
if the range of the desired function f is greater than the number
of the constellation points, i.e., |Rf | ě |Rs|, it is impossible
to cover the overall range of function f .
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x1 x2 x1 ` 1 x⃗1 ` x⃗2

0 0 1 0⃗

0 1 1 1⃗

1 0 2 1⃗

1 1 2 2⃗

TABLE IV: A counter-example to demonstrate that |Rs| ě |Rf | is not enough to
compute function f .

Based on the above results, the use of identical modulation
among all the nodes restricts us to compute only the symmetric
functions. To go beyond symmetric functions, we need to
change the modulations to allow us to compute any class of
functions. In the following section, we propose a method to
adapt or design the modulations under different scenarios to
obtain a reliable function computation over the MAC.

IV. MODULATION SELECTION FOR NOISY MACS

We start this section by introducing a general notation to
model that each node is allowed to use any modulation, not
necessarily identical among the nodes. Moreover, this section
assumes that the channel is subject to fading and that the
receiver experiences noise. We propose a feasibility check that
allows us to design which modulation is needed at each node
for a correct computation, which we term as G-ChannelComp
solution algorithm, where G stands for ”general”. Then, we
introduce how to adapt existing modulations’ power and
phases, resulting in a correct computation, which we term as E-
ChannelComp solution algorithm, where E stands for ”equal”.
We conclude the section by giving the general architecture of
ChannelComp.

Following the power control universally adopted in the
AirComp literature [35], i.e., selecting the transmit power as
the inverse of the channel as pk “ h˚

k{|hk|2, we rewrite (1)
as follows3

y⃗ “

K
ÿ

k“1

x⃗k ` z⃗. (8)

Therefore, the received signal by the CP, i.e., y⃗, is equal to
ř

k x⃗k, which has finite constellation points. Using the com-
plex/real vector representation of each xk for digital/analog
modulation, we can represent all the possible constellation
points as:

s⃗ :“ Ax, (9)

where A P t0, 1uMˆN (N :“ K ˆ q and M :“ qK) is a
binary matrix that selects all the possible cases of nodes to
send their bits, and the vector x “ rx1, . . . ,xKsT P CNˆ1

consists of all K blocks of complex vectors, where block k
is a modulation of the corresponding node k. Also, the vector
s⃗ P CMˆ1 denotes the constellation points over the MAC.

Now, equipped with the definitions in (9), we can estab-
lish the conditions to ensure the correctness and viability

3The use of this power control is done for analytical simplicity. A more
general power selection can also be introduced. The optimization problems
we formulate and solve in this section can be easily extended to include such
general power controls. We give an example of this in Section IV-B with
optimization problem (20).

0, . . . , 0

...

...

s⃗1

s⃗2

s⃗n1

...

s⃗n

...

Df Rs Rf

ř

k x⃗k

1, . . . , 0

q ´ 1, . . . , 1, 0

q ´ 1, . . . , q ´ 1

f p1q

f p2q

f pmq

...

f pm1
q

...

Figure 4: This figure gives the main idea of ChannelComp. It reports the domain Df , the
range of the summation Rs returned by a noise-free channel, and the desired function
Rf on left, middle, and right, respectively. Two different points (blue lines) in the domain
of function f create a constellation point s⃗2 while the function’s output for these two
points is the same and equal to fp2q. However, for s⃗n1 the corresponding values of the
function are different fpmq

‰ fpm1q. Accordingly, we cannot assign the point s⃗n1 to
these points (red lines) unless we enforce a splitting of s⃗n1 by a proper selection of the
modulations.

of computation via wireless transmission and formulate the
modulation vector x to adhere to these established conditions.

A. Modulation Design with Channel Inversion

To compute the function f whose input corresponds to the
modulated signal x⃗1, . . . , x⃗K , we need to make sure that the
employed modulations allow such computation with adequate
accuracy. As mentioned after Proposition 2, one necessary
condition under which perfect computation can be possible
is related to the range of function Rf and the range of
the summation over the channel Rs. Indeed, the number of
constellation points at the receiver CP has to be greater than
the range of function f , i.e., |Rs| ě |Rf |. To illustrate that
this condition is necessary but not sufficient, we can consider
function f to be x1 ` 1, for x1, x2 P t0, 1u, where the signals
are modulated using BPSK. In Table IV, we illustrated the
range points of the function f and summation over the MAC,
i.e.,

řK
k“1 x⃗k. While we have |Rs| “ 3 ą 2 “ |Rf |, the

function f cannot be computed by this modulation because of
the overlapping on point 1⃗.

Furthermore, the sum
řK

k“1 x⃗k must cover the entire range
of function f . In fact, for i P rM s, let f piq be an output of
function f for a certain value of inputs x1, x2 . . . , xK , where
all xk’s have the same q possible values. Then, if f piq is
different from f pjq, the corresponding constellation point s⃗i
must not be the same as s⃗j for i ‰ j, see Figure 4. Hence, to
verify if given modulation signals are suitable for computing
the desired function f , we pose the following problem:

P1 “find x

s.t. if f piq ‰ f pjq ñ s⃗i ‰ s⃗j , @pi, jq P rM s2, (10a)

}x}22 ď 1. (10b)

Recall that x P CNˆ1 is the complex modulation vector, and
rM s2 means rM s ˆ rM s. Problem P1 is a feasibility problem
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to find a point that satisfies the constraints, which are non-
convex and non-smooth. To simplify problem P1, we replace
such constraints by a smooth condition,

P2 “find x

s.t. |s⃗i ´ s⃗j |2 ě ϵ|f piq ´ f pjq|2,@pi, jq P rM s2, (11a)

}x}22 ď 1, (11b)

where ϵ ą 0 is a positive constant. Note that for any
sufficiently small ϵ, the solution to Problem P1 equals the
solution to Problem P2.

Remark 2. Problem P2 not only satisfies the constraints
of Problem P1, but also designs the transmit constellation
points for achieving the acceptable computation error in
noisy communications. The reason is that the right side of
the constraints is the computation error, in which a higher
computation error due to noise enforces a larger distance of
constellation points and enforces more energy. In other words,
the distances among constellation points are penalized based
on possible computation errors.

Remark 3. The constraints in Problem P2 are compatible
with digital or analog modulation, where vector x must be
a complex or real vector, respectively. Also, the obtained
modulation can compute a larger class of functions than
Nomographic functions. The solution to Problem P2 for the
special case of the summation function, i.e., f “

řK
k“1 xk, re-

sults in AirComp. Indeed, for the computation of Nomographic
functions, pre-coder, and post-coder functions are utilized in
the AirComp method [36], which can also be incorporated
at the beginning and end of our system model illustrated in
Figure 1.

To determine how small ϵ must be such that the solution to
Problem P2 is equal to the solution to Problem P1, we have
the following lemma.

Lemma 1. Let ϵ´1 ě maxpi,jqPrMs2 |f piq ´ f pjq|2. Then,
Problem P2 is feasible, and thus there exists a modulation
vector x satisfying the constraints.

Proof. See Appendix B.

If we rewrite Problem P2 in terms of variable x, we have

P2 “find x

s.t. |pai ´ ajqTx|2 ě ϵ|f piq ´ f pjq|2, (12a)

}x}22 ď 1, (12b)

for all pi, jq P rM s2, i ‰ j. Problem P2 is now a quadratically
constrained quadratic programming (QCQP) problem with
non-convex constraints. From the literature [37], we note that
Problem P2 is NP-hard. Toward overcoming the non-convex
constraints, we can use the lifting trick [38], in which we recast
the constraints (12) as

P2 “ find x

s.t. tracepxxHBi,jq ě γi,j , (13a)

tracepxxHq ď 1, (13b)

Algorithm 1 Approximated G-ChannelComp (solution to P4)

1: Input: Function fpx1, . . . , xKq, δ
2: Set N “ qK, M “ qK

3: Output: Modulation vector x P CN

4: procedure DUAL-PRIMAL DC(tf piquMi“1)
5: for t Ð 1, 2, . . . , do
6: Compute Eigendecomposition Xt´1 “ UΛUH

7: Set G “ u1u
H
1 where u1 is the first column of

matrix U
8: Compute Q “ G ` µXt´1

9: Obtain Xt “ argmin
XPC

µ
2 }X}2F ` xX, IN ´ Qy

10: Compute θ “
µ
2 }Xt}2F ` xXt, IN ´ Qy

11: if |θ| ď δ then
12: X˚ “ Xt

13: break
14: end if
15: end for
16: end procedure

where γi,j “ ϵ|f piq ´ f pjq|2 for all pi, jq P rM s2, i ‰ j
and Bi,j “ pai ´ ajqpai ´ ajqT. Note that problem (13) is
equivalent to problem (11), and thus we denote problem (13)
as P2. Now, if we consider xxH as a matrix X P CNˆN , then
problem (13) can be reformulated as

P2 “ find X

s.t. tracepXBT
i,jq ě γi,j , tracepXq ď 1, (14a)

X ľ 0, rankpXq “ 1, (14b)

in which the inequality X ľ 0 means that the matrix X is
symmetric positive semi-definite (PSD). Constraints (14) are
linear and convex with respect to matrix X , except for the
non-convex rank. One possible way to handle such tricky rank
constraint is to relax problem (14) by dropping the rank-one
constraint in (14) [37], which leads to

P3 “ find X

s.t. tracepXBT
i,jq ě γi,j , tracepXq ď 1 (15a)

X ľ 0. (15b)

Problem P3 is a semi-definite programming problem that can
be solved using CVX [33]. Moreover, we term the solution
algorithm to problem P3 as the G-ChannelComp methods.
Afterward, if X˚, as the solution to Problem P3, results to be
a rank one matrix, x˚, the optimal modulation vector solution
to Problem P2 can be obtained via Cholesky decomposition
of X˚ [39]. Otherwise, if the solution to P3 does not give
a rank one matrix, we can recover a sub-optimal solution to
Problem P2 by the Gaussian randomization method [39]. The
Gaussian randomization method has a guaranteed optimality
gap [40]. The suboptimality of Problem P3 may occur when
the dimension of the optimization variables becomes large,
i.e., N " 1, which means K " 1 or q " 1. To overcome such
drawback, the rank-one constraint can be replaced by another
equivalent function, which would be successively solved using
the primal and dual problems, see [41]. Particularly, the
rank-one constraint can be translated to tracepXq ´ }X}2.
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Consequently, we can replace the rank-one constraint in (14)
with a penalty term as follows

P4 “ min
X

tracepXq ´ }X}2

s.t. tracepXBT
i,jq ě γi,j , (16a)

X ľ 0, tracepXq ď 1. (16b)

As Problem P4 remains non-convex, the optimization can be
solved using the difference-of-convex (DC) programming [41].
The DC algorithm for Problem P4 is presented in Algorithm 1.

The relaxation in P3 disregards the rank constraint in P2

and can occasionally result in a suboptimal solution, as our
manuscript acknowledges. However, when the solution to P3

(denoted as X̂) is a rank-one matrix, it is considered optimal
and not suboptimal with respect to problem P2. In fact, P3

has the potential to provide optimal solutions to P2 under
certain conditions, particularly when q (level of quantization)
or K (number of nodes) are small. The reason is that P3 is
a relaxation of P2, and if a relaxed problem gives an optimal
solution that is feasible to the original problem P2 (that is
defined as a subset of P3), then it is also optimal to problem
P2. Thus, the rank-one X̂ from P3 is the optimal solution to
P2.

To counter the potential suboptimality of P3, we proposed
P4 aiming to ensure a low-rank solution as much as possible.
This approach is designed to verify the feasibility of rank-one
constraints accurately and encourage rank-one solutions. As
such, if the solution is a rank-one matrix, it can be regarded as
an optimal solution satisfying the constraints of P4. The main
advantage of using P4 is its ability to reach the stationary point
solution, albeit with higher iteration and complexity than P3.
However, since P4 is not a convex problem, the uniqueness
of the solution cannot be guaranteed.

Remark 4. Optimization Problem P4 presented in (16) must
be solved only once and offline at the CP. To compute the
solution, the CP only needs to know which function f is in
use and how many nodes are present. Once the CP solves
optimization Problem P4 and sends the encoder Ekp¨q to
the nodes, node k can utilize its modulation vector x⃗k to
communicate and compute the intended function f over the
MAC. Therefore, no optimization must be solved during the
computation over-the-air, and the modulation and encoder
blocks are integrated.

B. Adapting Phase and Power of Existing Modulations

To this point, we have established a method for designing
the modulation vector for computation over the MAC. How-
ever, altering the nodes’ modulation formats may sometimes
be difficult. In situations where the modulation formats are
fixed, we show that it is possible to alter the power and phase
of each modulation vector to reshape the constellation diagram
and ensure correct and feasible function computation. In order
to do so, we do not assume a power control as in AirComp that

enforces channel inversion in (9), but we introduce a general
power control. Consequently, the received signal at the CP is

y⃗n “

K
ÿ

k“1

hkpkx⃗k ` z⃗, (17)

where pk P C determines the power and the phase for node
k, hk is the channel coefficient form node k to CP, and z⃗ P C
denotes circularly symmetric AWGN noise with zero mean and
variance σ2

z . To alleviate the notation, let us define vectors
p :“ rp1, . . . , pKsT P CK and h :“ rh1, . . . , hKsT P CK .
Also, we need to define the operator Hq : CK ÞÑ CNˆN as
follows

Hqphq :“ diagphq b Iq “ diag
`

h1Iq, . . . , hKIq
˘

, (18)

where b denotes Kronecker product and Iq represents the qˆq
identity matrix. Then, the constellation points induced by x
can be represented as

AHphqdiagpxqpIK b 1qq
loooooooooooooomoooooooooooooon

:“C

p “ s̃, (19)

where 1q stands for a vector of size qˆ1 whose elements are
one, and s̃ “ rs̃1, s̃2, . . . , s̃M sT P CM denotes the constella-
tion points in the presence of fading. Also, x is the given
modulation whose elements can be either complex-valued
(digital modulation) or real-valued (analog modulation).

Accordingly, by incorporating the constraints in (12), we
propose the following optimization problem to find the mini-
mum modulation powers p for achieving a correct computation
without changing the modulation formats:

P5 “ min
pPCK

}p}22

s.t. |pai ´ ajqTCp|2 ě γi,j , @ pi, jq P rM s2. (20)

Problem P5 is a QCQP problem and difficult to solve.
Therefore, by following similar steps from (13) to (15), we
can pose the following relaxed version of Problem P5:

P6 “ min
PPCKˆK

tracepP q

s.t. tracepPCT
i,jq ě γi,j , P ľ 0, (21)

where Ci,j :“ Cpai ´ajqpai ´ajqTCT. Similar to Problem
P3, the solution to Problem P6, denoted as P ˚, can give p˚ as
an optimal solution to P5 by using Cholesky decomposition or
a suboptimal solution by applying the Gaussian randomization
method. Finally, the k-th element of p˚ is used to determine
the power and phase allocation for node k, leading to improved
accuracy in over-the-air computations. Moreover, we term the
solution algorithm to Problem P6 as E-ChannelComp.

Remark 5. Due to the dependence of Problem P6 on the
channel coefficients (hk) in the case of a fast-fading chan-
nel, solving the optimization problem every time the channel
changes can be computationally expensive. One alternative so-
lution is separating the channel compensation and modulation
adaptation steps. This means that optimization problem (21)
only needs to be solved once for a given set of modulations
and function f , similar to the approach in (16). However, this
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approach may be less power-efficient compared to the output
of optimization problem (21).

In the next section, we describe the structure of the decoder
of ChannelComp.

C. Receiver Architecture in ChannelComp
After solving optimization problem P3 or P6 at the CP, the

modulation vector x˚ is determined. Then, the CP broadcasts
the whole modulation vector x˚’s to the nodes, and node k
uses x˚

k for the communication. Afterward, the CP needs to
determine the decoder T p¨q based on the obtained modulation
vectors x˚

ks. The decoder can be straightforwardly determined
as long as the solution to either problems P4 or P6 is feasible.
In particular, we can use the maximum likelihood estimator
(MLE) for the decoder and design the decision boundaries
based on the deformed constellation points at the CP server.
Next, using the Tabular mapping T p¨q on the y⃗ptq yields the
desired value of the function f . More precisely, let us define
g⃗i :“

řK
k“1 x⃗k, the constellation point corresponding to the

function f piq. Then, the problem is to find which g⃗i’s values
were transmitted while we have received y⃗. Hence, using the
MLE estimator, we have

f̂ piq “ argmax
i

Prpy⃗|⃗giq, (22)

where Prpy⃗|⃗giq “ 1{
a

2πσ2
z exp

“

´ }y⃗ ´ g⃗i}
2
2{2σ2

z

‰

follows
a Gaussian distribution. Next, taking logarithm results in the
following expression

f̂ piq “ argmin
i

}y⃗ ´ g⃗i}
2
2. (23)

The last expression generates a Voronoi diagram of the set
of all possible constellation points tg⃗1, . . . , g⃗Mu with the
corresponding Voronoi cells tV1, . . . ,VMu [42]. Therefore, the
desired value is given by f̂ “

řM
j“1 T pjqpy⃗q, where

T pjqpg⃗q :“

#

f pjq, g⃗ P Vj ,

0, otherwise.
(24)

In the case where we cannot satisfy the computation condition
in (10), there may be points in which f piq and f pi`1q have the
same constellation point g⃗i. In other words, these points have
the same Voronoi cell, or Vi “ Vi`1, and the decision rule
can be replaced by their mean:

T piqpg⃗q “ T pi`1qpg⃗q “

#

fpiq
`fpi`1q

2 , g⃗ P Vi,Vi`1,

0, otherwise.
(25)

To illustrate, consider one simple BPSK example in Figure 3
where there are K “ 2 nodes for computing the summa-
tion function, f1px1, x2q “ x1 ` x2 and product function,
f2px1, x2q “ x1x2. Let T1 and T2 be the tabular maps
corresponding to functions f1 and f2, respectively. Then, for
function f1 the resultant constellation points are restricted to
the set t ⃗́2, 0⃗, 2⃗u , consequently, it gives the following Voronoi
cells,

V1 :“ tg⃗ |Realpg⃗q ď ´1u, (26a)
V2 :“ tg⃗ | ´ 1 ă Realpg⃗q ď 1u, (26b)
V3 :“ tg⃗ |Realpg⃗q ą 1u. (26c)

Hence, by substituting (26) into (24), we can obtain T1 :“
ř3

i“1 T
piq
1 for function f1 as follows

f̂1 :“ T1pg⃗q “

$

’

&

’

%

0, Realpg⃗q ď ´1,

1, ´1 ă Realpg⃗q ď 1,

2, Realpg⃗q ą 1.

(27)

Similarly for the T2, we have

T2pg⃗q “

#

0, Realpg⃗q ď 1,

1, Realpg⃗q ą 1.
(28)

Note that the encoder and decoder in ChannelComp have a
similar overhead compared to AirComp. This is because we
only map the input and output using the modulation vectors
obtained from Problem P4. The main complexity comes from
solving optimization in (15). This optimization must be done
offline once before setting up the communication system. Note
that thanks to the tailored modulation by ChannelComp, the
latency of the communication does not depend on the number
of nodes K; accordingly, ChannelComp can handle a massive
number of devices with a low latency communication system.

In the following section, we assess the performance of
ChannelComp numerically.

V. NUMERICAL EXPERIMENTS

In this section, we evaluate the performance of G-
ChannelComp (solution to Problem P3), which designs the
modulation among the nodes, and E-ChannelComp (solution
to Problem P6), which adapts phase and power of modulations
for the nodes, for several functions with different numbers of
nodes. We compare the performance of G-ChannelComp and
E-ChannelComp on the following two settings: 1. the standard
digital transmission, with the computing method using the
orthogonal frequency division multiple access (OFDMA), in
which each node uses different frequency channels; and 2. to
the AirComp method [5]. In the last subsection, we repeat
the comparison of ChannelComp with AirComp and OFDMA
methods in the presence of fading.

A. Performance Evaluation of ChannelComp

In the first numerical experiment, we solve optimization
problem (15), i.e., (G-ChannelComp) Problem P3, for four
different functions: summation, product, maximum, and frac-
tional function. We consider different numbers of nodes and
quantization values for each node, namely K “ 2 with q “ 8
and K “ 4 with q “ 4. For the case of K “ 4, we
obtained an output X˚, which is no longer a rank-one matrix.
Hence, we solved optimization problem (16), i.e., Problem
P4, with the penalty parameter to get a better approximation
via Algorithm 1. The parameters of Algorithm 1 are set as
µ “ 10´4 and δ “ 10´3 in the simulations.

The resultant modulation vectors are depicted in Figure 5.
Figure 5 shows the resultant modulation vectors for the
first three functions, i.e., summation, product, and maximum
(symmetric functions), and the last fractional function results
in different modulation vectors. In the case of the summation
function, it turns out that the PAM modulation is the resultant
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Figure 5: Constellation diagram of the modulation vector for K “ 2 nodes with q “ 8 (3 bits). The axes show the real and imaginary values corresponding to the baseband
components.
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Figure 6: Constellation diagram of the modulation vector for K “ 4 nodes with q “ 4 (2 bits). The axes show the real and imaginary values corresponding to the baseband
components.

modulation vector (see Figure 5(a)). Specifically, q “ 4 is
a misconception that QPSK modulation is a more power-
efficient alternative for computing the summation. However,
this is not the case. It is shown that the PAM modulation
is the optimal choice for computing the summation function,
as it results in a lower computation error compared to other
alternatives.

In Figure 6, we still obtain similar modulations diagram
results by increasing the number of nodes to K “ 4 with
q “ 4. Furthermore, we observe that the modulation vector
x of higher order, i.e., larger q, is an interpolated version of
the lower order modulation. Similarly, it shows that the lower
order modulation can be obtained by sub-sampling from the
higher order modulation instead of solving Problem P3.

In the second experiment, we check the performance of
E-ChannelComp for adapting the modulations as in prob-
lem (21), i.e., Problem P6, for the product function fpxq “
śK

k“1 xk with K “ 4 using QPSK modulation, i.e., q “ 4
and x⃗ “ r1, j,´1, jsT. Moreover, to understand the effect
of channel fading on the output of Problem P6, we repeat
the experiment for fading channels whose coefficients are
generated with normal Gaussian distribution hk „ N p0, 1q.

Figure 7 shows the resultant modulations whose power and
phases are given by the solution to problem (21) for the ideal
and fading channels in Figures 7(a) and 7(b), respectively.
We observe that if the fading channel is not considered, E-
ChannelComp needs to adapt the power and phase of the
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(a) Ideal channel
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(b) Fading channel

Figure 7: The resultant modulation vector of (21) for computing the product function
fpxq “

ś

k xk with K “ 4 nodes and quantization q “ 4, when the nodes use
QPSK modulation. Figures 7(a) and 7(b) show the modulation each node should use, in
the case of ideal and fading channels, respectively. The x- and y-axis of the plot illustrate
the real and imaginary parts of the baseband components, respectively.

modulations to avoid that destructive overlapping occurring
over the MAC. Conversely, in the presence of fading, the
channel coefficients can alter the powers and phase of the
modulations obtained at the receiver, resulting in a more
power-efficient manner than standard OFDMA over the MAC.
Specifically, in Figure 7(a), node 2 needs to reduce its power to
satisfy the computation constraints in (21). At the same time, a
low value of h2 suggests not compensating the channel effect
and allocating more power to this node.
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Figure 8: Performance comparison between G-ChannelComp, AirComp, and OFDMA in terms of NMSE error averaged over Ns “ 100, when values of the function to be
computed are originally quantized. Such input values are the input value xk “ t0, 1, . . . , 7u and the desired functions are f1 “

ř4
k“1 xk ,f2 “

ś4
k“1 xk , f3 “ maxk xk ,

and f4 “
ř4

k“1 x2
k .

B. Comparison to AirComp

We compare G-ChannelComp to OFDMA and AirComp,
which is analog and mostly intended for summation and prod-
uct functions. Hence, we compare G-ChannelComp, AirComp,
and OFDMA using these functions in different scenarios
where the input data has either continuous or discrete values.
Specifically, we consider the function’s input values originally
quantized in the first scenario. Thus, the input values are natu-
rally associated with digital values modulated over the AWGN
channel. In other words, we consider the summation function
f “

ř4
k“1 xk, where xk P t0, 1, 2, . . . , 8u over a network with

K “ 4 nodes. For a fair comparison, the peak of modulated
signals’ amplitude of G-ChannelComp is set to be the same
as the maximum power for AirComp, which is the maximum
value of input value or 8. Furthermore, to characterize the com-
putation error in G-ChannelComp, AirComp, and OFDMA, we
use the normalized mean square error (NMSE) metric, which
is defined as NMSE :“

řNs

j“1 |f piq ´ f̂
piq
j |2{Ns|f piq|, where

Ns denotes the number of Monte Carlo trials, f piq denotes the
value of the desired function we wish to compute, and f̂

pjq

i is
the j-th estimated value of f piq for j P rNss.

Figure 8(a) shows the NMSE for different signal-to-noise
ratios (SNRs), which is defined as SNR :“ 20 logp}x}2{σzq.
We note that G-ChannelComp has a similar performance
to AirComp for computing the summation function at the
low SNR (less than 5 dB), but as the SNR increases, G-
ChannelComp outperforms AirComp. For the product func-
tion, G-ChannelComp shows approximately a 10 dB improve-
ment compared to the other methods, even in low SNR scenar-
ios. We repeat this experiment for the maximum f “ maxk xK

and quadratic f “
řK

k“1 x
2
k functions in Figure 8(b).

We observe that G-ChannelComp exhibits superior perfor-
mance compared to the other methods for both functions
under examination, thanks to the constructive overlapping

´5 0 5 10 15 20 25
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10´2

10´1

100

SNR(dB)

N
M

SE

G-ChannelComp q “ 4
G-ChannelComp q “ 16
AirComp
OFDMA q “ 4
OFDMA q “ 16

Figure 9: Performance comparison between G-ChannelComp, AirComp, and OFDMA
in terms of NMSE error for computing the summation function f “

ř4
k“1 xk with the

continuous input values xk in the interval r0, 7s, averaged over Ns “ 100.

of constellation points of all the nodes. Furthermore, it is
notable that AirComp cannot accurately compute the maxi-
mum function even in low SNR scenarios, likely due to its
approximation techniques applied to the maximum function
4. For the quadratic function, the results suggest that G-
ChannelComp outperforms both other methods across a wide
range of SNR, with a particularly noticeable advantage in low
SNR scenarios.

4AirComp approximates the maximum using the log sum function. Indeed,
fpx1, . . . , xKq “ log p

řK
k“1 exp pxkqq « maxk xk [32] where we need

to set E pxkq :“ exp pxkq and T pyq :“ logpyq as encoders and Tabular
mapping, respectively. However, ChannelComp computes the exact value for
such a function in a noise-free communication by solving optimization in
Problem P3.

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2023.3324999

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



12

In the next experiment reported in Figure 9, we generate
uniform random values as continuous numbers, xk „ r0, 7s.
Afterward, for G-ChannelComp, these values are quantized
with q “ 4 and q “ 16 levels (or equivalently 2 and 4
bits) and transmitted over the MAC. Figure 9 shows that the
performance of G-ChannelComp is saturated by quantization
noise level for low noise cases. However, increasing the num-
ber of bits can mitigate this issue. The improved performance
observed for AirComp can be attributed to the fact that it does
not employ quantization, thus resulting in a transmitted signal
with a lower noise level and preserving the signal’s quality.
Moreover, when the noise variance is very high (SNR less
than ´3 dB), OFDMA performs better than G-ChannelComp
in the summation function, which comes from the input values
having limited domain 5 (xks are between 0 and 7).

The results of this subsection show that the designed modu-
lation by G-ChannelComp outperforms the other approaches,
specifically for non-summation functions. G-ChannelComp
and AirComp obtain similar performance for the summation
function because AirComp can be considered a special case
of G-ChannelComp (Remark 3).

C. E-ChannelComp with QAM Modulations

In this subsection, we analyze the performance of E-
ChannelComp for QAM modulation with multiple orders and
compare it to OFDMA. We consider a network of K “ 10
nodes for computing the summation function f “

ř

k xk. Fig-
ure 10(a) shows the NMSE performance of ChannelComp and
OFDMA using QAM 4, QAM 16, QAM 64, QAM 256
modulations’ depicted by Ns “ 1000 samples randomly se-
lected from the range of the function fpx1, . . . , xKq, i.e., Rf .
The results show that E-ChannelComp performs better than
OFDMA, thanks to constructive overlaps of E-ChannelComp,
where multiple signals are transmitted simultaneously and
overlap in the frequency domain, resulting in a stronger signal
than the individual signals in OFDMA. In addition, increasing
the order of modulation results in lower performance for both
E-ChannelComp and OFDMA due to reaching the channel’s
capacity.

In Figure 10(b), we analyze the effect of the number of
nodes K on the performance of ChannelComp using QAM
64, 256 and 1024 modulation in an AWGN channel with
SNR “ 10 dB for computing the summation function. We note
that increasing the number of nodes decreases the NMSE error,
which comes from constructive interference of node signals.

For the last experiment, we analyze the effect of fading
channels on the performance using QPSK modulation for
computing the product and max functions of K “ 4 nodes
and K “ 2, i.e., f “

ś4
k“1 xk and f “ maxk xk. Figure

11(a) shows that ChannelComp can achieve better NMSE per-
formance than AirComp in high SNR scenarios, while it has

5When the variance of the noise is very high, we only observe the value of
the boundary of the input domain with high probability. In fact, for OFDMA,
with high probability, the estimation is either 0 or 7. As a result, the estimation
of the summation is more likely around 14 for K “ 4 nodes. However,
for G-ChannelComp, we directly compute the summation. Accordingly, the
estimation of the summation would be either 0 or 28 with a high probability,
which leads to more error.
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Figure 10: Performance of adapting modulation using E-ChannelComp over the MAC
for the QAM modulation. The function is summation f “

řK
k“1 xk over Ns “

1000 samples randomly selected from Rf . Figure 10(a) shows the performance of
the E-ChannelComp compared to OFDMA for k “ 10 nodes. Figure 10(b) shows
the performance of the E-ChannelComp for different numbers of nodes K when the
SNR “ 10 dB. Increasing the number of nodes decreases the error thanks to the
constructive interference.

a similar performance to OFDMA in low SNR scenarios. We
note that the deterioration of E-ChannelCompp performance in
this experiment comes from the fact that QPSK modulation is
not the optimal modulation for computing the product function
(see Figure 6(b)). Similarly, for the max function in Figure
11(b), E-ChannelComp performs better than AirComp for
K “ 2 and K “ 4 using the same communication resources.
Also, OFDMA shows the best performance here, using more
bandwidths than the other methods.

We observe that E-ChannelComp enables existing mod-
ulation to compute functions over the MAC; however, the
performance drops compared to the designed modulation by
G-ChannelComp.
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Figure 11: Performance comparison between E-ChannelComp, AirComp, and OFDMA in
terms of NMSE versus the SNR values in the presence of fading channels. We considered
K “ 2, and 4 nodes, and computing the product and the max function using QPSK
in 11(a) and 11(b), respectively. The channel coefficients are generated by the Gaussian
distribution, i.e., hk „ N p0, 1q.

VI. CONCLUSION

In this study, we presented a novel over-the-air computation
principle and method called ChannelComp, which utilizes dig-
ital or analog modulation to compute functions over multiple
access channels. Our proposed method can compute a much
broader class of functions compared to the AirComp method,
which is restricted to analog modulations. ChannelComp can
handle massive devices simultaneously, ensuring strict com-
putation time constraints.

We also proposed an offline modulation selection method
based on optimizing a feasibility function and a tabular map-
ping capable of computing functions using digital modulation.
We showed how to adapt existing digital modulation schemes
to compute the desired function over the MAC. The Simu-
lation results showed that ChannelComp outperforms analog

AirComp and OFDMA methods in terms of normalized mean
squared error with a notable improvement of around 10 dB in
computation error.

There are numerous potential avenues for further investi-
gation of ChannelComp, including, but not limited to, the
following:

‚ Robust solution for stochastic fading channel: we
plan to extend ChannelComp to accommodate general
functions through different (digital and analog) modula-
tions for each node and evaluate the impact of stochastic
fading.

‚ Other optimization perspectives: we solved a feasibility
problem to find modulation vectors for a valid computa-
tion over-the-air. One can use the proposed computation
to optimize the other objectives, e.g., minimizing the
maximum or average computation error.

‚ Time variant systems: Both G-ChannelComp and E-
ChannelComp can be extended for designing or adapting
the modulation vector for a general time-varying system
model. As a result, it enables either computing a sequence
of functions over time or stabilizing the computation
against the channel changes.

‚ MIMO extension for matrix computation: we intend
to expand the current single narrowband antenna system
at the transmitters and receiver to broadband multiple-
input and multiple-output systems, enabling vector-based
computations for several applications, such as matrix
computation or federated learning.

‚ Sequential transmission: we plan to introduce repe-
titions in the transmissions and look at the sequence
of received symbols across a trellis diagram to tradeoff
modulation complexity with computation time and com-
putation precision.

‚ Machine learning applications: we aim to demonstrate
that ChannelComp has the potential to enhance applica-
tions such as federated edge learning significantly.

APPENDIX

A. Proof of Proposition 2

In the case where all nodes use identical modulation Ek “ E
for k P rKs, the summation over-the-air can be considered as
a symmetric function G p¨q “

řK
k“1 E p¨q. Consequently, to

compute the upper bound, the outputs of the function need
to be as much as possible distinguishable, which means that
all the outputs of E p¨q are distinct. Therefore, the range of
E pxq would be q for x P t0, 1, . . . , q ´ 1u. Next, we need to
count the number of possible distinct outputs for the function
G px1, . . . , xKq “

řK
k“1 E pxkq. Each xk has q distinct values,

and we need to count the number of ways to select one level
of xk such that the output of function G be different. This is
exactly the combinatorial balls and bins problem [43], in which
we seek the number of possible ways to put n indistinguishable
balls into k distinguishable bins. Here, bins are the possible
values of variables xks, and balls are the modulation map E .
Therefore, using the formula of balls and bins, we get the
following upper bound |Rs| ď

`

K`q´1
q´1

˘

.

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2023.3324999

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



14

For the lower bound, we should consider a scenario where
the outputs of each E pxkq overlap with each other. The most
overlapping occurs when E is a linear function. As a result,
for the function G , we have that

G px1, . . . , xKq “

K
ÿ

k“1

E pxkq “ E
´

K
ÿ

k“1

xk

¯

. (29)

Now, because E p¨q is also a bijective mapping, the cardinality
of the range of the function G p¨q equals to the cardinality of the
its input domain, i.e.

řK
k“1 xk. Using that xk P t0, 1, . . . , q ´

1u, we note that the number of possible values of the range
of

řK
k“1 xk is Kpq ´ 1q ` 1.

B. Proof of Lemma 1

We first rewrite problem (11) with a new constraint on
}s}22 ď ϵ̃ as follows:

P̃ “ find x

s.t. |s⃗i ´ s⃗j |2 ě |f piq ´ f pjq|2, @pi, jq P rM s2, (30a)

}s}22 ď ϵ̃. (30b)

Then, let Lpx,Λ, ρq be the Lagrangian function associated to
problem (30) as

Lpx,Λ, ρq “xDpAxq,Λy ` xDpfq,Λy

` ρpxTATAx ´ ϵ̃q, (31)

where D : RM ÞÑ RMˆM denotes a distance operator, which
for vector u P RM is defined as

Dpuq :“ pu d uq1T
M ` 1M pu d uqT ´ 2uuT, (32)

in which 1M is a vector of size M ˆ 1 whose all elements
are equal to one. Also, the Λ matrix includes Lagrangian
multipliers such that rΛsi,j “ λi,j . Hence, the Lagrangian cost
function Lpx,Λ, ρq in (31) can be equivalent to the following
term

L “ xpAx d Axq1T
M ,Λy ` x1M pAx d AxqT,Λy´

2xAxxTATΛy ` xDpfq,Λy

` ρpxTATAx ´ ϵ̃q. (33)

By reformulating the previous equations, one can reach the
following expression.

Lpx,Λ, ρq “ xxxT,ATpρI ` Λ ´ DiagpΛ1M qqA
loooooooooooooooooomoooooooooooooooooon

Z

y

` xDpfq,Λy ´ ρϵ̃. (34)

Next, minimizing the above Lagrangian cost function over
variable x gives us

Lpx,Λ, ρq “

#

xDpfq,Λy ´ ρϵ̃, Z ľ 0,

´8, otherwise,
(35)

in which the constraint Z ľ 0 or equivalently Y :“ ρI `

Λ ´ DiagpΛ1M q ľ 0 forces the maximum summation of
row of Lagrangian multipliers Λ to be upper bounded by ρ,

i.e., }Λ}1Ñ1 ď ρ. Strictly speaking, the diagonal element i of
matrix Y is given by

rY sii “ rρI ` Λ ´ DiagpΛ1M qsi,i

“ ρ ` λi,i ´

M
ÿ

j“1

λi,j , (36)

where λi,j denotes the pi, jq element of Λ. Since all λi,js are
positive numbers, to make the diagonal elements of the matrix
Y positive, we need to set ρ ě }Λ}1Ñ1. Accordingly, we have

ρ ě }Λ}1Ñ1 “ max
i

M
ÿ

j“1

λi,j

ě max
i

M
ÿ

j“1,j‰i

λi,j

ě

M
ÿ

j“1,j‰i

λi,j

“

M
ÿ

j“1

λi,j ´ λi,i, (37)

where the last inequality means that all diagonal elements in
(36) are positive. Then, one can write the matrix Y as Y “

Λ`Γ where Γ “ ρI ´DiagpΛ1M q is a diagonal matrix with
positive elements, i.e., Γii ě λii ě 0. On the one hand, matrix
Γ is a diagonal matrix with positive elements, which means it
is a PSD matrix. On the other hand, matrix Λ is a PSD matrix
since it is a matrix of the Lagrangian multiplier. Therefore,
because Λ and Γ both are PSD matrices, accordingly, Y is
also a PSD matrix.

Next, using this fact yields the following upper bound on
the Lagrangian for the PSD case of Z where we use Hölder’s
inequality on the inner product in (35) to obtain

Lpx,Λ, ρq ď }Λ}1Ñ1

M
ÿ

i“1

max
j

rDpfqsi,j ´ ρϵ

ď }Λ}1Ñ1M}Dpfq}8 ´ ρϵ

ď ρpM}Dpfq}8 ´ ϵq.

Hence, to make the problem feasible, the Lagrangian needs
to be negative, otherwise maximizing over Λ leads to 8

for Lpx,Λ, ρq. Therefore, by setting ϵ̃ ě M}Dpfq}8, or
equivalently ϵ´1 ě

}s}
2
2

}A}
“ }Dpfq}8, the problem is always

feasible.

REFERENCES

[1] S. Razavikia, J. M. B. d. Silva, and C. Fischione, “Computing functions
over-the-air using digital modulations,” in IEEE ICC, 2023.

[2] G. Zhu, J. Xu, K. Huang, and S. Cui, “Over-the-air computing for
wireless data aggregation in massive IoT,” IEEE Wireless Commun.,
vol. 28, no. 4, pp. 57–65, 2021.

[3] H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland et al.,
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of Ceará, Brazil, in 2012 and 2014, respectively. From July 2012 to March
2015, he was a Research Engineer with the Wireless Telecommunication
Research Group (GTEL), Brazil. From Fall/Winter 2013 to 2014, he worked
in an internship at Ericsson Research, Stockholm. In Spring/Fall 2018, he
was a Visiting Researcher with Rice University, TX, USA. He has served
as the Secretary of the IEEE Communications Society Emerging Technology
Initiative on Full Duplex Communications between 2018-2021. He has been
involved in the organization of many IEEE conferences and workshops,
including co-chairing IEEE ICMLCN 2024, IEEE SECON 2022-2023 and
IEEE GLOBECOM Workshop on Wireless Communications for Distributed
Intelligence 2022-2023. He gave several tutorials at many IEEE flagship
conferences, including ICASSP, PIMRC, ICC, and GLOBECOM. His research
interests include distributed machine learning and optimization over wireless
communications.

Carlo Fischione (Senior Member, IEEE) is full
Professor at KTH Royal Institute of Technology,
Electrical Engineering and Computer Science, Di-
vision of Network and Systems Engineering, Stock-
holm, Sweden. He is Director of the KTH-Ericsson
Data Science Micro Degree Program directed to
Ericsson globally, and Chair of the IEEE Machine
Learning for Communications Emerging Technolo-
gies Initiative. He is distinguished lecturer of the
IEEE Communication Society, and the funding Chair
of the IEEE International Conference on Machine

Learning for Communication and Networking (IEEE ICMLCN 2024). He
received the Ph.D. degree in Electrical and Information Engineering (3/3
years) in May 2005 and the Laurea degree in Electronic Engineering (Laurea,
Summa cum Laude, 5/5 years) in April 2001, both from University of
L’Aquila, Italy, He has held research positions at Massachusetts Institute of
Technology, Cambridge, MA (2015, Visiting Professor); Harvard University,
Cambridge, MA (2015, Associate); and University of California at Berkeley,
CA (2004-2005, Visiting Scholar, and 2007-2008, Research Associate). He
is Honorary Professor at University of L’Aquila, Italy, Department of Math-
ematics, Information Engineering, and Computer Science.

His research interests include applied optimization, wireless, sensor net-
works, Internet of things, and machine learning. He received a number of
awards, such as the “IEEE Communication Society S. O. Rice” award for the
best IEEE Transactions on Communications paper of 2018, Best Paper award
of IEEE Transactions on Industrial Informatics (2007). He is Editor of IEEE
Transactions on Communications (Machine Learning for Communications
area) and IEEE Transactions on Machine Learning for Communication and
Networking, and has served as Associated Editor of IFAC Automatica (2014-
2019). He is Member of IEEE (the Institute of Electrical and Electronic
Engineers), and Ordinary Member of DASP (the Italian academy of history
Deputazione Abruzzese di Storia Patria).

This article has been accepted for publication in IEEE Transactions on Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TCOMM.2023.3324999

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


	Introduction
	Literature review
	Contributions
	Organization of the paper
	Notation

	System Model and Method Formulation
	Preliminary Results for noiseless MACs
	Modulation Selection for Noisy MACs
	Modulation Design with Channel Inversion
	Adapting Phase and Power of Existing Modulations
	Receiver Architecture in ChannelComp 

	Numerical Experiments
	Performance Evaluation of ChannelComp
	Comparison to AirComp
	E-ChannelComp with QAM Modulations

	Conclusion
	Appendix
	Proof of Proposition 2 
	Proof of Lemma 1

	References
	Biographies
	Saeed Razavikia 
	José Mairton Barros da Silva, Jr 
	Carlo Fischione 


