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A Tractable Statistical Representation of IFTR
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Abstract— The recently introduced independent fluctuating
two-ray (IFTR) fading model, consisting of two specular com-
ponents fluctuating independently plus a diffuse component,
has proven to provide an excellent fit to different wireless
environments, including the millimeter-wave band. However, the
original formulations of the probability density function (PDF)
and cumulative distribution function (CDF) of this model are
not applicable to all possible values of its defining parameters,
and are given in terms of multifold generalized hypergeometric
functions, which prevents their widespread use for the derivation
of performance metric expressions. A new formulation of the
IFTR model is here presented as a countable mixture of Gamma
distributions which greatly facilitates the performance evaluation
for this model in terms of the metrics already known for the much
simpler and widely used Nakagami-m fading, and is shown to
provide a better fit to empirical measurements than the original
formulation. Additionally, a closed-form expression is presented
for the generalized moment generating function (GMGF), which
permits to readily obtain all the moments of the distribution of
the model, as well as several relevant performance metrics. Based
on these new derivations, performance results are presented for
the IFTR model considering different metrics, which are verified
by Monte Carlo simulations.

Index Terms— Multipath fading, independent fluctuating two-
ray (IFTR), Gamma distribution, generalized moment generating
function.

I. INTRODUCTION

THE new challenges and use cases envisioned in the 6G
framework require the adoption of new and extended

capabilities in wireless communications networks [1]. Thus,
new services and applications requiring extremely high-
data-rate, hyper reliability and low latency, high-resolution
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imaging, and high-precision positioning demand for peak
data rates and spectrum efficiency higher than in 5G
services such as enhanced Mobile Broadband (eMBB),
Ultra-Reliable Low-Latency Communications (URLLC) and
massive Machine-Type Communications (mMTC) [2]. Addi-
tional usage scenarios such as immersive communication and
integration of sensing/AI and communication are also envi-
sioned in 6G networks. These new scenarios and requirements
demand for higher bandwidths, which are available at the
mmWave and even sub-THz/THz bands, in which the fun-
damental propagation characteristics need to be understood
and for which it is of paramount importance to develop
accurate channel models for network planning and preliminary
evaluation. In this regard, channel multipath fading is an
essential propagation effect to be considered due to the poten-
tial detrimental impact on performance. Therefore, accurate
characterization of wireless channel fading at those higher fre-
quencies has become a relevant research topic, and much effort
is being made in this area [3], [4], [5]. Theoretical statistical
channel models are fundamental tools for evaluating the per-
formance of wireless networks and can also help to reduce the
high computational load of software network simulations [6].

Recently, the independent fluctuating two-ray (IFTR) [7]
channel model has been presented to characterize multipath
propagation, which includes several well-known distributions,
namely Rayleigh, Rician, Hoyt (Nakagami-q), Rician Shad-
owed, and Nakagami-m, as special or limiting cases. The IFTR
model consists of two dominant (specular) waves plus a diffuse
component, due to the aggregation of multiple low-power scat-
tered waves, modeled as a complex Gaussian random variable
(RV), where the specular components are assumed to fluctuate
independently following Nakagami-m fading. This model is
related to the fluctuating two-ray (FTR) fading model except
that in the latter the two specular components are assumed
to be fully correlated and fluctuate simultaneously. The FTR
model was introduced in [8] and was later reformulated in [9]
and [10] and, more recently, in [11], and has been studied
abundantly for different wireless environments, mostly in the
context of millimeter-wave communications, and considering
many different performance metrics (see for example [11] and
the references therein). In spite of the apparent similitude in
the formal definition of the FTR and IFTR fading models,
there are major differences between them, both in terms
of the fitting results to experimental measurements and in
the involved mathematical derivations. On the one hand, the
IFTR fading model has been shown to provide a (sometimes
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remarkable) better fit than FTR fading (as well as other
generalized fading models such as κ-µ shadowed [12] and
two-wave with diffuse power –TWDP– [11]) to experimental
data in very different environments, including line-of-sight
(LOS) millimeter-wave, land-mobile satellites (LMS), and
underwater acoustic communications (UAC) [7]. On the other
hand, the independence of the two specular components in the
IFTR model imposes new mathematical challenges, as now
a two-fold nested integration always appear in its statistical
characterization, which cannot be obtained from that for the
FTR model, as different trascendental functions are involved,
and requires a separate analysis. It must be noted that both
models are complementary and typically applicable to different
situations that can be found in real environments, i.e, fully
correlated (FTR) versus independent (IFTR) fluctuations of
the specular components.

Although both the probability density function (PDF) and
cumulative distribution function (CDF) of the IFTR model
were presented in [7], their use is rather limited for two
reasons: on the one hand they are not completely general,
as they require assuming one of the model parameters m1 or
m2 to be integer, while they can take any arbitrary positive
real value in realistic propagation scenarios; on the other hand,
the known PDF and CDF are given in terms of a generalized
hypergeometric function, which is actually a multifold infinite
summation, which is very difficult to manipulate to obtain ana-
lytical expressions for most performance metrics in wireless
communication systems.

In this paper, we solve the aforementioned issues by deriv-
ing a new statistical characterization of the IFTR fading model
assuming arbitrary positive values of m1, m2 and easy to
manipulate. Additionally, we expand the known results for the
precise characterization of the model and apply them for the
performance analysis of wireless systems. Specifically, the key
contributions of this paper are:
• A new formulation is presented for the PDF and CDF

of the instantaneous SNR of IFTR fading in terms of
an infinite countable mixture of Gamma distributions for
arbitrary values of the channel parameters m1 and m2,
where the weights of the elements of the mixture are
given in closed-form. The resulting statistical functions
are much easier to manipulate mathematically than pre-
vious known expressions, and many performance metrics
of fading channels which can be expressed as a weighted
sum of Gamma distributions are known [13]. Also, the
new formulation is shown to provide a better fit to
empirical measurements than the original one.

• It is demonstrated that any average performance metric
expression already known for Nakagami-m fading (for
which there is a vast literature) allows to obtain such
metric for IFTR fading in a straightforward manner.
Also, the obtained infinite series are demonstrated to
be convergent and are precisely truncated and evaluated
using the Kolmogorov-Smirnov (KS) goodness-of-fit test.

• The generalized moment generating function (GMGF)
of the IFTR fading model is obtained for the first
time, which for many relevant cases can be written in
closed-form, allowing to obtain all the moments of the

distribution. In spite of the model generality and statistical
complexity, this function permits to obtain closed-form
expressions for different relevant performance metrics
including, for example, outage probability under inter-
ference and energy detection probability.

• The new and expanded statistical characterization of
IFTR fading is used for its performance analysis eval-
uation in terms of the average capacity, ergodic mutual
information for discrete inputs, outage probability with
and without interference, secrecy capacity outage prob-
ability and average bit error rate (BER) for different
modulations. The effect of the parameters values of the
model are evaluated numerically and verified by simula-
tion.

The rest of this paper is organized as follows: The channel
model is presented in Section II. Then, in Section III, the new
representation of the IFTR fading is presented, as well as,
for the first time, to the authors’ knowledge, an expression
of the GMGF, which for many relevant cases can be written
in closed-form. Several performance metrics, including the
average channel capacity, the ergodic mutual information for
discrete inputs, the outage probability, the secrecy capacity
outage probability and the BER in IFTR fading are analyzed
in Section IV. Simulation and numerical results are given in
Section V. Finally, the paper is concluded in Section VI.

II. PRELIMINARY DEFINITIONS AND CHANNEL MODEL

Definition 1: A RV X following a Gamma distribution with
shape parameter λ and scale parameter ν will be denoted as
X ∼ G(λ, ν), and its PDF and CDF are given, respectively,
by

fG(x; λ, ν) =
xλ−1

Γ(λ)νλ
e−

x
ν , (1)

FG(x; λ, ν) =
1

Γ(λ)
γ
(
λ,

x

ν

)
, (2)

where γ(·, ·) is the incomplete Gamma function [14, eq.
(8.350.1)].

Remark 1: The SNR γK (or, equivalently, the received
power) in a Nakagami-m fading with mean γ̄K and fading
severity parameter m follows a Gamma distribution with
shape parameter m and scale parameter γ̄K/m, i.e., γK ∼
G(m, γ̄K/m).

The IFTR fading model is composed of two specular
waves, whose amplitude fluctuate according to independent
Nakagami-m fading, plus an undetermined number of scat-
tered low-amplitude waves (the diffuse component) which,
by virtue of the central limit theorem, are jointly represented
by a complex Gaussian RV. Let ζi ∼ G(mi, 1/mi), with
i ∈ {1, 2}, then the complex base-band representation of the
IFTR fading model can be expressed as

Vr =
√

ζ1V1e
jϕ1 +

√
ζ2V2e

jϕ2 + X + jY, (3)

where Vi is the average amplitude of the i-th specular compo-
nent, ϕi is a uniformly distributed RV in [0, 2π) representing
its phase, and X + jY models the diffuse component with
X, Y ∼ N (0, σ2).
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In addition to the fading severity parameters of the specular
components, m1 and m2, the IFTR model will be determined
by the following physically-motivated parameters:

K =
V 2

1 + V 2
2

2σ2
, (4)

∆ =
2V1V2

V 2
1 + V 2

2

, (5)

where K represents the ratio of the average power of the
dominant components to the power of the diffuse compo-
nent and ∆ ∈ [0, 1] provides a measure of the specular
components similarity, so that ∆ = 1 implies V1 = V2.
Without loss of generality we will assume V1 ≥ V2, and
therefore ∆ = 0 implies V2 = 0, i.e., only the first specular
component, if any, is received. For the sake of compactness
in subsequent expressions, we will also define the following
ancillary parameters, given in terms of K and ∆:

K1 ≜
V 2

1

2σ2
= K

1 +
√

1−∆2

2
, (6)

K2 ≜
V 2

2

2σ2
= K

1−
√

1−∆2

2
. (7)

The IFTR model is very versatile and includes different clas-
sical and generalized fading models as particular cases by an
appropriate selection of the parameters. Thus, for m1, m2 →
∞ the fluctuations of the specular components disappear and
the IFTR model tends to the TWDP one [15]. If, in addition,
we let ∆ = 0, the Rice model is obtained. For finite values of
m1, ∆ = 0 yields the Rician Shadowed model [16], which was
shown in [17] that it contains the Hoyt (Nakagami-q) model
for m1 = 0.5, with q =

(√
1 + 2K

)−1
. The Rayleigh fading

model can be obtained as a particularization of either the
aforementioned Rice or Hoyt models for K = 0, and also for
m1 = 1 and ∆ = 0. If there is only one specular component
and the diffuse component is absent (∆ = 0, K → ∞), the
IFTR model tends to the Nakagami-m model.

III. NEW REPRESENTATION OF THE IFTR FADING MODEL

In this paper, we present a new statistical characterization of
the SNR of a signal undergoing IFTR fading which, denoting
by Es the symbol energy density and N0 the noise power
spectral density, is defined as γ ≜ (Es/N0) |Vr|2.

Definition 2: A RV γ following an IFTR distribution with
parameters m1, m2, K, ∆ and mean γ will be denoted by
γ ∼ IFT R(γ,m1, m2, K,∆), and its PDF and CDF will be
denoted, respectively, by f IFTR

γ (·) and F IFTR
γ (·).

Following the same spirit as in [18] for TWDP and in [9]
and [10] for FTR fading, we now show that the PDF and CDF
of the SNR of a RV following an IFTR distribution can be
expressed as infinite countable mixtures of the corresponding
functions for the Gamma distribution. Additionally, we show
how this result can be applied to readily obtain any metric,
defined by averaging over the channel realizations, for the
IFTR model, from such metric for the much simpler and
widely used Nakagami-m fading.

A. PDF and CDF of IFTR Fading

Lemma 1: Let γ ∼ IFT R(γ,m1, m2, K,∆), then, its
PDF and CDF can be expressed, respectively, as

f IFTR
γ (x) =

∞∑
j=0

Ajf
G
(

x; j + 1,
γ̄

1 + K

)
, (8)

F IFTR
γ (x) =

∞∑
j=0

AjF
G
(

x; j + 1,
γ̄

1 + K

)
, (9)

where fG and FG are, respectively, the PDF and CDF of the
Gamma distribution given in (1) and (2), and coefficients Aj

are given in (11), shown at the bottom of the next page, in
terms of the channel parameters and the regularized Gauss
hypergeometric function,1 which is defined as

2F̃1 (a, b; c; z) =
∞∑

k=0

(a)k (b)k

Γ (c + k)
zk

k!
, (10)

where (a)k ≜ Γ(a + k)/Γ(a) is the Pochhammer symbol.
Proof: See Appendix A.

Note that, in contrast to the PDF and CDF expressions given
in [7], (8) and (9) are valid for arbitrary values of m1 and m2,
and therefore this is also true for all the performance metrics
derived from them.

Remark 2: By noting that the j-th term in (8) is propor-
tional to (x/γ̄)j , the PDF and CDF in IFTR fading in the high
SNR regime (i.e., as γ̄ → ∞) can be approximated by only
maintaining the first term in the infinite summations, yielding

f IFTR
γ (x) ≈ A0

1 + K

γ̄
e−x(1+K)/γ̄ , γ̄ ≫ x, (12)

F IFTR
γ (x) ≈ A0

(
1− e−x(1+K)/γ̄

)
, γ̄ ≫ x (13)

with

A0 =
mm1

1 mm2
2

(K1 + m1)
m1 (K2 + m2)

m2

× 2F1

(
m1, m2; 1;

K2∆2

4 (K1 + m1) (K2 + m2)

)
. (14)

Thus, when averaging over metrics which are fast decreasing
on the instantaneous SNR, e.g., bit/symbol error rates, consid-
ering only the first term in the resulting summation yields a
tight asymptotic result as γ̄ →∞.

Corollary 1: Let h(γ) be a performance metric (or statis-
tical function) depending on the instantaneous SNR, and let
XK(γ̄K, m) be the metric (or function) obtained by averaging
over an interval of the PDF of the SNR for Nakagami-m fading
with mean γ̄K and fading severity m, i.e.,

XK(γ̄K, m) =
∫ b

a

h(x)fG(x; m, γ̄K/m)dx, (15)

1The regularized Gauss hypergeometric function can be calculated in
terms of the standard Gauss hypergeometric function as 2F̃1 (a, b; c; z) =

2F1 (a, b; c; z) /Γ(c) when c /∈ {0,−1,−2, . . .}, however, the correspond-
ing parameter c in the coefficients Aj in (11) can indeed be a non-positive
integer for some values of index j, therefore, 2F̃1 has to be calculated
using (10). Nevertheless, the regularized Gauss hypergeometric function is
in-built in the Mathematica software.
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where 0 ≤ a ≤ b ≤ ∞. Then, the average performance metric
for IFTR fading can be calculated as

XIFTR (γ̄,m1, m2, K,∆)

=
∞∑

j=0

AjX
K
(

γ̄

1 + K
(j + 1), j + 1

)
, (16)

where Aj are the IFTR coefficients defined in (11).
Proof: The average metric in IFTR fading channel is

calculated as

XIFTR(γ̄,m1, m2, K,∆) =
∫ b

a

h(x)f IFTR
γ (x) dx. (17)

By plugging (8) into (17) we can write

XIFTR (γ̄,m1, m2, K,∆)

=
∫ b

a

h (x)

 ∞∑
j=0

Ajf
G
(

x; j + 1,
γ̄

1 + K

) dx

=
∞∑

j=0

Aj

∫ b

a

h (x)fG
(

x; j + 1,
γ̄

1 + K

)
dx. (18)

Comparing the integral of the resulting expression with (15)
and identifying j + 1 = m and γ̄

1+K = γ̄K
m , (16) is obtained.

B. Series Convergence and Kolmogorov-Smirnov
Goodness-of-Fit Statistical Test

The series expression of the PDF given in (8) is calculated
by averaging the convergent series for TWDP fading, given
in (60), over the fluctuations of the specular components,
as explained in Appendix A. The weights of the Gamma
PDF’s in the TWDP series are positive [18] and therefore the
interchange of integration and infinite summation in (61) can
be carried out by virtue of Tonelli’s theorem [19], which has
the following consequences:

(i) The series in the right hand side of (8) converges to the
PDF of the IFTR fading model f IFTR

γ (x) ∀x ∈ [0,∞).
(ii) The calculated coefficients Aj are positive for all j.
Moreover, the performance metrics in communication sys-

tems (e.g., BER, channel capacity, outage probability, etc.)
are typically non-negative functions which, together with (ii),
permits to invoke again Tonelli’s theorem, thus allowing the
interchange of integration and infinite summation in (18),
yielding two additional consequences:

(iii) The series in the right hand side of (16) converges to
the average metric in IFTR fading XIFTR(γ̄,m1, m2, K,∆).

TABLE I
KS TEST FOR IFTR CHANNEL WITH DIFFERENT CHANNEL

PARAMETERS K , m1 , m2 , ∆

(iv) Considering h(γ) = 1 in [0,∞) in Corollary 1 yields
∞∑

j=0

Aj = 1. Adittionally, considering h(γ) = 1 in [0, x) in

Corollary 1 provides a formal justification for obtaining (9)
by integrating (8) term by term.

The infinite series used in the statistical characterization of
IFTR fading must be truncated for numerical computation.
We now provide the KS goodness-of-fit statistical test, which
permits to check how close a truncated series is to the exact
value. The KS test statistic is given by [20]

TKS = max|F̂ IFTR
γ (x)− F IFTR

γ (x)|, (19)

where F IFTR
γ (x) is the exact value of the CDF and F̂ IFTR

γ (x)
is the approximation of the CDF when the series is truncated
to J terms.

Table I reports the KS test for different channel parameters
when the truncated series have 20, 30 or 40 terms. It can be
seen that the accuracy reaches an acceptable level when the
first 40 terms of the series are computed, so the numerical cal-
culations of all the series in this work will consider 40 terms.

Figs. 1 and 2 show the PDF of the SNR for different IFTR
channel parameters obtained from (8) assuming 40 terms in
the truncated series computation. Fig. 1 is plotted for K =
12, ∆ = 0.9 and different non-integer values of m1 and m2,
while Fig. 2 shows the PDF for different values of K and ∆
with m1 = 30, m2 = 25. The numerical results are verified
by Monte-Carlo simulation, showing an excellent agreement
in all cases. These results show the great versatility of the
IFTR model, as varying the channel parameters results in very
different shapes of the PDF. Fig. 3 illustrates the CDF of the
SNR in IFTR fading computed from (9) for different values
of K, ∆ and m1, m2. A smoother shape of the CDF indicates
a higher variance and therefore an increased probability of
experiencing a deep fade. In all these figures it is assumed
γ̄ = 1.

Aj =
j∑

k=0

(
j

k

) j−k∑
q=0

(
j − k

q

)
Kq

1Kj−k−q
2

j!

k∑
l=0

(
k

l

)
mm1

1

Γ(m1)
mm2

2

Γ(m2)
Γ(m1 + q + l)

(K1 + m1)m1+q+l

Γ(m2 + j − k − q + l)
(K2 + m2)m2+j−k−q+l

× (−1)k

(
K∆
2

)2l

2F̃1

(
m1 + q + l,m2 + j − k − q + l, 2l − k + 1,

K2∆2

4(K1 + m1)(K2 + m2)

)
. (11)
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Fig. 1. PDF of the SNR under IFTR fading for different channel parameters
m1, m2 with K = 12 and ∆ = 0.9. Simulation confirmation results are
displayed as circular markers. K = 10. γ̄ = 1.

Fig. 2. PDF of the SNR under IFTR fading for different channel parameters
K and ∆ with m1 = 30, m2 = 25. Simulation confirmation results are
displayed as markers. ∆ = 0.5. γ̄ = 1.

C. Empirical Validation

We now show that the new IFTR formulation improves
channel fitting to experimental measurements with respect
to the original formulation, and also the suitability of the
IFTR distribution for modeling small-scale fading in high-
frequencies wireless links. We use the empirical measurements
results presented in [21] obtained in Brooklyn, New York,
where directional horn antennas were used at the transmitter
and receiver in a vertical-to-horizontal cross-polarized antenna
scenario at the 28 GHz band. We will consider an error factor,
ϵ, motivated by the KS statistic, which measures the degree
of agreement between the empirical and theoretical CDFs,
denoted Femp(x) and Fth(x), respectively, as

ϵ ≜ max
x
| log10(Femp(x))− log10(Fth(x))|, (20)

where the logarithm permits to emphasize discrepancies
between the CDFs near zero, as certain critical performance
metrics in communication systems, such as BER and outage

Fig. 3. CDF of the SNR under IFTR fading for different channel parameters
m1, m2, K, and ∆. Simulation confirmation results are displayed as circular
markers. γ̄ = 1.

TABLE II
FITTING RESULTS AT 28 GHZ

probability, depend on the likelihood of deep fading occur-
rences.

The parameters of the IFTR distribution, m1, m2, K, and ∆
have been optimized from the CDF of the experimental data
set at x = r2/E{r2}, where r = |Vr| represents the signal
envelope. We illustrate in Table II the optimal parameter values
of both the original and the new IFTR formulation proposed
here, which shows that the new one can achieve a lower
error by using non-integer values of all channel parameters.
In addition, the FTR model results are also presented, which
is shown to provide a worse match to the considered empirical
data than the IFTR model.

D. GMGF and Moments of the IFTR Model

Definition 3: Let n > 0, and let X be a continuous
non-negative RV with PDF fX(·). The GMGF of X is defined
as

ϕ
(n)
X (s) ≜ E

{
XneXs

}
=
∫ ∞

0

xnexsfX (x) dx, (21)

where E {·} denotes the expectation operator. The moment
generating function (MGF) is defined as ϕX (s) ≜ E

{
eXs

}
=

ϕ
(0)
X (s), and it is therefore a particular case of the GMGF.

Note that for n ∈ N, the GMGF coincides with the n-th order
derivative of the MGF. Also, the n-th order moment of X is
obtained as E {Xn} = ϕ

(n)
X (0).

The GMGF finds application in different communication
theory areas, including energy detection, outage probability
under co-channel interference, physical layer security or BER
analysis. In most cases it suffices to consider n ∈ N, which
usually results in closed-form expressions for the GMGF, such
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as it is the case for IFTR fading, as we show bellow. However,
there are situations, such as composite Inverse Gamma (IG)
shadowing/fading modeling [22], where the more general case
of arbitrary n > 0 needs to be considered. In the following
Lemma we derive expressions for the GMGF of the IFTR
fading model for both cases.

Lemma 2: Let γ ∼ IFT R(γ,m1, m2, K,∆), then, its
GMGF can be expressed as follows:

(i) General case (n ∈ R+):

ϕ(n)
γ (s) =

∞∑
j=0

Ajϕ
(n)
G

(
s, j + 1,

γ̄

1 + K

)
, (22)

where Aj is defined in (11) and ϕ
(n)
G is the GMGF of a RV

G ∼ G(λ, ν), which is given by

ϕ
(n)
G (s, λ, ν) =

Γ(n + λ)
(

1
ν − s

)−(n+λ)

Γ(λ)νλ
. (23)

(ii) Case n ∈ N: A closed-form expression is given in (24),
shown at the bottom of the next page.

Proof:
Case (i): This result is obtained by by applying Corollary 1

to the GMGF of the SNR in Nakagami-m fading given in [22,
Table II].

Case (ii): See Appendix B.

Lemma 3: Let γ ∼ IFT R(γ,m1, m2, K,∆), then its n-th
order moment can be expressed as follows:

(i) General case (n ∈ R+):

E{γn} =
∞∑

j=0

Aj
Γ(n + j + 1)γ̄n

Γ(j + 1)(1 + K)n
. (25)

(ii) Case n ∈ N: A closed-form expression is given now by

E{γn} =
(

γ

1 + K

)n n∑
q=0

(
n

q

)
n!
q!

q∑
r=0

(
q

r

)

×
q−r∑
p=0

(
q − r

p

)
Kp

1Kq−r−p
2

r∑
l=0

(
r

l

)(
K∆
2

)2l

× Γ (m1 + l + p)

Γ (m1) ml+p
1

Γ (m2 + q−l − p)

Γ (m2) mq−l−p
2

δ2l,r. (26)

where δ2l,r is the kronecker delta function.
Proof: These results follows by considering s = 0 in the

GMGF expressions. In case (ii), the following equality has
been taken into account to obtain (26):

lim
s→0

sn−m ·2 F̃1

(
a, b; n−m + 1; A · s2

)
= δn,m, (27)

which holds for any n, m ∈ N, where the cases n > m and
n = m are trivial, and the case n < m results from the fact
that the Gamma function has simple poles at the non-positive
integers, and therefore from (10) and given p ∈ N ∪ {0} we
can write

2F̃1 (a, b;−p; z) =
∞∑

k=p+1

(a)k (b)k

Γ (−p + k)
zk

k!
. (28)

From the expression of the moments for n ∈ N
given in (26), a closed-form expression for the amount
of fading (AoF) for IFTR fading can be obtained in
closed-form. The AoF captures the severity, in terms
of the variability, of the fading channel as a function
of the parameters of the model and is defined as the
variance of the SNR normalized by its squared mean,
so that AoF ≜ E{(γ − γ̄)2}/γ̄2 = E{γ2}/γ̄2 − 1.

Corollary 2: Let γ ∼ IFT R(γ,m1, m2, K,∆), then, its
AoF can be written as

AoF =
1

(1 + K)2

[
1 + 2K +

(K∆)2

2
+

K2
1

m1
+

K2
2

m2

]
. (29)

Proof: This result is obtained by particularizing the
moments in (26) to the definition of the AoF.

The IFTR fading model tends to the TWDP one for
m1, m2 → ∞. As a check, it must be noted that for such
condition the expression given in (29) tends to the AoF given
in [23, eq. (34)] for TWDP fading.

IV. PERFORMANCE ANALYSIS

By using the derived statistical characterization of the IFTR
fading model, the performance of different wireless commu-
nication systems undergoing this fading distribution can be
calculated. In the following, the channel capacity, the ergodic
mutual information for discrete inputs, the outage probability
in a noise-limited and in an interference-limited multi-antenna
receiver, the secrecy capacity outage probability and the bit
error rate for different modulations have been obtained for
IFTR fading.

A. Average Channel Capacity

The average capacity per unit bandwidth for IFTR fading
is given by

C̄ =
∫ ∞

0

log2(1 + x)f IFTR
γ (x)dx. (30)

A direct application of Corollary I using the average channel
capacity expression for Nakagami-m fading channels [24, eq.
(23)] provides the following closed-form expression:

C̄ =
∞∑

j=0

Aje
K+1

γ̄

ln(2)

j∑
k=0

(
1 + K

γ̄

)k

Γ
(
−k,

1 + K

γ̄

)
, (31)

where Aj is given in eq. (11) and Γ(., .) is the upper incom-
plete gamma function, which can be computed, when the first
parameter is a negative integer, as [14, eq. (8.352.3)]

Γ(−n, x) =
(−1)n

Γ(n)

[
n−1∑
r=0

Γ(n− r)
(−x)n−rex

− Ei(−x)

]
, (32)

where Ei(·) is the exponential integral function [14, eq.
(8.211.1)].

The asymptotic channel capacity in the high SNR regime
(γ̄ →∞) can be expressed as [25]

C̄ ≈ log2 (e) (ln γ + µ) , (33)
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where µ < 0 represents the capacity loss due to fading with
respect to the AWGN case (for which µ = 0), and can be
calculated in terms of the derivative of the moments of the
fading distribution as

µ =
1
γn

∂

∂n
E {γn} . (34)

In the case of Nakagami-m fading for m ∈ N, the value of µ
is given by µNak = Hm−1−γe− ln(m) [25, eq. (21b)], where
Hn ≜

∑n
k=1 (1/k) is the n-th harmonic number and γe is the

Euler-Mascheroni constant [26, eq. (6.1.3)]. From Corollary I,
the asymptotic channel capacity for IFTR fading can thus be
written as

C̄ ≈ log2 (e) ·

ln
(

γ

1 + K

)
− γe +

∞∑
j=1

AjHj

 . (35)

B. Ergodic Mutual Information

Let us assume the scalar AWGN channel with output
Y =

√
γX + N , where N ∼ CN (0, 1) represents the

complex Gaussian noise, γ represents a particular realization
of the channel power gain, and X is the input signal, with
E{|X|2} = 1, taking values with some given probabilities
from the constellation alphabet X . When X is a Gaussian con-
stellation, the instantaneous input-output mutual information
is given by I(γ) = log2(1 + γ), and in this case the ergodic
mutual information, which is obtained by promediating I(γ)
over the realizations of γ, is actually the average channel
capacity defined in (30).

However, in practical communication systems, X is a finite
set. In this subsection we will consider that X is an M -QAM
constellation with equal-probability symbols. In this case, I(γ)
is given in [27, eq. (5)], but it is not expressed in closed-form,
and the problem of finding the exact ergodic mutual informa-
tion becomes intractable. However, it is demonstrated in [27,
eq. (26)] that a tight and general approximated closed-form
expression of the ergodic mutual information is given by

Ī ≈ log2 M ×

(
1−

kM∑
i=1

ζ
(M)
i ϕγ

(
−ϑ

(M)
i

))
, (36)

where kM , ζ
(M)
i and ϑ

(M)
i are constants which are given in

[27, Table I], and ϕγ(·) is the MGF of the fading model, which
is given in (24) for the case when n = 0 for IFTR fading.
Thus, for this channel model, the ergodic mutual information

can be written as in (37), shown at the bottom of the next
page, from which a simpler asymptotic expression in the high
SNR regime can be found to be given as

Ī ≈ log2 M

×

(
1−

kM∑
i=1

ζ
(M)
i

1 + K

γ̄ϑ
(M)
i

mm1
1

(m1 + K1)
m1

mm2
2

(m2 + K2)
m2

× 2F1

(
m1, m2; 1;

(K∆)2

4 (m1 + K1) (m2 + K2)

))
,

γ̄ →∞. (38)

C. Outage Probability

1) Noise-Limited Reception: The outage probability, i.e.,
the probability that the received SNR is below a threshold
γth, under IFTR fading is given by

Pout = Pr(γ < γth) = F IFTR
γ (γth), (39)

where F IFTR
γ (·) is given in (9). An asymptotic outage prob-

ability expression in the high SNR regime can be obtained
from (13), or alternatively, by considering in this expression
the approximation ex ≈ 1 + x for |x| ≪ 1, it can be written
as

Pout ≈ A0
1 + K

γ̄
γth, γ̄ →∞. (40)

2) Interference-Limited Multi-Antenna Reception: In the
presence of co-channel interference (CCI) of total received
power I , considering negligible background noise and denot-
ing as W the received power from the desired user, which is
assumed to experience IFTR fading, the outage probability is
defined as

P̂out = P

(
W

I
< Rth

)
, (41)

where Rth denotes the signal-to-interference (SIR) threshold.
We further assume N receive antennas performing maximal

ratio combining (MRC) and L independent and identically
distributed (i.i.d.) Rayleigh interferers with average power PI .
We denote as Wi the desired user power at antenna i. In this
scenario, the outage probability is given by [28, eq. (15)]

P̂out =
L−1∑
k=0

(
1

RthPI

)k∑
U

N∏
i=1

1
ui!

ϕ
(ui)
Wi

(
− 1

RthPI

)
, (42)

ϕ(n)
γ (s) =

γnn!
(1 + K − γ̄s)n+1−m1−m2

mm1
1

Γ(m1)
mm2

2

Γ(m2)

n∑
q=0

(
n

q

)
(1 + K)q+1

q!

q∑
r=0

(
q

r

) q−r∑
p=0

(
q − r

p

)
Kp

1Kq−r−p
2

×
r∑

l=0

(
r

l

)(
K∆
2

)2l Γ(m1 + l + p)

(m1 (1 + K)− (m1 + K1)γ̄s)m1+l+p

Γ(m2 + l − p + q − r)

(m2 (1 + K)− (m2 + K2)γ̄s)m2+l−p+q−r
(γ̄s)2l−r

× 2F̃1

(
m1 + l + p, m2 + l − p + q − r; 2l − r + 1;

(K∆γ̄s)2

4(m1(1 + K)− (m1 + K1)γ̄s)(m2(1 + K)−(m2 + K2)γ̄s)

)
.

(24)
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where U is a set of N -tuples such that U = {(u1 . . . uN ), ui ∈
N,

∑N
i=1 ui = k}. The relation Wi = γi

Es/N0
results in

Wi ∼ IFT R(W, m1, m2, K,∆), with W the average desired
user power at every antenna. Therefore, ϕ

(ui)
Wi

(s) is computed
using (24), as ui ∈ N, by simply substituting γ̄ by W , thereby
providing a closed-form expression for the outage probability.

An asymptotic expression of the outage probability for
(W/PI) ≫ Rth can be expressed as

P̂out ≈ Q ·
[
Rth (1 + K)

W/PI

mm1
1

(m1 + K1)
m1

mm2
2

(m2 + K2)
m2

× 2F 1

(
m1, m2; 1;

(K∆)2

4 (m1 + K1) (m2 + K2)

)]N

,

(43)

where Q =
∑L−1

k=0 S(k, N), and where S(k,N) is the num-
ber of elements of set U (i.e., the number N -partitions of
integer k), which can be calculates recursively as S(k, N) =
S(k − 1, N) + S(k,N − 1), with S(1, N) = N, S(0, N) =
1, S(k, 1) = 1 [28, Appendix II]. It is interesting to note that
the outage probability given in (43) is inversely proportional
to the N -th power of W/PI due to the MRC reception.

D. Average BER

The average bit/symbol error rate in a telecommunication
system is one of the main parameters for measuring the quality
of communication. In this section, we calculate this metric for
the IFTR fading channel. The conditional BER probability
in an AWGN channel for some relevant modulations with
coherent detection can be written as [29]

Pe(x) =
R∑

r=1

αrQ(
√

βrx). (44)

The average BER is calculated by averaging (44) over all
possible channel realizations. From the result in [30, eq.
(5.18)] for Nakagami-m fading, by virtue of Corollary 1,
the average BER in IFTR fading can be written, after some
manipulation, as

P̄e =
R∑

r=1

αr

2

∞∑
j=0

Aj

[
1−

√
βrγ

2 (1 + K) + βrγ

j∑
k=0

(
2k

k

)

×

(
1− βrγ

2(1+K)+βrγ

4

)k
 . (45)

In the high SNR regime, the average BER can be simplified
by simply maintaining the first term in the infinite summation,
as stated in Remark 2, yielding

P̄e ≈
R∑

r=1

αr

2
A0

[
1−

√
βrγ

2 (1 + K) + βrγ

]
, γ̄ →∞. (46)

Asymptotic expressions of symbol error rates are more typ-
ically given in terms of a power of γ̄. We can obtain
such result from (46) by considering the approximation
0.5
(
1−

√
x/ (1 + x)

)
≈ 1/ (4x) when x ≫ 1 [31]. Thus,

we can write

P̄e ≈
1 + K

2γ̄
A0

R∑
r=1

αr

βr
, γ̄ →∞, (47)

which, as expected, coincides with the asymptotic expression
in [7, eq. (15)] and reveals that the diversity gain of the IFTR
model is always 1 for single antenna reception.

E. Secrecy Capacity Outage Probability

We consider that two legitimate peers, Alice (transmitter)
and Bob (receiver), want to communicate over a wireless
link in the presence of an eavesdropper (Eve). Let us denote
as γb the instantaneous SNR at the receiver for the link
between Alice and Bob, and γe the instantaneous SNR at the
eavesdropper for the eavesdropping link between Alice and
Eve.

The normalized secrecy capacity is defined as [32] Cs =
max {log (1 + γb)− log (1 + γe) , 0}. By denoting Rs as the
threshold rate under which secure communication cannot be
achieved, the secrecy capacity outage probability is defined as
P (Cs < Rs) = 1 − P (Cs > Rs), where P (Cs > Rs) is the
probability of achieving a successful secure communication
between Alice and Bob, which can be written as [33, eq. (9)]

P (Cs > Rs) =
∫ ∞

0

fγe(x)
(

1− Fγb
(2Rs(1 + x)− 1)

)
dx,

(48)

where fγe
(·) is the PDF of γe, which is assumed to follow an

arbitrary distribution. On the other hand, the legitimate channel
is assumed to undergo IFTR fading, and therefore Fγb

(·),

Ī ≈ log2 M ×

1−
kM∑
i=1

ζ
(M)
i

1 + K

1 + K + γ̄ϑ
(M)
i

mm1
1(

m1 + K1
γ̄ϑ

(M)
i

1+K+γ̄ϑ
(M)
i

)m1

mm2
2(

m2 + K2
γ̄ϑ

(M)
i

1+K+γ̄ϑ
(M)
i

)m2

× 2F1

m1, m2; 1;

(
K∆γ̄ϑ

(M)
i

)2

4
(
m1 (1 + K) + (m1 + K1) γ̄ϑ

(M)
i

)(
m2 (1 + K) + (m2 + K2) γ̄ϑ

(M)
i

)

 . (37)
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which represents the CDF of γb, is given in (9). Leveraging
on the closed-form expression of the probability of successful
secure transmission given in [34, eq. (34)] when the legitimate
link undergoes Nakagami-m, by virtue of Corollary I, when
this link experience IFTR fading we can write

P (Cs > Rs)

=
∞∑

j=0

Aj,be
1+K

γ̄b
(1−2Rs )

j∑
p=0

1
p!

(
1 + K

γ̄b

)p

×
p∑

n=0

(
p

n

)
2nRs(2Rs − 1)p−nϕ(n)

γe

(
−2Rs

1 + K

γ̄b

)
,

(49)

where Aj,b refer to the coefficients of the channel at Bob. Note
that this result is valid for an arbitrary fading distribution of
the eavesdropper link, as long as its GMGF is known. The
GMGF of different classical and generalized fading models
can be found in [22, Table II]. When the eavesdropper link
undergoes IFTR fading, (24) is used in (49).

An asymptotic expression for the successful secure commu-
nication (and therefore, for the secrecy outage probability) in
the high SNR regime of the legitimate channel can be obtained
by introducing (13) into (48) to approximate Fγb

(·), yielding

P (Cs > Rs)
≈ 1−A0,b

×
∫ ∞

0

fγe
(x)
(

1− e
− 1+Kb

γ̄b
(2Rs+2Rs x−1)

)
dx

≈ 1−A0,b

×
∫ ∞

0

fγe(x)
(

1 + Kb

γ̄b
(2Rs + 2Rsx− 1)

)
dx, γ̄b →∞.

(50)

By noticing that
∫∞
0

fγe
(x)xdx = γ̄e, we finally obtain

P (Cs > Rs) ≈ 1−A0,b
1 + Kb

γ̄b

(
2Rs γ̄e + 2Rs − 1

)
,

γ̄b →∞. (51)

It is interesting to note that, in the high SNR regime, the
distribution of γb dominates the secrecy outage probability,
which does not depend on the fading parameters of the
eavesdropper channel, but only on its average value γ̄e.

V. NUMERICAL AND SIMULATION RESULTS

This section presents figures illustrating the performance
of IFTR fading channels. The obtained numerical results have
been validated by Monte Carlo simulations, where 107 random
realizations of the IFTR distribution have been computed.
Based on Table I, numerical results involving infinite series
have been calculated truncating to 40 terms, as it provides a
satisfactory accuracy for all the considered cases.

The average channel capacity for IFTR fading is presented
in Figs. 4 and 5 for different values of the channel param-
eters {m1, m2, K,∆}. The presented exact and asymptotic
(in Fig. 5) numerical results have been obtained from (31)
and (35), respectively. In Fig. 4 it can be seen that a higher

Fig. 4. Numerical and simulation results for the average capacity vs. average
SNR in dB for different channel parameters values. Simulation confirmation
results are displayed as circular markers.

Fig. 5. Numerical, simulation and asymptotic results for the average capacity
vs. average SNR in dB for two different groups of channel parameters:
mild fading (K = 15, ∆ = 0.1, m1 = m2 = 30) and severe fading
(K = 1, ∆ = 0.9, m1 = m2 = 2.5).

capacity is obtained for high K. On the other hand, a high
value of ∆ (close to 1) yields lower capacity due to the
increased probability that the specular components cancel each
other, which increases the channel variability. Fig. 5 shows
that, as expected, a wireless link undergoing severe fading
(with parameters K = 1, ∆ = 0.9, m1 = m2 = 2.5) yields a
lower average channel capacity than in the case of mild fading
(K = 15, ∆ = 0.1, m1 = m2 = 30).

Fig. 6 shows the ergodic mutual information as a function of
γ̄ considering different values of M when a discrete M -QAM
constellation is used. The figure depicts both the analytical
approximate results from (37) as well as exact simulation
results, showing a very good agreement. The considered IFTR
fading channel parameters correspond to the ones obtained
from the empirical measurements used in Section III-C, i.e.,
K = 467.5652, ∆ = 0.8487, m1 = 9.2 and m2 = 50.6.

Fig. 7 shows the outage probability (Pout), computed
from (39) (exact) and (40) (asymptotic), versus the average
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Fig. 6. Analysis approximation and exact simulation results for the ergodic
mutual information vs. γ̄ in dB for M -QAM symbols with channel parameters
K = 467.5652, ∆ = 0.8487, m1 = 9.2, m2 = 50.6.

Fig. 7. Numerical, simulation and asymptotic results for the outage
probability vs. average SNR in dB.

SNR (γ̄) for different channel model parameters values. It can
be observed that decreasing ∆ from 0.9 to 0.5, increasing K
from 5 to 15, and increasing m1, when K = 5 and ∆ = 0.5,
yields a better performance (lower outage probability), as these
changes give rise to a reduced fading severity.

Figs 8 and 9 show the outage probability considering CCI
and multi-antenna MRC reception. The exact and asymp-
totic results are obtained in this case from (42) and (43),
respectively. In Fig. 8 the same values of the IFTR model
parameters as in Fig. 7 are considered, and a similar impact
of these parameters on performance is observed, although
the amount of variation in the outage probability is affected
by the presence of interference and multiple antennas. Fig 9
shows how the outage probability improves (decreases) and
the number of antennas increases and the number of interferes
decreases. It can be seen that the number of antennas has a
higher impact, as it affects the slope of the outage proba-
bility for high values of W/PI . Fig. 10 depicts the outage
probability with CCI for different system parameters vs. the

Fig. 8. Numerical, simulation and asymptotic results for the outage
probability for IFTR fading with CCI for different channel parameters values
with N = 2, L = 1, and Rth = 0 dB.

Fig. 9. Numerical, simulation and asymptotic results for the outage
probability for IFTR fading with CCI considering different values of the
number of antennas N = 2, 3 and interferers L = 5, 10 with Rth = 1,
m1 = 30, m2 = 3, K = 10 and ∆ = 0.1.

SIR threshold considering different values of the number of
antennas N = 1, 2 and parameter K = 1, 5, 10, 15. It is
observed that the outage probability increases as the threshold
also increases, as expected.

Figs. 11 and 12 show the exact, from (45), simulation and
asymptotic, from (47), BER vs. the average SNR in IFTR
fading for BPSK modulation (R = 1, α1 = 1, β1 = 2).
In Fig. 11 different values of ∆ = 0.1, 0.5, 0.9 are consid-
ered when the fading severity parameters, m1 and m2 are
non-integers. Again, increasing ∆ results in higher channel
variability, causing a detrimental impact on performance, i.e.,
a higher average BER. It is worth mentioning that when the
average SNR is above 20 dB, the asymptotic curves, which
are much simpler to compute, yield very good approximate
results, and above 30 dB the exact and asymptotic results are
indistinguishable in all the presented cases. In Fig. 12 different
values of K = 1, 5, 15 are assumed and it can be seen that
higher values of K (i.e., higher average power of the specular
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Fig. 10. Numerical, simulation and asymptotic results for the out-
age probability for IFTR fading with CCI considering different values of
K = 1, 5, 10, 15 and N = 1, 2, with L = 1 and W/PI = 1. Channel
parameters are m1 = 3, m2 = 30 and ∆ = 0.5.

Fig. 11. Numerical, simulation and asymptotic results for the average BER
vs. average SNR in dB for BPSK considering different values of ∆ with
channel parameters m1 = 15.7, m2 = 5.1 and K = 10.

Fig. 12. Numerical, simulation and asymptotic results for the average BER
vs. average SNR in dB for BPSK considering different values of K with
channel parameters m1 = 1.5, m2 = 0.9 and ∆ = 1.

components) improves (decreases) the BER. In this case, the
exact and asymptotic results are indistinguishable above 20 dB
of the average SNR.

Fig. 13. Outage probability of secrecy capacity vs. average SNR γ̄b in dB
for different values of the Eve average SNR γ̄e when both channels undergo
IFTR fading with parameters m1 = 25.5, m2 = 7.5, K = 10, and ∆ = 0.1.

Fig. 14. Probability of strictly positive secrecy capacity as a function of γ̄b

in dB for different values of the IFTR channel parameters ∆, m1, m2 for
both legitimate and eavesdropper IFTR links, with K = 5, ∆ = 0.5, and
γ̄e = 1.

Fig. 13 presents the outage probability of secrecy capacity,
when both the legitimate and eavesdropper links undergo IFTR
fading with average SNR γ̄b and γ̄e, respectively, and the
remaining parameters (m1, m2, K and ∆) are assumed to be
the same for both links. A threshold Rs = 0.1 is assumed,
and the secrecy capacity outage probability is shown as a
function of γ̄b and considering different values of γ̄e. It can
be observed that, by either increasing γ̄b of the legitimate link
or decreasing γ̄e of the eavesdropper link, the outage secrecy
capacity decreases.

The probability of strictly positive secrecy capacity, defined
as P (Cs > 0), is evaluated in Fig. 14 considering IFTR fading
for both the legitimate and eavesdropper links for different
channel parameter values as a function of γ̄b. Two different
values of ∆ = 0.1, 0.9 are compared for different sets of
(m1, m2). It is shown that, for low values of γ̄b, increasing
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the similarity of the two specular components by increasing ∆
provides a higher probability of strictly positive secrecy, which
is a result of the increased probability of the eavesdropper to
experience a deep fade. On the other hand, higher values of
m1 and m2, which results in milder fluctuations, decreases the
secrecy capacity. These results indicate that for lower values
of γ̄b, the channel parameter values of the eavesdropper link
dominates over those of the legitimate link.

VI. CONCLUSION

In this paper, a new formulation in series form has been
derived for the PDF and CDF of the IFTR fading model.
The convergence of the obtained series are demonstrated and
truncated for numerical computation using the Kolmogorov-
Smirnov goodness-of-fit. We show that, leveraging on any
average performance metric already known for the much
simpler Nakagami-m fading model, such metric can be readily
obtained for IFTR fading. Also the new formulation is shown
to provide a better match to empirical measurements than the
original one, as arbitrary values for the fading parameters are
permitted.

Additionally, the GMGF of IFTR fading has been obtained
which, for most cases of interest, can be expressed in
closed-form, thus opening the door to circumvent the model
mathematical complexity and obtain several relevant perfor-
mance metrics also in closed-form, as well as the moments
of the distribution and the amount of fading. Finally, the
new and expanded statistical characterization of the IFTR
fading model has been exemplified, showing and discussing
numerical results and the impact of channel parameter val-
ues for the average channel capacity, the ergodic mutual
information for M -QAM constellations with equal-probability
symbols, the outage probability with and without interfer-
ence, the secrecy capacity outage probability, and the BER
for BPSK modulation, which have been verified by Monte
Carlo simulations. It has been shown that for lower K (i.e.,
lower average ratio of specular to diffuse components power),
∆ → 1 (higher probability of mutual cancellation of the
specular component) and lower m1, m2 (higher fluctuations
of the specular components), the performance worsen for the
considered metrics.

The IFTR model can be extended to incorporate the recep-
tion of multiple clusters of scattered waves. Such extended
model could be used to capture the total received power
typically encountered in multi-channel receivers, although at
the expense of an increased number of parameters. Such
extension is left for future work.

APPENDIX A
PROOF OF LEMMA I

Let us consider the fading model defined in (3) conditioned
to the particular realizations of the RVs ζ1 = u1, ζ2 = u2.
Thus, we can write

Vr|u1,u2
=
√

u1V1e
jϕ1 +

√
u2V2e

jϕ2 + X + jY, (52)

which corresponds to the TWDP fading model
with specular components amplitudes

√
u1V1 and

√
u2V2 and parameters

Ku1,u2 =
u1V

2
1 + u2V

2
2

2σ2
= u1K1 + u2K2, (53)

∆u1,u2 =
2
√

u1u2V1V2

u1V 2
1 + u2V 2

2

, (54)

which satisfy

Ku1,u2∆u1,u2 =
√

u1u2
V1V2

σ2
=
√

u1u2K∆. (55)

The conditional average SNR for the model definition given
in (52) will be

γ̄u1,u2 =
Es

N0

(
u1V

2
1 + u2V

2
2 + 2σ2

)
=

Es

N0
2σ2 (1 + Ku1,u2) .

(56)

On the other hand, by promediating over all possible real-
izations of the unit-mean RVs ζ1, ζ2, the unconditional average
SNR will be

γ̄ = E{γ̄u1,u2} =
Es

N0
(V 2

1 + V 2
2 + 2σ2) =

Es

N0
2σ2(1 + K),

(57)

and therefore, equating (56) and (57), we can write

1 + Ku1,u2

γ̄u1,u2

=
1

(Es/N0) 2σ2
=

1 + K

γ̄
, (58)

From the PDF of the received power of the TWDP fading
model given in [18] as a mixture of Gamma distributions, the
PDF of the conditional SNR of the model defined in (52) can
be written as

fTWDP
γu1,u2

(x)

= e−Ku1,u2

∞∑
j=0

Kj
u1,u2

j!
fG
(

x; j + 1,
γ̄u1,u2

1 + Ku1,u2

)

×
j∑

k=0

(
j

k

)(
∆u1,u2

2

)k k∑
l=0

(
k

l

)
I2l−k (−Ku1,u2∆u1,u2) ,

(59)

which, from (53)-(58), can be rewritten as

fTWDP
γu1,u2

(x)

= e−u1K1−u1K2

∞∑
j=0

1
j!

fG
(

x; j + 1,
γ̄

1 + K

)

×
j∑

k=0

(
j

k

) j−k∑
q=0

(
j − k

q

)
(u1K1)

q(u2K2)
j−k−q

×
(√

u1u2K∆
2

)k k∑
l=0

(
k

l

)
I2l−k (−

√
u1u2K∆) , (60)

The PDF of the SNR of the IFTR model can be obtained by
averaging (60) over all possible realizations of the RVs ζ1 and
ζ2, i.e.

f IFTR
γ (x) =

∫ ∞

0

∫ ∞

0

fTWDP
γu1,u2

(x)fζ1 (u1) fζ2 (u2) du1du2,

(61)
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where

fζi
(ui) =

mmi
i umi−1

i

Γ (mi)
e−miui , i = 1, 2. (62)

The double integral in (61) can be solved in closed-form
by iteratively integrating with respect to variables u1 and u2.
Thus, after changing the order of integration and summation,
we can write

f IFTR
γ (x) =

∞∑
j=0

fG
(

x; j + 1,
γ

1 + K

)

×
j∑

k=0

(
j

k

) j−k∑
q=0

(
j − k

q

)
Kq

1Kj−k−q
2

j!

×
(

K∆
2

)k k∑
l=0

(
k

l

)
mm1

1

Γ(m1)
mm2

2

Γ(m2)
H1, (63)

where we have defined

H1 ≜
∫ ∞

0

u
m2+j−k/2−q−1
2 e−(m2+K2)u2I1(u2)du2,

(64)

I1(u2) ≜
∫ ∞

0

u
m1+q+k/2−1
1 e−(m1+K1)u1

× I2l−k (−
√

u1u2K∆) du1. (65)

We now consider the following equality from [14, 6.643.2]
and [14, 9.220.2]:

J =
∫ ∞

0

tµ−1/2e−ptI2ν

(
2β
√

t
)
dt

=
Γ(µ + ν + 1

2 )β2ν

pν+µ+ 1
2

1F̃1

(
µ + ν +

1
2
, 2ν + 1,

β2

p

)
, (66)

where 1F̃1 is the regularized Kummer hypergeometric func-
tion, and from which (65) can be written in closed-form as

I1(u2) = (−1)k Γ (m1 + q + l)

(m1 + K1)
m1+q+l

(
K∆
2

)2l−k

u
l−k/2
2

×1 F̃1

(
m1 + q + l; 2l−k + 1;

u2K
2∆2

4 (m1 + K1)

)
.

(67)

Introducing (67) into (64) and solving the integral with the
help of [14, eq. (7.621.4)] we can write

H1 = (−1)k

(
K∆
2

)2l−k Γ (m1 + q + l)

(m1 + K1)
m1+q+l

× Γ(m2 + j−k−q + l)

(m2 + K2)
m2+j−k−q+l 2F̃1

(
m1 + q + l,

m2 + j−k−q + l; 2l−k + 1;
K2∆2

4 (m1 + K1) (m2 + K2)

)
,

(68)

which, together with (63), yields the desired result in (8) for
the PDF of the SNR of the IFTR fading model. On the other
hand, the CDF in (9) is obtained by a simple integration of (8)
(see additional comments on this in Section III-B).

APPENDIX B
PROOF OF LEMMA 2: CASE (II)

As in Appendix A, we consider an IFTR model conditioned
to the particular realizations of the RVs ζ1 = u1, ζ2 =
u2, which yields a TWDP model with specular components
amplitudes

√
u1V1 and

√
u2V2, parameters Ku1,u2 and ∆u1,u2

given, respectively, by (53) and (54), and conditional mean
γ̄u1,u2 , given in (56). The GMGF for the TWDP model for
n ∈ N can be obtained from [35, eq. (24) for µ = 1] as

ϕ
(n)
γ̄u1,u2

(s)

= γ̄n
u1,u2

n!e
Ku1,u2 γ̄u1,u2s

1+Ku1,u2−γ̄u1,u2s

n∑
q=0

(
n

q

)
Kq

u1,u2

q!

× (1 + Ku1,u2)
q+1

(1 + Ku1,u2 − γ̄u1,u2s)
q+n+1

q∑
r=0

(
q

r

)(
∆u1,u2

2

)r

×
r∑

l=0

(
r

l

)
I2l−r

(
Ku1,u2∆u1,u2 γ̄u1,u2s

1 + Ku1,u2 − γ̄u1,u2s

)
, (69)

which can be written, by using the relations (53)-(58), as

ϕ(n)
γu1.u2

(s)

= γ̄nn!e
γs

1+K−γ̄s (u1K1+u2K2)

×
n∑

q=0

(
n

q

) q−r∑
p=0

(
q − r

p

)
(u1K1)

p (u2K2)
q−r−p

q!

× (1 + K)q+1

(1 + K − γ̄s)q+n+1

q∑
r=0

(
q

r

)(√
u1u2K∆

2

)r

×
l∑

l=0

(
r

l

)
I2l−r

(
√

u1u2
K∆γ̄s

1 + K − γ̄s

)
. (70)

The GMGF of IFTR fading is obtained by averaging (70)
over all possible realizations of ζ1, ζ2 as

ϕ(n)
γ (s) =

∫ ∞

0

∫ ∞

0

ϕ(n)
γu1.u2

(s) fζ1(u1)fζ2(u2)du1du2.

(72)

Introducing (70) into (72) we can write

ϕ(n)
γu1.u2

(s)

= γ̄nn!
mm1

1

Γ(m1)
mm2

2

Γ(m2)

n∑
q=0

(
n

q

) q−r∑
p=0

(
q − r

p

)

× (K1)
p (K2)

q−r−p

q!
(1 + K)q+1

(1 + K − γ̄s)q+n+1

q∑
r=0

(
q

r

)

×
(

K∆
2

)r l∑
l=0

(
r

l

)
H2, (73)

where we have defined

H2 ≜
∫ ∞

0

u
m2+q−r/2−p−1
2 e−(m2− K2γ̄s

1+K−γ̄s )u2I2(u2)du2,

(74)

I2(u2) ≜
∫ ∞

0

e−(m1− K1γ̄s
1+K−γ̄s )u1u

m1+p+r/2−1
1
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H2 = (1 + K − γs)m1+m2+q (γs)2l−r

(
K∆
2

)2l−r Γ (m1 + l + p)

(m1 (1 + K − γs)−K1γs)m1+l+p

× Γ(m2 + l−p + q − r)

(m2 (1 + K − γs)−K2γs)m2+l−p+q−r 2F̃1

(
m1 + l + p, m2 + l−p + q − r; 2l − r;

(K∆γs)2

4 (m2 (1 + K − γs)−K2γs) (m1 (1 + K − γs)−K1γs)

)
. (71)

I2l−r

(
√

u1u2
K∆γ̄s

1 + K − γ̄s

)
du1. (75)

Note that H2 and I2 are actually the same integrals H1 and
I1 defined, respectively, in (64) and (65), although for different
coefficients, which are now in some cases rational functions
on s. Therefore, following the same procedure as in (64)-(68),
a closed-form expression can be found for H2 as given in (71),
shown at the top of the page, which together with (73)
yields (24).
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