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Successive Cancellation Ordered Search Decoding
of Modified GN-Coset Codes
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Abstract— A tree search algorithm called successive cancella-
tion ordered search (SCOS) is proposed for GN -coset codes that
implements maximum-likelihood (ML) decoding with adaptive
complexity for transmission over binary-input AWGN channels.
Unlike bit-flip decoders, no outer code is needed to terminate
decoding; therefore, SCOS also applies to GN -coset codes modi-
fied with dynamic frozen bits. The average complexity is close to
that of successive cancellation (SC) decoding at practical frame
error rates (FERs) for codes with wide ranges of rate and lengths
up to 512 bits, which perform within 0.25 dB or less from
the random coding union bound and outperform Reed–Muller
codes under ML decoding by up to 0.5 dB. Simulations illustrate
simultaneous gains for SCOS over SC-Fano, SC stack (SCS) and
SC list (SCL) decoding in FER and the average complexity at
various SNR regimes. SCOS is further extended by forcing it to
look for candidates satisfying a threshold, thereby outperforming
basic SCOS under complexity constraints. The modified SCOS
enables strong error-detection capability without the need for an
outer code. In particular, the (128, 64) polarization-adjusted
convolutional code under modified SCOS provides gains in
overall and undetected FER compared to CRC-aided polar codes
under SCL/dynamic SC flip decoding at high SNR.

Index Terms— Complexity-adaptive maximum-likelihood
decoding, error detection, polar codes, Reed–Muller codes,
dynamic frozen bits.

I. INTRODUCTION

THE GN -coset codes are a class of block codes [3] that
include polar codes [3], [4] and Reed-Muller (RM) codes

[5], [6]. Polar codes achieve capacity over binary-input dis-
crete memoryless channels (B-DMCs) under low-complexity
successive cancellation (SC) decoding [3] and RM codes
achieve capacity over binary erasure channels (BECs) under
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Mustafa Cemil Coşkun was with the Institute for Communications Engineer-
ing (LNT), Technical University of Munich (TUM), 80333 Munich, Germany.
He is now with the Radio Systems Research Laboratory, Nokia Bell Labs,
Murray Hill, NJ 07974 USA (e-mail: mustafa.coskun@nokia-bell-labs.com).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2024.3364989.

Digital Object Identifier 10.1109/TCOMM.2024.3364989

maximum-likelihood (ML) decoding [7].1 However, their per-
formance under SC decoding [4] is not competitive for short-
to moderate-lengths, e.g., from 64 to 512 bits [9].2 Significant
research effort hast been put into approaching ML perfor-
mance by improved decoding algorithms with an SC decoding
schedule [12], [13], [14], [15], [16], [17], [18], improving the
distance properties [19], [20], [21], [22], [23], [24], [25], [26]
or both [27], [28].

The idea of dynamic frozen bits lets one represent any
linear block code as a modified GN -coset code [21]. This
concept unifies the concatenated polar code approach, e.g.,
with a high-rate outer cyclic redundancy check (CRC) code,
to improve the distance spectrum of polar codes so that they
can be decoded with low to moderate complexity [27].

This paper proposes successive cancellation ordered search
(SCOS) as an ML decoder for modified GN -coset codes.
The decoding complexity adapts to the channel noise and an
extension of SCOS limits the worse-case complexity while
still permitting near-ML decoding for various code lengths
N ∈ {64, 128, 256, 512} and wide ranges of rate from low
to high. The decoder can be used for GN -coset codes,
CRC-concatenated GN -coset codes as well as those with
dynamic frozen bits. Numerical results show that RM and
RM-polar codes with dynamic frozen bits of block length
N ∈ {64, 128, 256, 512}, i.e., dynamic RM (dRM) [11] and
the proposed dRM-polar codes, perform within 0.25 dB of the
random-coding union (RCU) bound [29] with an average com-
plexity close to that of SC decoding at low enough frame error
rates (FERs). Remarkably, dRM codes under SCOS outper-
form ML performance of RM codes up to 0.5 dB. To illustrate
the benefits of the proposed algorithm, simulations with suc-
cessive cancellation Fano (SC-Fano), successive cancellation
stack (SCS) and successive cancellation list (SCL) decoding
algorithms are also provided for codes of length 128 as exam-
ples. Compared to all, SCOS provides lower average decoding
complexity with better FER performance at various operating
regimes. SCOS is further extended by limiting attention to
codeword candidates satisfying an optimized threshold test,
which improves the performance when a maximum complexity
constraint is imposed. In addition, the threshold test lets the

1RM codes achieve capacity over B-DMCs under bit-wise ML decoding [8],
i.e., the average bit error probability vanishes asymptotically in the block
length.

2Long RM codes are not well-suited for SC decoding [10], [11]: the error
probability of long RM codes under SC decoding is lower-bounded by 1/2
[3, Section X].
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decoder avoid making a decision [30] which provides simul-
taneous gains in overall FER and undetected frame error rate
(uFER) for the (128, 64) polarization-adjusted convolutional
(PAC) code as compared to a CRC-concatenated polar code
under SCL and dynamic successive cancellation flip (DSCF)
decoding algorithms, where the CRC is optimized for the
lower tail of the distance spectrum [31].

SCOS borrows ideas from SC-based flip [17], [18], sequen-
tial [14], [15], [16], [32], [33] and list decoders [27], [34],
[35], [36]. It is a tree search algorithm that flips the bits of
valid paths to find a leaf with higher likelihood than other
leaves, if such a leaf exists, and repeats until the ML decision
is found. The search stores the branches in the list that is
updated progressively while running partial SC decoding by
flipping the bits of the most-likely leaf at each iteration. The
order of the candidates is chosen according to the probability
that they provide the ML decision. SCOS does not require
an outer code (as for flip-decoders) or parameter optimization
for the performance vs. complexity trade-off (as for sequential
decoders).

This paper is organized as follows. Section II gives back-
ground on the problem. Section III presents the SCOS
algorithm with the pseudo codes. The complexity of SCOS
is discussed together with the numerical results in Section IV.
Then, Section V proposes modifications and provides numeri-
cal results in comparison to the original algorithm. Section VI
compares SCOS to the other existing complexity-adaptive
decoders and Section VII concludes the paper.

II. PRELIMINARIES

Let xa be the vector (x1, x2, . . . , xa); if a = 0, then the
vector is empty. Given xN and a set A ⊂ [N ] ≜ {1, . . . , N},
let xA be the subvector (xi : i ∈ A). For set A, we define
an intersection set as A(i) ≜ A ∩ [i], i ∈ [N ]. Uppercase
letters refer to random variables (RVs) and lowercase letters
to realizations. A B-DMC is denoted as W : X → Y , with
input alphabet X = {0, 1}, output alphabet Y , and transition
probabilities W (y|x) for x ∈ X and y ∈ Y [37, Sec. 4]. The
transition probabilities of N independent uses of the same
channel are denoted as WN (yN |xN ) and can be factored as
WN (yN |xN ) =

∏N
i=1W (yi|xi). Capital bold letters refer to

matrices, e.g., BN denotes the N ×N bit reversal matrix [3]
and G2 denotes the 2× 2 Hadamard matrix.

A. GN -Coset Codes

Consider the matrix GN = BNG⊗n
2 , where N = 2n with

a non-negative integer n and G⊗n
2 is the n-fold Kronecker

product of G2. For the set A ⊆ [N ] with |A| = K, let UA
have entries that are independent and identically distributed
(i.i.d.) uniform information bits, and let UAc = uAc be fixed
or frozen, where Ac ≜ [N ] \ A. The mapping cN = uNGN

defines a GN -coset code [3]. Polar and RM codes are GN -
coset codes with different selections of A [3], [4].

Using GN , the transition probability from uN to yN is
WN (yN |uN ) ≜ WN (yN |uNGN ). The transition probabilities
of the i-th bit-channel, a synthesized channel with the input

ui and the output (yN , ui−1), are defined by

W
(i)
N (yN , ui−1|ui) ≜

∑
uN

i+1∈XN−i

1
2N−1

WN (yN |uN ). (1)

An (N,K) polar code is designed by placing the K most
reliable bit-channels with indices i ∈ [N ] into the set A that
can, e.g., be found using density evolution [3], [38]. An r-th
order RM code of length-N and dimension K =

∑r
i=0

(
n
i

)
,

where 0 ≤ r ≤ n, is denoted as RM(r, n). Its set A consists
of the indices, i ∈ [N ], with Hamming weight at least n − r
for the binary expansion of i − 1. For both codes, one sets
ui = 0 for i ∈ Ac.

We make use of dynamic frozen bits [21]. A frozen bit
is dynamic if its value depends on a subset of information
bits preceding it; the resulting codes are called modified
GN -coset codes. Dynamic frozen bits tend to improve the
performance of near-ML decoders [11], [23], [28], [31], [39]
because the weight spectrum of the resulting code tends to
improve as compared to the underlying code [23], [24], [25],
[31], [40], [41]. For the numerical results, we will consider
short- to moderate-length RM codes with dynamic frozen bits,
called dRM codes [11, Def. 1]. An important instance from
the ensemble is the PAC codes with RM rate-profiling [28].
However, the average complexity gets large for (near-)ML
decoding of dRM codes as they get longer. Therefore, the
formal definition of the modified RM-polar codes is given
below.

Definition 1: The (N,K) dRM-polar ensemble is the set of
codes specified by the set A of an (N,K) RM-polar code and
choosing

ui =
⊕

j∈A(i−1)

vj,iuj , ∀i ∈ Ac (2)

with all possible vj,i ∈ {0, 1} and A(0) ≜ ∅, where
⊕

denotes XOR summation and ui ≜ 0 if A(i−1) = ∅ for any
i ∈ Ac.

B. Related Decoding Algorithms

1) Successive Cancellation Decoding: Let cN and yN be
the transmitted and received words, respectively. SC decoding
makes the decision for the i-th bit-channel sequentially from
i = 1 to i = N as follows. For i ∈ Ac, set ûi to its (dynamic)
frozen value. For i ∈ A, compute the soft message ℓi

(
ûi−1

1

)
defined as

ℓi
(
ûi−1

1

)
≜ log

PUi|Y NUi−1(0|yN , ûi−1)
PUi|Y NUi−1(1|yN , ûi−1)

(3)

assuming that the previous decisions ûi−1
1 are correct and the

frozen bits after ui are uniformly distributed. Then, it makes
a hard decision as

ûi =

{
0 if ℓi

(
ûi−1

1

)
≥ 0

1 otherwise.
(4)

Any erroneous decision ûi ̸= ui, i ∈ A, cannot be corrected
by SC decoding and results in a frame error. In the following,
we review techniques to overcome this problem.
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2) Successive Cancellation List Decoding: SCL decoding
tracks several SC decoding paths [27] in parallel. At each
decoding phase i ∈ A, instead of making a hard decision
on ui, two possible decoding paths are continued in parallel
threads. The maximum number 2K of paths implements ML
decoding but with exponential complexity in K. To limit
complexity, one may keep up to L paths at each phase. The
reliability of decoding path vi is quantified by a path metric
(PM) defined as [42]

M
(
vi

)
≜ − logPUi|Y N

(
vi|yN

)
(5)

= M
(
vi−1

)
+ log

(
1 + e−(1−2vi)ℓi(vi−1

1 )
)

(6)

≈

{
M

(
vi−1

)
, if sign

(
ℓi

(
vi−1

))
= 1− 2vi

M
(
vi−1

)
+

∣∣ℓi (vi−1
)∣∣ , otherwise

(7)

where (7) can be computed recursively using SC decoding
with M

(
v0

)
≜ 0. At the end of N -th decoding phase, a list

L of paths is collected. Finally, the output is the bit vector
minimizing the PM:

ûN = argmin
vN∈L

M
(
vN

)
. (8)

3) Flip Decoding: successive cancellation flip (SCF) decod-
ing [17] aims to correct the first erroneous bit decision by
sequentially flipping the unreliable decisions. This procedure
requires an error-detecting outer code, e.g., a CRC code.

The SCF decoder starts by performing SC decoding for the
inner code to generate the first estimate vN . If vN passes the
CRC test, it is declared as the output ûN = vN . If not, then
the SCF algorithm attempts to correct the bit errors at most
Tmax times. At the t-th attempt, t ∈ [Tmax], the decoder finds
the index it of the t-th least reliable decision in vN according
to the amplitudes of the soft messages (3). The SCF algorithm
restarts the SC decoder by flipping the estimate vit to vit ⊕ 1.
The CRC is checked after each attempt. This decoding process
continues until the CRC passes or Tmax is reached.

Introducing a bias term to account for the reliability of
the previous decisions enhances the performance [18]. The
improved metric is calculated as

Q(i) =
∣∣ℓi (vi−1

)∣∣ +
∑
j∈A(i)

1
α

log
(
1 + e−α|ℓj(v

j−1)|
)

(9)

where α > 0 is a scaling factor.
SCF decoding can be generalized to flip multiple bit esti-

mates at once, leading to DSCF decoding [18]. The reliability
of the initial estimates ũE , E ⊆ A, is described by

Q(E)=
∑
i∈E

∣∣ℓi (vi−1
)∣∣+∑
j∈A(imax)

1
α

log
(
1 + e−α|ℓj(v

j−1)|
)

(10)

where imax is the largest element in E . The set of flipping
positions is chosen as the one minimizing the metric (10) and
is constructed progressively.

4) Sequential Decoding: We review two sequential decod-
ing algorithms, namely SCS decoding [13], [14], [15] and
SC-Fano decoding [16], [28].

SCS decoding stores the D most reliable paths (possibly)
with different lengths and discards the rest whenever the

stack is full. At each iteration, the decoder selects the most
reliable path and creates two possible decoding paths based
on this path. The winning word is declared once a path length
becomes N . To limit its worst-case complexity similar to that
of SCL decoding with list size L, the decoding is limited to
have at most L visits each node in the decoding tree, which is
finished in at most LN node-visits. SC-Fano decoding deploys
a Fano search [32] that allows backward movement in the
decoding tree and that uses a dynamic threshold. The dynamic
threshold is initialized as T = 0. During the Fano search,
if one cannot find a path with score less than T then the
dynamic threshold is updated to T +∆, where ∆ is called the
threshold spacing and controls the performance vs. complexity
tradeoff.

Sequential decoding compares paths of different lengths.
The probabilities PUi|Y N

(
vi|yN

)
, vi ∈ {0, 1}i, however,

cannot capture the effect of the path’s length. A new score is
introduced in [43] and used in [16] to account for the expected
error rate of the future bits as

S
(
vi

)
≜ − log

PUi|Y N

(
vi|yN

)∏i
j=1 (1− pj)

(11)

= M
(
vi

)
+

i∑
j=1

log (1− pj) (12)

where pj is the probability of the event that the first bit error
occurred for uj in SC decoding. The probabilities pi can be
computed via Monte Carlo simulations [3], [4] or they can
be approximated via density evolution [38] offline. In the
following, one may generalize the score as

S
(
vi

)
= M

(
vi

)
+ bi (13)

where bi is called a bias term. We discuss in Section V-A how
the bias term affects the proposed decoding algorithm.

III. SC ORDERED SEARCH DECODING

SCOS uses the metrics (7) and (11). We first define

M
(
vi

)
≜ M

(
vi−1vi

)
= − logPUi|Y N

(
vi−1vi

∣∣yN )
(14)

S
(
vi

)
≜ M

(
vi

)
+ bi (15)

where v̄i ≜ vi⊕1, vi−1vi ≜ vi and one may choose bi
as the second term in the right hand side (RHS) of (12).
Figure 1 shows an example of the decoding for N = 4 and
K = 4. SCOS starts by SC decoding to provide an output vN

as the current most-likely leaf, e.g., the black path (0111)
in Figure 1. This initial SC decoding computes and also
stores the PM M

(
vi

)
and the score S

(
vi

)
associated with

the flipped versions of the decisions vi for all i ∈ A, e.g.,
illustrated as the red paths in Figure 1. Every index i ∈ A
with M

(
vi

)
< M(vN ) constitutes a flipping set, i.e., each

set is a singleton at this stage. All flipping sets are stored in
a min heap L [44] and each member is visited in ascending
order according to its score.

Let E be the flipping set with the smallest score in the heap
L and let index j ∈ [N ] be the deepest common node of
the current most-likely leaf and the branch node defined by E
in the decoding tree (see the brown dot in Figure 1(d)). The
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Fig. 1. (a) Initial SC decoding outputs vN = (0111) with the corresponding PM M(vN ). (b) During the initial SC decoding, the PMs and scores are
computed for branch nodes {1, 00, 010, 0110}. (c) The branch nodes with PMs larger than that of the current most likely leaf are pruned, e.g., we have
M(00), M(0110) > M(0111). Suppose also that S(010) < S(1). Then, L stores all branch nodes with PMs smaller than that of current most likely leaf,
where L is a min heap according to the scores of its members. (d) The candidate with smallest score is popped from the heap and the decoder returns to the
deepest (or nearest) common node. (e) The decision is flipped and SC decoding continues. During decoding, the heap L and the current most likely leaf are
updated. (f) The branch nodes with PMs larger than that of the current most likely leaf are pruned as in (c) (in this case, a leaf node is removed). (g) Repeat
the procedure as in step (d), where we assume M (11) > M (0100). (h) The heap L is updated when the branch (11) was visited. (i) The decoder examines
the last member of the heap L and pops it from L. After reaching the N -th decoding phase, suppose that there is no branch node left, which has a smaller
PM than that of the current most likely leaf, i.e., L = ∅. The current most likely leaf is declared as the decision ûN .

decoder now flips the decision vj and SC decoding continues.
The set E is popped from the heap L. The PMs (7) and
scores (11) are calculated again for the flipped versions for
decoding phases with i > j, i ∈ A, and the heap L is
enhanced by new flipping sets progressively (similar to [18]).
The branch node, including all of its child nodes, is discarded
if at any decoding phase its PM exceeds that of the current
most-likely leaf, i.e., M(vN ).3 Such a branch cannot output
the ML decision, since for any valid path vi the PM (7) is
non-decreasing for the next stage, i.e., we have

M
(
vi

)
≤M

(
vi+1

)
,∀vi+1 ∈ {0, 1}. (16)

For instance, suppose that M(11) > M(0111) in Figure 1(g).
Then any path ṽN with ṽ2 = (1, 1) cannot be the ML decision;
hence, it is pruned. If a leaf with lower PM is found, then it
replaces the current most-likely leaf. The procedure is repeated
until one cannot find a more reliable path by flipping decisions,

3This pruning method is similar to the adaptive skipping rule proposed
in [36] for ordered-statistics decoding [34], [35].

i.e., until L = ∅. Hence, SCOS decoding implements an ML
decoder.

A. Detailed Description

This section provides the details of the proposed SCOS
decoding with the pseudo codes, where a simulation code is
provided in [45]. In the following, we use type-writer font
for the data structures (with an exception for sets) and 1-
based indexing arrays. The required data structures together
with their size are listed in Table I. As we explain the
algorithms, we will revisit the relevant data structure from
the table. We start with arrays L and C, which contain
LLRs and hard decisions, respectively. Recall that there are
log2N+1 layers in a polar code graph and both L and C store
N elements in each layer (in contrast to [27] where in total
only 2N−1 elements are stored) since we reuse some decoding
paths to decrease the computational complexity (similar to
SC-Fano decoding). The entry in position (i, j) of array L
(C) is denoted as L [i, j] (C [i, j]), which is calculated via
Algorithm 5 (6). These routines, namely recursivelyCalcL and
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TABLE I
DATA STRUCTURES FOR SCOS DECODING

Algorithm 1 FindStartIndex (E , Ep)
Input : flipping sets E and Ep
Output: first different index

1 for i = 1, 2, . . . , N do
2 if (i ∈ E)⊕ (i ∈ Ep) then
3 return i

recursivelyCalcC, are the LLR-based versions [42] of [27, Alg.
3] and [27, Alg. 4], respectively, and provided as Algorithm 5
and Algorithm 6 in the appendix for completeness. We also
name indices λ and ϕ as layer and phase, respectively, by
adopting the convention of [27], which are integer-valued
inputs to Algorithms 5 and 6. Unlike [27], the layer and phase
satisfy 1 ≤ λ ≤ log2N + 1 and 1 ≤ ϕ < 2λ due to 1-based
indexing.

Flipping set structures, denoted by F, are triplets containing
a set of integer indices (flipping set E), a PM and a score. The
heap L contains multiple flipping structures F = ⟨E ,ME ,SE⟩,4
where ME and SE are the respective PM and the score associ-
ated to the flipping set E , as defined in (14) and (15). The size
of L is constrained by a user-defined parameter η, which will
define the space complexity of the decoder. Given two flipping
sets, namely E and Ep, Algorithm 1 is the procedure used to
find the decoding stage to which the decoder should return,
i.e., the deepest common node as illustrated in Figure 1(d).

Algorithm 2 is generalized SC decoding, which can start SC
decoding at any decoding phase and continue decoding until a
termination criterion is satisfied. Then, it returns the phase at
which the decoding is terminated. The modifications compared
to the original SC decoding are highlighted as blue in the
pseudo code. Before their detailed descriptions, we recall data
structures needed from Table I. The notation v [i] refers to the
i-th entry of an array v, where binary vectors v and û are
the currently processed path and the current most-likely one,
respectively. Unless otherwise stated, the entries of vector b
are computed offline via

b[i] =
i∑

j=1

log (1− pj) , i ∈ [N ]. (17)

The entries of length-N vectors M and M correspond to PMs
along traversed paths and the flipped versions, respectively.

4Observe that the heap L in Figure 1 is slightly different for simplicity.

Vector S contains the scores used for the search schedule
of the proposed decoder. The modified SC decoding takes as
input an integer istart ∈ [N ] and a flipping set E and outputs
another index iend such that istart < iend ≤ N . Along the
way, the algorithm updates the vectors containing PMs and
scores, namely M and M and S, where the details are itemized
as follows.

• The standard subroutine HardDec (lines 8 and 10)
takes a real-valued LLR as the input and returns a
decision according to (4). In addition, CalcPM (lines
12 and 14) takes a real-valued PM, a binary decision and
a real-valued LLR as inputs and updates the PM using (7).

• One can start at any decoding phase istart with no addi-
tional computational cost (line 2).

• The i-th entry of vector M is updated in each decoding
phase i (line 14).

• The decisions are flipped at the decoding phases corre-
sponding to the current flipping set, i.e., if i ∈ E (lines
7-8).

• The PMs and the scores of the potential flipping sets are
computed for decoding phases after the largest one in the
current flipping sets, i.e., M[i] and S[i] with i ∈ A and
i > maximum (E) (lines 11-13).

• If a more likely leaf (i.e., a path of length-N with smaller
PM) is found, û and Mcml are updated and the decoding
phase N is returned as iend (lines 20-24).

• For any i, if PM M[i] is larger than Mcml, stop
SCDec function and return the current phase i as iend
(line 15-16).

• If i-th bit is dynamically frozen, then the computation of
v[i] follows the constraints, i.e., using RHS of (2) where
the coefficients vj,i are specified by the construction
(line 5).

Algorithm 3 is the main loop of SCOS decoding. Naturally,
the heap of flipping structures and the previous flipping set
are initialized as null and the PM of the current most-likely
leaf as +∞. After the initial SC decoding (line 4), Mcml is
updated to the PM of the SC estimate. Then, a tree search is
performed in order to find the most-likely estimate (lines
8-16), where the candidates are ordered by their scores. Many
sub-trees are pruned thanks to the threshold Mcml (lines
6-7 and 14-15), i.e., the PM of the current most likely
leaf. The stopping condition of the “while loop” (line 8
with L = ∅) implies that the most likely codeword is
found, i.e., there cannot be any other codeword with a smaller
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Algorithm 2 SCDec (istart, E)
Input : start index istart, flipping set E
Output: end index iend

1 m = log2N
2 for i = istart, . . . , N do
3 recursivelyCalcL (m+ 1, i− 1)
4 if i /∈ A then
5 v [i] = 0 // compute v [i] if dynamic

frozen
6 else
7 if i ∈ E then
8 v [i] = HardDec (L [m+ 1, i])⊕ 1
9 else

10 v [i] = HardDec (L [m+ 1, i])

11 if i > maximum (E) then
12 M [i] =

CalcPM (M [i− 1] ,v [i]⊕ 1,L [m+ 1, i])
13 S [i] = M [i] + b [i]

14 M [i] = CalcPM (M [i− 1] ,v [i] ,L [m+ 1, i])
15 if M [i] ≥ Mcml then
16 return i

17 C [m+ 1, i] = v [i]
18 if i mod 2 = 0 then
19 recursivelyCalcC (m+ 1, i− 1)

20 if M [N ] < Mcml then
21 Mcml = M [N ]
22 for i = 1, 2, . . . , N do
23 û [i] = v [i]

24 return N

PM. The estimate with PM Mcml is output as the decision
(line 17).

Remark 1: Observe that each member in the heap L, where
|L| ≤ η, stores a set of integers with maximum size of K and
two float metrics. Hence, L stores at most Kη integers and
2η floats. In addition, recall that the arrays L and C store
N log2N + N elements each in contrast to η × (2N − 1),
which is the case, e.g., in SCS decoding with stack size D =
η [14], [15]. Other data structures listed in Table I are of size
at most N each. In total, SCOS stores at most N log2N +
5N + 2η + 1 floats, NRη integers, and N log2N + 3N bits,
where R is the code rate.

IV. COMPLEXITY AND PERFORMANCE CONSIDERATIONS

We adopt number of node-visits in the decoding tree as
a proxy for the complexity. A node visit occurs each time
line 3 is executed in Algorithm 2, i.e., each time a node
is visited in decoding tree, which is, for instance, provided
for the case of N = 4 in Figure 1. Note that this does
not refer to the exact complexity; however, it still provides
a very good proxy [24, Sec. 4.2], which is used very often in
prior works, see, e.g., [16], [28], [46], and [47], among many

Algorithm 3 SCOS
(
ℓN

)
Input : LLRs ℓN

Output: û

1 L = ∅, Ep = ∅,Mcml = +∞
2 for i = 1, 2, . . . , N do
3 L [1, i] = ℓi

4 SCDec (1,∅)
5 for i = 1, 2, . . . , N do
6 if i ∈ A and M [i] < Mcml then
7 InsertHeap (⟨{i},M [i] ,S [i]⟩)

8 while L ≠ ∅ do
9 ⟨E ,ME ,SE⟩ = popMin (L)

10 if ME < Mcml then
11 istart = FindStartIndex (E , Ep)
12 iend = SCDec (istart, E)
13 for i = maximum (E) + 1, . . . , iend do
14 if i ∈ A and M [i] < Mcml then
15 InsertHeap (⟨E ∪ {i},M [i] ,S [i]⟩)

16 Ep = E

17 return û

other references.5 To this end, let λ
(
yN

)
be the number of

node-visits in the decoding tree by SCOS decoding normalized
by block length for channel output yN . Similar to other
sequential decoders [48], it is a RV defined as Λ ≜ λ

(
Y N

)
.

On the contrary, the number λSC(yN ) of normalized node-
visits for SC decoding is simply 1 independent of the channel
output yN .

A. Average Number of Node-Visits for ML Decoding

In the following, we are interested in the average behaviour
of Λ when there is no limit in the number of node-visits.
To this end, consider the set of partial input sequences vi, i ∈
[N ], with a smaller PM than the ML decision ûNML. Observe
that there are i node-visits for SC decoding for any decoding
path vi.

Definition 2: For the channel output yN and the binary
sequence vN ∈ XN , define the set

V
(
vN , yN

)
≜

N⋃
i=1

{
ui ∈ {0, 1}i : M

(
ui

)
≤M

(
vN

)}
.

(18)

Lemma 1: We have

Nλ
(
yN

)
≥

∣∣V (
ûNML

(
yN

)
, yN

)∣∣ (19)

and the average number of node-visits (ANV) normalized to
that of SC decoding is lower bounded as

E [Λ] ≥ 1
N

E
[∣∣V (

ûNML

(
Y N

)
, Y N

)∣∣] . (20)

5In our simulations, we count the number of arithmetic operations as well,
which will be provided later in Sections IV-B and VI for various comparisons.
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Fig. 2. FER/ANV/histogram for node visits vs. Eb/N0 over the biAWGN
channel for the (128, 64) PAC code under SCOS decoding compared to
relative RCU bound/lower bound (20).

Proof: Observe that each member of set V
(
vN , yN

)
cor-

responds to a node in the decoding tree. Then, inequality (19)
follows from (18) by replacing vN with the ML decision ûNML
and observing that SCOS decoding needs to visit each node
with a PM smaller than or equal to that of the ML decision.
Since (19) is valid for any yN , the bound (20) follows. □

From now on, we refer to E [Λ] as ANV by keeping in mind
that it is normalized to the block length. Figure 2 provides
performance, the ANV and the histogram for the node visits
vs. signal-to-noise ratio (SNR) (in Eb/N0, where Eb is here
the energy per information bit and N0 is the single-sided
noise power spectral density) over the binary-input additive
white Gaussian noise (biAWGN) channel [37, Sec. 4] for
the (128, 64) PAC code [28] under SCOS decoding where
η = ∞. Observe that the lower bound on the ANV given
by (20) is validated6 and is tight for high SNR. However,
the bound appears to be loose at low SNR values mainly for
two reasons: (i) usually the initial SC decoding estimate vN

is not the ML decision and extra nodes in the difference set
V

(
vN , yN

)
\V

(
vNML, y

N
)

are visited and (ii) SCOS decoding
may visit the same node multiple times and this cannot be
tracked by a set definition. The histogram for the node visits,
where the intervals are given as integer multiples of node visit
of SC decoding, reveals the efficiency of the proposed decoder
for high SNR regime. In particular, the probability that SCOS
decoding needs a number of node visits larger than that of
8 times of SC decoding to guarantee returning ML decision
is roughly 2× 10−4 when Eb/N0 = 4 dB.

6After finding the PM of ML decision for each transmission, the number
of nodes in the decoding tree with lower PM than that of the ML decision is
counted via a modified SCOS decoding, which is introduced in Section V-B.
Then, its average provides the RHS of Eq. (20).

Remark 2: Recall that the PM (7) is calculated using the
SC decoding schedule, i.e., it ignores the frozen bits coming
after the current decoding phase i. This means the size of
the set (18) tends to be smaller for codes more suited for SC
decoding, e.g., polar codes, while it is larger for other codes
such as RM codes. This principle is also observed when decod-
ing via SCL decoding, i.e., the required list size to approach
ML performance grows when one “interpolates” from polar
to RM codes [11], [19], [20]. This observation motivates us
to introduce dRM-polar code ensemble in Definition 1, whose
random instances provide a good performance vs. complexity
trade-off under SCOS decoding for moderate code lengths,
e.g., N = 256 bits.

B. Performance Under Maximum Complexity Constraints

The proxy of node-visits is particularly useful when one
wants to limit the worst-case complexity of polar code
decoders leveraging the structure of the Hadamard matrix in
a unified manner. Observe that, for a given code construction
specified by set A, the number λSCL(L,A) of node-visits for
SCL decoding with list size L is constant and upper bounded
as λSCL(L,A) ≤ L. Given a polar code decoder, one may
force it to satisfy a maximum number of node-visits such that
λ

(
yN

)
≤ L, for some positive integer L at each decoding

attempt with the hope that the worst-case complexity can be
comparable to de facto reference SCL decoding with list size
L. For instance, sequential decoders use similar parameters,
call L, to limit their worst-case complexity comparable to
that of SCL decoding with list size L [15, Sec. III], [46,
Sec. V]. Similarly, SCOS is modified by returning the exist-
ing most-likely candidate whenever a pre-defined maximum
number of node-visits λmax is reached, at the expense of
suboptimality. Note that if λmax ≥ 1, SCOS decoding will
always return a valid codeword.

Figures 3 and 4 provide performance and the ANV vs.
SNR (in Eb/N0) for short- and moderate-length dRM and
dRM-polar codes, i.e., N ∈ {64, 128} and N ∈ {256, 512},
respectively, of various rates (0.14 < R < 0.92) under SCOS
decoding, where λmax and η are both set to 10, 100 and
5000 for cases where N = 64, N = 128 and N ∈ {256, 512}
for the simulations, respectively. For dRM codes, the infor-
mation sets are the same as the RM code with the same
block length and dimension, where the dynamic frozen bit
constraints are randomly chosen. The (256, 154) dRM-polar
code with a rate of ≈ 0.6 is chosen uniformly at random from
the ensemble of Definition 1, where the information set A is
defined as in [19] with the mother RM(4, 8) code and the polar
rule given by setting β = 21/4 in [49]. Empirical ML lower
bounds of [27] are also plotted. ML decoding performance is
approached if the performance matches the simulated lower
bounds.

For all simulated codes, the performance approaches to that
of ML decoding (if not the same), which outperforms the
ML performance of RM codes of the same parameters by
up to 0.5 dB, which is provided as reference. Note that SCOS
decoding parameters are set to the same complexity constraints
for simulating RM codes, where the FERs match the ML
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Fig. 3. FER/ANV vs. Eb/N0 over the biAWGN channel for short dRM codes under SCOS decoding with λmax = η = 10 and λmax = η = 100 for
N = 64 and N = 128, respectively, compared to relative RM codes under ML decoding and RCU bounds.

TABLE II
RM CODES UNDER SCOS DECODING

lower bounds. Observe also that this remarkable performance
is attained with E [Λ] ≈ 1 at high SNR regime except for
the case of (256, 37) codes, i.e., the proxy implies that the
complexity will be close to that of SC decoding at low FERs
(e.g., 10−5 and below).

Since the number of node-visits may not refer to the exact
complexity, Tables II and III provide the respective average
complexity scores for SCOS, where λmax and η are the same
as in Figs. 3 and 4, as well as SC decoding of the codes
as follows. During our simulations, we count the number of
arithmetic operations, which include the floating-point addi-
tions and comparisons as well as binary XORs. In order to
provide a unified complexity score, we assume that 1 floating-
point addition corresponds roughly to 8 binary operations and
1 floating-point comparison correspond to 6 binary operations,
i.e., an average complexity score is computed as

8 ·A+ 6 · C +B (21)

TABLE III
DRM CODES UNDER SCOS DECODING

where A, B and C are the average number of additions,
XORs and comparisons during the simulations. These factors
are motivated by the potential use of 8-bit representation of
real numbers in order to limit quantization errors and the fact
that the comparison of two real numbers may be terminated
before comparing all 8 bits. Note that considered decoders do
not require multiplications as the min-sum approximation is
adopted. For instance, SC decoding requires the same number
of 1

2N log2N additions, comparisons as well as XORs for any
code of length N , resulting in a fixed complexity score as

15× 1
2
N log2N (22)

if all frozen bits are set to 0. Except for the case of (256, 37)
codes, the average complexity score of SCOS decoding is
within a factor of 1.5 from SC decoding for all RM and dRM
codes at given SNR values provided in the tables.
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Fig. 4. FER/ANV vs. Eb/N0 over the biAWGN channel for moderate-length dRM and dRM-polar codes under SCOS decoding λmax = η = 5000 compared
to relative RM and RM-polar codes and RCU bounds.

V. FURTHER IMPROVEMENTS

An interesting modification to SCOS is proposed by [50],
which avoids using PM or any reliability score for the search as
follows. After finishing an instance of the initial SC decoding,
the flipping sets are prioritized according to a predefined
depth-first or breadth-first search order. Numerical results
show that the latter required less number of SC decoding
attempts for various RM codes of length up to 512 bits
for approaching their ML decoding performance compared to
SCOS decoding although each attempt is expected to require
more node-visits. Nevertheless, the results imply that SCOS
provides robust performance with various search schedules.
In the following, we investigate the effect of search schedule
via simulations when the bit reliability under SC decoding is
ignored, i.e., when only PMs are used for the search.

A. Bias Term Robustness

Consider the bias terms bi given in (13), which impacts
the search priority but not the performance if the maximum
complexity constraints are unbounded. This means that a
suboptimal bias term does not change the performance of
SCOS decoding with unbounded complexity (which is still
ML decoding), but it may increase the complexity.

In order to compute bi, we assume that the all-zero code-
word is transmitted thanks to the channel symmetry and the
linearity of the codes under consideration. Let f (i)

N denote the
probability density function (PDF) of the RV corresponding to
ℓi(0), where 0 denotes an all-zero vector of length i and the
source of randomness is the channel output Y N . Over general
B-DMCs, the densities can be computed recursively as

f
(2i−1)
N = f

(i)
N/2 � f

(i)
N/2 (23)

f
(2i)
N = f

(i)
N/2 � f

(i)
N/2 (24)

where f (1)
1 is the PDF of the i.i.d. LLRs at the channel output,

and � and � denote the check and variable node convolutions,
respectively, as defined in [37, Ch. 4]. Then, terms pj in Eq.
(17) can be computed via f (i)

N as

pj = lim
z→0

(∫ −z

−∞
f

(j)
N (x)dx+

1
2

∫ +z

−z
f

(j)
N (x)dx

)
. (25)

The computation of (23), (24) and (25) can be carried out,
for instance, via quantized density evolution [51], yielding an
accurate estimate of the RHS of (25).

Figure 5 illustrates the effect of various bias terms outlined
below on the performance of SCOS decoding with bounded
and unbounded λmax.
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Fig. 5. FER/ANV vs. Eb/N0 over the biAWGN channel for the (128, 64) PAC code under SCOS decoding with various bias terms and maximum complexity
constraints such that η = λmax.

Fig. 6. Empirical PDF (via 107 samples) of the M
(
uN

)
over the biAWGN

channel at 3.5 dB SNR for the (128, 64) PAC code. The both curves are
obtained via genie-aided SC decoding [3], where the blue line uses the
min-sum approximation and the red line without any approximation.

• The bias terms are computed via the RHS of (17) using
quantized density evolution for each SNR point.

• The bias terms are set to zero, i.e., bi = 0, i ∈ [N ] which
results in using the PM as score as well.

The complexity reduction is limited if (17) is used instead of
setting the bias terms to zero. Nevertheless, setting them to
zero slightly degrades the performance (by ≈ 0.12 dB) when
the maximum number of node-visits is constraint to five times
that of SC decoding with almost no savings in the average
complexity. Hence, we conclude that SCOS decoding is not
very sensitive to the choice of bias terms unless the maximum
complexity is required to be very low.

B. SC Ordered Search Decoding with Maximum Path Metric

Monte Carlo simulation under genie-aided SC decoding [3]
can be used to approximate the PDF of the PM for the
transmitted message at a given SNR. Note that M

(
uN

)
is

a RV where the source of randomness is the channel output.
Since we consider symmetric B-DMCs and a linear code
with uniform distribution, the PDF of M

(
uN

)
could be

computed with an all-zero codeword assumption. For instance,
Figure 6 provides the PDF for the (128, 64) PAC code at
Eb/N0 = 3.5 dB. Observe that Pr

(
M

(
uN

)
> 50

)
≈ 0, i.e.,

if the decoder discards the paths having PMs larger than 50,
then the performance degradation is negligible while reducing
computational complexity. Such a modification is particularly
relevant when a maximum complexity constraint is imposed
on SCOS decoding. In this case, unnecessary node-visits drain
the computation budget and increase the number of suboptimal

Algorithm 4 SCOS with maximum PM
(
ℓN ,Mmax

)
Input : input LLRs ℓN , Mmax
Output: output vector û, decoding state ω

1 L = ∅, Ep = ∅,Mcml = Mmax, ω = 0
2 for i = 1, 2, . . . , N do
3 L [1, i] = ℓi

4 iend = SCDec (1,∅)
5 if iend = N then ω = 1
6 for i = 1, 2, . . . , N do
7 if i ∈ A and M [i] < Mcml then
8 InsertHeap (⟨{i},M [i] ,S [i]⟩)

9 while L ≠ ∅ do
10 ⟨E ,ME ,SE⟩ = popMin (L)
11 if ME < Mcml then
12 istart = FindStartIndex (E , Ep)
13 iend = SCDec (istart, E)
14 if iend = N then ω = 1
15 for i = maximum (E) + 1, . . . , iend do
16 if i ∈ A and M [i] < Mcml then
17 InsertHeap (⟨E ∪ {i},M [i] ,S [i]⟩)

18 Ep = E

19 return û, ω

decisions. Moreover, the threshold test lets the decoder reject
unreliable decisions and reduces the number of undetected
errors if the threshold is carefully optimized, see [30]. In the
following, we modify SCOS decoding by setting a maximum
PM Mmax as shown in Algorithm 4.

The differences in SCOS decoding with a maximum PM are
highlighted in red. The algorithm requires the input Mmax to
discard candidates with PMs larger than Mmax, where the PM
of the current most-likely path is initialized to this threshold
(line 1). In addition, the algorithm has a binary output ω,
which is initialized to 0 (line 1), is set to 1 if any estimate
with PM less than Mmax is found (lines 5 and 14) and
stays as 0 otherwise. Note that the initial SC decoding does
not reach a leaf node in case SC decoding path is exceeding
Mmax (line 4).
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Fig. 7. FER/ANV vs. Eb/N0 over the biAWGN channel for the (128, 64)
PAC code under SCOS decoding with various maximum PMs and fixed
maximum complexity constraints λmax = η = 5.

Figure 7 compares the performance of SCOS decoding with
maximum PM constraint (Algorithm 4) to that of original
SCOS decoding. The former gains ≈ 0.2 dB with the same
maximum complexity constraint λmax = 5 if Mmax = 35. Note
that the average complexity is similar.

Observe now that the proposed modification enables SCOS
decoding to reject an unreliable estimate inherently. For a
given threshold Mmax, define the binary RV

Ω = 1
{
M(ûN ) ≤Mmax

}
(26)

where the indicator function 1{P} takes on the value 1 if the
proposition P is true and 0 otherwise. The proposition of the
indicator function (26) reads as “the modified SCOS decoding
finds an estimate ûN with a PM smaller than Mmax”. The
undetected error probability of the algorithm is

Pr
(
ÛN ̸= UN ,Ω = 1

)
. (27)

The overall error probability is the sum of the detected and
undetected error probabilities, i.e., we have

Pr
(
ÛN ̸= UN

)
=

∑
ω∈{0,1}

Pr
(
ÛN ̸= UN ,Ω = ω

)
(28)

which follows from the law of total probability. The parameter
Mmax controls the FER and uFER tradeoff [30], [52]. In par-
ticular, (27) is the left hand side (LHS) of (28) if Mmax = ∞.
Numerical results illustrating benefits in uFER is provided
towards the end of the next section.

VI. COMPARISON TO EXISTING POLAR DECODERS

This section compares the proposed SCOS decoding to
SC-Fano, SCL, SCS as well as ordered reliability bits guessing
random additive noise decoding (ORBGRAND) [53] algo-
rithms in the short block length regime, e.g., for N = 128,

for two different code dimensions K = 29 and K = 99, over
the biAWGN channels. Note that the score is given by (12)
for SCOS, SC-Fano, and SCS decoding algorithms, where we
use min-sum approximation for the first term and quantized
density evolution for the bias as explained in Section V-A.
We provide FERs and average complexity scores computed
via (21) for these codes.

Figures 8(a) and 8(b) provides the results for the (128, 29)
code, where SCOS with maximum complexity constraints
λmax = η = 64 approaches to its ML performance outperform-
ing other decoding algorithms. This performance is achieved
with the lowest complexity at high SNR. Its performance
is followed by SCS decoding with stack size D = 64 and
maximum node-visits L = 64 in a wide SNR regime
robustly with 0.25 dB difference. It provides lower complexity
compared to SCOS and SC-Fano decoding algorithms at
SNR values smaller than 3.5 dB; however, it requires more
complexity at higher SNR values with worse performance.
Although its space complexity is already larger than other
competitors for the chosen parameters, the performance of
SCS decoding can be further improved if the stack size is
chosen to be at least a few times of L, which is, e.g.,
chosen to be D = LN in [15, Sec. IV]. However, this
comes at the expense of also potentially higher computational
especially at low and mid SNR ranges. SC-Fano decoding
(even with unbounded complexity) does not perform well in
particular at relatively low and medium FERs, which might
require a careful optimization of the search parameter ∆.
Nevertheless, it is very competitive to SCOS decoding at
low FERs in performance and average complexity score.
In addition, it does not require large space complexity as
it is the case for SCS decoding. Also for the (128, 99)
code, SCOS decoding with λmax = η = 20 approaches ML
decoding tightly (see Figure 8(c)). Figure 8(d) shows that its
average complexity score is lower than all the competitors for
SNR values larger than 3.5 dB, i.e., except for high FERs.
Its complexity score is within 1.4 times of SC decoding at
high SNR values in both cases. Although the complexity of
SCOS decoding, at least in the proxy of ANV, is reaching
to that of SC decoding at high SNR values,it requires extra
operations similar to other improved decoding algorithms,
e.g., in lines 12-14 of Algorithm 2 for the computation
of scores and PMs independent of operating SNR, which
hinders its complexity score to hit that of SC decoding at
high SNR values. In the case of SCS decoding, this is
partially due to the push and pop operations as well as for the
calculation of the scores for the pushed paths. To complement
the numerical results of Figure 8, we provide Table IV for
SCS decoding, where the parameters of the decoder is kept
the same as in the figure. As expected, SCL decoding requires
much larger complexity compared to all SC-based complexity-
adaptive decoding algorithms. In addition, we also provided
the worst-case complexity scores obtained during simulations
at each SNR value for the proposed SCOS algorithm, which
are a few times more than that of SCL decoding due to the
higher λmax of the latter. Note that the performance of the
(128, 99) code is also provided under ORBGRAND, which
is an efficient approximation of soft GRAND [54], where
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Fig. 8. FER and average complexity score vs. Eb/N0 over the biAWGN channel for (128, 29) (a-b) and (128, 99) (c-d) dRM codes under SCOS compared
to SC-Fano, SCL and SCS decoding algorithms under various complexity constraints. As reference, the worst-case complexity scores obtained via simulations
for each SNR value are also provided for SCOS as dashed curves with solid marks.

TABLE IV
DRM CODES UNDER SCS DECODING

the maximum number of test error patterns (TEPs) is set to
5× 106. Observe that it performs within 0.7 dB from the ML
decoding performance for the considered case. The average
complexity score7 reaches roughly to 5 × 106 at an SNR of
Eb/N0 = 5.5 dB, which we skip in Figure 8(d) as it is an order
of magnitude larger than that of SCL decoding with L = 20.
As Remark 2 hints, SCOS decoding provides advantage over
universal decoders like ORBGRAND if the underlying code
is somewhat suited for SC-based decoders.

Finally, Figure 9 illustrates that the (128, 64) PAC code
under modified SCOS decoding gains in overall FER and in
uFER as compared to a (128, 71) polar code concatenated
with a CRC-7 (resulting in a (128, 64) overall code) under
SCL decoding with L = 16 at high SNR. Furthermore, the
code outperforms DSCF decoding with the maximum number
Tmax = 70 of bit flips.

7The codeword membership test costs a binary vector-matrix multiplication
using the parity-check matrix of the underlying dRM code similar to [55]. This
way of membership test is not mandatory for GRAND-based decoders and
more efficient methods might be used depending on the underlying code, e.g.,
applying a polar transform is sufficient for polar and RM codes.

Fig. 9. FER (solid)/uFER (dashed) vs. Eb/N0 over the biAWGN channel
for the (128, 64) PAC code under modified SCOS decoding with a maximum
PMs and a fixed maximum complexity constraint compared to a (128, 64)
modified polar code with an outer CRC-7 having the generator polynomial
g(x) = x7 + x6 + x5 + x2 + 1 [31].

VII. CONCLUSION

The SCOS algorithm was proposed that implements ML
decoding. The complexity adapts to the channel quality and
approaches the complexity of SC decoding for the illustrated
short- to moderate-length GN -coset codes with RM rate
profiles at high SNR values. Unlike existing alternatives, the
algorithm does not need an outer code or a separate parameter
optimization. In addition, it provides better performance com-
pared to SC-Fano and SCS decoding algorithms with a lower
complexity at high SNR values.
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Algorithm 5 recursivelyCalcL (λ, ϕ)
Input : layer λ and phase ϕ

1 if λ = 1 then return
2 ψ = ⌊ϕ/2⌋ , t = 2λ−2

3 if ϕ mod 2 = 0 then
4 recursivelyCalcL (λ− 1, ψ)

5 for β = 0, 1, . . . , 2log2 N−λ+1 − 1 do
6 if ϕ mod 2 = 0 then
7 L [λ, ϕ+ 2βt+ 1] =

f− (L [λ− 1, ψ + 2βt+ 1] , L [λ− 1, ψ + (2β + 1)t+ 1])
8 else
9 L [λ, ϕ+ 2βt+ 1] =

f+(L [λ− 1, ψ + 2βt+ 1] , L [λ− 1, ψ + (2β + 1)t+ 1] ,
C [λ, ϕ+ 2βt])

Algorithm 6 recursivelyCalcC (λ, ϕ)
Input : layer λ and phase ϕ

1 ψ = ⌊ϕ/2⌋ , t = 2λ−2

2 for β = 0, 1, . . . , 2log2N−λ+1 − 1 do
3 C [λ− 1, ψ + 2βt+ 1] =

C [λ, ϕ+ 2βt]⊕ C [λ, ϕ+ 2βt+ 1]
4 C [λ− 1, ψ + (2β + 1)t+ 1] = C [λ, ϕ+ 2βt+ 1]

5 if ψ mod 2 = 1 then
6 recursivelyCalcC (λ− 1, ψ)

A modification to SCOS was proposed, which provides
further gains compared to the original algorithm when there is
stringent maximum complexity constraints. The modification
has a potential to provide a trade-off between the overall and
undetected error probabilities as a byproduct. Using the mod-
ified SCOS, the (128, 64) PAC code provides simultaneous
gains in the overall and undetected frame error rates compared
to CRC-concatenated polar codes under SCL decoding.

APPENDIX

Here, we provide the standard routines recursivelyCalcL and
recursivelyCalcC required for SCOS decoding as Algorithms 5
and 6 similar to [27, Alg. 3] and [27, Alg. 4], respectively.
Note that Algorithm 6 denotes the check and variable node
operations as f− (line 8) and f+ (line 10), where the
former may be implemented using min-sum approximation.
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