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Abstract— The emergence of mega-constellations of intercon-
nected satellites has a major impact on the integration of cellular
wireless and non-terrestrial networks, while simultaneously offer-
ing previously inconceivable data gathering capabilities. This
paper studies the problem of running a federated learning (FL)
algorithm within low Earth orbit satellite constellations connected
with intra-orbit inter-satellite links (ISL), aiming to efficiently
process collected data in situ. Satellites apply on-board machine
learning and transmit local parameters to the parameter server
(PS). The main contribution is a novel approach to enhance
FL in satellite constellations using intra-orbit ISLs. The key
idea is to rely on predictability of satellite visits to create a
system design in which ISLs mitigate the impact of intermittent
connectivity and transmit aggregated parameters to the PS.
We first devise a synchronous FL, which is extended towards
an asynchronous FL for the case of sparse satellite visits to
the PS. An efficient use of the satellite resources is attained
by sparsification-based compression the aggregated parameters
within each orbit. Performance is evaluated in terms of accuracy
and required data transmission size. We observe a sevenfold
increase in convergence speed over the state-of-the-art using ISLs,
and 10× reduction in communication load through the proposed
in-network aggregation strategy.

Index Terms— Low Earth orbit, mega-constellations, intra-
orbit inter-satellite links, federated learning, sparsification.

I. INTRODUCTION

SATELLITE constellations have been an essential com-
ponent of modern communication and remote sensing

systems for decades. Recent advances in satellite technology
and the emergence of interconnected mega constellations in
low earth orbit (LEO), are revolutionizing the way we collect
and process data from space [2], [3], [4]. Unlike the pre-
vious cellular generations that were exclusively focused on
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terrestrial networks, mega-constellations and Non-Terrestrial
Networks (NTN) are seen as the integral part of 5G and
the upcoming 6G wireless systems [5]. Consisting of thou-
sands of satellites, these constellations have the potential to
process vast amounts of data, e.g., high-resolution hyperspec-
tral images. Conventional central processing of this collected
data involves significant challenges, including communication
delays, limited bandwidth and storage, as well as data owner-
ship concerns [6], [7]. The on-board intelligence of satellites
increases steadily [4], [8], [9], e.g., PhiSat-1 of European
Space Agency (ESA) mission, pushing towards in-orbit data
preservation and learning to conserve bandwidth and energy,
avoid overloading of ground-satellite links (GSLs), and enable
native artificial intelligence in space.

Satellite federated learning (SFL) has emerged as a promis-
ing solution to address these challenges [7], [10], as an
instance of distributed machine learning (ML) that enables
satellites to collaboratively learn a model without exchanging
raw data. With federated learning (FL), each satellite trains a
local model with its own data and sends only the updated
model parameters to be aggregated at a central parameter
server (PS). FL has the potential to reduce both communi-
cation cost and training delay. Nonetheless, the intermittent
connectivity between satellites and the PS introduce extended
delays when implementing conventional FL in satellite con-
stellations. The first step towards SFL was made in [10], where
each satellite acts as an individual collaborator towards the PS,
located within a terrestrial ground station (GS). Each LEO
satellite has only a very short communication window per
orbital period towards the terrestrial PS. This, as well as the
fact the link between a GS and a satellite vanishes behind the
horizon for several hours after a few orbital periods, leads to
a connectivity bottleneck that severely inhibits convergence
speed of a plain FL. Thus, instead of using conventional
synchronous FL, [10] advantageously uses the sporadic, but
predictable, satellite connectivity to roll out an asynchronous
aggregation.

Newer satellites, especially within the context of mega con-
stellations [11], [12], [13], rely increasingly on inter-satellite
links (ISLs) and multi-hop routing. In this paper, we consider a
SFL setup with ISLs to facilitate the efficient implementation
of both, synchronous and asynchronous SFL. The focus is
on scenarios with connectivity between adjacent satellites
within the same circular orbital plane. In this case, these
connected satellites have stable relative positions, resulting in
an approximately fixed distance from each other and, thus,
in stationary link budgets. This is in stark contrast to links
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Fig. 1. Global model distribution (left) and collection of local updates (right)
using intra-orbit inter-satellite communication.

across different circular orbital planes. These inter-orbit ISLs
are, in the best case, constantly changing in distance and, in the
worst case, have a very short lifespan [3], [14], [15], [16].
However, we explicitly note that the focus on intra-orbit ISLs
does not exclude scenarios where additional inter-orbit ISLs
are available. Indeed, the current work is directly applicable to
those scenarios and, in some cases, it might be even preferable
to employing all available links, as this will likely result in a
considerably higher orchestration complexity.

A direct implementation of multi-hop routing leads to net-
work traffic growing quadratically in the number of satellites
and a high load on links towards the PS, as each client update
will be treated as a common unicast message. Leveraging the
structure of FL traffic along with in-network aggregation [17],
communication can be limited to a single outgoing message
per satellite and a global iteration during the aggregation
phase. Moreover, most of these transmissions use intra-orbit
ISLs instead of the more challenging PS link, resulting energy
saving and reduced communication load at the PS.

Fig. 1 illustrates the key idea through an example of
connectivity bottleneck in SFL using two satellites at 550 km
altitude, spaced 45° apart within the same orbital plane. The PS
is located in a GS and both satellites are participating in a FL
procedure with their local data sets. A single pass over the GS,
i.e., the time the satellite and the GS can communicate, is less
than 10 minutes, while a single orbital period is 95 minutes.
Assume that the computation of this update takes 15 minutes.
Let one of the satellites be selected by the PS to compute
an update to the global model. The satellite will collect the
current global model on the first pass and return the result on
the next pass. This incurs a delay of roughly one orbital period,
which is more than one hour in excess of the computation
time. If both satellites are supposed to compute an update
then, upon the first pass, each satellite will collect the current
model version and start computing. The first satellite will
pass the PS for the second time and deliver the update.
However, in a synchronous FL procedure, the PS will not
update the global model until all updates are received. Hence,
the first satellite will not have a new model version available
to iterate upon during the offline period following the second
pass. Differently from this, when ISLs are available, the first
satellite can transmit this global model to the second satellite
directly after receiving it. Then, both satellites compute the
update in parallel and the second satellite can collect and
deliver both updates to the GS during its first pass. This is
illustrated in Fig. 1. The time for a single global iteration is
reduced from over one orbital period to less than 20 minutes

by this approach, while the traffic at the PS is reduced by
50 %. Implementing this idea requires careful system design
and route planning, relying upon the inherent determinism of
satellite movement.

The objective of this paper is to present a system design for
SFL within a LEO satellite mega-constellation in which the
satellites within the same orbital plane are connected via ISLs
to the adjacent nodes, forming a ring network. Each satellite
has the capability to communicate with an out-of-orbit entity,
such as GS, that orchestrates the training process. The external
orchestration is needed as the satellites are not necessarily
able to communicate across orbital planes; at the same time
it creates a connectivity bottleneck. The contributions of this
paper are:
• Design of a distributed system for SFL, supporting client

clustering, synchronous and asynchronous orchestration,
and consistent decentralized routing decisions.

• Development of a communication scheme for SFL that
takes advantage of intra-orbit ISLs. Due to the co-design
of predictive routing and in-network aggregation, the con-
vergence time is reduced markedly, while not increasing
the communication load. We have also devised a failure
handling procedure.

• Extension of the proposed communication scheme to
accommodate gradient sparsification and in-network
aggregation for bandwidth-efficiency. This includes the
development of a novel estimator for the number of
non-zero elements in the sum of sparse vectors.

• An effective method to prevent biased solutions for asyn-
chronous aggregation in satellite constellations connected
with ISLs. This is necessary after improving connectivity
with ISLs, as simple opportunistic scheduling can result
in a small subset of clusters dominating the training
process for several hours.

• We have evaluated the performance of the proposed
system in several setups. The numerical results highlight
a major increase in convergence speed (∼7 times) due to
the use of ISLs and ∼10 times reduction of communica-
tion load based on our in-network aggregation approach.

We remark that the proposed system is agnostic to the actual
federated optimization (FO) procedure, as long as it supports
partial aggregation as discussed in Section IV-A. Hence, the
system performance can be further improved using conven-
tional fine-tuning of FO algorithms and ML model-specific
hyperparameters [18]. Finally, we note that the primary perfor-
mance metric in this paper is the convergence time measured
by a (simulated) wall clock. Conventional metrics for FL
algorithms are model test accuracy versus the number of global
iterations or the number of gradient computations. This is
sensible as the focus in these studies is on improved computa-
tional efficiency. Instead, the key challenge that sets SFL apart
from conventional scenarios is the connectivity bottleneck
implied by the laws of orbital mechanics, potentially leading
to extensive delays between iterations. Success in overcoming
these obstacles is best measured in the number of global
iterations the distributed system can manage within a certain
period. As with any communication system, another important
metric is bandwidth-efficiency, especially in GSLs.
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A. Related Work
A detailed technical model of SFL was introduced in

[10], while [6] considered it in a more general context of
satellite-based computing networks. A broad overview of the
different scenarios encountered in SFL, together with a discus-
sion of the technical challenges for each scenario, is presented
in [7]. The technical details of several of the ideas sketched
in [7] are provided in this paper. Aerial FL [19] is a setup
that is complementary to SFL, in which the PS is operated
within satellites or aerial stations to orchestrate a planet-side
FL process. It also contains scenarios where the aerial stations
act as clients participating in the training process. The focus
of [19] is, however, on using non-terrestrial networks as access
network for terrestrial FL nodes. Closely related to that are the
satellite-assisted internet of remote things system architectures
considered in [20] and [21], where satellites serve as PS and
access network, respectively.

A coarse classification of current work on SFL can be made
based on the presence and usage of ISLs. The model in [10]
considers the case without ISLs, identifies the connectivity
bottleneck, and proposes a satellite-specific asynchronous FL
algorithm as solution. This work is extended in [22] with a
scheduling algorithm that exploits the inherent determinism
of satellite trajectories. This scheduler can be combined with
the clustered approach to SFL presented here. Indeed, while
the current work aims at improving worker-PS connectivity
to facilitate faster convergence and, optimally, synchronous
orchestration, the algorithm in [22] focuses on reducing stal-
eness by leveraging on the predictable connectivity. Another
scheduling approach based on buffered asynchronous FL is
proposed in [23], aiming to balance local model staleness and
idle times. Lacking a thorough benchmark against the state-
of-the-art, the gain of the complicated scheduling algorithm
in [23] remains an open question. Staleness in asynchronous
SFL is further investigated in [24], which introduces an
asynchronous update rule based on the notion that staleness
effects in SFL are similar in consecutive training epochs.
In [25], the connection bottleneck is tackled by combining
synchronous orchestration with a dynamic aggregation rule
that ignores stragglers. However, the primary reason for the
feasibility of synchronous terrestrial orchestration is the usage
of multiple geographically distributed GSs that act as a dis-
tributed PS. While the authors observe correctly that latency
between GSs is small compared to GSLs, mechanisms to either
ensure consistency between GSs or a hierarchical FL approach
would be required in a practical system implementation
of [25].

An alternative means to improving connectivity is the
usage of ISLs instead of a distributed PS, as proposed in
the conference version of this paper [1]. The communication
strategy from [1] is adopted in [26] and combined with a dis-
tributed PS implemented within interconnected high-altitude
platforms (HAPs). This is extended in [27] to asynchronous
aggregation with multiple HAPs. A modified version of [1] is
proposed in [28], consisting of a decentralized implementation
of predictive routing, which might lead to inconsistent routing
decisions, and the absence of incremental aggregation (see

Section IV-A), which leads to a quadratic traffic growth
within each orbital plane. FL in a fully connected, ultra-dense
satellite constellation, employing both intra- and inter-orbit
ISLs, is considered in [29]. There, only satellites within close
vicinity of the GS are participating in each epoch of the
training process. A decentralized learning system, without PS,
leveraging inter- and intra-orbit ISLs is proposed in [30].
Decentralized learning in LEO satellite constellations under
very realistic satellite system assumptions is considered in [31]
for a semi-supervised classification task. Finally, [32] treats
FL-aware routing and resource allocation for SFL.

B. Organization
The rest of this paper is organized as follows. In Section II,

we present the system model, which includes models for the
constellation, communications, and computation. Section III
describes the different orchestration approaches at the PS
and rigorously defines its operation. In Section IV, the client
process is defined and an efficient communication scheme for
SFL is developed. Section V discusses incorporating gradient
compression in the communication scheme for increased band-
width efficiency, using gradient sparsification as an example.
Finally, we evaluate the performance of our framework in
Section VI and conclude the paper in Section VII.

C. Notation

Scalars are represented in a normal font x, while vectors
in bold x. The Euclidean norm of a vector x is ||x||. The
angle between two vectors x1 and x2 is ∠(x1, x2). Sets are
denoted by X , and the cardinality of X is |X |. Removing
an element xi from the set X is denoted by X \ {xi}.
In a graph G = (V, E) with vertices V and edges E , the
neighborhood of any vertex v ∈ V is denoted as N (v).
If G is directed, N−(v) and N+(v) denote the incoming
and outgoing neighborhood of v, respectively. The operators
Pr(·), E, and I(·) are the probability, expected value, and
indicator function, respectively. Integer rounding is denoted
by ⌊·⌋ and ⌈·⌉.

II. SYSTEM MODEL

The constellation has P orbital planes, where orbit p, p ∈
{1, . . . , P}, contains Kp satellites Kp such that Kp ∩Kq = ∅,
for all q ̸= p. The set of all satellites within the constellation is
denoted as K =

⋃P
p=1Kp = {k1,1, . . . , kP,KP

}, with the total
number of satellites K =

∑P
p=1 Kp. Each satellite k follows

a trajectory sk(t) around Earth with orbital period Tp =

2π
√

a3
k

µ , i.e., sk(t) ≈ sk(t + nTp) for all integer n, where ak

is the semi-major axis of satellite k and µ = 3.98×1014 m3/s2

is the geocentric gravitational constant. For circular orbits, the
semi-major axis is ak = rE + hk with hk being the satellite’s
altitude above the Earth’s surface and rE = 6371 km the Earth
radius. The satellites within an orbital plane p follow the same
trajectory and are assigned unique IDs Kp = {kp,1, . . . , kp,Kp}
such that satellite kp,i+1 is behind kp,i. If the satellites are
distributed equidistantly within the orbital plane, we have
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skp,1(t) ≈ skp,2(t − Tp/Kp) ≈ skp,3(t − 2Tp/Kp) ≈ . . . .1

Coordinates are in an Earth-centric reference frame.

A. Communication Model

The number of communication devices per satellite depends
on the specific mission requirements. In this paper, we assume
each satellite has three communication devices, two of which
are for intra-orbit communications. The third one is for com-
munication outside of its orbital plane, either a GSL if the PS
is located in a GS or an ISL towards a satellite in another
orbit if the PS is located in a satellite. It is worth noting that
if the proposed schemes are applied for satellites equipped
with more than three communication devices, only the three
required ones are used. Communication with an Earth-based
GS is feasible if the satellite is visible from the GS at an
elevation angle π

2−∠(sGS , sk(t)−sGS) ≥ αe, where αe is the
minimum elevation angle [3], [33] and sGS is the position of
the GS. While this condition is satisfied, we assume communi-
cation is possible at a fixed rate.2 For ISLs, communication is
feasible if the line of sight is not obstructed by the Earth. With
lower atmospheric layers degrading the link quality, a sensible
assumption is to consider an ISL to be feasible if it does not
enter the atmosphere below the thermosphere [14], starting
at approximately 80 km above sea level. This translates to a

maximum slant range dTh(t; k1, k2) =
√
∥sk1(t)∥

2 − r2
T +√

∥sk2(t)∥
2 − r2

T for any two satellites k1, k2, where rT =
rE + 80 km. For circular orbits, this threshold is the constant
dTh(k1, k2) =

√
(hk1 + rE)2 − r2

T +
√

(hk2 + rE)2 − r2
T .

We assume communication at a fixed rate is possible between
satellites k1 and k2 if their distance at time t is d(t; k1, k2) ≤
dTh(t; k1, k2).

The most stable link usage is to connect each satellite to
its two closest orbital neighbors, effectively forming a ring
network [16]. The two neighbors of satellite kp,i are N (kpi

) =
{kp,i−1, kp,i+1}. Here, the satellite indices i− 1 and i+1 are
modulo Kp, which is a convention we will adopt throughout
this paper until further notice. Following the previous discus-
sion, the data rate between any two satellites k1, k2 ∈ K within
the constellation is fixed to r(t; k1, k2) = ρk1,k2 if k2 ∈ N (k1)
and communication is feasible, and zero otherwise. For the
out-of-orbit communication link, we assume there is a single
communication partner of interest, denoted as the PS. Then,
the rate function of satellite k’s, k ∈ K, link towards the PS
is similarly defined as rPS(t; k) = ρk,PS if communication is
feasible and zero otherwise.

B. Computation Model

The satellites within the constellation collaboratively train
a ML model from data D collected at the satellites. The ML

1Under the assumption of perfect Keplerian orbits, we can replace ‘≈’ with
‘=’ in all statements on trajectories. With real-world orbits being subject to
orbital perturbations and station keeping maneuvers, these relations do not
hold exactly and we only state them here to introduce notation and some
general concepts on an abstraction level suitable for this paper.

2The fixed rate assumption in the out-of-constellation link is made for the
sake of simplicity. It has no direct impact on the developed SFL framework
and can be relaxed easily to a variable rate if the system supports adaptive
coding and modulation.

model is known at all satellites and fully defined by its model
parameter vector w ∈ Rnd . The goal is to find a solution to
the optimization problem

minw F (w), (1)

where the global loss function F (w) = 1
D

∑
x∈D f(x; w),

with D = |D|, measures the performance of the ML model
with respect to the data set D for a certain set of model
parameters w and a potentially nonconvex per-sample loss
function f(x; w).

Regarding (1), we make two fundamental assumptions:
(i) the computational resources at the satellites are limited such
that a distributed solution of (1) is necessary; (ii) the data set
D is distributed across the constellation and communicating
this data is not feasible; i.e., each satellite has a local data
set Dk such that D =

⋃
k∈KDk, which is not shared with any

other participants in the training process. Due to the local data
sets assumption and the limited connectivity, this distributed
ML scenario is an instance of a FL [34]. However, in contrast
to a conventional FL setup, here client participation is under
central control, the connectivity is mostly deterministic and
predictable, and the number of devices is orders of magnitude
lower.

In FL, (1) is solved iteratively using a modified dis-
tributed stochastic gradient descent (DSGD) procedure.3 This
algorithm is motivated by the linearity of the gradient and the
observation that the objective function is separable as F (w) =
1
D

∑
k∈KDkFk(w) with Fk(w) = 1

Dk

∑
x∈Dk

f(x; w) and
Dk = |Dk|. The optimization process is orchestrated by
a central PS, which maintains the current iteration of the
global model parameters w, distributes these to the clients
for further refinement, and collects the results. In contrast
to conventional FL, we assume that every client participates
in every iteration of the solution process due to the rela-
tively small number of clients. Since satellites within the
constellation are only connected to their orbital neighbors,
communication across orbital planes is only feasible via the
out-of-constellation link. Hence, it is only natural to assume
the PS to be either located in a GS or in a satellite outside the
constellation. Details of the PS operation will be discussed in
Section III.

1) Client Operation: Each satellite k ∈ K runs a process to
handle all application-layer communications related to the FL
training. This procedure will be designed in Section IV. Upon
receiving an updated global parameter vector wn, it launches
the learning procedure outlined in Algorithm 1 in a separate
thread for concurrent execution. This learning procedure then
computes an update to wn based on the local data set Dk.
After initialization in line 2, the loss function Fk(w) is
minimized in I local epochs using permutation-based mini-
batch stochastic gradient descent (SGD) in lines 3–10. More
specifically, in each local epoch, satellite k shuffles its data
set Dk randomly and then divides it into mini-batches of
size |B|. Subsequently, it performs a gradient step based on

3While this paper is focusing on DSGD-based optimization, the extension
to many other iterative distributed optimization algorithms for training ML
models is straightforward.
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Algorithm 1 Satellite Learning Procedure
1: procedure CLIENTOPT(w)
2: initialize wn,0

k = wn, i = 0

3: for I epochs do ▷ I epochs of mini-batch SGD
4: D̃k ← Randomly shuffle Dk

5: B ← Partition D̃k into mini-batches of size B

6: for each batch B ∈ B do
7: wn,i+1

k ← wn,i
k − η

|B|∇w

(∑
x∈B f(x;w)

)
8: i← i + 1

9: end for
10: end for
11: wn

k ← wn,i
k

12: gk(wn
k )← wn

k −wn,0
k ▷ Compute effective gradient

13: ḡk(wn
k )← COMPRESSGRADIENT(gk(wn

k )) ▷ Apply gradient
14: compression (e.g., sparsification)
15: return Dkḡk(wn

k )

16: end procedure

the empirical average per-sample loss for each mini-batch,
i.e.,

wn,i+1
k ← wn,i

k −
η

|B|
∇w

(∑
x∈B

f(x; w)

)
, (2)

where η is the learning rate. Instead of directly transmitting the
updated model parameters wn

k , as represented in line 11, the
effective gradient gk(wn

k ) is computed in line 12. While both
representations wn

k and gk(wn
k ) are theoretically equivalent,

the latter is often easier to compress. This is optionally done
in line 13 by calling the procedure COMPRESSGRADIENT,
which will be defined in Section V. Without compression,
COMPRESSGRADIENT is simply the identity function, i.e.,
ḡk(wn

k ) = gk(wn
k ). In a slight modification of the usual

approach, Algorithm 1 returns the compressed effective gra-
dient scaled by Dk in line 15.

Note that the subsequent results do not rely on the explicit
implementation of the SGD procedure in lines 3–10. The
only requirement is that the updated model parameters can be
incorporated into the global model based on effective gradients
using the update rules presented in Section III. However,
we will use the implementation in Algorithm 1 throughout
this paper.

For the routing procedure developed in Section IV, we will
require an accurate estimate of the time to run Algorithm 1.
Apart from scheduling delays due to multi-task computing,
the runtime directly depends on the number of processor
cycles for each operation in Algorithm 1. These are hardware-
dependent, deterministic, and can be determined offline before
deployment [35]. First, consider a single epoch. The local
data set is shuffled and divided into

⌈
Dk

B

⌉
mini-batches. This

process takes cepoch CPU cycles per sample. Computation
of the stochastic gradients requires, in total, ndDkcs CPU
cycles, where cs is the number of cycles to process one sample
for a single dimension of w. Executing the gradient step
takes, per mini-batch, ndcstep clock cycles. Thus, one epoch
requires a total of Dkcepoch + ndDkcs +

⌈
Dk

B

⌉
ndcstep CPU

cycles. After I epochs, a final gradient step taking ndcstep

cycles is performed to compute the effective gradient. The
gradient compression takes an additional ccompress cycles (see

Section V) and is assumed zero if no compression is used.
Passing the result to the communication stack takes, together
with other overhead occurring due to, e.g., process setup and
termination, a total of cos cycles. The runtime of Algorithm 1
is

tl(k)

=
IDk(cepoch+ndcs)+cstepnd

(
I
⌈

Dk

B

⌉
+1
)
+ccompress+cos

νk
,

(3)

where νk is the CPU frequency at satellite k.

III. ORCHESTRATION OF SATELLITE
FEDERATED LEARNING

FL uses a conventional client-server architecture to orches-
trate the training process. While the clients compute the
stochastic gradient steps for (1), the parameter server (PS)
is responsible for aggregating these gradient steps, updating
the global model parameters, and distributing the updated
parameter vector to the clients. In a conventional FL setup,
the PS is also responsible for client scheduling, mod-
eled as an uniform sampling of a subset of clients in
each global iteration. Given that FL operates on a massive
number of clients, this is equivalent to a two-stage SGD
step, the first step being a client selection and the second
computation. Instead, SFL operates with significantly fewer
(orders of magnitude) clients and each client has a much
larger share of the total data, exhibiting a non-negligible
contribution to the unbiased model convergence. Hence,
it is reasonable that all clients participate in every global
iteration.

Connectivity towards the workers is necessary for synchro-
nization of the training process. In SFL, the communication
window from a single LEO satellite towards a ground-based
PS is usually in the order of a few minutes, followed
by an offline period due to Earth blockage, ranging from
one orbital period up to several hours. As shown in [10],
the conventional FedAvg operation of collecting all local
updates before creating a new global model iteration leads
to severe delays in the training process. This bottleneck can
be partially mitigated by modifying FedAvg for asynchronous
operation [10]. Compared to synchronous FL, asynchronous
FL has a slower convergence speed in terms of gradient steps.
For ground-orchestrated SFL without ISLs, this decrease is
greatly outweighed by the reduction in the delay between
gradient steps, resulting in much faster overall convergence
speed, measured in wall time. Leveraging ISLs, the optimal PS
operation very much depends on the PS location and resulting
connectivity patterns [7]. We will introduce both orchestration
approaches in a unified manner in Section IV and V. The
actual aggregation rule at the PS is easily exchangeable as long
as additivity of individual client updates holds. This broadens
the contribution of Section IV, as it allows to improve the
PS operation while preserving the dense connectivity patterns
enabled by ISLs.
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A. Synchronous Orchestration

A synchronous FL PS, exemplified by FedAvg [34], repeats
the following steps until a termination criterion for the global
model is met: 1) Transmit the global model parameters w to
the scheduled clients; 2) Wait for the clients to run Algorithm 1
and return their results; 3) Aggregate the received gradi-
ents and update the global model parameters. The difference
between FL algorithms is in the computation of gradients in
Algorithm 1 and the update rule in Step 3). While we focus
on FedAvg here, the extension to many other algorithms is
trivial.

Consider global iteration n and assume all clients are sched-
uled to participate in this iteration. Plain FedAvg implements
the update rule wn+1 = 1

D

∑K
k=1 Dkwn

k . An equivalent
update rule based on effective gradients gk(wn

k ), as repre-
sented in Algorithm 1, is

wn+1 =
1
D

K∑
k=1

Dk

(
wn

k −wn,0
k

)
+

1
D

K∑
k=1

Dkwn,0
k

= wn +
1
D

K∑
k=1

Dkgk(wn
k ). (4)

A common generalization is to add a global server learning
rate ηs to this update rule, i.e., wn+1 = wn − ηsγ

n, where
γn = − 1

D

∑K
k=1 Dkgk(wn

k ) [18].
The complete algorithm for PS operation in the SFL sce-

nario, in relation to the client update procedure in Algorithm 1,
is given in Algorithm 2. This is a modified version of the
delay-tolerant FedAvg implementation in [10]. It is initialized
in line 2, where a set of client clusters C is defined. This
is required for the efficient use of ISLs in Section IV. The
idea is to treat each cluster as if it were an individual user,
receiving the current parameter vector only once and also
delivering a single effective gradient per global iteration. For
now, as well as for scenarios without ISLs, it can be assumed
that satellite/client k is mapped to cluster Ck, with P clusters in
total. The PS maintains the training process until the sequence
{w1, w2, . . . } satisfies the termination criterion in line 3. Each
iteration of this outer loop corresponds to a global iteration,
counted as n. The sets T n and Rn track the transmission
of wn and reception of the gradient update to wn per client
group, respectively. Hence, the inner loop in line 5–21 runs
until updates have been received from all clusters in C . This
loop blocks until a satellite connects to the PS in line 6. Note
that this could also mean continuing a connection that was not
terminated the previous iteration. A message from the satellite
is received that either requests the transmission of the current
parameter vector or contains the update from the satellite’s
cluster.

If the satellite requests transmission of wn and it was not
yet delivered to its cluster, it will be transmitted in line 10.
Successful reception must be acknowledged by the satellite.
A possible implementation is the Bundle protocol’s custody
transfer [36], [37]. Then, this cluster is marked as having
received the transmission in line 11. All subsequent transmis-
sion requests for wn to satellites of this cluster will be rejected
by terminating the connection in line 19. If the satellite

Algorithm 2 Synchronous PS Operation
1: initialize global iteration n = 0, model w0,
2: and client clusters C = {C1, C2, . . . }

3: while termination criterion not met do
4: Set n← n + 1, T n = Rn = ∅, wn ← wn−1

5: while |Rn| < |C | do
6: Wait until connection from satellite k:
7: Receive message m
8: Find p such that k ∈ Cp

9: if p /∈ T n and m is request for data then
10: Transmit wn−1 to satellite k
11: Upon successful transfer, add p to T n

12: else if p /∈ Rn

and m contains gradient update γp then
13: γ̃p ← UNCOMPRESSGRADIENT(γp)
14: wn ← wn + 1

D
γ̃p

15: Add p to Rn

16: Acknowledge reception to k
17: end if

18: if |Rn| < |C | then
19: Terminate connection
20: end if
21: end while
22: end while

transmits an update γp to wn and the cluster has not yet
transmitted an update in the iteration, the compression applied
in line 13 of Algorithm 1 is decoded in line 13. Without com-
pression, UNCOMPRESSGRADIENT is the identity function.
Then, the update rule (4) is applied in line 14. incrementally
(see also line 4) and relies on the received gradient already
being scaled by Dk. Unless the current iteration is finished,
the connection is terminated in Algorithm 2.

B. Asynchronous Orchestration

As opposed to synchronous operation, in asynchronous PS
operation, the PS does not delay the global model update
until all clients have delivered their local updates. Instead,
it opportunistically incorporates received gradient updates into
a new iteration of the global model, which is subsequently
distributed to the clients. Consequently, clients simultaneously
operate on different version of the model parameters and
gradient updates are typically based on an outdated version
of the model parameters, reducing the convergence speed and,
potentially, numerical problems. For SFL, this stalenenss, i.e.,
the age of the local model with respect to the current global
model, is bounded due to the quasiperiodicity of this sce-
nario. Hence, we are operating in the partially asynchronous
domain, which leads to, generally speaking, much better
convergence properties than in totally asynchronous scenarios
with unbounded delays [38].

Inspired by [10], an asynchronous version of Algorithm 2
is proposed in Algorithm 3. It consists of the same func-
tional blocks as Algorithm 2: Wait for incoming connections
in lines 4–6, incorporate and acknowledge gradient updates
in lines 8–11, run until global convergence (lines 13–21),
and transmit the current version of the model parameters in
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Fig. 2. Connectivity towards the PS from within a 60°: 40/5/1 Walker delta constellation. That is, a constellation of 40 satellites having 60° inclined circular
orbits and altitude 2000 km. The satellites are distributed evenly among five orbital planes, which are spaced equidistantly around Earth. Clusters Cp are
defined as either a single satellite per orbital plane or all satellites within an orbital plane. In the second case, a cluster is considered having a connection to
the PS if at least one satellite of the cluster can communicate with the PS. Per-satellite connectivity towards the PS is displayed in gray below the cluster
connectivity.

Algorithm 3 Asynchronous PS Operation
1: initialize global iteration n = 0, model w0, A = B = ∅,
2: and client clusters C = {C1, C2, . . . }
3: loop
4: Wait until connection from satellite k:
5: Receive message m
6: Find p such that k ∈ Cp

7: if p ∈ A and m contains gradient update γp then
8: γ̃p ← UNCOMPRESSGRADIENT(γp)
9: wn ← wn + 1

D
γ̃p

10: A ← A \ {p}
11: Acknowledge reception to k
12: Wait for new message m

13: if termination criterion is met then
14: B ← {1, 2, . . . , P} \ A
15: if A = ∅ then
16: Terminate loop (and connection)
17: end if
18: else
19: B ← ∅
20: end if
21: end if
22: if p /∈ A ∪ B and m is request for data then
23: Transmit wn−1 to satellite k
24: Upon successful transfer, add p to A
25: end if
26: Terminate connection
27: end loop

lines 23–24. The main difference is that, in Algorithm 2, the
nested loop ensures that every cluster adds their update to
the global model before this new version is transmitted to
any client. Instead, Algorithm 3 directly incorporates every
received update and immediately starts using this new version
to answer requests for data. To avoid race conditions within
the clusters, Algorithm 3 uses the set A to track active
clusters, i.e., clusters that received the model parameters and
did not yet return an update. Another difference is that the

global termination criterion, after being first met, might not
remain valid after receiving the outstanding updates from
active clusters. To handle this, whenever a new global model
satisfies the termination criterion, all inactive clusters in B,
including the currently connected, are blocked from further
computations. This is repeated until no active cluster remains.
If the termination criterion is violated for any update, all blocks
are removed in line 19 and the algorithm resumes normal
operation.

IV. INTRA-ORBIT AGGREGATION FOR SATELLITE FL

Convergence in SFL is mainly impaired by the connectivity
bottleneck between satellites and the PS. We have discussed
algorithmic approaches to this obstacle in the previous section.
With the availability of ISLs, these can be complemented by
multi-hop routing to close gaps in connectivity. Figure 2 illus-
trates the potential gain for a constellation having five orbital
planes, each with eight satellites, displaying the connection of
a single satellite from each orbital plane towards a PS. Using
multi-hop routes within the orbital plane leads to significantly
prolonged online periods as compared to the sporadic point-
to-point connectivity. For simplicity, we focus on synchronous
orchestration first and review the specifics for asynchronous
orchestration in Section IV-F.

Communication for FL involves two primary tasks, param-
eter vector distribution and collection of gradient updates.
A direct approach to implementing these, leveraging ISLs for
multi-hop routing, are conventional delay-tolerant networking
techniques for satellite networks, e.g., contact graph routing
in combination with the Bundle protocol [39], [40], [41].
Then, parameter vector distribution is a multicast message
from the PS towards all satellites in K, while gradient updates
are communicated as unicast messages from individual satel-
lites towards the PS. However, the number of these unicast
transmissions scales quadratically in the number of satellites
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Fig. 3. Routing tree for incremental aggregation in orbital plane p. Satellite kp,2 acts as sink node. Satellite kp,6 has two shortest-path routes to sink. This
is resolved unambiguously by the routing algorithm.

per orbital plane. This can be reduced to a linear increase with
in-network aggregation.

A. Incremental Aggregation

Consider the PS update rule from (4), within the global
iteration n. The PS is primarily interested in the sum of effec-
tive gradients instead of individual gradient updates. Hence,
the updates from all satellites within an orbital plane Kp can
be collected at a single satellite sn

p ∈ Kp for transmission to
the PS. Instead of transmitting the individual gradient updates
{Dkḡk(wn

k )}k∈Kp
, this satellite sends the linear combination∑

k∈Kp
Dkḡk(wn

k ) to the PS. Following Section III, the PS
then treats the satellites in Kp as the client cluster Cp and
incorporates their joint update.

This approach can be extended to intra-cluster communica-
tion. Suppose the sink satellite sn

p is known to all satellites in
Kp. Then, each satellite can easily determine a shortest-path
in-tree, rooted at and oriented towards sn

p , for Kp [42, §9.6].
For Kp odd, this tree is unique. For Kp even, two equal length
paths exist for the satellite farthest away from sn

p . Denote this
satellite kp,i and resolve this ambiguity by choosing the tree
where kp,i+1 is the parent node of kp,i. We denote this directed
graph as the aggregation tree Gn

p = (Kp, En
p ), with vertex set

Kp and edge set En
p . Its computation is illustrated in Figure 3.

Let N−Gn
p
(k) = {y ∈ Kp : (y, k) ∈ En

p } be the incom-
ing neighborhood of k on Gn

p . Based on Gn
p , each satellite

k ∈ Kp knows exactly which gradient updates it needs to
forward. After local computation completes, node k waits
until all updates from the satellites in N−Gn

p
(k) are received

via ISLs. This might have already happened during the local
computation phase. Then, the outgoing partial aggregate of
satellite k is computed as

γn
k = Dkḡk(wn

k ) +
∑

y∈N−Gn
p

(k)

γn
y (5)

and transmitted via ISL to the next hop p ∈ N+
Gn

p
(k) =

{y ∈ Kp : (k, y) ∈ En
p }. If k is the current4 sink node,

i.e., |N+
Gn

p
(k)| = 0, γn

k is the joint aggregate of client cluster
Cg = Kp and transmitted to the PS once the link becomes
available.

4Please refer to Section IV-D for a failure handling procedure that might
change the sink node after initial assignment.

B. Parameter Vector Distribution

Algorithms 2 and 3 treat client clusters as if they were a
single node, i.e., the PS expects to receive a single (joint)
update per client cluster and transmits the model parameter
vector only once per global iteration to each cluster. The
previous subsection provides ample reason for the first design
choice. Transmitting the parameter vector only once is also
sensible for several reasons. First of all, it is what ideally
happens if the PS transmits a multicast message towards the
nodes in Kp using the Bundle protocol. As noted before,
using the Bundle protocol’s custody transfer (or similar) to
safeguard point-to-point transmissions involving the PS is a
fundamental assumption in this paper. Second, using multicast
messages and multi-hop routing considerably reduces delay
and the communication effort for the PS. Finally, this provides
a natural leader election mechanism for coordinating the sink
node selection.

The PS sends the model parameters wn in iteration n to
a single satellite k per cluster Cp. Satellite k is then respon-
sible for determining an appropriate sink node sn

p using the
procedure described in Section IV-C. Subsequently, satellite
k propagates its routing decision together with wn through
both ISLs to its neighbors N (k) and starts the local training
CLIENTOPT(wn). All other satellites, upon reception of new
model parameters wn via one of the ISLs, forward the model
parameters to their next neighbor that did not receive wn

and start the local training CLIENTOPT(wn). Subsequent
receptions of wn are silently dropped upon reception. This
ensures that the propagation of wn through the orbital plane
stops once every satellite received it.

C. Predictive Routing

The final missing piece to this routing approach is a
procedure to determine the sink node sn

p . This decision must
be made before the local training procedure completes on any
satellite in the client cluster. From a timing perspective, the
ideal sink node completes computing (5) immediately before
its link towards the PS becomes available. Predicting the future
state of a satellite constellation is possible with high accuracy
due to the determinism of satellite movement [43], [44], [45].
Here, we assume the availability of an orbital propagator with
low computational complexity and (relatively) low precision
like SGP4 [44], [46]. We also assume availability of fairly
recent information on the constellation state, e.g., in the form
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of two-line element sets (TLEs) [46], [47], distributed by
the satellite operator. The sink node can be determined from
the orbital positions of the PS and satellites Kp at the time
when intra-orbit aggregation completes. This requires a pre-
diction of the time Tn

p to 1) distribute the model parameters;
2) compute the local updates; and 3) deliver these updates to
candidate sink nodes. The computation time can be estimated
using tl(k) in (3). The time to transmit a vector v via intra-
orbit ISL between two satellites k1 and k2 ∈ N (k1) is
upper bounded as tc(v, t; k1, k2) ≤ S(v)

ρk1,k2
+ maxt d(t;k1,k2)

c0
,

where c0 is the vacuum speed of light, S(v) is the storage
size of v and d(t; k1, k2) is constant in t for circular orbits.
For uncompressed gradients, S(wn) = ndω, where ω is the
storage size of a single element of model parameter, usually
16 −bit or 32 −bit floating point number.

A precise solution for Tn
p should take into account that

satellites start their learning procedure at different times
depending on the number of hops the global model param-
eters need to travel. Even when distribution takes place
over shortest-distance paths, the completion time is different
for each potential sink node in Kp. Hence, predictions on
the constellation state must be made for up to Kp time
instants and the computational complexity for determining
the sink node scales at least linearly in Kp. A considerably
simpler approach is to assume distribution takes place over
shortest-distance paths and make a worst-case estimate for
the aggregation phase. Combined with assuming a symmetric
orbital distribution of satellites and equal ISL capabilities, i.e.,
dp = maxt d(t; k1, k2) and ρp = ρk1,k2 for all k1 ∈ Kp, k2 ∈
N (k1), we obtain

Tn
p ≤

⌈
Kp

2

⌉(
S(wn)

ρp
+

dp

c0

)
+ max

k∈Kp

tl(k)

+
⌈

Kp

2

⌉(
maxk∈Kp S(ḡk(wn

k ))
ρp

+
dp

c0

)
. (6)

Under constant-length gradient compression and equal
in-cluster computation times, becomes:

Tn
p ≤ T̂n

p = tl(k1)+
⌈

Kp

2

⌉(
S(wn) + S(ḡk1

(wn
k1

))
ρp

+
2dp

c0

)
(7)

for any k1 ∈ Kp. This bound overestimates the time for
communications. However, this part is likely small compared
to the computation time. Taking into account the inaccuracies
of orbital prediction,5 local clock deviations, and computa-
tional delays due to, e.g., multitasking, interrupts, or priority
scheduling, slightly overestimating the time to completion
seems reasonable. The major advantage of using the simple
estimate in (7) is that the constellation state needs only be
predicted for a single time instant. Thus, the computational
effort remains constant in Kp.

Based on the estimate T̂n
p , the satellite that took custody

of wn computes the positions of the PS and all satellites in
its orbital plane at time tnp + T̂n

p , where tnp is the expected
local time after determining sn

p . Among the satellites in

5TLE data has an initial accuracy of roughly 1 km and then decays
quickly [46].

communication range of the PS, the satellite with the longest
remaining window for communication is selected as sink node
sn

p . Should this window be of insufficient length to transmit the
parameter vector or if no satellite is in communications range
of the PS, the next satellite of that orbital plane to contact the
PS is selected as sink sn

p . Then, the custodian satellite starts
the model distribution process as described in Section IV-B.

D. Failure Handling

If the sink node completes the incremental aggregation after
its communication window to the PS has closed, a critical
routing error may occur. This can happen due to random
factors in learning and transmission, such as multiprocessing
loads and queuing delays. As a result, the sink may fail
to deliver the aggregated parameters to the PS within the
designated, initially planned time.

To deal with these situations, we introduce failure handling.
A straightforward scheme, termed pass-to-neighbor, could
work as follows. If the sink satellite sn

p is unable to deliver the
aggregated parameters to the PS, it transfers those parameters
to a neighboring satellite. If the PS is visible, this neighbor
sends them to the PS; otherwise, it relays them further to the
next neighbor. This process of passing to the next neighbor,
within a fixed direction, continues until a satellite can forward
the parameters to the PS. Pass-to-neighbor may lengthen the
whole FL process if it takes an excessive time to find a satellite
that can forward the aggregated parameters to the PS.

A more involved, yet practical, scheme is determine-new-
sink. Here, after finalizing the parameter aggregation, the sink
satellite sn

p can designate a new sink ŝn
p , if the delay dictates

that. In this regard, the sink sn
p uses visibility of satellites

and the time required for ISL transmissions to calculate the
time it takes for the aggregated parameters to reach a potential
new sink, chosen from the set of satellites in the orbit p, i.e.
k ∈ Kp = {1, 2, · · · , Kp}, as

t(k) = t0 + h(k, sn
p )

(
S(γn

sn
p
)

ρp
+

dp

c0

)
+ tg, (8)

where t0 is the current time of sn
p and h(k, sn

p ) is the number
of hops between satellite k and the sink sn

p in the orbit.
The parameter tg is a guard time, introduced to mitigate
other delays in the orbit that may occur due to the parameter
transmission from sn

p to the newly designated sink ŝn
p . The

satellite k is chosen as the new sink ŝn
p if it satisfies both

the conditions of having the lowest t(k), the time at which it
can first visit the PS. Subsequently, the aggregated parameters
along with the ID of new sink ŝn

p are sent from sn
p to ŝn

p . This
is done via a multi-hop connection over the ISLs of satellites
between sn

p and ŝn
p . The new sink satellite ŝn

p transmits the
parameters to the PS when the PS becomes visible.

E. Algorithm

The satellite operation described above is summarized in
Algorithm 4. This procedure runs until a stop message is
received from the PS, either directly or via ISL. The parameter
vector distribution is handled in lines 3–16. The training
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Algorithm 4 Satellite Operation
1: Initialize global iteration n = 0, satellite ID k = kp,i

2: and orbital plane ID p

3: Wait for incoming ISL or start of PS connectivity window
4: if received (sn+1

p ,wn+1) from satellite l then
5: n← n + 1
6: Forward (sn

p ,wn) to N (k) \ {l}
7: else if connected to PS then
8: Request parameters wn+1 and wait for reply
9: if received wn+1 then

10: Acknowledge reception to PS and set n← n + 1
11: Compute tn

p + T̂ n
p and determine sn

p

▷ cf. Section IV-C
12: Transmit (sn

p ,wn
p ) to N (k)

13: else
14: Goto line 3
15: end if
16: end if

17: Execute concurrently Dkḡk(wn
k )← CLIENTOPT(wn)

18: Compute aggregation tree Gn
p ▷ cf. Section IV-A

19: if k is sink satellite then
20: Initialize failure handling ▷ cf. Section IV-D
21: Wait for [ CLIENTOPT and results from N−Gn

p
(k) ]

until failure
22: if failure then
23: Compute γn

k as in (5)
24: Calculate ŝn

p based on (8)
25: Transmit (ŝn

p , γn
sn

p
) to the next satellite

26: else
27: Compute γn

k as in (5)
28: Wait for connection to PS
29: Transmit γn

k and wait for acknowledgement
30: end if
31: else
32: Wait for [CLIENTOPT and results fromN−Gn

p
(k)] or (ŝn

p , γn
sn

p
)

33: if (ŝn
p , γn

sn
p

) then
34: if k is ŝn

p then
35: Goto line 28
36: else
37: Transmit (ŝn

p , γn
sn

p
) to the next satellite

38: end if
39: else
40: Compute γn

k as in (5)
41: Transmit γn

k to next hop p ∈ N+
Gn

p
(k)

42: end if
43: end if
44: Goto line 3

procedure is launched concurrently, e.g., in a separate thread,
in line 17. Algorithm 4 continues immediately with line 18,
which starts the incremental aggregation phase by computing
Gn

p . Lines 23–25 are for failure handling.
If the satellite is the current sink node, it waits for incoming

results and its own computation to finish. Should the des-
ignated PS communication window pass in the meantime,
the failure handling is applied according to the procedure
described in Section IV-D. It triggers the failure handling
procedure in lines 23–25, which calculates the new sink.
Otherwise, once all results are ready, the sink node computes
the final cluster aggregate in line 27, waits for the PS to
become available, and transmits the results.

All other satellites execute lines 31–43. If the local training
is complete and the expected incoming partial aggregate is
received, the satellite computes (5) and forwards the result to
the next hop in line 41. It then returns to line 3 to wait for a
new global iteration or take over as sink node. If the satellite
is tasked with taking over as new sink node, it performs as
line 35.

F. Asynchronous Orchestration

The primary reason for asynchronous orchestration is long
connectivity gaps due to orbital mechanics. These outages
are considerably reduced by the techniques developed in
this section. As there is no apparent benefit of per-client
asynchronous updates over using (synchronous) client clusters,
the system performance under asynchronous aggregation is
expected to benefit significantly from incremental intra-orbit
aggregation. In fact, the proposed FL system can be imple-
mented such that the clients are agnostic to the PS operation.

However, in some scenarios the improved connectivity can
result in a large number of updates from a small group
of client clusters. This can lead to heavily biased solutions
and other convergence issues. One such problematic scenario
could be Fig. 2a combined with a short learning time tl(k).
A simple solution to this issue is to set a maximum update
frequency per cluster, i.e., fix a minimum time Tu between
updates. In a completely trusted system (as is likely the
case in SFL), this can be implemented by 1) modifying
line 11 in Algorithm 4 to use max{T̂n

p , Tu} instead of T̂n
p ;

2) distributing the time stamp tnp +Tu together with the model
parameters and designated sink node; and 3) not sending any
updates to the PS before tnp + Tu, unless this would result in
missing the planned communication window (modify line 28
in Algorithm 4). Alternatively, the PS could simply refuse
sending the current global model parameters to a cluster if
the update frequency is too high.

V. SPARSIFICATION-BASED GRADIENT COMPRESSION

Synchronizing large-scale ML models requires transmitting
massive amounts of data. A widely employed method to
reduce the communication cost is to truncate the effective
gradients prior to transmission to only contain the elements
with largest magnitude, while setting the other elements to
zero. This is known as sparsification [48], [49], as the resulting
vectors are communicated in sparse vector encoding. With
practical sparsification ratios q in the range of 1 % to 10 %,
the size of a single effective gradient vector can be reduced
by approximately 80 % to 98 %.

However, while a single sparsified vector has a deterministic
length of ⌊ndq⌋ nonzero elements, the sum of multiple sparse
length-⌊ndq⌋ vectors has nondeterministic length. This leads
to variable transmission lengths and, hence, uncertainties in
the predictive routing procedure. In this section, we develop an
estimator for sparse vectors subject to incremental aggregation
based on probabilistic modeling of the weight vectors. Before,
we briefly review FL gradient sparsification.
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A. Gradient Sparsification for FL

Each client transmits only the ⌊ndq⌋ largest magnitude
elements from its effective gradient vector gk(wn

k ). This
truncation operation is denoted as Topq . A common method to
improve the training performance under gradient sparsification
is to track the accumulated sparsification error in a residual
vector ∆n

k . The effect is that small magnitude elements,
which would be ignored in every iteration, are aggregated over
several iterations and will survive sparsification at some point.

The complete sparsification procedure, for an effective
gradient gk(wn

k ), is to accumulate the previous sparsification
error into the effective gradient as gacc

k (wn
k ) ← gk(wn

k ) +
∆n−1

k , then compute the sparse gradient for transmission as
ḡk(wn

k ) ← Topq(gacc
k (wn

k )), and update the sparsification
error as ∆n

k ← gacc
k (wn

k ) − ḡk(wn
k ). Convergence of SGD

with this sparsification procedure is established in [49]. The
COMPRESSGRADIENT procedure in Algorithm 1 is imple-
mented as exactly these three steps, with ḡk(wn

k ) being the
return value. Then, UNCOMPRESSGRADIENT simply converts
the sparse vector back to its full-length representation, and
the summation in (5) is implemented as a conventional sparse
vector addition [50, §2].

B. Predictive Routing for Sparse Incremental Aggregation

The predictive routing procedure in Section IV-C relies on
knowledge of the storage size S(ḡk(wn

k )). With sparsification
applied, the estimates in (7) and (8) remain no longer valid,
as the relevant length S(γn

k ) is no longer constant over the
aggregation path. To this end, first consider the following
lemma.

Lemma 1: Consider L independent and identically dis-
tributed (i.i.d.) random vectors X1, . . . ,XL of dimension
nd. Let X̃ l = Topq(X l) for all l = 1, . . . , L. Then, the
expected number of nonzero elements in XΣ =

∑L
l=1 X̃ l

is nd − nd

(
1− na

nd

)L

, where na = ⌊ndq⌋ is the number of
nonzero elements in each summand.

Proof: Consider the vector X l = (Xl,1, . . . , Xl,nd
) and

let Al,i be the event that X l,i is zero after the Topq operation.
The probability that Al,i occurs is 1− na

nd
[51, Lemma 13.1].

Further, let Ai be the event that element i is zero after
Topq in all L vectors. Then, due to independence, Pr(Ai) =

Pr
(⋂L

l=1 Al,i

)
=
∏

l Pr(Al,i) =
(

1 − na

nd

)L

. Observe that

Ai is the event that the ith element of XΣ is zero. Thus, the
expected number of zero elements in XΣ is E [

∑nd

i=1 I(Ai)] =∑
iE [I(Ai)] =

∑
i Pr(Ai) = nd

(
1 − na

nd

)L

, where I(·)

is the indicator function that takes value 1 if Ai occurs and
0 otherwise.

Based on this lemma, we can make a reasonable estimate on
the number of transmitted bits during incremental aggregation.

Proposition 1: The expected total number of transmitted
bits over H hops of incremental aggregation is upper bounded

as nd(ω + ⌈log2 nd⌉)
[
H + 1− nd

na

[
1−

(
1− na

nd

)H+1
]]

,

where na = ⌊ndq⌋.

Proof: Let Ph = (k1, k2, . . . , kh+1), for h = 1, 2, . . . ,H ,
be an increasing sequence of nested paths. Consider incre-
mental aggregation over path PH starting at k1. Denote by
S(Ph) the total number of bits transmitted over path Ph.
Then, S(P1) = S(γn

k1
) and S(Ph) = S(γn

h) + S(Ph−1) for
h > 1, where γn

k is the outgoing aggregate at node k as
defined in (5). At k1, the outgoing aggregate has storage size
S(γn

k1
) = na(ω+⌈log2 nd⌉), where ⌈log2 nd⌉ accounts for the

storage space of element indices in the sparse representation
[50, §2].

At subsequent nodes kh, h > 1, the outgoing aggregate
has size S(γn

kh
) = S(Dkh

ḡkh
(wn

kh
) + γn

kh−1
). Modelling

wn
k as an i.i.d. random vector and assuming the gradi-

ents of the nodes along PH are independent, we obtain

E[S(γn
kh

)] = (ω + ⌈log2 nd⌉)
(

nd − nd

(
1− na

nd

)h
)

from

Lemma 1. Further, observe that S(γn
k1

) = nd−nd

(
1− na

nd

)
.

Then, by recursion, E[S(PH)] =
∑H

h=1E[S(γn
h)] =

nd(ω + ⌈log2 nd⌉)
[
H −

∑H
h=1

(
1− na

nd

)h
]

, and due to

the geometric sum identity, E[S(PH)] = nd(ω +

⌈log2 nd⌉)
[
H + 1− nd

na

(
1−

(
1− na

nd

)H+1
)]

.

Finally, observe that for dependent gradients the posi-
tions of the nonzeros after Topq will be correlated. Hence,
with the notation from the proof of Lemma 1, Pr(Al,i) ≤
Pr(Al,i|Al,i−1 · · ·Al,1). Thus, Pr(Ai) ≥

(
1− na

nd

)L

and

E [
∑

i I(Ai)] ≥ nd

(
1− na

nd

)L

.

Leveraging Proposition 1, we replace
⌈

Kp

2

⌉
S(ḡk1

(wn
k1

)
in (7) and (8) with

nd(ω + ⌈log2 nd⌉)

⌈Kp

2

⌉
+1− nd

na

1−
(

1− na

nd

)⌈
Kp
2

⌉
+1
 ,

(9)

to account for sparsification in the predicted routing procedure.
This will overestimate the communication effort as it does not
account for the dependence between gradients. As discussed
in Section IV-C, a certain amount of “slack” is inconsequential
and might even improve overall performance due to reducing
the probability of timing failures. However, should tighter
bounds become necessary, training a simple ML estimator
for the aggregated vector length, e.g., using reinforcement
learning, appears sensible. Instead, tighter analytical bounds
would require assumptions on a random distribution for the
elements of w and experimental calibration of correlation
between gradients.

VI. PERFORMANCE EVALUATION

We evaluate the performance of the proposed system design
for four representative scenarios. The worker satellites are
organized either in a 60°: 40/5/1 Walker delta or a 85°: 40/5/1
Walker star constellation, both at an altitude of 2000 km. The
notation i : t/p/f indicates a constellation with p evenly
spaced circular orbital planes at inclination i, each having
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Fig. 4. Test accuracy with respect to wall-clock time. Synchronous orchestration for the MNIST and CIFAR-10 datasets with non-i.i.d. distributions,
considering both terrestrial and non-terrestrial PS. i.e., the GS in Bremen and an LEO satellite. Note that ISL and non-ISL stand for the FedAvg with and
without ISL algorithms respectively.

t/p equidistant satellites. The phasing parameter f defines the
relative shift in right ascension of the ascending node between
adjacent orbital planes and amounts to 9° in this particular
setup [52]. Subsequently, we identify these constellations as
W-∆ and W-⋆, respectively. These constellations are combined
with a PS located either in a terrestrial GS located in Bremen,
Germany, or in a LEO satellite orbiting at an altitude of 500 km
in the equatorial plane.

Communication links are modelled as complex Gaussian
channels with free-space path loss (FSPL). Then, the maxi-
mum achievable rate between nods k and i using a bandwidth
B is ρ(k, i) = B log2 (1 + SNR(k, i)). The SNR(k, i) =
PtGk(i)Gi(k)

N0L(k,i) is defined by the transmit power Pt, the noise
spectral density N0 = kBTB at receiver temperature T ,
and average antenna gains Gj(l) at node j towards node
l, with kB being the Boltzman constant. The FSPL is
L(k, i) = (4πfcd(k, i)/c0)

2, where fc is the carrier frequency
and d(k, i) the distance between nodes k and i [16], [53].
We assume fixed rate links operating at the minimum rate
supported by the link. This is equivalent to selecting d(k, i)
as the maximum communication distance dTh(k, i) between
these nodes. Following [52], we set fc = 20 GHz, B =
500 MHz, Pt = 40 dBm, T = 354 K, and the antenna gains
to 32.13 dBi.

Numerical ML performance is evaluated based on the
two most widely used benchmarks. The first is a conven-
tional 7850-parameter logistic regression model trained on the
MNIST dataset, 28×28 pixel greyscale images of handwritten
digits ranging from 0 to 9 [54]. The other is a deep CNN
with 122 570 parameters from [55], trained on the CIFAR-10
dataset [56], which includes 10 classes with 32 × 32 RGB
images. The data samples are either evenly distributed at
random among the satellites, which is the i.i.d. setting, or in a
non-i.i.d. fashion using a Dirichlet distribution with parameter

0.5 [57], [58]. We use a batch size of ten, run five local epochs,
and take the learning rate as 0.1. A computation time tl of 60 s
and 480 s is assumed for MNIST and CIFAR-10, respectively.
The simulation is build upon the FedML framework [59].

A. Synchronous and Asynchronous Orchestration

We start by evaluating the benefits of ISLs for synchronous
orchestration as detailed in Algorithm 2. Without employing
ISLs, this is the vanilla FL approach as first proposed in [34].
Directly applying it to SFL, i.e., each satellite contacts the
PS directly, leads to very slow convergence speed, especially
in scenarios with terrestrial orchestration [10]. The question is
whether the usage of ISLs resolves the connectivity bottleneck
sufficiently to make synchronous orchestration feasible.

To this end, we measure the test accuracy with respect to
the wall clock time for synchronous terrestrial orchestration
in the W-⋆ and W-∆ constellations, with and without ISLs.
We complement this by an experiment with a PS in LEO.
Results for non-i.i.d. MNIST and CIFAR-10 are displayed in
Fig. 4. All scenarios show the distinct step function behavior
first observed in [10] for the non-ISL scenarios. This is caused
by the PS being forced to wait for all results before updating
the global model. As expected, the usage of ISLs, as proposed
in Section IV, shortens the convergence time significantly in
all scenarios. With MNIST training usually showing very fast
convergence, it can be easily observed that ISLs reduce the
time to convergence in all scenarios by 4 hours. This leads to
almost instantaneous convergence in the LEO scenario, at least
in relation to the training duration in conventional SFL, and
reduces the convergence time by up to 50 % for terrestrial
orchestration.

The CIFAR-10 experiment was chosen to evaluate the
convergence behavior of a more involved ML model. As such,
convergence requires a large number of global iterations. From
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Fig. 5. Comparison of synchronous and asynchronous orchestration. The figure displays test accuracy with respect to wall-clock time for a W-∆ constellation
with CIFAR-10 dataset, distributed i.i.d. and non-i.i.d., and PS located in Bremen.

Fig. 4b, we observe a more nuanced convergence behavior as
compared to the MNIST experiment. In particular, LEO-based
orchestration benefits most from ISLs, while W-∆ profits only
in the initial learning phase. Surprisingly, it basically shows
the same convergence speed as without ISLs, simply shifted
in time by a few hours. The reason behind this is best under-
stood from Fig. 2, which displays exactly the connectivity
patterns of these two scenarios. Connectivity in the LEO PS
scenario changes from a sporadic towards a near-persistent
connectivity pattern. Instead, for terrestrial orchestration, the
connectivity windows grow significantly in duration, but the
overall connectivity pattern is still sporadic. That is, the offline
periods of individual orbital groups still lead to blocking in
synchronous aggregation algorithms. However, this behavior
is not universal to terrestrial orchestration. It depends on
the constellation design and GS location, as can be seen
by the improved convergence speed in the W-⋆ scenario.
Moreover, combining synchronous orchestration and ISLs with
the scheduling approach from [22] is expected to alleviate
this problem in training scenarios with limited computational
complexity.

Following the discussion in Section III and [7], a viable
alternative to synchronous orchestration in sporadic connectiv-
ity scenarios is asynchronous PS operation. This is evaluated in
Fig. 5 for W-∆ with terrestrial orchestration, with maximum
time between updates Tu set to 147 minutes. Convergence
with asynchronous aggregation is improved over synchronous
operation, but still involves at least a ten-fold increase in
convergence time. Especially initial convergence speed, i.e.,
within the first few hours of training, is greatly increased.
This leads to the conclusion that asynchronous aggregation is
a potential solution if the system design suffers from sporadic
connectivity. However, if changing the PS location is an
option, it might be preferable to asynchronous orchestration.

B. Failure Handling
To evaluate the performance of failure handling schemes,

we consider single orbit with an inclination of 85◦ and altitude

of 2000 km, where the PS is located in a GS in Bremen.
We model the computation time for learning at any satellite k
as Tl(k) = tl(k)+X(k), where tl(k) is the deterministic time
for learning, and X(k) accounts for random additional compu-
tation time due to e.g. multiprocessing loads.The distribution
of X(k) is modelled using a Gamma distribution, a com-
mon approach for modeling service times, with shape and
scale parameters denoted as α(k) and θ(k) respectively [60].
Hence, the cumulative distribution function (CDF) of X(k)
is FX(x) = Γ(α(k))−1 γ(α(k), x

θ(k) ) if x is positive, and
FX(x) = 0 otherwise, where α(k) > 0, θ(k) > 0, Γ(z) is the
Gamma function, and γ(s, x) is the lower incomplete Gamma
function. We set the values of tl(k), α(k), and θ(k) for any
satellite k to 480 seconds, 25, and 25 seconds respectively.
The random communication delays in any satellite k, denoted
as Y (k), are taken into account in addition to the deterministic
time tc(k, j) for transmitting the aggregated parameters from
satellites k to j. In this regard, total communication time for
each satellite k is modelled as Tc(k, j) = tc(k, j) + Y (k),
where Y (k) follows an exponential distribution with parameter
λ(k) > 0, with CDF FY (y) = 1−exp(−yλ(k)) if y is positive
and FY (y) = 0 otherwise. Here, we set tc(k, j) and λ(k) for
any satellite k to 50 seconds and 0.025 respectively. It is worth
mentioning that, when the delays in the transmissions and
learning procedures of satellites are very small, the system may
not need any failure handling scheme. In this regard, we have
set the parameters values such that the effect of failure can be
seen. We also set tg to 0.

Figure 6 shows the required time for handling the failure
with respect to the number of satellites in the orbit, for the
pass-to-neighbor and determine-new-sink schemes. For any
number of satellite in Fig. 6, we calculate the average required
time based on overall 20 000 random values for X(k) and
Y (k) for the 20 different randomly chosen global iterations,
starting at different times. As we can see in Fig. 6, with the
increase in the number of satellites, the determine-new-sink
scheme reduces the required time by a factor of approximately
4.5, as compared to the pass-to-neighbor in any orbit. This is
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Fig. 6. The time required for failure handling (FH) with respect to the
number of satellites in an orbital plane.

particularly effective when considering the delays incurred in
constellations with multiple orbits, as the determine-new-sink
failure handling scheme significantly reduces the required time
within each orbit, thereby substantially reducing the overall
required time.

C. Gradient Sparsification and Transmission Load

Figure 7 shows the transmission load required for collecting
the gradients in one orbit and sending them towards the
PS, within a single global iteration. The results are based
on running FedAvg on the MNIST dataset with non-i.i.d.
distribution. The figure depicts the total transmitted data with
and without incremental aggregation (IA) as a function of the
number of satellites within an orbital plane. We consider three
different cases, without sparsification as well as sparsification
with ratios q = 0.1 and q = 0.01. When IA is used, each
satellite aggregates its gradient updates with the received ones,
according to the method described in Section IV-A. Without
IA, each satellite only forwards its gradients and the received
ones to the other satellite or the PS, without performing any
aggregation.

Figure 7a shows the communication effort in terms of the
total transmitted data. We set the storage size ω of model
parameters to 32 bit. The sparsified vectors need an additional
index field per entry, which is chosen to be 13 bits. Hence,
each nonzero element in a sparsified vector requires a total
of 45 bits. The effect of sparsification on transmission cost
is well known and not further discussed here. A notable
observation is that IA has comparable (and even stronger)
effect than removing 90 % of the data from each vector (with
sparsification). This effect continues to hold in the combination
of sparsification and IA, leading to an even further reduction
of communication cost and, more importantly, a linear cost
increase in the number of satellites.

In addition, we compare the communication efficiency of
our approach to the state-of-the-art in [28]. There, each
satellite within an orbital plane transmits its updated local
parameters to a designated sink satellite through multihop
connections over neighbouring satellites. In contrast to our

approach, each parameter vector is transmitted through unicast
transmissions as in the baseline approach. However, contrary
to the baseline, the sink satellite performs partial aggregation
before transmitting the updated parameter vector to the PS.
The result is a quadratic growth in total communication effort,
with slightly better performance than the baseline. As the
number of satellites per orbit increases, we observe a tenfold
reduction in communication effort due to IA over [28] in
Fig. 7a.

The impact of IA appears to decrease in Fig. 7a with stricter
sparsification, i.e., the effect of IA seems small for q = 0.1 and
negligible for q = 0.01. This, however, is only partially true
and near impossible to assess from Fig. 7a. For this reason,
Fig. 7b shows the total transmitted data normalized to the
size of a single parameter vector ready for transmission. The
purpose of this is to evaluate the increase in communication
efficiency due to IA independently from the compression
achieved by sparsification. The normalized baseline, i.e., mul-
tiple unicast transmission without IA, is identical with and
without sparsification and, hence, only shown once. Based on
this normalization, the impact of IA on the communication
efficiency is proportional to the size of the gap between the
simulated result (solid color) and the black baseline. The initial
impression from Fig. 7a continues to hold, i.e., the efficiency
of IA decreases with increasing sparsification ratio, i.e., lower
q. However, this does not imply IA is expendable in any way.
For 40 satellites per orbital plane, we observe a reduction in
communication cost of 55 % for q = 0.1 purely due to IA.
Without sparsification, this reduction amounts to 91 %, while
it is still a notable 13 % for q = 0.01. An important aspect
to consider is that a sparsification ratio of q = 0.01 leads
to slower convergence in training, as opposed to q = 0.1,
which might deteriorate the savings in communication cost.
Instead, IA comes at no cost to the training process and,
thus, can mitigate some of the adverse effects that the lossy
compression (sparsification) has on a training process within
a fixed communications budget.

A possible cause for the reduced efficiency of IA at small
q is indicated by the dashed lines in Fig. 7b. These display
the estimated communication effort based on the bound in
Proposition 1 and (9). We observe that this bound becomes
less tight as the number of satellites increases and as the
vectors become sparser.6 This discrepancy between bound and
simulation is most likely caused by the fact that the computed
local updates are correlated instead of being stochastically
independent as assumed in Proposition 1. In other words,
a large gap between bound and simulation indicates a stronger
correlation between the position of the nonzero elements in the
gradients, while a small gap points to their distribution being
closer to independence. Now, with higher sparsification ratios
(small q), the probability of two vectors having overlapping
nonzero entries becomes increasingly small and, hence, each
IA step increases the number of nonzero entries in the resulting
vector significantly. To see how this reduces the effect of IA,
recall that a sparse vector is represented by the nonzero values

6Recalling the discussion in Section V, this has no direct impact on the
communication effort and should only lead to small timing errors in the
predictive routing procedure.
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Fig. 7. Total transmitted data with respect to the number of satellites in an orbit per global iteration for three different sparsification ratios; a) q = 0.01 and
b) q = 0.1, and c) without sparsification (q=1). IA and no IA stand for the proposed algorithm with and without incremental aggregation respectively.

together with the indices of these nonzero positions. When
the indices of non-zero elements differ among satellites, the
transmitted vector after IA must contain all nonzero elements
of the received vector together with the nonzero elements of
the satellite’s own sparsified result. With decreasing overlap
between the positions of nonzero elements, this becomes closer
to separate transmission of both vectors.

Figure 7 deals with the amount of total transmitted data
necessary to deliver all gradient updates from a client clus-
ter towards the PS. We have observed that conventional
approaches scale quadratically in the number of satellites per
cluster. Instead, the proposed IA method scales linearly and,
thus, offers a massive increase in communication efficiency.
However, through the narrow lens of communication effi-
ciency in terms of total transmitted data, the same efficiency
is achieved by not using clusters at all and, instead, have
each satellite communicate directly with the PS. To take a
slightly different angle, recall that the majority of transmis-
sions for clustered SFL is done over stable ISLs, while the
direct satellite-to-PS approach requires more costly GSL or a
dynamic long-range ISL. Consequently, the proposed frame-
work reduces the communication load at the PS, in comparison
to direct connectivity, directly proportional to the cluster size.

VII. DISCUSSION AND CONCLUSION

We have designed a clustered FL system tailored to
distributed ML in modern satellite megaconstellations. It effi-
ciently uses intra-orbit ISLs to avoid connectivity bottlenecks
that impair convergence speed. Owing to a FL-specific
in-network aggregation strategy, this is achieved without
increasing the total transmitted amount of data. Indeed, it can
be expected that this method actually decreases the com-
munication cost due to relying on cheaper-to-operate ISLs
instead of long distance GSLs. Moreover, the communica-
tion load is evenly spread among the network instead of
focusing all communications on direct worker-to-PS links.
This strategy requires a careful predictive route planning in

order to operate successfully in a dynamic network topology
imposed by orbital mechanics. We have developed the neces-
sary routing algorithms for this in conjunction with a rigorous
distributed system design that inflicts a low overhead for
synchronization and consensus finding. The proposed system
is compatible with a wide variety of FL algorithms, supports
gradient sparsification, and includes facilities for asynchronous
clustered aggregation. While not explicitly mentioned, the
system’s extension to incorporate worker scheduling is rather
straightforward. We have evaluated the performance of the
proposed system for a few carefully chosen examples. The
results highlight the major increase in convergence speed
to ISLs and the bandwidth effectiveness of our in-network
aggregation approach.

Regarding future work, it is interesting to revise the assump-
tion adopted in this paper that all participants in the FL process
are trustworthy, under complete control, and the software
operates nominally. For instance, if the satellites belong to
different operators, the use of ISLs may incur a certain
cost and/or a group for satellites may decide not to partic-
ipate in the FL process, which would require an extension
of the proposed algorithms. Moreover, incorporating inter-
orbit ISLs in the communication scheme has the potential to
replace out-of-constellation orchestration and further increase
the resource-efficiency of SFL. This, however, comes at the
cost of higher management complexity, will likely require
investigating several special cases, e.g., with and without
cross-seam SFLs, and opens the possibility for SFL-specific
network topology design. It is also noteworthy that our sce-
nario with one GS can be extended to the case with multiple
GSs to improve the satellite-PS connectivity. Two principal
approaches to employ multiple GSs as PS can be considered:
(1) the GSs forward the communication towards a centralized
cloud PS, or (2) they act together as a distributed PS. The first
case is incremental with respect to the proposed algorithms
as it involves multi-hop routing through a terrestrial network.
The second case implies a stronger separation of ground- and
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space-segment and requires accurate synchronization to main-
tain model parameters integrity.
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