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Abstract— Reconfigurable intelligent surfaces (RISs) have
emerged as a game-changing technology to improve wireless
network performance by intelligently manipulating and customiz-
ing the physical propagation environment. Such capability is
especially important for the application of smart cities as it
increases wireless service offers and quality to end-users. In this
paper, we aim to maximize the number of served users in a
challenging RIS-aided smart city street by jointly optimizing the
multislot scheduling, precoding, and passive RIS-based beam-
forming design under quality of service and power constraints.
Multislot scheduling is introduced in order to benefit from addi-
tional time diversity and thus better exploit the available degrees
of freedom. The formulated problem is a mixed integer nonlinear
programming, which is NP-hard. To solve the problem with
affordable complexity, we develop an efficient iterative algorithm
based on binary variable relaxation, alternating optimization, and
successive convex approximation techniques. Simulation results
demonstrate the superiority of the proposed design over the
design without RIS and the design without scheduling, especially
in the presence of a large number of users. In addition, results
illustrate that by introducing a quality of service margin, the
proposed design can improve its robustness to outdated channel
state information in mobility scenarios.

Index Terms— Reconfigurable intelligent surfaces, smart cities,
quality of service, precoding, scheduling, successive convex
approximation.

I. INTRODUCTION

A. Motivation

THE growing demand for a fully connected and intelligent
world has driven research to advance communication
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technologies beyond 5G wireless networks [1]. Future wireless
networks are expected to satisfy certain quality of service
(QoS) requirements, such as improved user data rate, mas-
sive device connectivity, and high energy efficiency. This
is to ensure that sufficient performance and quality levels
can be provided for various end-applications [2]. Recently,
reconfigurable intelligent surfaces (RISs) have emerged as
a promising technology to meet the stringent demands of
beyond 5G wireless networks and to advance the vision of
smart radio environments [3]. Specifically, RIS is a software-
controllable meta-surface that consists of a number of passive
reconfigurable reflecting elements. The RIS elements are
capable of passively reflecting electromagnetic signals to
users without the need for energy-demanding radio frequency
chains and amplifiers [4]. The amplitude/phase-shift of indi-
vidual reflective elements of RIS can be adjusted to change
the strength/direction of the reflected signals for a variety
of applications including beamforming, interference nulling,
security engineering, and spatial multiplexing [5], [6], [7],
[8]. The controllable signal reflections from RISs are highly
beneficial for ensuring seamless connectivity, especially in
complex propagation environments, e.g. dense urban environ-
ments where signal propagation may often be blocked by
high-rise buildings and a large number of city infrastructures
[9]. These controllable signal reflections make the deployment
of RIS quite promising in the concept of smart cities.

The emerging concept of smart cities seeks to inte-
grate information communication technology (ICT) and other
related technologies in the urban environment to improve the
efficiency of city operations and QoS for the citizens [10].
Smart cities are a response to the challenge of urbanization
which is leading to rising demands in communications, thereby
posing challenges for cities to provide sufficient connectivity
for their businesses and citizens [11]. Further, applications in
the smart city involve an exchange of crucial and sensitive
information under system constraints [12]. There are criti-
cal services (e.g. government, medical, and businesses) that
may require immediate service availability. In this case, it is
the telecommunications (telecom) operator’s responsibility to
ensure the provision of sufficient connectivity to as many
users as possible under acceptable QoS conditions. Accord-
ingly, user admission maximization is a promising design
criterion. Typically, this can be achieved via the deployment
of a large number of active network components e.g. active
base station (BS) and access points, which leads to network
densification, increased energy consumption, and additional

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0001-5856-523X
https://orcid.org/0000-0001-8537-9387
https://orcid.org/0000-0002-9575-1063
https://orcid.org/0000-0002-3788-2794
https://orcid.org/0000-0003-1899-6865
https://orcid.org/0000-0001-5122-0001
https://orcid.org/0000-0003-2298-6774


ZIVUKU et al.: JOINT RIS-AIDED PRECODING AND MULTISLOT SCHEDULING FOR MAXIMUM USER ADMISSION 419

Fig. 1. Smart city street scenario.

hardware complexity. In this context, deploying RIS may
lower the required communication infrastructure by offer-
ing increased energy efficiency, coverage, spectral efficiency,
channel rank improvement, and minimized exposure to elec-
tromagnetic radiation in outdoor areas. RISs can be easily
placed on surfaces in the city environment, such as buildings,
billboards, public transport vehicles, and unmanned aerial
vehicles. This can result in better public service accessibility,
digital advancement of the urban environment, and monitoring
of several societal processes and city assets [12], [13]. Upon
deployment of RIS, the smart city communication environment
will become partially controllable/smart, which as a result
enables a symbiotic relationship between the smart city and
its communication infrastructures [12].

Intensive studies in RIS-aided wireless communications
were carried out for many system settings, including single-
user/multiuser/multicell systems, physical layer security, mil-
limeter wave (mmWave) communications, and so on, due to
the aforementioned advantages [14], [15], [16], [17], [18],
[19], [20], [21]. Most published works on RIS studied the
joint optimization of active and passive beamforming under
various design objectives. Most of these works studied the
minimization of total transmit power [22], [23], [24], [25], sig-
nal to interference plus noise ratio (SINR) maximization [26]
and network sum-rate maximization [27], [28], [29]. However,
none of these works addressed user admission maximization
which is fundamental in smart cities. The authors in [30]
studied the ability of RIS to improve the channel matrix rank,
resulting in a notable increase in capacity gains even in line-of-
sight (LoS) propagation. This confirms that RIS-aided network
is effective in significantly increasing the number of users
a network can support. On the other hand, the scheduling
of users in RIS-aided networks has been rarely addressed
so far. Conventional networks (without RIS) carried out a
thorough investigation on resource allocation mainly focusing
on scheduling, admission control, user selection and precoding
over the past few decades [31], [32], [33], [34], [35], [36].
The formulated problems are usually combinatorial in nature
and thus difficult to solve. These problems become even more
challenging if we consider a RIS-aided network. The authors in
[37], [38], and [39] studied scheduling in RIS-aided networks
using machine learning-based techniques. The focus of these

works was to maximize the weighted sum-rate and maximizing
the minimum bit-rate.

In this work, we focus on maximizing the admission of
users, i.e., the number of users served in a smart city street via
joint multislot scheduling, precoding, and passive RIS-based
beamforming. Multislot scheduling refers to time-domain mul-
tiplexing. Although the traditional scheduling of users is often
orthogonal, i.e., one user per time slot, in this work we
consider a generalized approach, where multiple users receive
different data packets in the same time slot. In order to avoid
co-channel interference in this case, we employ multiuser
precoding, which is a method to exploit available spatial
diversity. Since the spatial diversity of the system may not
always be sufficient, we introduce a RIS, which can have a
better spatial resolution of the channels. The RIS performs
passive beamforming to enhance the spatial diversity and thus
improve the performance of the multiuser precoding. Passive
beamforming refers to the adaptation of the RIS reflection
pattern by manipulating the impedance of the RIS’s reflecting
elements without the need for active electronic components,
i.e., power amplifiers. The proposed scheme provides the
flexibility to efficiently schedule users across multiple time
slots for improved performance. This is highly beneficial in
networks where the number of users demanding access to the
network is larger than the number of available base station
(BS) antennas. In this case, there is less diversity to schedule
users in one-time slot. Simulation results in our previous work
[1], demonstrated that it may not always be possible to serve
all users with desired QoS in one-time slot via joint precoding
and passive beamforming design, especially if the number of
users approaches the number of BS antennas. Accordingly,
it is highly challenging for conventional multi-user precoding
design to serve all users with a sufficiently high QoS. Further,
in practical scenarios the users may request a certain number
of data packets per time frame, i.e. they may not need to
be served continuously. This motivates the introduction of
multislot scheduling, which can help to exploit time diversity
in addition to the enhanced spatial diversity enabled by RIS.
While this problem is very important in the context of smart
cities, to the best of our knowledge, it has not yet been
addressed in the literature. Further, the formulated problem of
maximizing the number of served users is quite challenging
as compared to the existing literature as it involves the joint
optimization of multislot scheduling, precoding and RIS-based
beamforming.

B. Contributions

Considering the demands on the urban area (e.g. smart
cities) outlined above, our main goal is to study a practical
scenario of a smart city with a realistic distribution of users
and a relevant performance objective. Specifically, we focus
on maximizing the number of served users in a challeng-
ing RIS-aided smart city street subject to QoSs and power
constraints. We maximize the number of users by jointly
optimizing the multislot scheduling, precoding and passive
beamforming design. The joint multislot scheduling of users
may help to utilize both spatial and time diversities, such that
more users can be potentially accommodated. As illustrated in
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Fig. 1, we consider a scenario where users walk on a smart
city street toward a common target (e.g. metro stations or bus
stops), where the base station (BS) is deployed. Here, the
realistic objective for a smart city application is to provide
quality service to as many users as possible on a resource-
constrained network. The location of the users can be random
on the straight line in front of the BS. In this case, providing
quality service to a large number of users is particularly chal-
lenging since the distribution of users on the city street and the
propagation environment do not provide a sufficient angular
spread for the BS to serve all users with an acceptable signal
quality due to co-channel interference, see Fig 1. Accordingly,
we propose the deployment of a RIS on a building facade
of the same street in order to provide an opportunity for
improving spatial diversity. Moreover, a distinct benefit of
RIS deployment in this scenario may arise from the fact that
the RIS may have a better view of the users as compared to
BS. To the best of our knowledge, this scenario has not been
considered in the literature. Further, it is important to note
that RISs can be implemented in different ways including the
simultaneously transmitting and reflecting (STAR)-RIS which
is capable of supporting the 360◦ coverage [40]. However,
in the considered scenario, the deployment of RIS at the
building facade dictates the location of BS and users in the
half-space of RIS, such that the transmitting functionality of
STAR-RIS is not needed. Accordingly, we focus on purely
reflective RIS in the following.

In summary, the main contributions of this paper are as
follows:
• For a practical scenario of a smart city street with

limited spatial diversity, we propose to maximize the
admission of users, i.e. the number of served users under
QoS and power constraints. Accordingly, we formulate
a novel optimization problem to maximize the number
of users served in a network via a joint optimization
of multislot scheduling, precoding and passive RIS-based
beamforming. The novelty of this optimization problem
lies in the utilization of spatial and time diversities in the
presence of RIS as well as the objective of maximizing
the number of users that can be accommodated by the
system. In addition, this design strategy is tailored for
the target application in contrast to conventional multi-
user designs based on sum-rate maximization or power
consumption minimization. The conventional multi-user
designs based on sum-rate maximization are network-
centric designs with a focus on accommodating higher
volumes of data traffic in the network. In contrast to the
network-centric design, the proposed design strategy pri-
oritizes the provision of connectivity to a large number of
users (i.e., it maximizes the number of users that the net-
work can support at their desired SINR). This user-centric
design is appealing from a network operator’s perspective
since it is more service-oriented [40]. Specifically, this
design strategy utilizes spatial and time diversities in the
presence of RIS to maximize the admission of users
in a smart city. User admission maximization results
in a more fair distribution of resources, enhancing user
satisfaction. In scenarios where there is a large number

of users demanding access to a resource-constrained
network, especially in smart cities, this design strategy
ensures that an increased user base can access the network
and benefit from its services. Specifically, it helps to
increase the network service availability and coverage
which is very important for the critical services in smart
cities. In addition, this user-centric design is crucial for
network deployments that intend to facilitate emergency
communication or offer ubiquitous connectivity.

• The resulting optimization problem is a mixed-integer
nonlinear program (MINLP), which is non-convex and
thus difficult to solve in polynomial time using the
methods of combinatorial programming and convex opti-
mization. In order to solve this problem, we develop a
simple yet efficient iterative algorithm. Firstly, we relax
the binary variables and then penalize the objective
using two penalty functions to ensure binary solutions
at convergence. Next, we resort to alternating optimiza-
tion (AO) to tackle the coupling between optimization
variables. Specifically, we decompose the problem into
two tractable sub-problems. Finally, we tackle the
non-convexity of the sub-problems by combining the
tools from mathematical transformations and successive
convex approximation (SCA) [41]. Simulation results
demonstrate the effectiveness of the proposed design in
terms of the average number of served users under various
conditions as compared to the design without RIS and
without scheduling.

• We investigate the impact of outdated channel state
information (CSI) on the overall system performance.
In this context, we introduce a QoS margin to improve
the robustness of the proposed design against the outdated
CSI. In particular, for a given correlation coefficient that
depends on the user mobility (i.e. a large correlation
coefficient pertains to low mobility and a low correlation
coefficient pertains to high mobility), simulation results
show that a QoS margin results in better performance and
improves the robustness of the system against outdated
CSI.

We introduce the considered RIS-aided system model
in Section II and carry out an optimization problem for-
mulation for a multislotted RIS-aided wireless system in
Section III. In Section IV, we present an alternating opti-
mization algorithm based on SCA to solve the formulated
problem. In this section, we also detail the derivation of
the proposed solution. Numerical results are presented in
Section V to evaluate the effectiveness of the proposed design
against benchmark schemes. Finally, conclusions are drawn in
Section VI.

Notations: Scalars are denoted by italic letters, vectors and
matrices are denoted by bold-face lower-case and upper-case
letters, respectively. Cx×y denotes the space of x×y complex-
valued matrices. | · |, || · ||, (·)H , (·)T ,Re{·} and arg(·) denote
absolute value, Euclidean norm, Hermitian transpose, trans-
pose, real part and the phase, respectively. diag(.) produces a
square matrix with the elements of its argument on the main
diagonal and zeros otherwise. K denotes a set of K elements.
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Fig. 2. RIS-aided multiuser MISO system in a smart city scenario.

II. SYSTEM MODEL

We consider a downlink transmission of a multislotted
RIS-aided multiuser multiple-input single-output (MISO) sys-
tem in a smart city street scenario. From a set K ≜
{1, . . . ,K} of K users, as many users as possible should
be served by the BS with the help of a RIS deployed on a
building facade. Each user is equipped with a single-antenna
user equipment (UE). The BS is equipped with M transmit
antennas and the RIS is equipped with a set N ≜ {1, . . . , N}
of N reflective elements. We consider a scheduling strategy
for a system where a large number of users (K > M)
simultaneously request access to the network. In this case, it is
very likely that the transmitter cannot serve all users at once,
only a subset Kt of users in each time slot can be scheduled for
transmission. Accordingly, users are served in a time window
comprised of a set T ≜ {1, . . . , T} of T time slots. To be
able to perform the joint multislot scheduling, precoding and
passive beamforming, CSI is required for the observed time
window. Let Ht ∈ CN×M , grk,t

∈ C1×N and gdk,t
∈ C1×M

denote the BS to RIS, RIS to k-th user and BS to k-th user
in time slot t channels, respectively. Further, we consider a
linear transmit beamforming at the BS, where the k-th user
in time slot t is assigned a dedicated beamforming vector
wk,t ∈ CM×1. The complex baseband signal at the BS can
be expressed as xt =

∑
k∈Kwk,tsk,t,∀t ∈ T , where sk,t

denotes the data symbol intended to user k in time slot t,
which is assumed to have zero mean and unit variance. In this
case, sk,t is assumed independent and identically distributed
(i.i.d) across k. Accordingly, the total transmit power at the
BS in time slot t is:

Ptot(t) =
∑

k∈K

||wk,t||2. (1)

Let θn,t ∈ [0, 2π] be the phase shift induced by the nth
reflective element of the RIS in time slot t. We denote by Θt =
diag([ejθ1,t . . . ejθn,t . . . ejθN,t ]) the RIS-based beamforming
matrix that captures the reflective properties of RIS elements.
For simplicity, the amplitude of the reflective coefficient is set
to 1,∀n [42], [43]. The signal received at the k-th user in
time slot t can be expressed as

yk,t = (grk,t
ΘtHt + gdk,t

)
∑
i∈K

wi,tsi,t + vk,t, ∀k, t (2)

where vk,t is the additive white Gaussian noise (AWGN) at
the receiver with zero mean and variance σ2

k, i.e. vk,t ∼
CN

(
0, σ2

k

)
. All signals from other users are treated as inter-

ference by the k-th user.
In this work, we consider a passive RIS, and therefore only

the CSI of the effective channels (i.e. hk,t = grk,t
ΘtHt +

gdk,t
) is acquired at BS to perform beamforming for downlink

transmission. This can be done by uplink channel estimation,
where all users transmit their orthogonal pilot sequences (e.g.
Walsh-Hadamard sequences) to BS for performing channel
estimation.1 Moreover, we consider quasi-static block fading
for all channels of the network.2 In practice, the large-scale
parameters are varied much more slowly than small-scale fad-
ing channels (i.e. they can be constant for about 40 coherence
intervals of small-scale fading [44]). Accordingly, we assume
that the channels have a coherence time corresponding to
the window size, for which the channels can be viewed as
nearly constant. This is a typical assumption for low-mobility
scenarios, which is justified by the slow motion of the users on
the street. In this case, the channels can be predicted accurately
up to a few slots [45]. The assumption of block fading channel
holds even for large sizes of RIS. For instance, the channel
coherence time for a 2.4 Ghz carrier frequency with a user
velocity of 1.4 m/s is Tc = 89.2 ms. This is much greater
than the symbol duration in LTE which is 7.1 µs [46]. In this
case, the channel estimation of a large-size RIS, one element
at a time, can be accommodated [46]. Accordingly, the SINR
for k-th user in time slot t is denoted by

γk,t(W,θ)

=
|(grk,t

ΘtHt + gdk,t
)wk,t|2∑

i∈K \{k}
|(grk,t

ΘtHt + gdk,t
)wi,t|2 + σ2

k

, ∀k, t (3)

where W ≜ [wk,t]k∈K ,t∈T is the three-dimensional tensor
that contains all the precoding vectors for all users in all
time slots. Accordingly, the dimensions of W correspond
to the BS transmit antennas, users and time slots. Further,
θ ≜ [θn,t]n∈N ,t∈T is a matrix that contains all the RIS
phase shift (passive beamforming) vectors in all time slots.
The spectral efficiency of the k-th user in slot t is

Rk,t = log(1 + γk,t(W,θ)), ∀k, t. (4)

III. PROBLEM FORMULATION

The ultimate goal of this work is to maximize the admis-
sion of users, i.e., the number of served users in a time
window comprised of T time slots, subject to QoS and
power constraints. Toward defining our optimization problem,
we first introduce binary variables ϵ ≜ [ϵk,t]k∈K ,t∈T and
ϕ ≜ [ϕk]k∈K .

1The details of uplink channel estimation are beyond the scope of this work.
2Our previous work has demonstrated that the diversity of the MIMO

channel is sufficient to simultaneously serve a large number of users only
in the presence of strong non-LOS channel components [1]. In this case, the
spatial diversity is sufficient to accommodate a large number of users despite
a very poor angular resolution.
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Definition 1: Let us introduce ϵ as a binary matrix (illus-
trated in Fig. 3) that contains the state of each user in
each time slot, represented by its element ϵk,t. The value of
ϵk,t is equal to one if the condition γk,t(W,θ) ≥ γth is
satisfied; and ϵk,t = 0, otherwise. This is generally expressed
as γk,t(W,θ) ≥ ϵk,tγth with ϵk,t ∈ {0, 1}.

The activation of users is according to the scheduling
that is optimized based on the expected received SINR. The
optimization provides an output of the user assignment to
the time slots, i.e. their activation pattern and the respective
precoding vectors.

Definition 2: ϕ is a vector that contains the state of each
user in a time window, where ϕk is an element of vector ϕ.
The value of ϕk is equal to one if user k is served in the
whole time window, i.e.

∑T
t=1 ϵk,t ≥ αth, where αth is the

minimum number of time slots that the user should occupy to
satisfy the given QoS constraints in terms of the average data
rate; and ϕk = 0, otherwise. This is generally expressed as∑

t∈T ϵk,t ≥ ϕkαth,∀k ∈ K .
Unlike traditional orthogonal multiplexing methods, the

achievable rate per user (or capacity per user) in this work
does not reduce with the number of time slots or number
of users, since each user is considered served only if data
is received in a certain percentage of the total number of time
slots. In other words, if the user needs to be served in 50% of
time slots, then the rate of this user remains unchanged with
10 time slots or 100 time slots. Accordingly, the QoS of each
user remains unchanged, even if the number of users or the
number of time slots changes over time.

Following the above definitions, the joint multislot schedul-
ing, precoding and passive RIS-based beamforming optimiza-
tion problem for maximizing the number of served users in an
observed time window can be mathematically formulated as3

P : max
W,θ,ϵ,ϕ

∑
k∈K

ϕk (5a)

s. t. γk,t(W,θ) ≥ ϵk,tγth, ∀k ∈ K , ∀t ∈ T

(5b)∑
k∈K

∥wk,t∥2 ≤ Pmax, ∀t ∈ T (5c)

0 ≤ θn,t ≤ 2π, ∀n ∈ N , ∀t ∈ T (5d)
ϵk,t ∈ {0, 1}, ∀k ∈ K , ∀t ∈ T (5e)
ϕk ∈ {0, 1}, ∀k ∈ K (5f)∑
t∈T

ϵk,t ≥ ϕkαth, ∀k ∈ K (5g)

where Pmax is the total power available at the BS. The
constraints are explained in detail as follows:

3The joint multislot scheduling, precoding and passive beamforming prob-
lem in (5) can be reduced to a joint precoding and passive beamforming
problem if we set T = 1. In that case, constraints (5f) and (5g) will
become redundant. The resulting problem is equivalent to the problem solved
in [1]. However, we observe that despite a thorough optimization, it is not
possible to serve all users in one-time slot, especially when there is a large
number of users demanding access to the network. It is also important to
note that the recently introduced rate splitting (RSMA) [47] has emerged as
a promising multiple access scheme and can be exploited to improve the
system performance in the considered scenario. However, the analysis of its
advantages or disadvantages with respect to the number of users is beyond
the scope of this work.

Fig. 3. An illustration of how users are combined differently in different
time slots.

• SINR constraint per-slot (5b): Constraint (5b) provides
per-slot QoS requirement. The term ϵk,t indicates that the
SINR should satisfy this constraint only if the k-th user
is served in time slot t; Otherwise, the threshold ϵk,tγth

becomes zero and this constraint is disabled.
• Power constraint (5c) : Constraint (5c) ensures that the

power allocated to users is less than or equal to the
available power at the BS (Pmax) for all time

• RIS phase shifts (5d): The phase shifts of RIS must be
between 0 and 2π.

• State of user in a slot (5e): Constraint (5e) describes
whether or not user k is served in time slot t.

• State of user in a time window (5f): Constraint (5f)
describes the state of the k-th user in a time window.

• Users’ service requirement in a time window (5g) :
Constraint (5g) ensures that user k satisfies the QoS
requirement in a time window only if it has been served at
least in αth time slots. If ϕk is zero, the minimum number
of time slots ϕkαth becomes zeros and this constraint is
disabled.

We can note that problem P is a mixed-integer non-convex
problem due to the non-convexity of constraint (5b), while
constraints (5e) and (5f) are binary in nature. Accordingly, the
formulated joint multislot scheduling, precoding and passive
beamforming problem described in (5) is an MINLP. In this
case, it may not be possible to provide a globally optimal
solution in polynomial time, and standard convex optimization
techniques are not applicable. Accordingly, we resort to a
low-complexity algorithm to solve the formulated challeng-
ing problem. One of the most commonly used approaches
to solve problem (5) is to transform and relax integer
variables to continuous ones so as to obtain a continuous
optimization problem. However, even after such a relaxation,
problem (5) remains non-convex. This is due to the coupling
of precoding and passive beamforming variables in the SINR
constraint (5b). To address these challenges, firstly, we relax
binary variables to continuous ones (i.e. ϵk,t ∈ [0, 1],∀k,∀t
and ϕk ∈ [0, 1],∀k), then we split the problem into two
tractable subproblems and apply mathematical transformations
and SCA to each of them.

IV. PROPOSED ALTERNATING OPTIMIZATION ALGORITHM

In this section, we present an efficient iterative algorithm
to tackle the challenging problem in 5 effectively. Firstly,
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we relax the binary variables in constraint (5e) and (5f).
Secondly, we propose an alternating optimization by decom-
posing the problem into two tractable subproblems (precoding
design and phase shift optimization). Lastly, to tackle the
non-convexity of the subproblems, we resort to solving them
via SCA. The proposed iterative algorithm guarantees conver-
gence to (at least) a locally optimal solution.

A. Binary Variable Relaxation

The relaxation of binary variables in (5e) and (5f) is carried
out to circumvent the combinatorial nature of problem (5). The
relaxed formulation for problem in (5) can be expressed as

max
W,θ,ϵ,ϕ

∑
k∈K

ϕk (6a)

s. t. 0 ≤ ϵk,t ≤ 1, ∀k ∈ K , t ∈ T (6b)
0 ≤ ϕk ≤ 1, ∀k ∈ K (6c)
(5b), (5c), (5d), (5g) (6d)

where constraint (5e) and constraint (5f) are relaxed to box
constraints between 0 and 1 in constraint (6b) and (6c),
respectively. To guarantee that the values of ϵk,t and ϕk are
equal to either one or zero, we consider additional constraints:
ϵk,t− ϵ2k,t ≤ 0, ∀k, t, which is equivalent to ϵk,t ∈ (−∞, 0]∪
[1,+∞), ∀k, t and ϕk − ϕ2

k ≤ 0,∀k, which is equivalent
to ϕk ∈ (−∞, 0] ∪ [1,+∞),∀k. Therefore, ϵk,t − ϵ2k,t ≤
0 and (6b) hold true simultaneously only if ϵk,t is binary.
Similarly, ϕk−ϕ2

k ≤ 0 and (6c) hold true only if ϕk is binary.
Accordingly, problem (6) can be transformed into the fol-

lowing form:

max
W,θ,ϵ,ϕ

∑
k∈K

ϕk (7a)

s. t. 0 ≤ ϵk,t ≤ 1, ∀k ∈ K , ∀t ∈ T (7b)

ϵk,t − ϵ2k,t ≤ 0, ∀k ∈ K , ∀t ∈ T (7c)

0 ≤ ϕk ≤ 1, ∀k ∈ K (7d)

ϕk − ϕ2
k ≤ 0, ∀k ∈ K (7e)

(5b), (5c), (5d), (5g). (7f)

Remark 1: It is noted that constraints (7c) and (7e) usually
make the problem (7) infeasible in most cases for ϵk,t ∈ (0, 1)
and ϕk ∈ (0, 1), respectively. According to [48, Preposition 2],
there exists a strong Lagrangian duality for the transformed
problem (7). Following the same outlined procedure and
similar mathematical formulations, we introduce two penalty
functions as illustrated below. Specifically, we have exploited
similar mathematical formulations in dealing with the binary
nature of the problem. Accordingly, the inequalities in (7c)
and (7e) are removed and their effects are modeled in the
cost function.4

4As we note in Remark 1, constraints (7c) and (7e) make problem (7)
infeasible in most cases. Accordingly, we tackle the problem in (7e) by
solving the relaxed version of the problem shown in (10). This is done by
choosing the appropriate penalty functions, i.e. P1(ϵ, µϵ) and P2(ϕ, µϕ),
which guarantees a (near)-exact binary solution at optimum.

1) Penalty Functions: The two penalty functions are for-
mulated as follows:

P1(ϵ, µϵ) = µϵ

( ∑
k∈K

∑
t∈T

ϵ2k,t −
∑

k∈K

∑
t∈T

ϵk,t

)
≜ µϵ

(
h1(ϵ)− g1(ϵ)

)
(8)

and

P2(ϕ, µϕ) = µϕ

( ∑
k∈K

ϕ2
k −

∑
k∈K

ϕk

)
≜ µϕ

(
h2(ϕ)− g2(ϕ

)
. (9)

We note that the positive constants µϵ and µϕ in (8) and (9),
respectively, are penalty parameters utilized to ensure the
binary nature of the resulting binary matrix ϵ and binary vector
ϕ. By appropriately choosing the penalty parameters µϵ and
µϕ, the original problem can be solved.

Lemma 1: In the following, the relaxed problem in (7)
is penalized with P1(ϵ, µϵ) and P2(ϕ, µϕ). Accordingly,
we define the objective function to be minimized as ψ(ϵ,ϕ) =
−

∑
k∈K ϕk − µϵ

(
h1(ϵ) − g1(ϵ)

)
− µϕ

(
h2(ϕ) − g2(ϕ)

)
.

Given appropriate penalty parameters values µϵ and µϕ, the
problem in (7) (or the original problem (5)) and the following
parameterized relaxed problem 10 become equivalent [48]:

min
W,θ,ϵ,ϕ

ψ(ϵ,ϕ) (10a)

s. t. 0 ≤ ϵk,t ≤ 1, ∀k ∈ K ,∀t ∈ T (10b)
0 ≤ ϕk ≤ 1,∀k ∈ K (10c)
(5b), (5c), (5d), (5g). (10d)

It is apparent that h1(ϵ) − g1(ϵ) = 0 and h2(ϕ) − g2(ϕ) =
0 must hold at optimum with appropriate values of µϵ and
µϕ, respectively; otherwise, µϵ and µϕ can be increased until
the penalty values are close to zero. This implies that there
always exists a positive penalty parameter µϵ and µϕ to obtain
a solution. Further, h1(ϵ) is always smaller than g1(ϵ) for ϵk,t

between 0 and 1. Also, the smallest difference between h1(ϵ)
and g1(ϵ) is obtained with ϵk,t = 0 or ϵk,t = 1. Similarly,
h1(ϕ) is always smaller than g1(ϕ) for ϕk values between
0 and 1. Unfortunately, the BS precoder and the phase shifts
of the RIS are intricately coupled in the SINR constraint,
making the parameterized relaxed problem in (10) non-convex
and challenging to solve directly. More importantly, to make
per-slot resource utilization more efficient, power should be
allocated only to users that are considered served. In this case,
we force ||wk,t||2 = 0 for all ϵk,t = 0.5 Next, we introduce
a new variable φ ≜ [φk,t]k∈K ,T∈T , where φk,t is used to
bound the sum interference power at user k in time slot t.
Further, hk,t denotes the normalized effective channel between
the BS and the user k in time slot t, which is defined
as hk,t ≜ (grk,t

ΘtHt + gdk,t
)/σ. We equivalently rewrite

5This can be formulated as
∑K

k=1 ∥wk,t∥2ϵk,t ≤ Pmax. However, the
constraint is non-convex due to the strong coupling between wk,t and ϵk,t

which requires an approximation to convexify it. Accordingly, to convexify
the constraint with less complexity,

∑K
k=1 ∥wk,t∥2ϵk,t ≤ Pmax is replaced

by constraint (11d) and (11e) which are both quadratic convex constraints.
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problem (10) as

min
W,θ,ϵ,ϕ,φ

ψ(ϵ,ϕ) (11a)

s. t. γthϵk,t −
|hk,twk,t|2

φk,t
≤ 0, ∀k, t (11b)∑

i∈K \{k}

|hk,twi,t|2 + 1 ≤ φk,t, ∀k, t (11c)

∥wk,t∥2 ≤ ϵk,tP
max, ∀k, ∀t (11d)∑

k∈K

∥wk,t∥2 ≤ Pmax, ∀t (11e)

(5d), (5g), (10b), (10c). (11f)

Remark 2: Note that constraint (11d) ensures that the
beamforming vector for user k in time slot t is equal to zero
when the user is not served. It can be seen that whenever
ϵk,t = 0, we have ∥wk,t∥2 = 0. Specifically, user k only
needs to satisfy the QoS requirement, if it is served in time
slot t.
The reformulated problem in (11) remains a non-convex
problem even after binary variable relaxation. This is due
to the objective (11a) and constraint (11b) which are non-
convex. Accordingly, we propose an alternating optimization
by splitting the problem into two tractable subproblems, which
can be then solved effectively by SCA.

B. Proposed Alternating Optimization Algorithm Based on
SCA

For an SCA-based iterative algorithm similar to [41],
we denote by (W(τ),θ(τ), ϵ(τ),ϕ(τ),φ(τ)) the feasible point
of (11) obtained in iteration τ . At iteration τ + 1, we solve
problem (11) assuming a constant phase shift matrix θ(τ),
and then solve (11) assuming a constant precoding matrix
W(τ). The two problems, i.e. precoding design and passive
beamforming optimization are carried out alternatingly in each
iteration.

1) Precoding Design: The precoding design problem is
convexified in steps 12 − 18 and its intermediate solution is
found in Step 1 in Algorithm 1. The close-to-optimal solution
of w∗

k,t is found after a finite number of iterations. At iteration
τ + 1, we rewrite problem (11) for given θ(τ) as

PW : min
W,ϵ,ϕ,φ

ψ(ϵ,ϕ) (12a)

s. t. γthϵk,t −
|hk,twk,t|2

φk,t
≤ 0, ∀k, t (12b)

(5g), (10b), (10c), (11c), (11d), (11e). (12c)

We note that (12a) is non-convex and of type difference
of convex (DC) functions. Also, constraint (12b) is non-
convex. To convexify (12a), fortunately, we can approximate
the convex functions h1(ϵ) ≜

∑
k∈K

∑
t∈T ϵ2k,t and h2(ϕ) ≜∑

k∈K ϕ2
k, which are quadratic. In this case, to approximate

the two quadratic functions h1(ϵ) and h2(ϕ), we apply the
first-order Taylor approximation to obtain a lower bound

approximation around the feasible point ϵ(τ) as

h1(ϵ) ≥ h1(ϵ(τ)) +∇ϵh1(ϵ(τ))T (ϵ− ϵ(τ))

=
∑

k∈K

∑
t∈T

(
2ϵ(τ)

k,t ϵk,t − (ϵ(τ)
k,t )

2
)

≜ h
(τ)
1 (ϵ; ϵ(τ)) (13)

and around feasible point ϕ(τ) as

h2(ϕ) ≥ h2(ϕ(τ)) +∇ϕh2(ϕ(τ))
T
(ϕ− ϕ(τ))

=
∑

k∈K

(
2ϕ(τ)

k ϕk − (ϕ(τ)
k )2

)
≜ h

(τ)
2 (ϕ; ϕ(τ)) (14)

where ∇ϵh1(ϵ) = 2
∑

k∈K

∑
t∈T ϵk,t and ∇ϕh2(ϕ) =

2
∑

k∈K ϕk. In this case, h(τ)
1 (ϵ; ϵ(τ)) and h(τ)

2 (ϕ; ϕ(τ)) are
linear functions in ϵ and ϕ, respectively. As a result, the
objective (12a) is iteratively linearized as follows

ψ
(τ)
W (ϵ,ϕ) ≜ −

∑
k∈K

ϕk − µϵ

(
h

(τ)
1 (ϵ; ϵ(τ))− g1(ϵ)

)
− µϕ

(
h

(τ)
2 (ϕ,ϕ(τ))− g2(ϕ)

)
. (15)

Further, we can note that function γk,t(wk,t, φk,t) ≜
|hk,twk,t|2/φk,t in constraint (12b) is a quadratic-over-linear
function. The global lower bound of γk(wk,t, φk,t) around the
feasible point (w(τ)

k,t , φ
(τ)
k,t ) is given by [49, Eq. (21)]:

γk(wk,t, φk,t)

≥
2 Re

{
(w(τ)

k,t )
HhH

k,thk,twk,t

}
φ

(τ)
k,t

−
|hk,tw

(τ)
k,t |2

(φ(τ)
k,t )2

φk,t

≜ γ
(τ)
k,t (wk,t, φk,t;w

(τ)
k,t , φ

(τ)
k,t ). (16)

As a result, the constraint (12b) is replaced iteratively by the
following convex constraint:

γthϵk,t − γ
(τ)
k,t (wk,t, φk,t;w

(τ)
k,t , φ

(τ)
k,t ) ≤ 0, ∀k, t. (17)

Accordingly, the convex precoding design solved at iteration
τ + 1 is formulated as

min
W,ϵ,ϕ,φ

ψ
(τ)
W (ϵ,ϕ) (18a)

s. t.γthϵk,t − γ
(τ)
k,t (wk,t, φk,t;w

(τ)
k,t , φ

(τ)
k,t ) ≤ 0, ∀k, t

(18b)
(5g), (10b), (10c), (11c), (11d), (11e). (18c)

a) Computation complexity: The problem (18) has
4KT +2K+T linear and quadratic constraints and MKT +
3KT + K decision variables. Accordingly, the worst-case
computational complexity per iteration of solving (18) using
interior point method is O

(√
4KT + 2K + T (MKT +

3KT +K)3
)

[50, Chapter 6].
2) Passive Beamforming Design (or Phase Shift Optimiza-

tion): At iteration τ + 1, problem (11) is rewritten for given
W(τ) as

Pθ : min
θ,ϵ,ϕ,φ

ψ(ϵ,ϕ) (19a)

s. t. γthϵk,t − γk(θt, φk,t) ≤ 0, ∀k, t (19b)
(5d), (5g), (10b), (10c), (11c) (19c)
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where γk,t(θt, φk,t) ≜
|(grk,t

ΘtHt + gdk,t
)wk,t|2

σ2φk,t
. Here the

objective function (19a) and constraint (19b) are non-convex.
We observe that the convexification of objective function (19a)
is already carried out in (15). Further, constraint (19b) can be
approximated similarly to (18b). In particular, constraint (19b)
is iteratively replaced by a convex constraint as follows:

γthϵk,t − γ
(τ)
k,t (θt, φk,t; θ

(τ)
t , φ

(τ)
k,t ) ≤ 0, ∀k, t (20)

where γ(τ)
k,t (θt, φk,t; θ

(τ)
t , φ

(τ)
k,t ) is the global lower bound of

γk,t(θt, φk,t), which is given as

γ
(τ)
k,t (θt, φk,t; θ

(τ)
t , φ

(τ)
k,t )

≜
2 Re

{
wH

k,t(grk,t
Θ(τ)

t Ht+gdk,t
)H(grk,t

ΘtHt+gdk,t
)wk,t

}
σ2φk,t

−
|(grk,t

Θ(τ)
t Ht + gdk,t

)wk,t|2(
σφ

(τ)
k,t

)2 φk,t. (21)

The convex program of the passive beamforming design solved
at iteration τ + 1 is formulated as

min
θ,ϵ,ϕ,φ

ψ
(τ)
θ (ϵ,ϕ) (22a)

s. t. γthϵk,t − γ
(τ)
k,t (θt, φk,t; θ

(τ)
t , φ

(τ)
k,t ) ≤ 0, ∀k, t

(22b)
(5d), (5g), (10b), (10c), (11c). (22c)

a) Computation complexity: The problem in (22)
has 2KT + 2K + NT + T linear and quadratic
constraints and NT + 2KT + K decision variables.
Therefore, the computational complexity per iteration is
O

(√
2KT + 2K +NT + T (NT + 2KT +K)3

)
.

The overall proposed iterative algorithm is summarized
using pseudocode notation in Algorithm 1. The iterative pro-
cedure repeats until the fractional decrease in the value of the
objective function for the overall problem is smaller than a
predetermined threshold ϱ = 10−3.

Algorithm 1 Proposed Alternating Optimization Algorithm
Input: Set τ = 1 and initialized feasible points for

(W(0),θ(0), ϵ(0),ϕ(0),φ(0) to constraints in (11)
repeat

Solve (18) for given θτ to obtain the optimal solutions
(W∗, ϵ∗,ϕ∗,φ∗);
Update (W(τ+1), ϵ(τ+1),ϕ(τ+1),φ(τ+1)) ≜
(W∗, ϵ∗,ϕ∗,φ∗);
Solve (22) for given (W(τ+1), ϵ(τ+1),ϕ(τ+1),φ(τ+1)))
to obtain the optimal solutions (θ∗, ϵ∗,ϕ∗,φ∗)
Update (θ(τ+1), ϵ(τ+1),ϕ(τ+1),φ(τ+1)) ≜
(θ∗, ϵ∗,ϕ∗,φ∗);
Set τ = τ + 1;

until the fractional decrease of the objective function is
smaller than ϱ;
Output: (W∗,θ∗, ϵ∗,ϕ∗).

Initialization of feasible points: The proposed SCA-based
AO algorithm requires initial feasible points to start at the
first iterations, which are generated as follows. Firstly, ϵ(0)

and ϕ(0) are randomly generated with respect to constraint 10b

TABLE I
SIMULATION PARAMETERS

and 10c, respectively. Secondly, the phases of the RIS (θ(0))
are randomly generated with respect to constraint 5d. For
simplicity, the feasible point of W(0) is obtained using a
zero-forcing precoder. Accordingly, power allocation is carried
out to satisfy the power budget. Finally, we generate φ(o)

k,t by
setting φ(o)

k,t =
∑

i∈K \{k} |hk,tw
(0)
i,t |2 + 1,∀k ∈ K ,∀t ∈ T .

Penalty parameters selection µϵ and µϕ: The choice of an
appropriate penalty parameter µϵ and µϕ is important for guar-
anteeing the performance/convergence of Algorithm 1 with
reasonable computational time. In our simulations, we have
numerically observed that µϵ = 0.0001 and µϕ = 1 are
the most appropriate values that ensure that Algorithm 1
converges with exact binary solutions, while guaranteeing the
best performance.

V. NUMERICAL RESULTS

In this section, the performance of the proposed algorithm
is evaluated against the benchmark schemes using Monte
Carlo simulations. Following studies in [18], [51], [52], and
[30], Table I provides the main simulation parameters. We
assume that the location of the BS is at the origin and users
are randomly distributed with uniform probability density
between 30 m and 50 m in the y-axis. The RIS is deployed
on a building facade, dx distance from the base station on
the side of the street, see Fig 2. The RIS position in the
y-direction can be varied. An independent Rician channel
fading is considered for all the channels with the Rician
factor β. For example, the BS-RIS channel Ht in time slot
t is expressed as Ht =

√
β

1+β HLOS
t +

√
1

1+β HNLOS
t . For

β = 0, we would obtain a Rayleigh fading channel, whereas,
for β = ∞, we would obtain a LoS propagation channel. Note
that the RIS is typically deployed higher than the pedestrians
in order to reduce the chance of signal blockage. Thus, less
scattering environment is expected between the BS and the
RIS, and thus, we set ζbs-ris < ζbs-user [18]. The number of RIS
elements is set at N = 512. In the following, Monte-Carlo
simulations are carried out with 103 channel realizations for
all the analyses in this paper.
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Fig. 4. Analysis of possible deployment positions for the RIS in the
considered scenario.

A. Impact of RIS Deployment Position in the Proposed
Scenario

A careful deployment of RIS is necessary to reach the
maximum potential of RIS-aided networks. In this analysis,
we compare the change in performance gain for different RIS
deployment positions in the smart city street scenario. For
simplicity, this analysis was carried out for joint precoding
and passive beamforming design without scheduling. In this
scenario, we set the number of BS antennas at M = 10 and
the number of users K = 10. The Rician factor was set at
β = 3 dB. Accordingly, we analyze the performance of joint
precoding and passive beamforming design (One timeslot with
RIS) with respect to different RIS positions, as shown in Fig. 4.
• One timeslot without RIS: The BS directly serves the

users without taking the temporal dimension into account.
• One timeslot with random phase: The RIS phase shifts

are not optimized, such that RIS represents a scatterer.
In this case, while RIS has no capability of beamforming
the signals toward users, it may still create additional
signal paths which enhance the spatial diversity.

As illustrated in Fig. 4, we perform a line search to obtain
the optimal RIS placement in the proposed scenario. We show
performance as a function of RIS y position. We note that
the performance of the proposed design varies with the RIS
y position. By varying the RIS y position, we observe that
the best performance in the proposed solution is obtained at
RIS position d = 0 and d = 40 m in Fig. 4. This implies
that a substantial reflection gain in the proposed scenario is
obtained when the RIS is closest to the base station or in
the middle of the segment where users are placed. Note that
RIS position d = 0 does not imply that RIS is co-located
with the base station since RIS is shifted by dx distance
according to Fig. 2. Following this observation, we consider
the BS side RIS deployment for all analyses in this work.
Specifically, we choose the RIS deployment position that
pertains to the highest number of served users, i.e. d = 0 m.
The performance shows that the optimized reflection design
performs better as compared to a random scatterer in the

network. It is also important to note that even with the joint
active and passive beamforming design (One timeslot with
RIS), it is not possible to serve all users, especially if a large
number of users demand access to the network. Accordingly,
we analyze the necessity of joint scheduling, precoding, and
passive beamforming design in the following subsections,
especially when the network is overloaded.

B. Benchmark Schemes

The proposed joint multislot scheduling, precoding and
passive beamforming design (JSP with RIS) is compared with
the following three baseline schemes to better analyze its
performance gain:
• Joint multislot scheduling, precoding and passive beam-

forming without RIS (JSP without RIS): No RIS is
assumed in the system. The joint multislot scheduling and
precoding is designed with users served directly by the
BS. The penalty parameters are set to µϵ = 0.0001 and
µϕ = 1.

• Joint precoding and passive beamforming (one-time slot):
Users are served by a RIS-aided network continuously
without multislot scheduling. The penalty parameter for
this scheme is set to µOnetimeslot = 0.2 [1].

• Joint precoding and passive beamforming with reduced
SINR threshold (SINR adaptation): While the QoS per
time slot may be the same with the proposed solution
(JSP with RIS) and the benchmark scheme without
scheduling (one-time slot), the average data rate of the
served users may not be the same (the average rate is
lower, if the user is served in just a few time slots)
as with continuous transmissions. For a fair comparison,
in this benchmark scheme, we maximize the number of
served users, for which the minimum data rate with a
continuous transmission is the same as the average (over
the time window) data rate of the proposed solution. For
this, we perform SINR adaptation, i.e. we reduce the
SINR threshold to match the two data rates. We solve
αth
T log2(1 + γth) = log2(1 + γth,adapt) with respect to
γth,adapt, where γth,adapt is the new SINR threshold.
In this case, for γth = 10 dB, αth = 5 and T = 10,
γth,adapt = 3.6 dB. The penalty parameter for this
scheme is set to µadapt = 0.2.

C. Convergence Analysis

Here, we show the convergence of all the considered
schemes. For this analysis, we fix the number of users at
K = 12, the number of BS antennas at M = 6 and the
Rician factor at β = 3 dB. As can be observed from Fig. 5,
all the considered schemes converge quickly to the stationary
point within about 11 iterations. In addition, the objective
values are non-decreasing after each iteration, satisfying the
inner approximation properties, thus proving that the algorithm
indeed converges to a local optimum [41], [53]. Another
interesting observation is that the one timeslot and SINR
adaptation schemes converge faster than other ones, but pro-
vide a much lower number of users served. This is attributed
to the fact that these two schemes do not jointly optimize
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Fig. 5. Convergence behavior of all the considered schemes.

Fig. 6. Average number of served users as a function of the total number
of users (K) demanding access to the network.

the scheduling, resulting in faster convergence but less time
diversity to serve all users. Nevertheless, the proposed scheme
offers the best performance in terms of the number of served
users, confirming the effectiveness of the joint optimization of
multislot scheduling, precoding and passive beamforming.

D. Analysis of Average Number of Served Users Versus Total
Number of Users

In this subsection, we analyze the average number of served
users as a function of the total number of users K demanding
access to the network. We set the number of BS transmit
antennas M = 6 and the total number of users is varied from
K = 4 to K = 12 in steps of 2. The Rician factor is set
at β = 3 dB. The results are depicted in Fig. 6. It can be
noted that when the number of users is low, the JSP with RIS
(Proposed solution) cannot provide significant gain since the
available diversity is sufficient to serve all users even without
scheduling. However, we can observe an increase in the gain of
the JSP with RIS scheme starting from K = 6. This proves the
necessity of scheduling, especially in an overloaded network,
where K > M . The JSP with RIS manages to serve all users

Fig. 7. Average number of served users as a function of the Rician factor
(β) in dB.

up to K = 10, whereas the other two benchmark schemes
(the JSP without RIS and the SINR adaptation) only manage
to serve all users until K = 6, which is equal to M . Moreover,
the one-time slot benchmark converges to M = 6 as this is the
maximum number of orthogonal links in this system. Further,
we can note that the JSP without RIS scheme converges to
a larger number of users than the schemes with RIS but
without scheduling (even in the case of SINR adaptation) due
to the time diversity, which provides more degrees of freedom
than the spatial diversity provided by the joint precoding
and passive beamforming without scheduling. An important
observation is that with SINR adaptation, we manage to serve
more than M = 6 users even without scheduling, since the
SINR threshold is much lower than the target SINR of other
benchmarks, i.e. we can tolerate much more interference and
the channels do not need to be close to orthogonal. In this case,
the RIS helps to filter the signal and reduce interference. The
benchmark JSP without RIS results in an increased probability
to serve more users as the total number of users increases,
however, its performance starts to converge at K = 8 since
it does not have an additional degree of freedom provided by
RIS deployment in the network.

E. Analysis of Served Users With Varying Rician Factor

In this subsection, we evaluate how the Rician factor β
affects the performance of the considered design methods.

The Rician factor β is varied from 0 dB to 10 dB in steps of
2 dB. We set the total number of BS antennas at M = 6 and
the total number of users requesting access to the network
at K = 12. As observed in Fig. 7, RIS-aided communica-
tion curves exhibit similar behavior in terms of performance
degradation with increasing Rician factor. This behavior is
different without RIS, i.e. the degradation is much faster and
steeper. The reason is that RIS substantially enhances the
spatial diversity of the system, such that the reduction of
the spatial diversity with respect to the BS can be partially
compensated by the RIS. The results shown in Fig. 7 indicate
that JSP with RIS leads to a substantial increase in the average
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Fig. 8. Average number of served users as a function of the total number
of BS antennas (M ).

number of users served as compared to the three benchmark
schemes. However, we observe that the average number of
served users for the considered schemes decreases with the
increasing Rician factor. Due to the unlucky distribution of
users on the street with respect to the BS (i.e. the limited
angular spread), for a pure LoS propagation, it may not be
possible to serve more than 1 user as a result of a very high
degree of correlation between the channels. The performance
of the considered schemes degrades as the diversity reduces,
i.e. the channel becomes a pure LoS propagation channel.
In this case, the available diversity is not sufficient to produce
independent beams with acceptable signal quality. However,
the JSP with RIS scheme can still serve a significant number
of users with increasing Rician factor as compared to the
scheme without RIS. In this case, we note a difference of at
least 5 more users on average as compared to the benchmark
without RIS at β = 10 dB.

F. Analysis of Served Users With Varying Total Number of
BS Antennas

In this subsection, we vary the number of BS antennas from
M = 4 to M = 12 in steps of 2. The number of users is fixed
at K = 12 and the Rician factor β = 3 dB. The results are
depicted in Fig. 8.

It is important to note that the JSP with RIS design is
very beneficial in this setup especially when the number of
users K is much larger than the number of antennas M
at the BS. At M = 4, the JSP with RIS outperforms the
benchmark scheme without RIS by at least 2 additional users.
In fact, M = 8 is enough for the proposed method to
serve all users. Further, we can note that as the number of
antennas M approaches the number of users K, the JSP with
RIS does not provide a significant gain since the available
multiplexing capability brought by the antennas is enough for
the SINR adaptation and the JSP without RIS to serve all
users. An important observation is that the highest gain of
the JSP with RIS is recorded when the number of users K
is double the number of BS antennas M . We can note that

Fig. 9. Average number of served users with an increasing number of
elements.

K = 12 corresponds to the maximum number of users. In this
case, with an increasing number of BS antennas, the diversity
degree increases, such that more and more users can be served.
Therefore, all curves converge to the maximum number K
with an increasing number of antennas. It seems that for most
of the curves (except one-time slot) there is enough diversity
already with M = 12 transmit antennas, which is due to
a combination of time diversity and spatial diversity. In the
case of one-time slot, we only have spatial diversity, which
is not sufficient, which is why we would need more transmit
antennas to serve the maximum number of users.

G. Impact of the Number of RIS Elements

In this subsection, we investigate the impact of the number
of RIS elements on the system performance. We set the total
number of BS antennas at M = 6, the total number of users
requesting access to the network at K = 12 and the Rician
factor β is set at 3 dB. We varied the number of RIS elements
from N = 32 to N = 512. In this investigation, the proposed
design (JSP with RIS) was compared to the benchmark scheme
without RIS (JSP without RIS). As shown in Fig. 9, the
proposed design provides a significant performance improve-
ment as compared to the considered benchmark scheme. The
gain provided by the proposed design increases with the
increasing number of RIS elements. Specifically, simulation
results demonstrate a notable increase in the average number
of users served as the number of RIS elements increases.
This validates the benefit of RIS deployment in the considered
scenario for an improved spatial multiplexing gain.

H. Impact of RIS Deployment Height

In this subsection, we investigate the impact of the RIS
height on the system performance. To gain more insights
into the impact of the RIS deployment height on the system
performance, we evaluate the average number of served users
as a function of RIS deployment position for different RIS
deployment heights. Note that this analysis is carried out for
a one-time slot scheme for simplicity. The number of BS
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Fig. 10. Impact of RIS deployment height.

antennas is fixed to M = 6 and the number of users is K = 12.
We investigate the performance for BS height of 3 m and
10 m as shown in Figs. 10(a) and 10(b), respectively. The
height of the RIS is varied between 3 − 10 m and the user
height is fixed at 1.5 m. We gradually increase the Rician
factor in proportion to the different RIS heights in order to
account for the reducing number of obstacles with increasing
deployment height, which generate additional non-LoS paths
[54]. In Fig. 10(a), we investigate the performance for different
heights of the RIS with the BS height fixed at 3 m. We assume
that the BS in this scenario is deployed on street infrastructure
which includes light poles, bus station enclosures, streetlights,
and utility poles. As previously discussed, better performance
gain is observed when the RIS is deployed closer to the
base station (BS-side deployment) or closer to users (user-side
deployment). Here, we can see that the system performance
is improved when the RIS’s height is about 3 m. We also
show that the best performance in this system setup is obtained
when the RIS deployment height is similar to the BS’s height.
In Fig. 10(b), we set the BS height at 10 m. We investigate the
performance for different heights of the RIS. It is important
to note that increasing RIS height decreases the number of
served users. In this setup, we observe the highest gain at RIS
height 3 m. However, we can see that the best performance is

Fig. 11. Comparison with the Upper Bound.

when the RIS is deployed close to users. This is because the
RIS height is close to the height of the users which is fixed
at 1.5 m. Accordingly, an important observation is that for all
RIS heights, the performance of BS-side deployment is more
significant if the RIS deployment height is closer or similar
to the BS height. Further, the performance of the user-side
deployment is significant if the RIS height is closer or similar
to the user deployment height. As a result, to obtain better
gain, RIS deployment height should be similar to the height
of the closest node, i.e. similar to BS height if near BS or
similar to user height if near users.

I. Comparison With an Upper Bound

In this subsection, we compare our proposed design with
an upper-bound solution. Note that the formulated problem
is a mixed-integer nonlinear program (MINLP) which is
non-convex and thus difficult to solve in polynomial time using
existing methods of combinatorial programming and convex
optimization. Such non-convex problems have no established
standard approach for solving them optimally, making it
challenging to find an existing algorithm that can efficiently
provide an optimal solution. However, in order to evaluate
the tightness of the proposed algorithm to the theoretical
limit, we compare the proposed algorithm with an upper-
bound solution. Specifically, we derive the upper bound on
the number of users that the system can support considering
the number of packets required for the user to be considered
served and the maximum number of orthogonal channels we
can create in each time slot. Accordingly, we can estimate
theoretically the number of users that can be served. The
maximum number of users that the system can support is

Ktot =
MT

αth
(23)

where T is the number of timeslots, M is the number
of BS antennas, and αth is the minimum number of time
slots required to meet the QoS requirements. Accordingly,
we demonstrate the performance of the proposed algorithm
as compared to the upper-bound solution as shown in Fig. 11.
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Fig. 12. Impact of outdated CSI with different QoS margins.

J. Impact of Outdated CSI on the System Performance

In this subsection, we investigate the impact of outdated
CSI on the system performance in high mobility scenarios.
We note that when the CSI becomes more and more outdated,
it becomes very challenging to serve users with the desired
QoS. Accordingly, we propose a QoS margin to improve the
system’s robustness to outdated CSI. Firstly, we assume that
the channel from the BS to the RIS can be estimated perfectly
since the position of the BS and the RIS is fixed. Due to the
mobility of users, the BS to user and RIS to user channels
may often be outdated. Accordingly, we denote the BS to
user k link in time slot t, by g0

dk,t
and the RIS to user k

channel in time slot t by g0
rk,t

. Specifically, the true channels
from BS to user k and RIS to user k in time slot t, can be
expressed,respectively, as [55]:

g0
dk,t

= ϱgdk,t
+

√
1− ϱ2ε (24)

g0
rk,t

= ϱgrk,t
+

√
1− ϱ2ε (25)

where gdk,t
and grk,t

are the outdated estimated channels for
user k in time slot t. Herein, 0 ≤ ϱ ≤ 1 is the correlation
coefficient between the estimated channel that is outdated and
the true channel. Further, ε is a complex Gaussian distribution
with zero mean and variance σ2. The estimate channels are
modeled as described in the previous section, following a
Rician fading model. We note that when ϱ = 1, the CSI is
considered to be perfectly available at the transmitter, whereas
ϱ = 0 denotes the unavailability of CSI. According to [56],
the correlation coefficient ϱ can be calculated as follows

ϱ = J0(
2πfcvTe

c
) (26)

where fc is the carrier frequency, v is the user velocity, Te is
the estimation delay between the outdated channel estimate
and the true channel and J0(.) is the zeroth-order Bessel
function of the first order. To reduce the impact of outdated
CSI on the performance of the overall algorithm, we introduce
a quality of service margin. Specifically, we consider the
SINR margin of 1 − 5 dB. This is to ensure the robustness
of the proposed approach to the impact of outdated CSI.
In this case, we can still be able to provide users with a QoS

threshold of 10 dB. As illustrated in Fig. 12, we note that the
number of served users decreases as the correlation coefficient
ϱ decreases. Specifically, the number of users served reduces
as the channel becomes more and more outdated. However,
we observed that, varying the QoS margin between 1 dB to
5 dB margin can help minimize the impact of outdated CSI on
the overall system performance. This confirms the robustness
provided by the introduction of the QoS margin to reduce the
effect of outdated CSI for different correlation coefficients.
It is also important to note that a 5 dB margin provides
a more robust solution when the correlation coefficient is
small. However, it is outperformed by other margins when
the correlation coefficient is larger than 0.6.

It is evident from the results that the joint multislot
scheduling, precoding and passive beamforming design leads
to substantial performance gains, especially in an overloaded
network where the number of BS antennas is less than the
number of users. This gain highly depends on several system
parameters such as the RIS deployment position, number of
RIS elements, Rician factor, the total number of users on
the street, number of BS antennas, user QoS requirements,
and quality of CSI. Further, the deployment of RIS in this
scenario has quite a huge impact on improving the network’s
multiplexing capabilities.

VI. CONCLUSION

In this paper, we studied the joint optimization of schedul-
ing, precoding and passive beamforming for a RIS-aided
network in a realistic smart city scenario. Specifically, the
multislot scheduling, precoding at the BS and passive beam-
forming at the RIS are jointly optimized to maximize the
admission of users, i.e., the number of served users in a
challenging smart city street while satisfying QoS targets. The
formulated problem is mixed-integer nonlinear programming,
which is NP-hard. Combining tools from binary variable
relaxation, alternating optimization and successive convex
approximations, we developed an efficient iterative algorithm
to solve the problem. Interestingly, it is shown that the
proposed method is more applicable in an overloaded network
as compared to the design without scheduling. Further, tak-
ing advantage of the spatial diversity enhancement provided
by RIS deployment and the time diversity from scheduling,
we observed a significant performance gain compared to all
the considered benchmark schemes. Simulation results showed
a notable performance improvement in terms of the number of
served users, which is quite beneficial for the target application
i.e. smart city, where there is a proliferation of devices
demanding access to the network. Simulation results have also
illustrated that in case of outdated CSI due to user mobility,
the introduction of a QoS margin improves the robustness of
the proposed algorithm.
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