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RIS-Assisted Receive Quadrature Spatial
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Abstract— In this paper, we propose a novel reconfigurable
intelligent surface (RIS)-assisted wireless communication scheme
which uses the concept of spatial modulation, namely RIS-assisted
receive quadrature spatial modulation (RIS-RQSM). In the
proposed RIS-RQSM system, the information bits are conveyed
via both the indices of the two selected receive antennas and the
conventional in-phase/quadrature (IQ) modulation. We propose a
novel methodology to adjust the phase shifts of the RIS elements
in order to maximize the signal-to-noise ratio (SNR) and at the
same time to construct two separate PAM symbols at the selected
receive antennas, as the in-phase and quadrature components of
the desired IQ symbol. An energy-based greedy detector (GD)
is implemented at the receiver to efficiently detect the received
signal with minimal channel state information (CSI) via the use of
an appropriately designed one-tap pre-equalizer. We also derive
a closed-form upper bound on the average bit error probability
(ABEP) of the proposed RIS-RQSM system. Then, we formulate
an optimization problem to minimize the ABEP in order to
improve the performance of the system, which allows the GD
to act as a near-optimal receiver. Extensive numerical results are
provided to demonstrate the error rate performance of the system
and to compare with that of a prominent benchmark scheme.
The results verify the remarkable superiority of the proposed
RIS-RQSM system over the benchmark scheme.

Index Terms— 6G, reconfigurable intelligent surface (RIS),
spatial modulation (SM), quadrature spatial modulation (QSM),
greedy detector (GD).

I. INTRODUCTION

IN THE past few years, various wireless communication
technologies have emerged with an aim to support high
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demands for connectivity and an immense increase in mobile
data traffic. Among these, reconfigurable intelligent surfaces
(RISs), also known as intelligent reflecting surfaces (IRSs),
represents a key innovation that has drawn significant attention
from researchers in both academia and industry [1] and is
foreseen to be a potential candidate for 6th-generation (6G)
networks [2], [3]. An RIS is a surface of electromagnetic
meta-material consisting of a large number of small, low-cost
and energy-efficient reflecting elements that are able to control
the scattering and propagation in the channel by inducing a
pre-designed phase shift to the impinging wave. From this per-
spective, RIS technology represents a revolutionary paradigm
that can transform the uncontrollable disruptive propagation
environment into a smart radio environment [2], [4], thus
enhancing the received signal quality [5], [6].

On the other hand, spatial modulation (SM) [7], [8], [9] and
its variants such as generalized spatial modulation (GSM) [10],
receive spatial modulation (RSM) [11], [12], and quadrature
spatial modulation (QSM) [13], have been widely investi-
gated in the last two decades as a promising technology for
beyond-5th-generation (B5G) networks. SM uses the indices
of the transmit/receive antennas to convey the information bits.
It exploits the channel attributes to simplify the transceiver
structure in order to provide a more energy-efficient solution
compared with other conventional multiple-input multiple-
output (MIMO) techniques [14].

The implicit advantages of both RIS and SM technology
have motivated researchers to combine these two advanced
technologies to obtain a reliable energy-efficient approach in
order to achieve so-called green or sustainable wireless com-
munications. Specifically, in [15], two fundamental RIS-based
index modulation (IM) techniques were proposed, i.e., RIS-
space-shift keying (RIS-SSK) and RIS-spatial modulation
(RIS-SM). In both scenarios, the RIS-access point (RIS-AP)
approach was implemented, in which the RIS forms part
of the transmitter, and the index of the receive antennas is
used to convey the data bits. The numerical results confirm a
significant superiority of these RIS-aided schemes compared
to conventional MIMO schemes. Various principles of RIS-
based SM (also known as metasurface-based modulation)
were introduced in [16]. The authors of [17] proposed an
RIS-SSK system with multiple transmit antennas in which the
information bits map to the transmit antenna index and
the single-antenna receiver receives the signal reflected
from the RIS. Various scenarios with ideal and non-ideal
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transceivers were investigated and the error rate performance
of each scenario was analyzed. The results indicate that max-
imizing the signal-to-noise ratio (SNR) at the receiver is not
a good approach for the transmit RIS-SSK setting, and in fact
shows a relatively poor performance. In light of this, in [18]
the authors proposed an optimization algorithm for the trans-
mit RIS-SSK system to maximize the minimum Euclidean
distance among the received symbols. Using this approach,
a performance improvement is achieved at the expense of
an increased computational complexity. Moreover, in [19],
adopting a similar approach, the authors proposed a joint opti-
mization of the power allocation matrix and the phase shifts
of the RIS elements. An RIS-based SM system with both the
transmit and receive antenna index modulation was proposed
in [20] to increase the spectral efficiency. However, the results
show that the error rate performance of the transmit SM bits
is significantly lower than that of the receive SM bits; this is
due to a reduction in the resulting channel-imprinted Euclidean
distances. RIS-aided receive quadrature reflecting modulation
(RIS-RQRM) proposed in [21] is another interesting approach
in which QSM is applied within the receive antenna array.
In this scenario, the RIS is divided into two halves, and each
half targets the real or imaginary part of the signal at the two
selected receive antennas in order to double the throughput;
however, the SNR at the receiver is significantly reduced due
to the reduction in the number of RIS elements per targeted
antenna. In [22] and [23], generalized SSK (GSSK) and GSM
approaches have been implemented in an RIS-assisted wireless
system. In both scenarios, the RIS is divided into multiple
parts to target multiple antennas at the receiver; hence, the
throughput can be increased at the expense of a decrease in the
SNR at the target antennas. The concept of SM has also been
applied within the RIS entity in [24], [25], and [26] in order
to transmit additional data bits. This is an exciting approach to
transmit the environmental data collected by the RIS; however,
experimental results show a very large degradation in the
error rate performance of the SM symbol, that is due to the
similarity within the possible (noise-free) received signals.
In order to tackle the problem of the SNR decrease due to
grouping of the RIS elements, in [27] we proposed a new
paradigm, namely RIS-assisted receive quadrature space-shift
keying (RIS-RQSSK) in order to simultaneously target two
receive antennas. An optimization problem was defined to
maximize the SNR of the real part of the signal at one antenna
and, at the same time, of the imaginary part of the signal at
the second antenna. The spectral efficiency of this approach is
increased without any degradation in the SNR. However, the
throughput of the RIS-RQSSK system is limited and can only
be increased by increasing the number of receive antennas
which is not a viable option in practice.

Against this background, in this paper we introduce a
new RIS-assisted quadrature scheme in which, in addition to
mapping the information bits independently to two indices of
receive antennas, additional bits are transmitted via conven-
tional in-phase/quadrature (IQ) modulation. The contributions
of this paper are as follows:
• To improve the spectral efficiency of RIS-RQSSK while

preserving its excellent performance, we propose an

RIS-assisted receive quadrature spatial modulation (RIS-
RQSM) system. In particular, all RIS elements target two
independently selected receive antennas to convey the
information bits. In this scenario, we introduce a novel
idea to optimize the phase shifts of the RIS elements
in order to not only maximize the SNR components
associated to the real and imaginary parts of the signal
at the receive antennas, but also to help in constructing
the in-phase (I) and quadrature (Q) components of the
symbol at the two separate antennas. Specifically, the
phase of the desired IQ symbol is created by adjusting the
phase shift of the RIS elements, while a positive symbol
selected from a specific pre-designed PAM constellation
forms the amplitude of that IQ symbol. That is, in the
proposed RIS-RQSM system, in contrast to conventional
IQ modulation, the transmitter constructs the IQ symbol
at the receiver with the aid of the RIS elements and a
single radio frequency (RF) chain.

• We propose an energy-based greedy detector (GD) at the
receiver to detect the indices of the selected antennas
with low complexity. Then, the I and Q symbols can be
detected independently by using a one-dimensional max-
imum likelihood (ML) detector at each of the detected
antennas. We also propose and design a one-tap zero-
forcing (ZF) pre-equalizer which remarkably reduces
the channel state information (CSI) requirement at the
receiver. This yields a significant reduction in the feed-
back payload.

• We analyze the average bit error probability (ABEP) of
the proposed RIS-RQSM system with the GD receiver
and derive a closed-form upper bound which is tight,
especially at high SNR values. Then, we propose an
optimization problem to design an IQ modulation scheme
in order to minimize the ABEP. We utilize some accu-
rate approximations to reduce the complexity of the
optimization problem and derive an analytical solution.
Indeed, optimizing the IQ modulation enables the system
to use the GD as an alternative to the ML detector.
The results show that the GD in the RIS-RQSM system
with optimized constellation performs considerably close
to the ML detector, such that the performance gap is
negligible.

• Finally, we compare the bit error rate (BER) performance
results with those of the most prominent benchmark
scheme. The results show that the proposed RIS-RQSM
system substantially outperforms the benchmark scheme.
This performance improvement improves with an increas-
ing number of receive antennas.

The rest of this paper is organized as follows. The RIS-
RQSM system model is described in Section II. In Section III,
we summarize the transceiver design of the RIS-RQSSK
system of [27], which forms the baseline model for the
proposed system. The transmitter and receiver structure design
for the proposed RIS-RQSM system is presented in detail
in Section IV. The ABEP performance of the proposed
RIS-RQSM system is analyzed in Section V. In Section VI,
we formulate the optimization problem to minimize the system
error rate performance and determine its analytical solution.



6548 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 11, NOVEMBER 2023

Fig. 1. A schematic representation of RIS-assisted receive quadrature spatial
modulation (RIS-RQSM) system (in RIS-RQSSK system, an RF source with
constant energy is used).

In Section VII, we provide numerical results and comparisons
with the benchmark scheme. Finally, Section VIII concludes
this paper.

Notation: Boldface lower-case letters denote column vec-
tors, and boldface upper-case letters denote matrices. (·)R

and (·)I denote the real and imaginary components of a
scalar/vector, respectively. (·)⋆ represents the optimum value
of a scalar/vector variable. E {·} and V {·}, respectively,
denote the expectation and variance operator. N

(
µ, σ2

)
(resp.,

CN
(
µ, σ2

)
) represents the normal (resp., complex normal)

distribution with mean µ and variance σ2. For a real/complex
scalar s, |s| denotes the absolute value, while for a set S,
|S| denotes its cardinality. sgn (·) represents the sign function
which determines the sign of a real variable, i.e., for x ̸= 0,
it is defined as sgn (x) = {+1 if x > 0, −1 if x < 0}.
Finally, the set of complex matrices of size m× n is denoted
by Cm×n.

II. SYSTEM MODEL

In this section, we describe the system model for the
proposed RIS-assisted receive quadrature spatial modulation
(RIS-RQSM) scheme. A schematic of the RIS-RQSM system
is presented in Fig. 1. We consider the RIS-AP model1 [5], [6],
where the RIS forms part of the transmitter and reflects the
incident wave emitted from a single transmit antenna which is
located in the vicinity of the RIS such that the path loss and
scattering of the link between the RIS and the transmit antenna
is negligible.2 The RIS is comprised of N reflecting elements
whose vector of phase shifts θ ∈ CN×1 is controlled by the
transmitter to convey information. Here we assume lossless
reflection from the RIS, i.e., |θi| = 1 for i = 1, 2, . . . , N .
The receiver is equipped with Nr antennas and is placed far
from the transmitter. We assume that the receiver can only
receive the signal reflected from the RIS elements3 through
the wireless fading channel H ∈ CNr×N , whose elements are

1Note that the proposed system could alternatively be implemented using
conventional analog beamforming. However, the advantages of RISs, such
as nearly-passive operation, ability to support full-duplex communication
without significant self-interference, independence from feeding networks,
etc., compared to conventional technologies like analog beamformers serve
as a strong motivation for us to incorporate this state-of-the-art technology
into our proposed system.

2Due to the short distance, there exists a strong line-of-sight (LoS) compo-
nent which is typically stronger and more stable than the other components of
the wireless channel, which are affected by random scattering and reflections.
The presence of a strong LoS component makes the wireless channel less
random and more deterministic.

3Note that this system model can be easily extended to cover the case
where a direct link also exists between the transmitter and receiver, as this is
mathematically equivalent to the addition of one more RIS element.

assumed to be independent and identically distributed4 (i.i.d.)
according to CN (0, 1). In this scenario, the input data stream
is split into packets of log2 MN2

r bits. The first 2 log2 Nr bits
are used to independently select two receive antennas. Each
antenna selection is independent of the other, and hence, each
selection conveys log2 Nr bits (the receiver demodulates these
information bits through detecting the selected antenna). The
remaining log2 M bits determine the desired IQ symbol that is
selected from an M -ary QAM constellation. Unlike in conven-
tional communication systems, in the RIS-RQSM system the
selected IQ symbol is not transmitted through a single-antenna
transmitter, but is created at the selected receive antennas via
both adjusting the RIS phase shifts and emitting a specific
PAM symbol from the transmit antenna,5 with a property that
the I component appears on the first selected antenna, while the
Q component appears on the second selected antenna. Thus,
the RIS-RQSM scheme represents a significant generaliza-
tion of the RIS-assisted receive quadrature space-shift keying
(RIS-RQSSK) system described in [27]. In RIS-RQSSK,
an RF source is used to transmit a constant signal toward
the RIS; therefore, only a spatial symbol can be transmitted,
while the PAM signal in RIS-RQSM enables the transmitter
to transfer additional data bits via IQ modulation. In the
next section, we will provide a brief overview of the RIS-
RQSSK system. Then, the proposed RIS-RQSM system will
be described in Section IV.

III. RIS-ASSISTED RECEIVE QUADRATURE
SPACE-SHIFT KEYING

In this section, we summarize the system model of the
RIS-RQSSK scheme of [27] and outline its phase shift opti-
mization procedure. In the RIS-RQSSK system, the transmitter
is equipped with an RF source with constant energy Es. In this
scenario, two receive antennas are independently selected
according to two packets of log2 Nr input data bits. Then, the
transmitter reflects the signal to the receiver through the RIS,
aiming to simultaneously maximize the SNR associated to the
real part of the signal at the first selected receive antenna m,
while also maximizing the SNR associated to the imaginary
part of the signal at the second selected receive antenna n.
For this system, the real and imaginary components of the
baseband received signal at the selected antennas m and n,
respectively, are given by

yRm =
√

Es

[
hRmθR − hImθI

]
+ nRm, (1)

yIn =
√

Es

[
hRn θI + hInθR

]
+ nIn, (2)

4It is well-understood that the distance between adjacent antennas and/or
RIS elements plays a crucial role in determining whether the elements of the
channel vector can be considered to be i.i.d. In our proposed model, we make
the assumption that there is a sufficient physical separation between adjacent
RIS elements and between adjacent receive antennas. Typically, a spacing
of half of the operational wavelength is recommended for the antennas/RIS
elements in order to ensure that they can be considered to be sufficiently
separated.

5It is worth mentioning that in contrast to the conventional RIS-SM system,
in the RIS-RQSM the RF source at the transmitter only requires the hardware
for the in-phase (I) signal component, which results in a lower hardware
complexity.
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where hl = [hl,1, hl,2, . . . , hl,N ] is the l-th row of H, and
nl ∈ C is the additive white Gaussian noise at the l-th
receive antenna that is distributed according to CN (0, N0).
To maximize both SNR components associated to the real and
imaginary parts of the selected receive antennas m and n, a
max-min optimization problem was defined as

max
θR,θI

min
(∣∣∣hRmθR − hImθI

∣∣∣ , ∣∣∣hRn θI + hInθR
∣∣∣)

s.t.
(
θRi
)2

+
(
θIi
)2

= 1, for all i = 1, 2, . . . , N. (3)

Taking the case where the noise-free signal components in (1)
and (2) are positive, the optimal values of {θRi } and {θIi } are
given by [27, eqs. (28), (29)]

θR⋆
i =

λAi + (1− λ) Bi√
(λAi + (1− λ) Bi)

2 + (λCi + (1− λ) Di)
2
, (4)

for all i = 1, 2, . . . , N , and

θI⋆
i =

λCi + (1− λ) Di√
(λAi + (1− λ) Bi)

2 + (λCi + (1− λ) Di)
2
, (5)

for all i = 1, 2, . . . , N , where we define

Ai = hRm,i, Bi = hIn,i, Ci = −hIm,i, and Di = hRn,i, (6)

to simplify the notation, and where, for N ≫ 1, the value of
λ ∈ (0, 1) is the solution to (7), shown at the bottom of the
page. In addition, with the optimal phase shift values given
in (4) and (5), the resulting SNR components have the same
value, i.e., we have

hRmθR⋆ − hImθI⋆ = hRn θI⋆ + hInθR⋆.

Finally, at the receiver, a simple but effective greedy detector
(GD) is employed to detect the selected receive antennas
without the need for any knowledge of the CSI at the receiver.
The GD operates via

m̂ = arg max
m∈{1,2,...,Nr}

{∣∣yRm∣∣} , (8)

n̂ = arg max
n∈{1,2,...,Nr}

{∣∣yIn∣∣} . (9)

The performance results have demonstrated the superi-
ority of the RIS-RQSSK system over comparable bench-
mark schemes. This motivates us to extend this scheme
to the context of QSM, which is the subject of the next
section.

IV. RIS-ASSISTED RECEIVE QUADRATURE
SPATIAL MODULATION

In general, while the spectral efficiency of an SSK sys-
tem can be increased by extending it to the corresponding
quadrature SSK system, it can be further improved by imple-
menting a conventional IQ modulation on top of the antenna

index modulation. In the conventional receive quadrature SM
(RQSM), the transmit vector can be designed to place the
real and imaginary parts of the symbol separately at a specific
position of the real and imaginary receive vector. On the other
hand, in the RIS-RQSM scheme, the transmitter is equipped
with only one antenna and therefore can only transmit one
symbol in each symbol interval. In addition, since the real and
imaginary parts of the desired symbol needs to be separated at
the receiver, the transmitter can only perform amplitude mod-
ulation through the RF source to be detectable at the receiver
(as also suggested in [21] for the RIS-RQRM scheme), i.e.,
it is not feasible to transmit a QAM symbol and receive
the I and Q components separately at two different receive
antennas. To tackle this problem, in the proposed RIS-RQSM
system we introduce a new paradigm in order to construct
an M -ary QAM symbol (in fact, two independent symbols
from identical

√
M -ary PAM constellations) at the receiver

via the adjustment of both the amplitude of the RF source
and the phase shifts of the RIS elements. Therefore, in the
RIS-RQSM system the rate is R = log2 M + 2 log2 Nr bits
per channel use (bpcu). In this scenario, the desired received
signal components are given by

yRm =
[
hRmθR − hImθI

]
Gs + nRm, (10)

yIn =
[
hRn θI + hInθR

]
Gs + nIn, (11)

where s is the transmit symbol selected from a specific positive
real PAM constellation, denoted by PRF. The amplitudes in
PRF are the magnitudes of the complex symbols in an M -ary
QAM constellation M with average energy Es, i.e., s = |x|
where x ∈ M is the desired IQ symbol, and G > 0 is a
one-tap zero-forcing (ZF) pre-equalizer to be defined later.

To produce the desired M -ary QAM signal at the receiver,
we modify the problem in (3) to accommodate both the index
modulation and IQ modulation as

max
θR,θI

min (YR, δYI) (12a)

s.t. YR = sgn
(
xR
) (

hRmθR − hImθI
)

, (12b)

YI = sgn
(
xI
) (

hRn θI + hInθR
)

, (12c)(
θRi
)2

+
(
θIi
)2

= 1, for all i = 1, 2, . . . , N, (12d)

where δ > 0 is the absolute value of the ratio of the real to
the imaginary part of x, i.e., δ =

∣∣xR/xI
∣∣. It can be seen

that this optimization problem is similar to the optimization
problem for the RIS-RQSSK scenario; hence, it can be solved
by a similar approach to that used in [27]. More specifically,
this non-convex problem is solved by using the Lagrange dual
approach. In this method, we first find the Lagrange function
associated with it. Then, by minimizing the Lagrange function,
we obtain the Lagrange dual problem, which is convex and can

f(λ) ≜
N∑

i=1

(Ai −Bi) (λAi + (1− λ) Bi) + (Ci −Di) (λCi + (1− λ) Di)√
(λAi + (1− λ) Bi)

2 + (λCi + (1− λ) Di)
2

= 0. (7)
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Fig. 2. Histogram of the parameter λ, where 105 channel realizations are used.

be solved using the Karush-Kuhn-Tucker (KKT) conditions
(we omit the details for brevity). As a result,

{
θR⋆

i

}
and

{
θI⋆

i

}
are again given by (4) and (5), respectively, and λ can also be
evaluated by solving (7); however, it is required to re-define
the variables in (6) accordingly as

Ai = sgn
(
xR
)
hRm,i, Bi = δ sgn

(
xI
)
hIn,i,

Ci = sgn
(
xR
) (
−hIm,i

)
, and Di = δ sgn

(
xI
)
hRn,i. (13)

Note that the maximization problem forces YR and YI to
be positive. As a result, the sign functions in (12) deter-
mine the signs of the noise-free received signal components.
To elucidate the functionality of the optimization problem
above, we take symbol x = 1 − 3j as an example; then,
we have sgn

(
xR = 1

)
= +1 and sgn

(
xI = −3

)
= −1.

Therefore, we obtain YR = +
(
hRmθR − hImθI

)
> 0 and

YI = −
(
hRn θI + hInθR

)
> 0, which indicates that the real

component of the constructed received symbol is positive and
its imaginary component is negative, similar to the selected
symbol x. It is also worth pointing out that at the optimal point,
the values involved in the minimization are equal, i.e., with the
values

{
θR⋆

i

}
and

{
θI⋆

i

}
we have Y ⋆

R = δY ⋆
I , where Y ⋆

R and
Y ⋆

I are the optimum values of YR and YI produced by (12).
Hence, we can conclude that the phase of the desired QAM
symbol is correctly designed. Next, in order to explain why the
PAM constellation PRF must be utilized at the transmitter, we
need to ascertain how the RIS-aided channel acts for various
values of δ.

Due to the presence of random variables in (7), λ also
presents a random behavior. It is not easy to determine
the stochastic characteristics (e.g., mean and variance) of
λ from (7); however, experimental results provide strong
evidence that the mean value of λ is E {λ} = λ̄ = δ2

1+δ2 and
that its variance tends to zero with an increasing number of
RIS elements N . Fig. 2 illustrates the distribution of λ within
the domain [0, 1] for different values of N and δ. To obtain
these results, 105 channel realizations were generated, and
the corresponding values of λ were computed for each of
them. We observe that the average value of λ is approximately
equal to 0.1, 0.2, 0.5, 0.8, and 0.9, when δ takes on the
values of 1/3, 1/2, 1, 2, and 3, respectively. Furthermore, it is
observed that the variance of λ decreases as the number of

RIS elements increases from 64 to 256. These observations
can be further used to approximate the average value of the
optimum objective in (12), which is provided in the following
theorem.

Theorem 1: For large values of N , the means E {Y ⋆
R} and

E {Y ⋆
I } can be closely approximated by

E {Y ⋆
R} ≈

√
λ̄

N
√

π

2
, E {Y ⋆

I } ≈
√

1− λ̄
N
√

π

2
.

Proof: The proof is provided in Appendix A.
From Theorem 1, it can be observed that the mean value

of the complex symbol created by the received signal com-
ponents at the selected antennas lies on a circle with radius
β = N

√
π

2 for any value of δ. Therefore, in addition to
optimizing the phase angles of the RIS elements, an appro-
priate positive PAM symbol s ∈ PRF is required to be
modulated at the RF source in order to adjust the magnitude
of the received signal to accommodate the desired QAM
symbol in a predefined constellation. In other words, the
phase of the QAM symbol is determined by the RIS ele-
ments while its amplitude is determined by the PAM symbol.
Therefore, the transmit symbol s = |x| is required at the
RF source.

The symbol s is then multiplied by G at the transmitter to
ensure that the gain of the link is constant at all times (i.e.,
for each symbol and for each channel realization). Therefore,
we design G via

G =
E {Y ⋆

R}
Y ⋆

R

=
E
{
hRmθR⋆ − hImθI⋆

}
hRmθR⋆ − hImθI⋆

, (14)

where θ⋆ is the optimum vector of phase shifts of the RIS
elements associated to the desired transmit symbol. Note that
G has a value that is specific to each symbol x and channel
realization H. In fact, G can be realized as a one-tap ZF pre-
equalizer. As a result, the receiver only needs to know the
effective gain of the RIS-assisted wireless channel, i.e, the gain
of the equivalent Gaussian channel which is obtained by the
aid of the RIS elements, which is equal to β2; no additional
CSI is necessary for the GD detector, which significantly
reduces the feedback payload of the system. On the other hand,
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the CSI must be available at the transmitter6 in order to adjust
the phase shifts of the RIS elements and implement the one-tap
pre-equalizer.

Theorem 2: Under the assumption of a large number of RIS
elements, the mean values of G and G2 both tend to unity,
i.e., lim

N→∞
E {G} = 1 and lim

N→∞
E
{
G2
}

= 1.

Proof: Here we only prove that lim
N→∞

E
{
G2
}

= 1. The
convergence of the mean value of G can be derived in a similar
manner. The mean value of G2 is given by

E
{
G2
}

= E

{
E2 {Y ⋆

R}
(Y ⋆

R)2

}
= µ2E

{
1

(Y ⋆
R)2

}
,

where µ = E {Y ⋆
R} =

√
λ̄N

√
π

2 . According to the central limit
theorem (CLT), Y ⋆

R is distributed as Y ⋆
R ∼ N

(
µ, σ2

)
, where

σ2 ∝ N .7 Then, the average of G2 can be expressed as

E
{
G2
}

= µ2E

{
1

(Y ⋆
R)2

}
=

µ2

√
2πσ2

∫ ∞

−∞

1
y2

e−
(y−µ)2

2σ2 dy

=
1√
2π

µ2

σ2

∫ ∞

−∞

1(
u + µ

σ

)2 e−
u2
2 du,

where we used the change of variable u = y−µ
σ . Since µ

σ ∝√
N →∞ as N →∞, we can write

lim
N→∞

E
{
G2
}

= lim
µ
σ→∞

1√
2π

µ2

σ2

∫ ∞

−∞

1(
u + µ

σ

)2 e−
u2
2 du

=
1√
2π

∫ ∞

−∞
e−

u2
2 du = 1.

Note that in practice, the number of RIS elements is large
enough so that the expressions in Theorem 2 serve as accurate
approximations for our design. Theorem 2 implies that the pre-
equalizer G does not change the average transmit power of the
system, i.e., E

{
(Gs)2

}
= Es; hence the SNR is simply given

by Es/N0.

Receiver Structure

Similar to the RIS-RQSSK scheme, the receiver can employ
a GD to detect the selected antenna indices via (8) and (9).

6Here we assume that perfect CSI is available at the transmitter. The CSI
acquisition is a crucial task in RIS-assisted MIMO communications, as the
RIS is passive and contains a large number of elements. However, the channel
estimation procedure does not form part of the contribution of this paper,
and we assume that an existing channel estimation technique has been used.
In order to decouple our results from the use of any specific CSI estimation
method, and to provide an upper bound on the best achievable performance,
we assume that there is no error in the acquired CSI. So far, a lot of research
has been conducted to investigate efficient methods to estimate the CSI in
RIS-assisted MIMO communications (see, e.g., [28] for more details). It is
important to note that in the proposed RIS-RQSM system, because the RIS
is in close proximity to the transmitter, the RIS-AP link is considered to be
deterministic, and the CSI acquisition challenge only involves the RIS-user
link. Furthermore, in symmetric uplink and downlink channels, it is possible
to perform CSI acquisition entirely at the transmitter, utilizing the reciprocity
phenomenon. This approach can lead to a receiver that is even simpler and
less complex.

7This is proved in [27] for the RIS-RQSSK scenario, i.e., for δ = 1,
however, the proof can be extended to the general case where δ =

∣∣xR/xI
∣∣

(for brevity, these details are omitted). Later (in Section V) we will show how
the variance σ2 is related to N .

After this, the receiver can demodulate the desired I and Q
symbols via

x̂R = arg min
xR

{∣∣yRm − βxR
∣∣} , (15)

x̂I = arg min
xI

{∣∣yIn − βxI
∣∣} , (16)

where β = N
√

π
2 is the effective channel coefficient.

It is important to note that the main complexity in the
GD method lies in evaluating (15) and (16). Each of
(15) and (16) only require one multiplier followed by
a standard (nearest-neighbor) detector for a

√
M -PAM

constellation.
On the other hand, the maximum likelihood (ML)

detector for the proposed RIS-RQSM system operates
via

(m̂, n̂, x̂) = arg min
m,n,x

Nr∑
l=1

(yl − hlθ
⋆Gs)2 , (17)

where we note that θ⋆ is a multi-variable function of
(m, n, x), and s = |x|. While the GD is CSI-free, the ML
detector relies on having full CSI at the receiver. Furthermore,
it can be seen that the ML detector needs to compute θ⋆ for all
combinations of the selected receive antennas and then search
over all possible combinations of the spatial symbols and
IQ modulation symbols. These facts make the ML detector
significantly more complex than the GD. Although the ML
detector provides an optimum receiver, we will show later
in Sections VI and VII that optimizing the IQ constellation,
in addition to increasing the performance of the system, can
also leverage the GD efficiency such that it competes very
strongly with the ML detector (i.e., the performance gap is
negligible).

V. PERFORMANCE ANALYSIS

In this section, we analyze the ABEP of the proposed RIS-
RQSM system. This analysis focuses on the GD receiver.
Here we only perform the analysis for the detection of the
antenna m with active real part along with the real part of the
corresponding modulated IQ symbol, xR; due to the inherent
symmetry in the expressions, it is easy to show that the ABEP
expression for the detection of the antenna n with active imag-
inary part along with the imaginary part of the corresponding
modulated IQ symbol xI is identical. An upper bound on the
ABEP, which is tight especially at high SNR, is given by (18),
shown at the bottom of the next page, (see, e.g., [15], [29]),
where Pe (m) is the probability of erroneous detection of the
selected receive antenna m, PEP

(
xR → x̂R|m = m̂

)
is the

pairwise error probability (PEP) associated with the real part
of the symbols x and x̂ conditioned on correct detection of
the antenna index, and e

(
xR → x̂R

)
is the Hamming distance

between the binary representations of the real parts of the
symbols x and x̂. Here we assume that half of the bits are in
error under the condition of erroneous index detection (note
that this assumption represents the worst-case scenario), so
that Pe (m) can be written as

Pe (m) = (Nr − 1) PEP (m → m̂) , (19)
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where PEP (m → m̂) is the average PEP associated with the
antenna indices m and m̂, and is given by

PEP (m → m̂)

=
1√
M

∑
xR

PEP
(
m → m̂|xR

)
=

1√
M

∑
xR∈MR

2√
M

∑
δ∈DxR

PEP
(
m → m̂|xR, δ

)
, (20)

where MR is the set consisting of all possible values of xR,
the real component of symbols in M, with |MR| =

√
M , and

Dξ =
{∣∣∣xRxI ∣∣∣ |xR = ξ, xI ∈MI

}
with |Dξ| =

√
M
2 (where

MI is the set consisting of all possible values of xI); for
instance, for a conventional 16-QAM constellation we have
MR = MI = {−3,−1, 1, 3}, and for xR = {−1, 1} we
have D−1 = D1 = {1, 1/3}, while for xR = {−3, 3} we
have D−3 = D3 = {1, 3}. Considering the use of GD at
the receiver, the PEP associated with the selected antenna m
and the detected antenna m̂ ̸= m conditioned on the selected
symbol x (i.e., given xR and δ) is given by

PEP
(
m → m̂|xR, δ

)
= Pr

{(
yRm
)2

<
(
yRm̂
)2 |xR, δ

}
= Pr

{([
hRmθR⋆ − hImθI⋆

]
Gs + nRm

)2

<
([

hRm̂θR⋆ − hIm̂θI⋆
]
Gs + nRm̂

)2

|xR, δ

}
≈ Pr {|Z1| < |Z2|} , (21)

where we define Z1 ≜
[
hRmθR⋆ − hImθI⋆

] |xR|√
λ̄

+ nRm and

Z2 ≜
[
hRm̂θR⋆ − hIm̂θI⋆

] |xR|√
λ̄

+ nRm̂, and we have used the
approximations stated in Theorem 2, i.e., E {G} ≈ 1 and

V {G} = E
{
G2
}
−E {G}2 ≈ 0, and we know that s = |xR|√

λ̄
,

since λ̄ = δ2

1+δ2 . To calculate the probability above, the
distributions of Z1, in the cases where m = n and m ̸= n,
and Z2, in the cases where m̂ = n and m̂ ̸= n, are required.
In [27, Theorems 1-3], the distributions of the random
variables (RVs) Z1 and Z2 were derived for the case of RIS-
RQSSK (in that case it was shown that λ̄ = 1/2). The
distributions of Z1 and Z2 for the more general case of
RIS-RQSM can be derived in a similar manner (we omit the
details for brevity).

In the case where m = n, with reference to the CLT, Z1

is approximately distributed according to N
(
µ1, σ

2
1

)
, where

µ1 = N
√

π
2 xR and σ2

1 = N
(
xR
)2 4−π

4 + N0
2 . In the case

where m ̸= n, the mean µ1 is given by the same expression
as in the case where m = n, and experimental results provide
strong evidence that the variance of Z1 is also exactly the
same as in the case where m = n.

On the other hand, Z2 is approximately distributed accord-
ing to N

(
0, σ2

2

)
, where the variance in each case of m̂ = n

and m̂ ̸= n is given by
1) m̂ ̸= n:

σ2
2 = ρ2

1 ≜
N
(
xR
)2

2λ̄
+

N0

2
, (22)

2) m̂ = n:

σ2
2 = ρ2

2 ≜
N
(
xR
)2

2
+

N0

2
. (23)

Therefore, to calculate the PEP, two different events need to be
taken into consideration: i) {E1 : m, m̂ ∈ {1, 2, . . . , Nr}, m̂ ̸=
n}, and ii) {E2 : m ∈ {1, 2, . . . , Nr}, m̂ = n}. Before
proceeding with the PEP analysis, we provide the following
remarks to gain further insight into the expected performance
of the proposed system.

Remark 1: It is worth pointing out that Z1 and Z2 represent
the real part of the signal received at the selected antenna m
(having mean µ1 ∝ N ≫ 1) and at a non-selected antenna
m̂ (having mean zero), respectively. The statistical behavior
of Z1 and Z2 explain why the GD is able to easily detect the
index of the selected receive antenna.

Remark 2: Another interesting point to note is that for
a noise-free signal at the selected antenna, the ratio σ1/µ1

(which is defined in the statistics literature as the coefficient
of variation; see, e.g., [30]) is proportional to 1/

√
N ≪ 1.

Therefore, as N increases, this ratio decreases, indicating that
the received signal at the target antenna is relatively more
consistent and stable, leading to a more precise detection of
the spatial symbol.

Remark 3: Another interesting aspect to consider is the
distribution of Z2. The maximum variance of Z2 occurs when
the value of λ̄ or, equivalently, δ =

∣∣xR/xI
∣∣ is minimized.

This implies that the average energy at non-selected antennas
increases as the ratio of the real to the imaginary part of the
desired symbol decreases, resulting in a greater probability of
incorrectly detecting the spatial symbol.

Next, we consider the instance where xR > 0 (it is clear that
the PEP for xR < 0 is the same). Considering the distribution
of Z1, it can be seen that µ1

σ1
∝
√

N for relatively high SNR
values, so that µ1

σ1
≫ 1; as a result, we have Z1 > 0 with

extremely high probability. Hence, the PEP can be written as

PEP
(
m → m̂|xR, δ

)
= PEP

(
m → m̂|xR > 0, δ

)
≈ Nr − 1

Nr
Pr {Z1 < |Z2| |E1}+

1
Nr

Pr {Z1 < |Z2| |E2}

=
Nr − 1

Nr

∫ ∞

0

Pr {Z1 = α, |Z2| > α|E1} dα

+
1

Nr

∫ ∞

0

Pr {Z1 = α, |Z2| > α|E2} dα. (24)

ABEP ≤ 1− Pe (m)
√

M log2

(√
MNr

)∑
xR

∑
x̂R ̸=xR

PEP
(
xR → x̂R|m = m̂

)
e
(
xR → x̂R

)
+ 0.5Pe (m) (18)
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The above two integrals can be evaluated in a unified manner
via

Ii ≜
∫ ∞

0

Pr {Z1 = α, |Z2| > α|Ei} dα

= 2
∫ ∞

0

pz1|Ei
(α) Pr {Z2 > α|Ei}dα

=
√

2
σ1
√

π

∫ ∞

0

e
− 1

2

(
µ1−α

σ1

)2

Q
(

α

ρi

)
dα, i = 1, 2. (25)

Theorem 3: An accurate approximation of Ii, i = 1, 2,
is given by

Ii ≈ Ĩi ≜
ρi

6
√

σ2
1 + ρ2

i

e
− 1

2
µ2
1

σ2
1+ρ2

i +
ρi

2
√

4
3σ2

1 + ρ2
i

e
− 2

3
µ2
1

4
3 σ2

1+ρ2
i .

(26)

Proof: See Appendix B.
Therefore, Pe (m) is approximately given by

Pe (m) ≈ 2 (Nr − 1)
M

∑
xR

∑
δ

(
Nr − 1

Nr
Ĩ1 +

1
Nr

Ĩ2

)
. (27)

Finally, PEP
(
xR → x̂R|m = m̂

)
can be expressed as

PEP
(
xR → x̂R|m = m̂

)
= Q

√β2 (xR − x̂R)2

2N0

 .

(28)

Substituting (27) and (28) into (18), an accurate closed-form
approximation for the ABEP of the RIS-RQSM system can be
obtained.

VI. IQ MODULATION DESIGN

A significant advantage of the proposed RQSM system is
that the receiver employs a simple GD which can perform
symbol detection with low complexity and with a minimal CSI
requirement. However, as will be shown later, if a conventional
QAM constellation is used, the system shows a drop in
error rate performance with higher modulation orders, since
the symbols with lowest energy in the QAM constellation
dominate the performance of the GD. This phenomenon has a
greater impact in the case of RIS-RQSM than in the RIS-SM
system of [15], as in the former a higher average energy
is received at the non-selected antennas, which results in
reducing the performance of the GD. This fact motivates us
to design a new QAM constellation in order to favor the GD.8

Hence, in this section we optimize the constellation to mini-
mize the BER of the RIS-RQSM system with GD. In order to
lower the complexity, we employ a number of approximations
in this section to simplify the ABEP upper bound which will
then serve as our objective function. However, the extensive
numerical results included in Table I and in the next section
verify the accuracy of these approximations and show that the
proposed approach is practical and yields excellent results.

8Both the ML detector and the GD perform better with the proposed
constellation, but the GD benefits more significantly.

Fig. 3. Normalized PAM constellation design for the RIS-RQSM system.

Thanks to the symmetry in the RIS-RQSM system, the real
and imaginary dimensions of the constellation can be designed
separately following the same method, which simplifies the
optimization procedure. Hence, the optimization problem is
defined as

min
MR

ABEPub

s.t.

√
M∑

i=1

(
xR
)2 ≤ √

MEs

2
, (29)

where ABEPub is the approximate upper bound on the
ABEP expressed in (18). It is trivial to observe that the
signal constellation should be symmetric about the ori-
gin. Therefore, we define the one-dimensional “normalized”√

M -PAM constellation for the real and imaginary dimensions
according to Fig. 3, such that the minimum-energy symbol has
distance d0

√
Es from the origin, while the distance between

the i-th and (i + 1)-th symbols is denoted by di

√
Es, i =

1, 2, . . . ,
√

M
2 −1. Due to the symmetry about the origin, there

exist
√

M/2 parameters that need to be optimized. For exam-
ple, in 2-PAM, there is only one parameter d0; it is clear that
in this case d0 = 1/

√
2, so that this optimization framework is

not necessary in that case. In a 4-PAM constellation there are
two parameters d0 and d1 that should be optimized such that
d0 is increased and d1 is decreased with respect to the values
for conventional PAM, i.e., the two “inner” symbols are moved
further away from the origin and the two “outer” symbols are
moved towards the origin; this adjustment of the constellation
points provides a balance between the spatial domain symbol
error probability and the IQ modulation domain symbol error
probability.

The expression for ABEPub in (18) is a relatively com-
plex function of the parameters {di} due to the summation
over all symbols in calculating Pe (m) and in calculating
PEP

(
xR → x̂R|m = m̂

)
associated with all of these dis-

tances. Hence, to simplify the solution for the optimization
problem in (29) we adopt some accurate approximations for
evaluating the upper bound on the ABEP that are valid at high
SNR and with large N .

It is well-known that at high SNR values the IQ modulation
domain bit error probability (BEP) is dominated by the pairs
of constellation points separated by the minimum Euclidean
distance, and it is also clear that the minimum-energy symbols
control the BEP in the spatial domain. Hence, considering
Gray coding for the constellation, an approximate upper bound
on the ABEP is given by

ABEPub ≈
4

√
M log2

(√
MNr

)
√

M
2 −1∑
i=1

Q

√β2Esd2
i

2N0


+ 0.5P̃e (m) , (30)
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where P̃e (m) is the corresponding approximate value of
Pe (m), given by

P̃e (m)

=
4 (Nr − 1)

M

∑
δ∈Dd0

√
Es

PEP
(
m → m̂|xR = d0

√
Es, δ

)
,

(31)

where Dd0
√

Es
=
{

1, d0
d0+d1

, . . . , d0
d0+d1+···+d√M

2 −1

}
, and we

use the fact that P̃e (m) ≪ 1, hence 1 − P̃e (m) ≈ 1 (note
that the optimization function increases the distance between
two inner symbols, so that in (30), we did not consider the
distance between the pair of inner symbols as the minimum
distance). Then, the optimization problem can be updated as

min
{di}

ABEPub in (30)

s.t.

√
M
2 −1∑
i=0

 i∑
j=0

dj

2

≤
√

M

4
. (32)

Solving the above optimization problem is not a straightfor-
ward task and requires the use of exhaustive search methods.
However, standard lattice constellation structures, such as
QAM or PAM, suggest that equal distances between adjacent
pairs of symbols admit a very simple approach which provides
a near-optimal solution in terms of the symbol error rate
performance. Hence, in the following, we assume that the
distances between “positive” adjacent symbols are equal (it
is worth recalling that there is a symmetry about the origin,
hence the distances between negative adjacent symbols are
also equal).
Special Case Where d1 = d2 = · · · = d√M

2 −1

In this case, the problem consists of optimizing the two
variables d0 and d1. Hence, the optimization problem reduces
to

min
{d0,d1}

4
√

M log2

(√
MNr

)M ′Q

√β2Esd2
1

2N0


+ 0.5P̃e (m) ,

s.t. 2d2
0 +

M ′ (2M ′ + 1)
3

d2
1 + 2M ′d0d1 ≤ 1, (33)

where we define M ′ =
√

M
2 − 1. From the inequality

constraint, d1 can be obtained as a function of d0 (here
we force equality in the constraint above to maximize the
achievable SNR at the receiver. It will be shown later in this
section that equality indeed holds at the optimum point). Then,
by performing a grid search over variable d0, we can find the
minimum value of the ABEPub. However, taking the equal
positive distance into account, it is more valuable to find an
analytical solution; this is the subject of the remainder of this
section.

Analytical Approach - Asymptotic Analysis: In order to find
an efficient analytical solution for the optimization problem,
we analyze the distributions of Z1 and Z2 in more detail
in order to obtain a more tractable approximate expression
for ABEPub. We see that the variance of Z2 (i.e., the

average received energy of the signal on a non-selected receive
antenna) in the event E1 increases with decreasing λ̄ = δ2

1+δ2 ,

or equivalently, with decreasing δ =
∣∣∣xRxI ∣∣∣; in other words,

ρ2
1 in (22) is maximized when δ is minimized. There are

two consequences of this fact: first, the BEP related to the
spatial domain is dominated by those symbols bearing the
minimum energy in the real part while their corresponding
imaginary parts have the maximum energy, i.e., the PEP

associated with δmin =
min|xR|
max|xI | = d0

d0+M ′d1
dominates (31);

secondly, comparing the two events E1 and E2, the event E2

has a minor impact on the value of PEP
(
m → m̂|xR, δ

)
,

as the variance of Z2 in the event E1 is significantly greater
than that in the event E2 due to the appearance of λ̄ in the
denominator. In summary, considering the above comments,
the PEP associated to δmin dominates and the event E2 can
be eliminated from the PEP analysis, therefore P̃e (m) can be
approximated as

P̃e (m)≈ 4 (Nr − 1)
M

PEP
(
m → m̂|xR=d0

√
Es, δ=δmin

)
≈ 4 (Nr − 1)2

MNr
I1 (µ1, ρ1, σ1) . (34)

In addition, by substituting λ̄ = δ2
min

1+δ2
min

into (22) and perform-
ing some minor algebraic manipulations, the variance of Z2

in the event E1 can be expressed as

ρ2
1 =

NEs

2

(
d2
0 + (d0 + M ′d1)

2
)

+
N0

2
.

Note that Ē ≜ d2
0 + (d0 + M ′d1)

2 is the sum of the energies
associated with the symbols with minimum and maximum
distance from the origin. It is clear that 1 ≤ Ē < ϵM , where
equality holds for M = 16, and ϵM is defined as the total
energy of the inner and outer symbols in the conventional√

M -PAM constellation (since the conventional constellation
is the worst-case scenario, Ē can be upper bounded by ϵM ),
so that we obtain ϵM = 3(M−2

√
M+2)

2(M−1) (note that the average
energy of the PAM constellation is 1/2). Therefore, we can
write

NEs

2
+

N0

2
≤ ρ2

1 <
NEs

2
ϵM +

N0

2
.

In addition, it is easy to prove that (34) is monotonically
increasing with respect to ρ1. Hence, P̃e (m) can be expressed
as

P̃e (m) ≈ P̃e (m)
∣∣∣
ρ2
1=

NEs
2 +

N0
2

, M = 16,

P̃e (m) ≲ P̃e (m)
∣∣∣
ρ2
1=

NEs
2 ϵM+

N0
2

, M > 16.

Finally, from the formula σ2
1 = N

(
xR
)2 4−π

4 + N0
2 applied

to the minimum energy symbol xR = d0

√
Es and considering

the fact that d2
0 ≪ 1, the variance of Z1 can be approximated

as σ2
1 ≈ N0

2 .9

9Here we are assuming that N is sufficiently large so the SNR range
4−π

2 NEsd2
0

N0
≪ 1 is of interest, i.e., the BER is extremely low outside of this

SNR range.



DINAN et al.: RIS-RQSM WITH LOW-COMPLEXITY GREEDY DETECTION 6555

TABLE I
COMPARISON BETWEEN OPTIMAL {di} VALUES OBTAINED VIA MINIMIZING (18) BY GRID SEARCH AND THE CORRESPONDING

VALUES OBTAINED BY THE ANALYTICAL APPROACH OF (35), WHERE N = 256, Nr = 4 AND M = 64

Therefore, after some manipulations we obtain P̃e (m) as

P̃e (m) ≈ 2 (Nr − 1)2

MNr

(
1
3

√
NEs + N0

NEs + 2N0
e−

πN2Esd2
0

4NEs+8N0

+

√
NEs + N0

NEs + 7
3N0

e−
πN2Esd2

0
3NEs+7N0

)
, M = 16,

P̃e (m) ≲
2 (Nr − 1)2

MNr

(
1
3

√
NEsϵM + N0

NEsϵM + 2N0
e
− πN2Esd2

0
4NEsϵM +8N0

+

√
NEsϵM + N0

NEsϵM + 7
3N0

e
− πN2Esd2

0
3NEsϵM +7N0

)
, M > 16.

Also applying the exponential approximation of the Q-function
in (33), the optimization problem becomes

min
{d0,d1}

ABEPub ≈

a0e
−b0d2

0 + a1e
−b1d2

0 + M ′a2

( 1
12

e−b2d2
1 +

1
4
e−

4
3 b2d2

1

)
(35a)

s.t. 2d2
0 +

M ′ (2M ′ + 1)
3

d2
1 + 2M ′d0d1 ≤ 1, (35b)

where we define

a0 =
(Nr − 1)2

3MNr

√
NEsϵM + N0

NEsϵM + 2N0
, b0 =

πN2Es

4NEsϵM + 8N0
,

a1 =
(Nr − 1)2

MNr

√
NEsϵM + N0

NEsϵM + 7
3N0

, b1 =
πN2Es

3NEsϵM + 7N0
,

a2 =
4

√
M log2

(√
MNr

) , b2 =
πN2Es

16N0
.

The problem in (35) is not a convex optimization problem,
as the objective function is not convex in the domain of
d0, d1 ∈ R+. However, it is easy to see that (35a) satisfies
the convexity condition ∇2ABEPub ≥ 0 when d0 ≥ 1√

2bi
,

i = 0, 1, and d1 ≥ 1√
2b2

. For sufficiently high values of N2Es

N0

(note that N ≫ 1), it can be concluded that {b0, b1, b2} are
sufficiently large such that the optimized {d0, d1} lie in the
convex region of the objective function. For such {b0, b1, b2},
the problem is convex and can be solved using the following
procedure.

The KKT [31] conditions associated to the above problem
hold and are given by

1. f1 (d⋆
0, d

⋆
1) ≤ 0; 2. ν⋆ ≥ 0; 3. ν⋆f1 (d⋆

0, d
⋆
1) = 0;

4. − 2a0b0d
⋆
0e
−b0d⋆2

0 − 2a1b1d
⋆
0e
−b1d⋆2

0

+ ν⋆ (4d⋆
0 + 2M ′d⋆

1) = 0;

5. − 1
6
M ′a2b2d

⋆
1e
−b2d⋆2

1 − 2
3
M ′a2b2d

⋆
1e
− 4

3 b2d⋆2
1

+ ν⋆

(
2M ′ (2M ′ + 1)

3
d⋆
1 + 2M ′d⋆

0

)
= 0;

where ν is the Lagrange multiplier associated with the inequal-
ity constraint. From condition 3, we see that ν⋆ = 0 or
f1 (d⋆

0, d
⋆
1) = 0. However, if ν⋆ = 0, from conditions 4 and 5

we obtain d⋆
0 = d⋆

1 = +∞, where clearly contradicts
condition 1. Therefore, we have

2d⋆2

0 +
M ′ (2M ′ + 1)

3
d⋆2

1 + 2M ′d⋆
0d

⋆
1 − 1 = 0,

which yields

d⋆
0 =

−2M ′d⋆
1+
√

4M ′2d⋆2

1 − 8
(

M ′(2M ′+1)
3 d⋆2

1 −1
)

4
. (36)

Then, from conditions 4 and 5, we obtain

ν⋆ = a0b0d
⋆2

0 e−b0d⋆2
0 + a1b1d

⋆2

0 e−b1d⋆2
0

+
1
12

M ′a2b2d
⋆2

1 e−b2d⋆2
1 +

1
3
M ′a2b2d

⋆2

1 e−
4
3 b2d⋆2

1 . (37)

Substituting for ν⋆ from (37) and subsequently for d⋆
0

from (36) into condition 5, the optimization problem reduces
to a single-variable equation in d⋆

1. This equation does not
admit a closed-form analytical solution; however it is easy to
solve numerically.

Remark 4: It can be noted that the approximate upper
bound on the ABEP in (35a) indicates the nature of the
enhancement in error rate performance that can be achieved by
increasing N , and that the corresponding SNR improvement
is approximately proportional to N2.

We conclude this section by providing a numerical example
in Table I. In this table, we compare the optimal {di} obtained
by an exhaustive search to minimize the ABEP in (18) with the
corresponding values with equal positive distances obtained
via the proposed analytical approach, where N = 256, Nr = 4
and M = 64. It can be seen that positive distances {di},
i > 0, obtained via exhaustive search are almost equal,
and that these values become more similar with increasing
SNR. In addition, the ABEP values acquired by using the
optimal values from the proposed analytical approach are
quite comparable to the equivalent ABEP obtained by optimal
values of the grid search, which serves as a proof that the
assumptions we made to offer a straightforward analytical
solution to the optimization problem were indeed accurate.
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Fig. 4. Analytical and simulation BER results of the proposed RIS-RQSM system with and without optimized constellation. Here M = 16, N = 256, and
(a) Nr = 4 (R = 8 bpcu), (b) Nr = 8 (R = 10 bpcu).

VII. NUMERICAL RESULTS

In this section, we demonstrate the error rate performance
of the proposed RIS-RQSM system via numerical simula-
tions. First, we investigate the performance of the proposed
RIS-RQSM system using conventional QAM constellations
and provide comparisons with corresponding systems using
QAM constellations that are optimized based on the approach
proposed in Section VI. Next, we compare the results obtained
by the optimized constellations with the error rate performance
of the most prominent recently proposed RIS-SM [15] system,
which serves as the benchmark scheme for the proposed
approach.

Fig. 4 shows the BER performance of the proposed
RIS-RQSM system with N = 256 for the cases of Nr = 4 and
Nr = 8. In this figure, we also compare the performance of the
RIS-RQSM system using conventional 16-QAM modulation
with that of the system implementing our optimized 16-QAM
constellation. The curves demonstrate the effectiveness of the
proposed constellation design method; it can be observed
that optimizing the design of the constellation significantly
enhances the performance of the system. The proposed con-
stellation for RIS-RQSM provides approximately 3.2 dB and
3.8 dB improvement over the conventional constellation in
systems with Nr = 4 and Nr = 8, respectively, at a
BER of 10−5. We also compare the performance of the
GD with that of the ML detector. We see that there is a
very large gap between the performance of the GD and ML
detector in the case of the conventional constellation, while
the performance of the GD in the system using the optimized
constellation is considerably close to that of the ML detector
such that the performance gap is negligible. In order to observe
the effect of optimizing the constellation in a system with
higher-order modulation, we present the BER performance
of the RIS-RQSM system with 64-QAM in Fig. 5. Here,

we see that in systems with regular QAM constellations,
an error floor occurs with the GD. This is due to the fact
that with critical symbols, i.e., minimum-energy symbols, λ̄
can attain a very small value; hence, non-selected antennas
can have a relatively high average received energy compared
to the selected antenna. However, we see that optimizing
the constellation eliminates this error floor and substantially
improves the error rate performance. Similar to systems with
16-QAM constellation, the performance of the GD is very
close to that of ML detector with optimized constellations.
In fact, here the GD becomes feasible only with the optimized
64-QAM. In Figs. 4 and 5, we also present the analyti-
cal ABEP performance of each system. For systems with
conventional QAM constellations, we evaluate and plot the
analytical ABEP upper bounds based on (18); we see that
upper bound curves are quite tight and validate the accuracy of
the analytical results. For systems with optimized constellation
we also plot the asymptotic result in (35a). These curves show
that the utilized approximations in Section VI are completely
valid and accurate, especially at high SNR.

Next, in Fig. 6, we compare the BER performance of
the proposed RIS-RQSM system with that of the benchmark
scheme, i.e., RIS-SM, in systems with N = 256 and Nr = 4.
Fig. 6(a) shows the performance of the RIS-RQSM and RIS-
SM systems where the bit rate is R = 8 bpcu. Hence,
the proposed RIS-RQSM system uses 16-QAM modulation,
while the RIS-SM system uses 64-QAM modulation. The
constellation used in the proposed RIS-RQSM system is
optimized to achieve the best performance. Fig. 6(b) presents
the performance results in systems with R = 10 bpcu,
i.e., where RIS-RQSM and RIS-SM apply 64-QAM and
256-QAM, respectively. The results show that the proposed
RIS-RQSM system substantially outperforms the benchmark
scheme. This is mainly due to the fact that the RIS-SM
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Fig. 5. Analytical and simulation BER results of the proposed RIS-RQSM system with and without optimized constellation. Here M = 64, N = 256, and
(a) Nr = 4 (R = 10 bpcu), (b) Nr = 8 (R = 12 bpcu).

Fig. 6. Comparison of the BER performance of the proposed RIS-RQSM
system with that of RIS-SM system for N = 256, Nr = 4, and
(a) R = 8 bpcu, (b) R = 10 bpcu.

system needs to employ a higher-order modulation technique
in order to compensate the additional bits transmitted by
the quadrature index modulation in the proposed RIS-RQSM
system. Hence, the superiority over the benchmark scheme
increases by increasing number of receive antennas, as shown
in Fig. 7. In this figure, we provide comparisons between the
BER performance of the RIS-RQSM and RIS-SM systems
where N = 256 and Nr = 8. As expected, the superi-
ority over the RIS-SM system considerably increases in a
system with larger number of receive antennas, as a higher
modulation order is required for the RIS-SM system. The
proposed RIS-RQSM system achieves approximately 4.3 dB
and 7 dB performance improvement over the RIS-SM system

Fig. 7. Comparison of the BER performance of the proposed RIS-RQSM
system with that of RIS-SM system for N = 256, Nr = 8, and
(a) R = 10 bpcu, (b) R = 12 bpcu.

for systems with Nr = 4 and Nr = 8, respectively, at a BER of
10−5. It is worth pointing out that the receiver in the proposed
RIS-RQSM system requires minimal CSI due to the use of the
pre-equalizer G; this CSI consists only of the average gain of
the effective channel, which is simply a function of the number
of RIS elements, as shown in Section II.

VIII. CONCLUSION

The RIS-assisted receive quadrature spatial modulation
(RIS-RQSM) system was proposed in this paper as a gen-
eral approach to RIS-assisted receive SM with excellent
performance. The proposed system increases the spectral effi-
ciency by implementing both quadrature spatial modulation
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and IQ modulation, while maintaining the signal quality at the
receiver. In the proposed RIS-RQSM system, the phase shifts
of the RIS elements are designed to construct an IQ symbol at
the receiver; this enables the system to transmit two separate
PAM symbols in the presence of the RIS. We introduced a one-
tap pre-equalizer to allow the proposed low-complexity GD to
detect the symbols with minimum CSI requirement. Analytical
results and numerical simulations both verify the excellent
performance of the system and comprehensively demonstrate
its superiority over comparable benchmark schemes in the
literature. The many advantages of the RIS-RQSM system
makes it a viable candidate for next-generation wireless com-
munication networks.

APPENDIX A
PROOF OF THEOREM 1

Here we analyze the average of

Y ⋆
R = sgn

(
xR
) (

hRmθR⋆ − hImθI⋆
)

=
N∑

i=1

λA2
i + λC2

i + (1− λ) AiBi + (1− λ) CiDi√
(λAi + (1− λ) Bi)

2 + (λCi + (1− λ) Di)
2
.

As stated before, for large values of N , we have V{λ} ≈ 0;
therefore, we replace λ by λ̄ in calculating the average of Y ⋆

R;
this yields

E {Y ⋆
R}

≈E


N∑

i=1

λ̄A2
i +λ̄C2

i +
(
1−λ̄

)
AiBi +

(
1− λ̄

)
CiDi√(

λ̄Ai +
(
1− λ̄

)
Bi

)2 +
(
λ̄Ci +

(
1−λ̄

)
Di

)2


= NE

 λ̄A2
i +λ̄C2

i +
(
1− λ̄

)
AiBi +

(
1− λ̄

)
CiDi√(

λ̄Ai +
(
1− λ̄

)
Bi

)2 +
(
λ̄Ci +

(
1− λ̄

)
Di

)2
,

where we used the fact that each of the summands has an
identical distribution. In the following, we evaluate the average
of the terms in the above summation individually and we omit
the index i to simplify the notation; hence we define

W1 ≜ λ̄
A2

√
Z

, W2 ≜ λ̄
C2

√
Z

, W3 ≜
(
1− λ̄

) AB√
Z

,

W4 ≜
(
1− λ̄

) CD√
Z

,

where Z ≜ (λ̄A + (1− λ̄)B)2 + (λ̄C + (1− λ̄)D)2.
According to the law of total expectation, the expected value

of W1 can be expressed as

E {W1} = EA

{
EW1|A {W1|A}

}
= λ̄EA

{
A2EZ|A

{
Z−

1
2 |A
}}

, (38)

where EZ|A{Z−
1
2 |A} is the inverse-fractional moment of Z

where A is given, i.e., where A is a constant. For a given A,
using λ̄ = δ2

1+δ2 we have (λ̄A+(1− λ̄)B) ∼ N (λ̄A, λ̄(1−λ̄)
2 ),

and (λ̄C +(1− λ̄)D) ∼ N (0, λ̄
2 ). Hence, the random variable

(RV) (Z|A) is the sum of two independent chi-square RVs
each having one degree of freedom. The inverse-fractional

moment of (Z|A) can be computed by using the following
equation [32]

EZ|A
{
Z−c|A

}
=

1
Γ (c)

∫ ∞

0

sc−1EZ|A
{
e−sZ |A

}
ds, (39)

where EZ|A{e−sZ |A} = Ls(fZ(Z|A)) is the Laplace trans-
form (LT) of fZ(Z|A). We know that the LT of the probability
density function (PDF) of the sum of independent RVs is equal
to the product of the LTs of their individual PDFs, and that the
LT of the PDF of an RV X =

∑n
i=1 X2

i with Xi ∼ N (µi, σ
2)

is given by

Ls (fX(X)) =
( 1

1 + 2σ2s

)n
2

exp
( −µ2s

1 + 2σ2s

)
, (40)

where µ2 =
∑n

i=1 µ2
i . Hence, the LT of fZ(Z|A) is calcu-

lated as

Ls (fZ (Z|A)) =
( 1

1 + λ̄s

) 1
2
( 1

1 + λ̄(1− λ̄)s

) 1
2

× exp
( −λ̄2A2s

1 + λ̄(1− λ̄)s

)
. (41)

Then, (38) can be written as

E{W1} =
λ̄

Γ2( 1
2 )

∫ ∞

0

s
1
2−1
( 1

1 + λ̄s

) 1
2
( 1

1 + λ̄(1− λ̄)s

) 1
2

×
(∫ ∞

−∞
A2 exp

(
−A2 1 + λ̄s

1 + λ̄(1− λ̄)s

)
dA

)
ds,

where we used the fact that fA(A) = 1
Γ( 1

2 )
exp(−A2). Since∫∞

−∞ x2 exp(− x2

2σ2 )dx = Γ( 1
2 )σ2

√
2σ2, we have∫ ∞

−∞
A2 exp

(
−A2 1 + λ̄s

1 + λ̄(1− λ̄)s

)
dA

=
Γ( 1

2 )
2

(1 + λ̄(1− λ̄)s
1 + λ̄s

) 3
2
.

It follows that

E{W1} = λ̄
1

2Γ( 1
2 )

∫ ∞

0

s
1
2−1 1 + λ̄(1− λ̄)s

(1 + λ̄s)2
ds

= λ̄(1− λ̄)
1

2Γ( 1
2 )

(∫ ∞

0

s
1
2−1(1 + λ̄s)−1ds

+
λ̄

1− λ̄

∫ ∞

0

s
1
2−1(1 + λ̄s)−2ds

)
.

Recalling the definition of the type-2 beta function B(α, β) =∫∞
0

tα−1

(1+t)α+β dt = Γ(α)Γ(β)
Γ(α+β) , after some minor manipulations

we obtain

E{W1} = λ̄
1
2 (1−λ̄)

1
2Γ( 1

2 )

(
Γ( 1

2 )Γ( 1
2 )

Γ(1)
+

λ̄

1− λ̄

Γ( 1
2 )Γ( 3

2 )
Γ(2)

)
=
√

π

4
(
2λ̄

1
2 − λ̄

3
2
)
.

By symmetry it is clear that E{W2} = E{W1}.
Next we determine E{W3} = E{(1 − λ̄)AB√

Z
}. Using the

law of total expectation, we can write

E {W3}=
(
1−λ̄

)
EA

{
AEB

{
BEZ|(A,B)

{
Z−

1
2 |(A, B)

}}}
.

Given constant (A, B), we have

Ls (fZ (Z|(A, B)))( 1
1 + λ̄s

) 1
2

exp
(
−
(
λ̄A +

(
1− λ̄

)
B
)2

s
)

.
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E{W3} =
(1− λ̄)

3
2

λ̄
1
2 Γ3( 1

2 )

∫ ∞

0

s
1
2−1
( 1

1 + λ̄s

) 1
2

×

[∫ ∞

−∞
A exp

(
−A2 1 + λ̄s

1 + λ̄(1− λ̄)s

)(∫ ∞

−∞
B exp

(
−

(
B + λ̄2As

1+λ̄(1−λ̄)s

)2

λ̄/(1−λ̄)

1+λ̄(1−λ̄)s

)
dB

)
dA

]
ds. (42)

Using (39), we have

E {W3} =
(
1− λ̄

)
EA

{
AEB

{
B

Γ
(

1
2

) ∫ ∞

0

s
1
2−1

(
1

1 + λ̄s

) 1
2

× exp
(
−
(
λ̄A +

(
1− λ̄

)
B
)2

s
)

ds

}}
.

Then, using fA (A) = 1

Γ( 1
2 )

exp(−A2) and fB (B) =

(1−λ̄)
1
2

λ̄
1
2 Γ( 1

2 )
exp
(
− 1−λ̄

λ̄
B2
)
, after some algebraic manipulations

we obtain (42), shown at the top of the page. The inner integral
over B can be evaluated as∫ ∞

−∞
B exp

(
−

(
B + λ̄2As

1+λ̄(1−λ̄)s

)2

λ̄/(1−λ̄)

1+λ̄(1−λ̄)s

)
dB

= −Γ(
1
2
)

λ̄
5
2 As

(1− λ̄)
1
2 (1 + λ̄(1− λ̄)s)

3
2
.

Substituting this into (42), the average of W3 is given by

E{W3} = λ̄2(1−λ̄)
−1

2Γ( 1
2 )

∫ ∞

0

s
3
2−1 1

(1+λ̄s)2
ds

= λ̄
1
2 (1−λ̄)

−1
2Γ( 1

2 )
B(

3
2
,
1
2
) = −

√
π

4
λ̄

1
2 (1−λ̄). (43)

Also, by symmetry we have E{W4} = E{W3}. Finally, the
average of Y ⋆

R is given by

E {Y ⋆
R} ≈ 2N (E {W1}+ E {W3}) = λ̄

1
2
N
√

π

2
.

Then, using λ̄ = δ2

1+δ2 , E {Y ⋆
I } is given by

E {Y ⋆
I } =

1
δ

E {Y ⋆
R} ≈ (1− λ̄)

1
2
N
√

π

2
.

APPENDIX B
PROOF OF THEOREM 3

Applying the exponential approximation of the Q-function
as Q (x) ≈ 1

12e−
x2
2 + 1

4e−
2x2
3 from [33], Ii, i = 1, 2,

is approximately given by

Ii≈
√

2
σ1
√

π

∫ ∞

0

e
− 1

2

(
µ1−α

σ1

)2 [ 1
12

e
− 1

2

(
α
ρi

)2

+
1
4
e
− 2

3

(
α
ρi

)2]
dα.

After some algebraic manipulations we obtain

Ii ≈
√

2
σ1
√

π

[
1
12

eu0,i

∫ ∞

0

e
− 1

2

(
α−m0,i

s0,i

)2

dα

+
1
4
eu1,i

∫ ∞

0

e
− 1

2

(
α−m1,i

s1,i

)2

dα

]
=

1
σ1

[
1
6
eu0,is0,iQ

(
−m0,i

s0,i

)
+

1
2
eu1,is1,iQ

(
−m1,i
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,

where

u0,i = −1
2

µ2
1

σ2
1 + ρ2

i

, s0,i =
σ1ρi√
σ2

1 + ρ2
i

, m0,i =
µ1ρ

2
i

σ2
1 + ρ2

i

,

u1,i = −2
3

µ2
1

4
3σ2

1+ρ2
i

, s1,i =
σ1ρi√

4
3σ2

1 + ρ2
i

, m1,i =
µ1ρ

2
i

4
3σ2

1 + ρ2
i

,

for i = 1, 2. It is easy to see that m0,i

s0,i
and m1,i

s1,i
, i =

1, 2, have relatively large values with large N , such that
the approximations Q(−m0,i

s0,i
) ≈ Q(−m1,i

s1,i
) ≈ 1 are very

accurate; therefore, Ii can be written as (26).
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