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Abstract— This paper addresses the problem of co-existence
between a radar and a communication system that share the
same frequency band. In particular, we investigate the role
of a reconfigurable intelligent surface (RIS) in improving the
performance of both systems and facilitating their co-existence.
We consider the optimization problem of maximizing the radar
signal to interference plus noise ratio (SINR) with respect to
the active transmit beamformer at the radar, the passive RIS
reflection coefficients, and the transmit covariance matrices of the
communication system, subject to communication outage as well
as radar and communication power constraints. This problem is
solved through an alternating maximization procedure, first in
the ideal scenario of perfect channel state information (CSI), and
then in the case of incomplete CSI, using a statistical model of the
CSI uncertainty. Numerical results demonstrate the effectiveness
of our approach and quantify the beneficial effect of an RIS on
the co-existence of a radar and a communication system.

Index Terms— MIMO radar, MU-MIMO, reconfigurable intel-
ligent surface (RIS), coexistence, joint optimization, detection
probability, bounded error model, statistical error model.

I. INTRODUCTION

THE explosive growth of bandwidth hungry connection-
oriented applications has led to an increasing demand for

communication networks with high-speed access capabilities.
In 5G and beyond networks, this high-speed access can be
provided through exploiting higher frequency bands in the
millimeter wave range, also by sharing the spectrum with

Manuscript received 1 March 2023; revised 27 June 2023; accepted 10 July
2023. Date of publication 26 July 2023; date of current version 20 November
2023. This work was supported by H2020 Marie Skłodowska-Curie Actions
(MSCA) Individual Fellowships (IF) RASECOL, Grant agreement 898354.
The associate editor coordinating the review of this article and approving it
for publication was D. W. K. Ng. (Corresponding author: Stefano Buzzi.)

Mohamed Rihan is with the Department of Electrical and Information
Engineering (DIEI), University of Cassino and Southern Lazio, 03043
Cassino, Italy, on leave from the Faculty of Electronic Engineering, Menoufia
University, Al Menoufia 6052040, Egypt (e-mail: mohamed.elmelegy@
el-eng.menofia.edu.eg).

Alessio Zappone is with the Department of Electrical and Information Engi-
neering (DIEI), University of Cassino and Southern Lazio, 03043 Cassino,
Italy (e-mail: alessio.zappone@unicas.it).

Stefano Buzzi is with the Department of Electrical and Information
Engineering (DIEI), University of Cassino and Southern Lazio, 03043
Cassino, Italy, and also with the Dipartimento di Elettronica, Informazione
e Bioingegneria (DEIB), Politecnico di Milano, 20133 Milan, Italy (e-mail:
buzzi@unicas.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2023.3298983.

Digital Object Identifier 10.1109/TCOMM.2023.3298983

different radio-based services such as a radar system [1].
Indeed, motivated by the need to increase available spectrum
utilization, the topic of co-existence in the same frequency
range of radar and communication services has attracted a
huge interest in the recent past. At the beginning, the con-
vergence between wireless communications and radar sensing
research communities was aiming to share the relatively
vacant radar bands with bandwidth hungry communication
services. In recent times, instead, the convergence moved to
much higher levels of cooperation and integration between
the communication and radar sensing systems and services.
Such cooperation and integration may be relevant in many
applications, like, for instance, enhanced localization and
tracking, human activity recognition, connected and automated
mobility services, sensing-aided communications, and smart
manufacturing [2].

Spectrum sharing between communication and radar sys-
tems has been extensively studied over the last two
decades to circumvent the spectrum scarcity problem
[1], [2], [3], [4], [5], [6]. Allowing the communication and
radar systems to share the same spectrum bands produces
mutual electromagnetic interference that may degrade the
performance of the two systems [3], [4]: in particular the radar
transmit power may be large enough to significantly degrade
the communication system performance. Several works have
introduced many approaches to enable spectrum sharing and
optimized coexistence between communication and radar sys-
tems such as interference mitigation, spatial separation and
beamforming, and waveform design [5]. Most of the pro-
posed coexistence designs concentrate on jointly designing
the system transceivers while assuming full knowledge of the
channel state information (CSI) of different links involving
both the communication and radar systems [6]. Some works
increase the degrees-of-freedom (DoFs) of the coexistence
design problem by deploying one or more reconfigurable
intelligent surfaces (RIS) [7] to re-configure the wireless
channels in such a way that enhances the design criteria of
the coexistence problem [8], [9], [10]. These surfaces, in their
passive version, that we consider here, are made of many
metamaterial-based sub-wavelength sized planar elements that
have the capability to reflect the incoming signal with a tunable
phase shift. By properly controlling the tunable phase shifts
of the many reflected waves, the response of the wireless

© 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.
For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-4030-2559
https://orcid.org/0000-0003-2581-939X
https://orcid.org/0000-0003-0046-8968


6648 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 11, NOVEMBER 2023

channel can be partially controlled, in order to improve the
system performance [11], [12], [13]. In particular, RISs permit
to extend the network coverage by circumventing blocking
obstacles, and to help to concentrate the useful signal where
it is needed, thus reducing interference. RISs were originally
introduced to enhance the performance of wireless commu-
nication systems. Very soon, however, researchers realized
their potential in improving the performance of stand-alone
radar systems [14], [15], and also of integrated radar and
communication systems [16].

A. Related Work

Recently, the null-space projection [3], [4], joint beam-
forming design [5], [6], spectrum/energy allocation [17],
and interference mitigation techniques [18], [19] have been
widely investigated for enabling coexistence between radar
and communication systems. The use of RIS has shown a
great potential to play a significant role in the future of
wireless communications by improving signal quality [20],
increasing spectral efficiency and reducing energy consump-
tion [21], [24], and providing greater flexibility in the design
of wireless communication systems [12]. However, only few
works have introduced RIS-aided communication-radar coex-
istence designs [8], [9], [10]. Paper [8] addresses the spectrum
sharing problem between a MIMO radar and a multi-user
MISO communication system, where the RIS is used to
mitigate the interference generated by the communication BS
on the radar system. Specifically, the coexistence design max-
imized the radar detection probability by jointly optimizing
the BS transmit beamformer and the RIS reflection matrix,
under BS power budget constraint and communication users’
quality of service constraints. The authors of [9] concentrate
on studying interference mitigation in dual function radar
communication (DFRC) systems. Specifically, they investi-
gated joint waveform design and passive beamforming in
RIS-assisted DFRC, through minimizing the multi-user com-
munication interference under strict beampattern constraints to
jointly optimize the DFRC waveform and the RIS phase shift
reflection matrix. An alternating algorithm based on manifold
optimization is here employed to solve the design problem.
Differently from the above designs, paper [10] investigated a
double-RIS assisted communication radar coexistence scenario
to further mitigate the mutual interference by efficient joint
beamforming design. The papers [22] and [23] are among
the recent works that employed RIS to improve the ISAC
system performance for localization and data transmission.
The authors of [22] introduced a multi-user ISAC framework,
where the RIS assists uplink data transmission and conducts
multi-user localization simultaneously. The paper proposes
an ISAC transmission protocol, a multi-user location sensing
algorithm, and two beamforming algorithms, which can work
with discrete RIS phase shifts and require no channel state
information (CSI) acquisition. On the other hand, [23] estab-
lishes a detailed working process of the proposed RIS-based
ISAC system, including the transmission protocol, location
sensing, and beamforming optimization.

It is worth mentioning that all the above discussed designs
are not robust against CSI errors. Inspired by this, in this paper

we seek to investigate robust RIS-aided radar-communication
coexistence design while considering statistical CSI error mod-
els. Indeed, although ISAC systems can provide high-efficient
sensing and communication with the same hardware, mecha-
nisms that enable communication and radar systems to coexist
in the same frequency band without interfering with each other
are similarly of great interest at least for four main reasons.
Firstly, many existing communication and radar systems were
developed independently and are not designed to be integrated
into a single system. Therefore, there is a need to investi-
gate coexistence mechanisms that enable communication and
radar systems to operate without interfering with each other.
Secondly, the radio spectrum is a scarce finite resource due
to the growing demand for wireless communication. In many
scenarios, it may not be feasible to allocate a separate band for
ISAC systems. Therefore, coexistence mechanisms that allow
communication and radar systems to share the same spectrum
are of great interest. Thirdly, ISAC systems require complex
hardware and software integration, including in some cases
full-duplex circuitry, which can be challenging and expensive
to implement, while coexistence mechanisms are generally less
complex. Finally, in many scenarios, communication and radar
systems may operate in the same frequency band and interfere
with each other. Therefore, there is a need for interference
management techniques that enable communication and radar
systems to coexist in the same frequency band without com-
promising their performance.

Robust designs for ISAC systems are available in the litera-
ture. Specifically, some initial works have focused on develop-
ing robust design frameworks for joint radar-communication
systems, including ISAC [25], [26], [27], [28]. These frame-
works aim to ensure reliable and efficient operation of the
combined radar-communication system in the presence of
uncertainties and external disturbances. In [25], the authors
proposed a spectrum sharing approach for wireless vehicle-to-
vehicle (V2V) communication and automotive radar in intelli-
gent transportation systems (ITS) to provide higher spectrum
utilization efficiency. Additionally, the paper [26] proposed
a robust and secure design for joint radar-communication
systems, which integrates radar, communication, and jamming
functionalities. In [27], instead, the authors proposed a robust
beamforming design algorithm to achieve maximum secrecy
rate for the multi-user downlink ISAC systems considering
the probabilistic CSI uncertainty, where multiple targets also
act as potential eavesdroppers. Furthermore, [28] presented a
novel design approach and optimization framework for ISAC
systems, where the available resources are jointly optimized
over a sequence of variable-length snapshots.

In contrast to these existing works, our paper considers the
robust RIS-aided radar-communication coexistence scenario
where a statistical CSI error model is considered. The pro-
posed design aims to ensure efficient and reliable operation
of the RIS-aided radar-communication system in the presence
of uncertainties and external disturbances. This work, thus,
represents a significant contribution to the development of
robust design frameworks for joint radar-communication sys-
tems, and can help to pave the way for future research in this
area.
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B. Main Contributions

In this paper, we consider a classical scenario where a
pair of multi-antenna communication transmitter and receiver
shares the same spectral band with a MIMO radar. Unlike the
RIS-assisted system in [8] and the conventional system without
RIS [3], we examine here multi-stream RIS-assisted MIMO
communication-radar coexistence system, where the RIS helps
in removing the generated mutual interference between the
two systems, thus improving their coexistence. Specifically,
the main contributions are summarized as follows.

- We propose a novel RIS-assisted radar communication
coexistence framework. The design problem aims to
maximize the radar SINR by jointly optimizing the
active radar beamforming, the passive RIS beamforming,
and communication transmitter covariance matrices under
communication rate constraints, and communication and
radar power budget constraints.

- The coexistence design problem is solved first under
perfect direct and cascaded channel CSI. Alternating
optimization is used to decouple the optimization prob-
lem and divide it into three separate sub-problems. The
communication covariance optimization sub-problem is
solved using Lagrangian dual decomposition. The radar
active beamforming sub-problem is solved using the
successive convex programming approach. Finally, the
RIS passive beamforming sub-problem is solved through
a linear local search method.

- We extend the coexistence design problem to the robust
case where we consider a statistical CSI error model and
solve the design problem by following the same approach
used for the perfect CSI case.

- Simulation results are presented to validate our analysis
and verify the effectiveness of the proposed RIS-assisted
radar communication coexistence design with both per-
fect CSI and CSI uncertainty cases.

C. Organization

This paper is organized as follows. Section II introduces the
coexistence system model. In Section III, we formulate the
coexistence optimization problem and develop an alternating
optimization based solution with perfect CSI. The robust coex-
istence design for imperfect CSI is presented in Section IV. In
Section V provides a detailed discussion about the complexity,
convergence, and optimality of the provided solutions in both
full CSI and statistical CSI scenarios. Simulation results are
presented and discussed in Section VI, while, finally, conclud-
ing remarks are given in Section VII.

Notations: In the following, R, C, and N denote the set of
real, complex and natural numbers, respectively, while i is the
imaginary unit; vectors and matrices are denoted by lowercase
and uppercase boldface letters, respectively; X ≻ 0 and X ⪰
0, means that the matrix X is Hermitian positive definite and
positive semidefinite, respectively; [.]∗, [.]T , [.]H , and (.)−1 are
used to refer to the complex conjugate, transpose, conjugate-
transpose, and the inversion operations, respectively; In is the
n×n identity matrix; 0n is the all-zero n-dimensional column
vector; 0m,n is the m×n with all zero entries; diag (a1, · · · an)

Fig. 1. The considered system model.

is the n × n diagonal matrix with entries {ai}ni=1 on the
principal diagonal; X1/2 is the square root matrix of X ⪰ 0;
Tr(.), |.|, and ∥.∥F denote the trace, the determinant, and the
Frobenius norm of its matrix argument; Re{.} expresses the
real value of its complex argument; Finally, diag(A) and E{·}
outputs a vector containing the diagonal elements of a matrix
A and the expected value of its argument.

II. SYSTEM MODEL

Consider a spectrum sharing problem between a MIMO
radar and a MIMO communication system where both systems
are assisted by an RIS, as shown in Fig. 1. Specifically,
an Mt−antennas communication transmitter is communicating
with an Mr-antennas receiver, sharing the same spectrum
bands assigned to a MIMO radar system with N antennas
at its transceiver arranged as a uniform linear array (ULA)
with inter-element spacing d. The MIMO radar is pulse-based
and used to detect K far-field point targets, with pulse
repetition interval (PRI) TPRI and carrier wavelength λc.
Adopting pulsed radars for target sensing and ranging in both
stand-alone radars and integrated radar communication sys-
tems brings some key advantages. For instance, they are able to
distinguish between targets that are close together in range due
to their high range resolution capability. Additionally, pulsed
radars are able to use pulse compression techniques to increase
their capability to detect targets in noisy environments. Fur-
thermore, pulsed radars can also provide high Doppler sen-
sitivity; finally, a pulsed radar typically consumes less power
than other radar types, such as continuous wave (CW) radar or
frequency-modulated continuous wave (FMCW) radar, since
the transmitter is only active during the transmission of the
pulse. In this work, the targets are assumed to be at angles
{ϕk}, having target reflection coefficient {βk}, and Doppler
shifts {νk}. Each element in the radar array transmits LP
pulses, and accordingly the waveform matrix of the MIMO
radar signal is expressed as S = [s(1), · · · , s(LP )] ∈ CN×Lp

with s(l) = [s1(l), · · · , sN (l)]T being the l-th snapshot out
of all antenna elements. Typically, the transmit waveforms
are assumed to be orthogonal, i.e., SSH = IN . We denote
by H1 ∈ CLR×Mt , GH

1 ∈ CN×Mt , and HH
2 ∈ CMr×Mt ,

the baseband equivalent channels between the communication
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transmitter and RIS, between the communication transmitter
and radar, and between the communication transmitter and its
receiver, respectively. Additionally, the baseband equivalent
channels between radar and RIS, and between radar and
communication receiver are denoted as GH

2 ∈ CN×LR , and
GH

3 ∈ CMr×N , respectively. Finally, the baseband equivalent
channel between the RIS and the communication receiver is
denoted as H3 ∈ CMr×LR . For all previously mentioned
channels, a block-fading channel model is assumed.

In order to enable coexistence between the two systems,
an RIS with LR reflecting elements is deployed to improve
the target detection probability of the radar system, and the
spectral efficiency of the communication system. In the context
of systems coexistence, coordination means that active systems
cooperate to negotiate their transmit policies and adjust their
detection/demodulation strategies. This is done through co-
design, which involves the joint design of radar waveforms
and communication system codebooks to preserve the per-
formance of both systems while allowing for coexistence.
To achieve this, the following steps can be taken: conduct
a spectrum analysis, establish coordination protocols, place
antennas in a way that minimizes interference, use filters to
limit unwanted transmissions, and use adaptive techniques to
adjust parameters dynamically. By following these steps, full
coordination between radar and communication systems can
be achieved, enabling them to operate without interference.
To maintain coordination between MIMO radar and MIMO
communication systems, a central control unit (CCU) can
be implemented and connected to the RIS. The CCU is
functionally integrated with the radar fusion center and has
high computational capabilities to implement the proposed
spectrum sharing framework. It collects relevant data, uses the
framework to compute design configurations, and distributes
these configurations to the corresponding systems. [19].

Let us now denote by YR the N × LP matrix whose
l-th column contains the signal received at the MIMO radar
during the l-the communication symbol interval, with one
PRI spanning LP communication symbol intervals. Also, let
Θ ∈ CLR×LR ≜ diag (θ1, · · · , θLR

) denote the RIS phase
shifts matrix, where θl = βle

jψl represents the reflecting
coefficient for the l−th RIS element. As it happens in practice,
a discrete phase shift model is considered, in which ψl ∈
Fl = {ψ1,l, . . . ψJ,l}, with ψj,l the j-th discrete level that
the phase shift ψl can take. Moreover, the realistic scenario
in which the modulus and phase of each RIS reflection
coefficient are mutually dependent is here considered. Specif-
ically, the following expression links βl and ψl for any l =
1, . . . , LR [29]: βl (ψl) = (1− κmin)

(
sin(ψl−φ)+1

2

)α
+κmin,

where κmin > 0 is the minimum available amplitude, φ > 0 is
the horizontal distance between −π/2 and κmin, while α is
the steepness of the function curve. Next, we denote by X the
communication signal matrix, with its columns as codewords
from the communication system code-book. Based on the
scenario shown in Fig. 1, and letting WR be the additive white
Gaussian noise at the MIMO radar receiver, it holds that:

YR = VrΣVT
t FS +

(
GH

1 + GH
2 ΘHH1

)
X + WR, (1)

where F ∈ CN×N is the transmit beamforming matrix at the
MIMO radar transmitter, while Vr and Vt are the transmit
and receive steering matrices of the MIMO radar towards
the K targets, namely Vt ≜ [vt(ϕ1), · · · ,vt(ϕK)], Vr ≜[
vr(ϕ1), · · · ,vr(ϕK)

]
, wherein

vt(ϕk) ≜ vr(ϕk)=
[
1, e

−j2πd sin(ϕk)
λc , · · · , e

−j2π(N−1)d sin(ϕk)
λc

]T
,

(2)

and Σ ≜ diag
([
ρ1ej2πν1 , · · · , ρKej2πνK

])
. For convenience,

let us also denote by D ≜ VrΣVT
t the target response matrix.

The matrix YR is then forwarded to the fusion center to carry
out target estimation.

On the other hand, the baseband signal at the MIMO
communication receiver during one PRI is given by:

YC =
(
HH

2 + HH
3 ΘHH1

)
X

+
(
GH

3 + HH
3 ΘHG2

)
FS + WC , (3)

with WC the white additive Gaussian noise at the communica-
tion receiver. The two following CSI assumptions and problem
statements will be considered in this paper:
• Perfect CSI: all channels are reliably estimated in each

channel coherence time and their estimates are used for
resource allocation purposes. This case is addressed in
Section III.

• Statistical CSI: a statistical mean feedback model is
assumed for the channel from the RIS to the mobile
user, while all other channels are reliably estimated. This
scenario is motivated by the consideration that a passive
RIS has no transmission or signal processing capabilities.
Thus, estimating at the transmitter the channel from
the RIS to the mobile terminal is problematic, and it
is assumed here that only the distribution, mean, and
covariance matrix of the channel from the RIS to the
mobile user are known. On the other hand, estimating the
channels H1 and G2 is realistic since the base station,
RIS, and radar transceiver are fixed network nodes. As for
the other channels, they do not involve the RIS and thus
can be estimated by conventional techniques. This case
is treated in Section IV.

III. SYSTEM DESIGN WITH PERFECT CSI

To begin with, let us first derive mathematical expressions
for the radar SINR and the communication rate in order to
formulate the problem, and then turn to the proposed solution
technique.

A. Problem Formulation With Perfect CSI

The covariance matrix of the interference plus noise term
can be expressed as:

QCin =
(
GH

3 +HH
3 ΘHG2

)
Φ
(
GH

3 +HH
3 ΘHG2

)H
+σ2

CI

= Geff Φ GH
eff +σ2

CI (4)

where Geff = GH
3 + HH

3 ΘH G2, and Φ ≜ FFH/LP .
If the codeword x(l), l ∈ N+

LP
is distributed as CN (0,Qxl),



RIHAN et al.: ROBUST RIS-ASSISTED MIMO COMMUNICATION-RADAR COEXISTENCE 6651

then the average sum-rate for the communication system
over a time frame of LP symbols is Cavg (Θ,Qxl,Φ) ≜
1
LP

∑LP

l=1 C (Qxl,Θ,Φ), where C (Θ,Qxl,Φ) is the commu-
nication rate achieved with the codeword x(l), l ∈ N+

LP
, and

is expressed as

C (Θ,Qxl,Φ) ≜ log2 |I + Q−1
Cin Heff Qxl HH

eff | , (5)

with Heff =
(
HH

2 + HH
3 ΘHH1

)
.

Next, as for the radar system, based on (1)-(2), the received
signal power (RSP) at the radar receiver can be computed as

RSP ≜ E
{

Tr
(
(DFS) (DFS)H

)}
= E

Tr

∑
k

∑
j

βkβj (DkFS) (DjFS)H




(a)
= Tr

{
LP
∑
k

σ2
βk

[
DkΦDH

k

]}

= Tr

{
LPΦ

∑
k

σ2
βk

v∗t (ϕk)v
H
r (ϕk)vr(ϕk)vTt (ϕk)

}
(b)
= LP N Tr

(
Φ
∑
k

σ2
βk

v∗t (ϕk)v
T
t (ϕk)

)
= LPN Tr (ΦDt) , (6)

where Dk ≜ vr (ϕk)vTt (ϕk), sl ≜ s(l), Dt =∑
k σ

2
βk

v∗t (ϕk)v
T
t (ϕk), and (a) follows from the fact that

E {βkβj} = δjkσ
2
βk

and when k = j, this leads to
E {βkβj=k} = σ2

βk
, and FFH = LPΦ, while (b) follows

from the fact that vHr (ϕk)vr(ϕk) = LPN .
By following similar steps, the power of the interference

signal received at the radar receiver can be derived as follows

RIP ≜ Tr
((
GH

1 +GH
2 ΘHH1

)
Qxl

(
GH

1 +GH
2 ΘHH1

)H)
= Tr

(
Geff Qxl GH

eff

)
(7)

where Qxl denotes the interference covariance matrix of the
radar sensing waveform for all l ∈ N+

LP
. Then, based on (6)

and (7), the signal to interference plus noise ratio (SINR) at
the radar receiver can be finally written as

SINR =
Tr (ΦDt)

1
N Tr

(
GeffQxlGH

eff

)
+ σ2

R

. (8)

We consider thus the following problem:

max
Θ,Qxl,Φ

SINR (Θ,Qxl,Φ) (9a)

Subject to: C
(
Θ,Qxl,Φ

)
≥ Cth, (9b)

LP Tr (Qxl) ≤ PC , LP Tr (Φ) ≤ PR, (9c)

Tr (ΦVk) ≥ ζ Tr (Φ) , ∀k ∈ N+
K , (9d)

θl ∈ Fl,∀l=1,· · ·, LR, (9e)

with Vk ≜ v∗t (ϕk)v
T
t (ϕk). The constraint in (9b) represents

the quality of service rate constraint of the communication
link, i.e., the communication rate cannot be smaller than
Cth. The first and second part of the constraint in (9c) set
the power budget for the communication and radar systems,

respectively. The constraint in (9d) keeps the power of the
radar waveform in the directions of interest at least at the
level achieved with the use of a uniform precoding matrix,
i.e. Tr(Φ)

N I. This constraint is derived as vTt (ϕk)Φv∗t (ϕk) ≥
ζvTt (ϕk)

Tr(Φ)
N Iv∗t (ϕk) = ζ Tr(Φ), and the value of ζ ≥

1 is used to design the beampattern at the target angles
of interest [30], [33]. The constraint in (9e) accounts for
the feasible values of the reflection coefficients of the RIS
reflecting elements [8].

B. Alternating Optimization Based Solution to (9)

Problem (9) can be seen to be non-convex with respect
to the optimization parameters (Θ,Qxl,Φ). Moreover, the
fact that discrete reflection coefficients levels are consid-
ered further complicates its solution. To tackle Problem (9),
a convenient approach is thus to employ the alternating max-
imization algorithm, which decouples the problem into three
sub-problems for the three optimization variables (Θ,Qxl,Φ).
The optimization of the three variable blocks (Θ,Qxl,Φ) is
addressed in the rest of this section.

1) Optimization With Respect to Qxl: When Θ and Φ
are fixed, the optimization of Qxl amounts to solving the
minimization problem

min
Qxl⪰0

Tr
((
GH

1 +GH
2 ΘHH1

)
Qxl

(
GH

1 +GH
2 ΘHH1

)H)
(10a)

S. t. Cavg

(
Θ,Qxl,Φ

)
≥ Cth, (10b)

Tr (Qxl) ≤ PC/LP . (10c)

Problem (10) is jointly convex with respect to the variables
{Qxl}. Indeed, the objective and constraint function in (10c)
are linear, while the constraint in (10b) is concave. Thus,
Problem (10) can be solved by means of convex optimization
theory, with affordable complexity.

2) Optimization With Respect to Φ: When Qxl and Θ are
fixed, the optimization of Φ amounts to solving

max
Φ⪰0

Tr (ΦDt) (11a)

S. t. Cavg

(
Θ,Qxl,Φ

)
≥ Cth, (11b)

Tr (Φ) ≤ PR/LP , (11c)

Tr (ΦVk) ≥ ζ Tr (Φ) , ∀k ∈ N+
K , (11d)

The difficulty in solving Problem (11) lies in Constraint
(11b), because Cavg is not a concave function of Φ. In fact,
Cavg can be seen to be a convex function of Φ. However,
the convexity of (11b) also provides a way of tackling
Problem (11), by resorting to the sequential programming
framework. Indeed, since (11b) is a convex function, it is pos-
sible to lower-bound Cavg by its first-order Taylor expansion
around any point Φ̄, namely,

Cavg

(
Θ,Qxl,Φ

)
≥ Cavg

(
Θ,Qxl, Φ̄

)
(12)

− Tr

[
Re

{
1
Lp

LP∑
l=1

FHl
(
Φ−Φ̄

)}]
= C̃

(
Θ,Qxl,Φ

)
, (13)
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where Fl is given as

Fl ∼= −
(
∂C (Θ,Qxl,Φ)

∂Re{Φ}

)T
Φ=Φ̄

=
GH

eff

ln 2

[(
GeffΦGH

eff + σ2
CI
)−1 −

(
GeffΦGH

eff

+σ2
CI + HeffQxlHH

eff

)−1
]
Geff (14)

Then, Problem (11) can be tackled by the sequential
programming framework, by solving, in each iteration the
problem obtained from (11) by replacing Constraint (11b) with
the right-hand-side of (12), which yields

max
Φ ⪰ 0

Tr (ΦDt) (15a)

s.t. C̃
(
Θ,Qxl,Φ

)
≥ Cth (15b)

Tr (Φ) ≤ PR/LP , (15c)

Tr (ΦVk) ≥ ζ Tr (Φ) , ∀k ∈ N+
K , (15d)

where F =
∑LP

l=1 Fl, with Fl given by (14). In each iteration
of the sequential method, Φ̄ takes the optimized value of Φ
from the previous iteration. Problem (15) is linear in Φ, and
thus can be solved by standard interior point approaches with
a complexity of O((LPN2)3.5).

3) Optimization With Respect to Θ: If {Qxl} and Φ are
fixed, the optimization of Θ is:

min
Θ

Tr
((
GH

1 +GH
2 ΘHH1

)
Qxl

(
GH

1 +GH
2 ΘHH1

)H)
(16a)

s. t. Cavg

(
Θ,Qxl,Φ}

)
≥ Cth, (16b)

θl ∈ F ,F≜{ϕl| |ϕl| = 1}∀l=1,· · ·, LR, (16c)

Problem (16) is not convex, because (16a) and (16b) are not
concave with respect to Θ, and the matrix Θ has discrete com-
ponents which depend on the quantization bits representing the
phase shift of each RIS element.

A computationally convenient way of tackling (16) is to
optimize one RIS phase at a time, searching among all
available discrete phase shifts. The details of the approach are
given in Algorithm (1). Specifically, Algorithm (1) chooses
the optimum value of the phase shift for each element, while
keeping the remaining N − 1 phase shifts of other elements
constant, by traversing all the possible values, specified by the
number of quantization bits, and then selecting the optimum
one without violating the constraint (16b). Thus, the obtained
optimum phase shift of a specific elements is used as constant
while optimizing the phase shift for another element. This
procedure continues until convergence.

While the proposed approach has the advantage of having a
linear complexity in the number of RIS phase shifts and is able
to provide the solution directly in the discrete angle domain,
it can not guarantee convergence to the globally optimal
solution. In the following we also develop, as a benchmark
scheme, a relaxation and projection method, which works
in three steps. First, the discrete phase shifts are relaxed to
continuous variables in [0, 2π]. Second, the continuous-valued

Algorithm 1 Linear Local Search for Phase Shifts Design
1: Initialization: The number of angles quantization bits b.
2: Optimization Output: Θ⋆ = diag

(
θ⋆1 , · · · , θ⋆LR

)
.

3: for l = 1 : LR do
4: Evaluate all the possible values based on the number

of quantization bits b.
5: For all possible values θl, choose the value minimiz-

ing the objective of (16), while satisfying constraint (16b),
denote it θ⋆l .

6: θl = θ⋆l
7: end for

Algorithm 2 Relaxation and Projection Method for RIS
Design

1: Initialization: Set the values of different channels.
2: Optimization Output: Θ∗

3: Relax the RIS phases ψl to continuous values in [0, 2π],
for all l = 1, . . . , LR;

4: Solve the relaxed optimization problem by gradient search
to obtain Θc = diag(ψ1, . . . , ψLR

);
5: Project ψl onto Fl, for all l = 1, . . . , LR to obtain Θ∗.

problem is solved by means of a standard gradient search,
and then the optimized continuous phase shift values are
projected onto the original discrete feasible set. The steps of
the algorithm are summarized in Algorithm 2.

The difference between local search and relaxation and
projection methods for phase shift optimization of the RIS
can be explained as follows. Local search method is a type of
optimization algorithm that starts with an initial solution and
then iteratively improves it by exploring neighboring solutions
until a stopping criterion is met. The relaxation and projection
method, instead, is a type of projection gradient optimization
algorithm that involves iteratively updating the solution by
taking a step in the direction of the negative gradient of
the objective function while projecting the solution onto a
feasible set. While the proposed relaxation and projection
algorithm has been included as a benchmark algorithm for
comparison purposes, it cannot guarantee the attainment of the
global optimum solution. The reason behind that is due to the
relaxation of the original discrete optimization problem to a
continuous one and then projecting the obtained solution from
this continuous optimization problem onto the feasible set of
phase shifts based on the used resolution setup. It is worth
noting that developing alternative approaches that can achieve
a global optimum solution while considering the constraints
of the problem is still an open problem and active area of
research.

With regard to the complexity of the two algorithms, for the
linear search algorithm the complexity is linear with respect to
both the number of RIS elements and the number of available
angle choices. This means that the time and memory required
by the algorithm increases linearly as the number of RIS
elements and the resolution bits increase. Specifically, the time
complexity of the linear search algorithm is O(N×2b), where
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Fig. 2. The considered system model for the case of imperfect CSI.

N is the number of RIS elements and b is the number of
resolution bits.

For the projected gradient algorithm, instead, the complexity
depends on the optimization problem being solved. In general,
it tends to have a higher complexity than the linear search
algorithm, since the projected gradient algorithm requires the
solution of an optimization problem at each iteration, which
can be computationally expensive. Therefore the linear search
algorithm usually has a lower computational complexity than
the projected gradient algorithm.

IV. SYSTEM DESIGN WITH STATISTICAL CSI

This section addresses the case in which only statistical CSI
is available for the channel between the RIS and the mobile
terminal. This assumption is considered due to the constrained
power budget of the two end nodes involved in the channel h3,
specifically the RIS and the user. Given such power constraint,
traditional channel estimation techniques such as pilot-based
estimation, least squares, maximum likelihood estimation,
or even compressed sensing-based estimation are hardly viable
in this particular channel. However, it is important to note
that these estimation methods can still be employed for other
channels within the context illustrated in Figure 2. It is
essential to highlight that statistical CSI characterizes the
average behavior of the channel over a defined time period
or frequency range. It is typically estimated by observing
numerous realizations of the channel and is utilized to optimize
system design and performance over an extended duration. For
mathematical tractability reasons, in this section we assume
that the mobile terminal is equipped with a single antenna,
and we denote by h3 the vector channel from the RIS to
the mobile terminal. A mean covariance feedback model is
considered, according to which the imperfectly known channel
is modeled as h3 = ĥ3 + ∆h3, with ∆h3 being distributed
as a random complex Gaussian vector with zero mean and
covariance matrix Σh3 , while the instantaneous realization of
h3 is not available. Thus, ĥ3 represent the mean of the random
vector h3. The choice of a Gaussian distribution is realistic in
practical scenarios [34]. The new system model is depicted in
Fig. 2.

Given the random vector h3, the received signals at the
communication user and at the radar receiver are expressed as

yc =
(
hH2 + hH3 ΘHH1

)
tx (17)

+
√
PR
(
gH3 + hH3 ΘHG2

)
Fs + wc ,

yR = α
√
PRVrΣVT

t Fs +
(
GH

1 + GH
2 ΘHH1

)
tx+ wr ,

(18)

respectively, where x represent the communication symbol to
be transmitted from the BS to the user. The vector t and the
matrix F represent the beamformers used at the BS and at the
radar, respectively. The SINR at the mobile user can be thus
be expressed as:

γc =
|h̃H2 t|2

LPPRg̃H3 Φg̃3 + σ2
c

(19)

where h̃H2 and g̃H3 are the composite channels(
hH2 + hH3 ΘHH1

)
and

(
gH3 + hH3 ΘHG2

)
, respectively,

and we recall that Φ = FFH/LP . As a consequence, the
achievable rate of the mobile user can be expressed as:

C (t,Θ,Φ) = log2

(
1 +

|h̃H2 t|2

LPPRg̃H3 Φg̃3 + σ2
c

)
(20)

Denoting the maximum data rate outage probability as ρ ∈
(0, 1], the considered design optimization problem consists on
the maximization of the average SINR at the mobile user,
subject to an outage constraint at the mobile user, and to the
same power constraints and quality-of-service constraints for
the radar receiver as in the perfect CSI scenario:

max
Φ,e,t

E
[
|h̃H2 t|2

]
LPPRE

[
g̃H3 Φg̃3

]
+ σ2

c

(21a)

Subject to: Pr {C (Φ,Θ, t) ≥ Cth} ≥ 1− ρ, (21b)

LP ∥t∥H ≤ PC (21c)
(9d), (9e) (21d)

wherein the rate outage constraint (21b) guarantees the max-
imum outage probability. The challenge in tackling Problem
(21) lies in evaluating both the statistical expectations in the
objective (21a) and in the outage probability in (21b).

As for the objective function, the statistical expectations can
be evaluated as follows:

E
[
|h̃H2 t|2

]
= tHE

[(
h2 + HH

1 Θh3

) (
h2 + HH

1 Θh3

)H]
t

= tHh2hH2 t+tHHH
1 ΘE

[
(ĥ3+∆h3)(ĥ3+∆h3)H

]
ΘHH1t

+ tH
(
h2ĥH3 ΘHH1 + HH

1 Θĥ3hH2
)
t (22)

=
∣∣tHh2

∣∣2 + tHHH
1 Θ

(
ĥ3ĥH3 + E

[
∆h3∆hH3

])
ΘHH1t

+ tH
(
h2ĥH3 ΘHH1 + HH

1 Θĥ3hH2
)
t (23)

=
∣∣tHh2

∣∣2 + tHHH
1 Θ

(
ĥ3ĥH3 + Σh3

)
ΘHH1t

+ tH
(
h2ĥH3 ΘHH1 + HH

1 Θĥ3hH2
)
t . (24)

E
[
g̃H3 Φg̃3

]
= E

[
tr(Φg̃3g̃H3 )

]
= tr(ΦE

[
g̃3g̃H3 )

]
= tr

(
Φ
(
g3gH3 + GH

2 Θ
(
ĥ3ĥH3 + Σh3

)
ΘHG2

))
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= gH3 Φg3 + tr
(
ΦGH

2 Θ
(
ĥ3ĥH3 + Σh3

)
ΘHG2

)
+ tr

(
Φ
(
g3ĥH3 ΘHG2 + GH

2 Θĥ3gH3
))

, (25)

Thus, the objective (21a) can be expressed as in (26), shown
at the bottom of the page. As for the outage constraint in
(21b), unfortunately it does not admit a closed-form expres-
sion [36]. Nevertheless, it is possible to handle it by resorting
to the following Bernstein-type inequality lemma to accurately
approximate (21b).

Lemma 1 (Bernstein-Type Inequality: Lemma 1 in [36]):
Assume f(x) = xHUx + 2Re{uHx} + u, where U ∈ Hn,
u ∈ Cn×1, u ∈ R, and x ∈ Cn×1 ∼ CN (0, I). Then, for any
ρ ∈ [0, 1], the following approximation holds:

Pr
{
xHUx + 2Re{uHx}+ u ≥ 0

}
≥ 1− ρ (27a)

⇒Tr {U}−
√

2 ln (1/ρ)x+ln (ρ)λ+
max (−U)+u≥0 (27b)

⇒


Tr {U} −

√
2 ln (1/ρ)x+ ln (ρ)y + u ≥ 0√

∥U∥2F + 2∥u∥2 ≤ x

yI + U ⪰ 0, y ≥ 0,

(27c)

where x and y are slack variables, and Hn stands for the set
of n× n complex Hermitian matrices.
In order to be able to apply Lemma 1, defining z = σ2

c (2
Cth−

1) and w = PR(2Cth − 1), we reformulate the left-hand-side
of (21b) as follows.

Pr

(
(hH2 + hH3 ΘHH1)ttH(h2 + HH

1 Θh3)

≥ z + w(gH3 + hH3 ΘHG2)Φ(g3 + GH
2 Θh3)

)
(28)

= Pr

(
hH3 (ΘHH1ttHHH

1 Θ− wΘHG2ΦGH
2 Θ)h3

+ 2ℜ{(hH2 ttHHH
1 Θ− wgH3 ΦGH

2 Θ)h3}

+ hH2 ttHh2 − wgH3 Φg3 − z ≥ 0

)
(29)

= Pr

(
∆hH3 (ΘHH1ttHHH

1 Θ− wΘHG2ΦGH
2 Θ)∆h3

+ 2ℜ{(hH2 ttHHH
1 Θ− wgH3 ΦGH

2 Θ)∆h3}
+ ĥH3 (ΘHH1ttHHH

1 Θ− wΘHG2ΦGH
2 Θ)ĥ3

+ 2ℜ{(hH2 ttHHH
1 Θ− wgH3 ΦGH

2 Θ)ĥ3}

+ hH2 ttHh2 − wgH3 Φg3 − z ≥ 0

)
. (30)

Finally, defining

U = ΘHH1ttHHH
1 Θ− wΘHG2ΦGH

2 Θ , (31)

u = hH2 ttHHH
1 Θ− wgH3 ΦGH

2 Θ , (32)

u = ĥH3 (ΘHH1ttHHH
1 Θ− wΘHG2ΦGH

2 Θ)ĥ3

+ 2ℜ{(hH2 ttHHH
1 Θ− wgH3 ΦGH

2 Θ)ĥ3}
+ hH2 ttHh2 − wgH3 Φg3 − z , (33)

the constraint in (21b) can be expressed as

Pr
(
∆hH3 U∆h3 + 2ℜ{uH∆h3}+ u ≥ 0) ≥ 1− ρ

)
, (34)

which is formally equivalent to (27a), with ∆hH3 playing the
role of x. Then, we can apply Lemma 1 to reformulate (34)
as

Tr {U} −
√

2 ln (1/ρ)x+ ln (ρ)y + u ≥ 0 (35)√
∥U∥2F + 2∥u∥2 ≤ x (36)

yI + U ⪰ 0, y ≥ 0, (37)

with x and y two additional slack variables.
As a result, we can reformulate Problem (21) as in

Equation (38), shown at the bottom of the next page.
Similarly to the perfect CSI scenario, Problem (38) can be

tackled through the alternating maximization method, iterating
among the maximization of (Φ, x, y), Θ, and t.

Specifically, as for the optimization of the variables
(Φ, x, y), the objective (38a) is convex, while all constraints
are linear, except for (38e), which is convex. Thus, with
respect to (Φ, x, y), Problem (38) can be handled by the same
sequential method used for the perfect CSI case.

As for the optimization of Θ, Problem (38) can be handled
by optimizing one RIS phase at a time, as done in the perfect
CSI case.

Conversely, the optimization of t is somewhat more chal-
lenging, in particular due to the constraint function at the
left-hand-side of (38d), which does not lead to a convex
constraint and is difficult to handle by sequential convex
approximations. The problem can be thus tackled by resorting
to the semidefinite relaxation method. Indeed, upon defining
Q = ttH , the problem with respect to Q can be restated as
in Equation (39), shown at the bottom of the next page.
Then, by relaxing the rank-1 constraint, the problem becomes
convex and thus can be solved by standard convex optimization
theory. Upon obtaining the solution of the rank-relaxed version
of (39), a feasible t can be obtained by rank reduction
or randomization techniques. One approach is to use the
randomized SVD technique to compute a low-rank approx-
imation of Q. The randomized singular value decomposition
(SVD) algorithm computes an approximation of the form
Q ≈ UnΣnVH

n , where Un and Vn are matrices of orthonor-
mal columns, Σn is a diagonal matrix with the n largest
singular values of Q on the diagonal, and n is the desired
rank of the approximation [35]. This approximation can be
obtained efficiently using random projections and can be used
to compute an approximate solution for t as t ≈ UnΣ1/2

n v,

E[SINR] =

∣∣tHh2

∣∣2 + tHHH
1 Θ

(
ĥ3ĥH3 + Σh3

)
ΘHH1t + tH

(
h2ĥH3 ΘHH1 + HH

1 Θĥ3hH2
)
t

PRLP

(
gH3 Φg3 + tr

(
ΦGH

2 Θ
(
ĥ3ĥH3 + Σh3

)
ΘHG2

))
+ tr

(
Φ
(
g3ĥH3 ΘHG2 + GH

2 Θĥ3gH3
))

+ σ2
c

(26)
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where v is a vector of appropriate size and Σ1/2
n denotes the

diagonal matrix with the square root of the n largest singular
values of Q on the diagonal. Another approach is to use the
randomized QR decomposition to compute a low-rank approx-
imation of t [35]. The randomized QR algorithm computes an
approximation of the form t ≈ Qnc, where Qn is a matrix
of orthonormal columns and c is a vector of appropriate size.
This approximation can be obtained efficiently using random
projections and can be used to compute an approximate
solution for t. Of course, the quality of the approximation
obtained using these techniques depends on the rank n of
the approximation. In general, increasing n leads to a more
accurate approximation, but also increases the computational
cost. The optimal choice of n depends on the specific problem
and the available computational resources.

V. COMPLEXITY, CONVERGENCE, AND OPTIMALITY OF
THE PROPOSED SOLUTIONS

In this section we analyze the complexity, convergence, and
optimality of the proposed solutions under the two conditions
of full CSI availability and statistical CSI availability.

A. Full CSI Case

1) Complexity: We have proposed an alternating optimiza-
tion based framework for the case of full CSI that involves
decoupling the three optimization variables Qxl, Φ, and Θ,
and break the design optimization problem into three sub-
problems. The first optimization sub-problem, given in (10),
is carried out with respect to Qxl and this sub-problem is
jointly convex with respect to {Qxl}. Indeed, the objective and
constraint functions in (10c) are linear, while the constraint
in (10b) is concave. Thus, Problem (10) can be solved by
means of convex optimization theory, with affordable com-
plexity. The semidefinite matrix variable {Qxl} have N2 real

scalar variables, which would result in a total complexity of
LP O((N2) if a Lagrangian dual decomposition method is
used [38]. The second optimization sub-problem, given in (11),
is carried out with respect to Φ. The problem is relaxed
into the form in (15), and a sequential method is proposed
to solve it. Problem (11) is linear in Φ, and thus can be
solved by standard interior point approaches with a complexity
of O((LPN2)3.5). The third sub-problem is the optimization
with respect to Θ and we have proposed two algorithms to
solve the phase shift optimization sub-problem, namely the LS
based algorithm and the RP algorithm, and the two algorithms
have a linear complexity in the number of RIS phase shifts,
which is O(2b × LR). Accordingly, the complexity of each
iteration of the whole alternating optimization framework can
be given as (LP O((N2) +O((LPN2)3.5) +O(2b × LR)).

2) Convergence: It can be recognized that the objective
function of (9), SINR (Θ,Qxl,Φ), is non-decreasing dur-
ing the alternating iterations of Θ, Qxl, and Φ, and is
upper bounded. According to the monotone convergence the-
orem [39], the alternating optimization is thus guaranteed to
converge in the value of the objective.

3) Optimality: The optimization problem (9) is non-convex
and also mixed integer (due to the RIS discrete phase shifts).
Accordingly, it is very hard to solve it achieving a globally
optimal solution; however, the proposed SCA sub-algorithms
are guaranteed to converge to a solution that satisfies the
Karush-Kuhn-Tucker (KKT) conditions. No stronger optimal-
ity claims can be given.

B. Statistical CSI Case

1) Complexity: We first notice that all the resulting convex
problems involving linear matrix inequality (LMI), second-
order cone (SOC) constraints and linear constraints can be

max
Φ,Θ,t,x,y

Tr
((

h2hH2 + HH
1 Θ

(
ĥ3ĥH3 + Σh3

)
ΘHH1

)
ttH +

(
h2ĥH3 ΘHH1 + HH

1 Θĥ3hH2
)
ttH

)
PRLP

(
gH3 Φg3 + tr

(
ΦGH

2 Θ
(
ĥ3ĥH3 + Σh3

)
ΘHG2

))
+ tr

(
Φ
(
g3ĥH3 ΘHG2 + GH

2 Θĥ3gH3
))

+ σ2
c

(38a)

Subject to: Tr
{
ΘHH1ttHHH

1 Θ−wΘHG2ΦGH
2 Θ

}
−
√

2 ln (1/ρ)x+ln (ρ)y+ĥH3 (ΘHH1ttHHH
1 Θ−wΘHG2ΦGH

2 Θ)ĥ3

+ 2ℜ{(hH2 ttHHH
1 Θ− wgH3 ΦGH

2 Θ)ĥ3}+ hH2 ttHh2 − wgH3 Φg3 − z ≥ 0 (38b)

∥ΘHH1ttHHH
1 Θ− wΘHG2ΦGH

2 Θ∥F + 2∥hH2 ttHHH
1 Θ− wgH3 ΦGH

2 Θ∥2 ≤ x (38c)

yI + ΘHH1ttHHH
1 Θ− wΘHG2ΦGH

2 Θ ⪰ 0, y ≥ 0 (38d)

LP ∥t∥2 ≤ PC , (9d), (9e) (38e)

max
Q

Tr
((

h2hH2 + HH
1 Θ

(
ĥ3ĥH3 + Σh3

)
ΘHH1

)
Q +

(
h2ĥH3 ΘHH1 + H1Θĥ3hH2

)
Q
)

(39a)

Subject to: Tr
{
ΘHH1QHH

1 Θ−wΘHG2ΦGH
2 Θ

}
−
√

2 ln (1/ρ)x+ln (ρ)y+ĥH3 (ΘHH1QHH
1 Θ−wΘHG2ΦGH

2 Θ)ĥ3

+ 2ℜ{(hH2 QHH
1 Θ− wgH3 ΦGH

2 Θ)ĥ3}+ hH2 Qh2 − wgH3 Φg3 − z ≥ 0 (39b)

∥ΘHH1QHH
1 Θ− wΘHG2ΦGH

2 Θ∥F + 2∥hH2 QHH
1 Θ− wgH3 ΦGH

2 Θ∥2 ≤ x (39c)

yI + ΘHH1QHH
1 Θ− wΘHG2ΦGH

2 Θ ⪰ 0, y ≥ 0 (39d)
LPTr(Q) ≤ PC , rank(Q) = 1, (9d), (9e) (39e)
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Fig. 3. The convergence behavior of the proposed framework with either lin-
ear search and relaxations and projection phase shift optimization algorithms
at γ = 10dB, and N = 16.

solved by a standard interior point algorithms. The computa-
tional complexity of the statistical CSI scenario design in terms
of the worst-case run-time, can be thus expressed as [40]:

O((
J∑
j=1

bj + 2I)1/2n(n2 + n

J∑
j=1

b2j +
J∑
j=1

b3j︸ ︷︷ ︸
due to LMI

+ n

I∑
i=1

a2
i︸ ︷︷ ︸

due to SOC

))

where n is the number of variables, J is the number of LMIs
of size bj , and I is the number of SOC of size ai. Based on the
above expression, the approximate computational complexity
per iteration for problems (42) and (43), according to the
following reference, are:

OΦ=O([2(Mt+1)]1/2Mt[M2
t +2M3

t +2M4
t +M3(Mt+1)2])

OQ=O([4Mt+2N ]1/2N [N2+N(Mt(N2+(Mt+1)2)+N)]),

respectively. Accordingly, the whole complexity equals OΦ +
OQ + 2b × LR.

2) Convergence: By employing a similar methodology
applied in the case of full CSI, it becomes evident that the
objective function associated with the statistical CSI scenario,
shown in (38) and (39), exhibits a non-decreasing trend
throughout the alternating iterations involving variables Θ,
Qxl, and Φ. Additionally, it is observed that the objective
function remains bounded from above. Consequently, applying
the monotone convergence theorem [39], we can assert that the
alternating optimization process is guaranteed to converge in
the value of the objective.

3) Optimality: Once again, it is very hard and still an open
problem to obtain a globally optimal solution to the problem
in (38) and (39). However, the proposed suboptimal solution
is guaranteed to converge to a point that satisfies the KKT
conditions. No stronger optimality claims can be given.

Fig. 4. Feasibility rate versus the communication outage threshold level for
the proposed RIS-assisted framework with either LS and LS, with N = 16,
γ = 10 dB.

VI. SIMULATION RESULTS

In this section, we provide simulation results to evaluate the
performance of the proposed RIS-assisted spectrum sharing
approaches for optimized communication-radar coexistence.
The used numerical values for the system parameters are
listed in Table I. Based on such values, the possible signal-to-
noise (SNR) range at the communication receiver is between
12 dB and 30 dB, which is supported by LTE systems [37].
On the other hand, the required SNR per single antenna, for
a typical radar system operating with probability of detection
of 0.9 and probability of false alarm of 10−6, equals about
13.2 dB [33]. However, the actual SNR may be much smaller
than these values due to the use of some DoFs to mitigate
the interference generated by the communication system. The
simulated system setup for both the perfect and imperfect
CSI scenarios is organized such that the communication BS,
the RIS, and the radar are installed at (0, 0), (110, 50), and
(200, 0), respectively, with the location of user chosen at each
iteration as a point inside a user circle centered at (110, 25).

A. Perfect Channel Scenario

In this section, we analyze the proposed RIS-aided spec-
trum sharing approach under the assumption of perfect CSI.
We will first analyze the convergence rate and feasibility of
the proposed approach. Next, we will show the effect of some
system parameters on the performance of the system.

Fig. 3 provides the convergence behavior of the proposed
framework versus the iteration number of the outer loop, with
perfect CSI availability and with either linear search, expressed
as LS in the legend, and relaxation and projection, expressed
as RP in the legend. Here, the outage capacity threshold for
the communication user is set to Cth = 3 bits/sec/Hz, and
the ratio between radar and communication power budgets,
namely γ, is set to 10 dB. We have tested the convergence of
our proposed solution with three values of the number of RIS
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TABLE I
SIMULATION PARAMETERS

reflective elements, LR = 8, 64, and 120. Additionally, the
proposed framework is compared with two benchmark scenar-
ios. The first benchmark scenario is the radar-communication
coexistence scenario without RIS, named “W/O RIS, Rad-
Com” in the legend, while the second benchmark scenario is
the radar only scenario without RIS, named “W/O” RIS, Radar
Only” in the legend. It is apparent that the proposed framework
converges faster with a smaller number of RIS elements.
Additionally, the proposed framework with any number of RIS
reflective elements provides a better performance compared
with the case of Rad-communication coexistence without RIS,
due to the interference provided at radar receiver by the
communication transmitter. This also illustrates the importance
of RIS in mitigating the mutual interference between the two
systems. The “radar only without RIS” scenario represents the
upper bound for our proposed framework, since it corresponds
to the case in which there is no interference suffered at radar
receiver. It is obvious from Fig. 3 that the higher the number
of RIS elements, the better will be the radar SINR, due to the
larger diversity gain provided with higher number of reflective
elements.

In order to prove the effect of the communication system
transmissions on the radar system performance, we study the
feasibility of the proposed framework with different com-
munication outage threshold (Cth) level. The feasibility rate
is defined as the ratio of the number of feasible1 channel
realizations to the total number of channel realizations. Fig. 4
shows the feasibility rate versus the communication outage
threshold level (Cth) for the proposed RIS-assisted framework
with either linear search or relaxation and projection phase
optimization algorithms for different values of RIS elements.
Generally, the proposed framework has slightly larger feasibil-
ity rate when the linear search phase shift optimization method
is employed, compared to the case of in which the relaxation
and projection method is used. Additionally, the feasibility rate
decreases as the outage threshold (Cth) increases. With smaller
number of RIS elements, the communication outage constraint

1We mean by feasible channel realization, the realization with which there
exists a feasible solution to the outage constrained problem in (9).

Fig. 5. The Beampattern for the proposed algorithm.

is almost guaranteed to be met till Cth = 10 bits/sec/Hz,
and accordingly, the feasibility rate is almost equal to one.
However, it seems that a larger number of RIS elements
provides more degrees-of-freedom for optimizing the phase
shifts that satisfy the constraints of the problem. But, it is
noticed that increasing the number of RIS elements will also
lead to increasing the size of the covariance matrix of the radar.
This, in turn, fortifies the trade-off between the two systems
metrics, limits the solution space and accordingly leads to a
decrease of the feasibility rate.

Fig. 5 shows the radar beampattern designed by our pro-
posed framework. It is worth noting that the main lobes of the
proposed approach are aligned toward the three targets that are
assumed to be at angles 0◦, 15◦, and 30◦, which indicates that
our proposed radar beamforming design has good directivity
properties toward the targets directions, and the side lobes are
below the mainlobes by about 20 dB. Accordingly, our design
has better ability to suppress the communication interference
from the radar receiver.

Fig. 6 shows the effect of the number of the RIS elements
and of the radar to communication power budget ratio (γ) on
the radar SINR. First of all, increasing γ leads to an analogous
increase in the radar SINR: this behavior is intuitive as both
the increase in radar power and the decrease in communication
power will lead to the increase in radar SINR. Additionally,
the LS phase shift optimization algorithms helps in achieving
a slight increase in radar SINR compared with the relaxation
and projection algorithm. Moreover, uniformly with respect to
the power ratio, the increase in the number of RIS reflective
elements leads to an increase in radar SINR, since the RIS
helps to mitigate the interference while providing diversity.
Specifically, increasing the number of RIS elements (LR) by
100 elements leads to increasing the radar SINR by 4 dB with
both the linear search and the projection gradient algorithms.

Using the Neyman-Pearson criterion, the MIMO radar’s
asymptotic target detection probability, PD, can be assessed,
under the assumption of Gaussian-distributed interference,
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Fig. 6. Radar SINR versus the radar to communication powers ratio for the
proposed RIS-assisted framework.

utilizing the generalized likelihood ratio test (GLRT) [31]:

PD = 1− φχ2
2(ν))

(
φ−1
χ2

2(ν))
(1− PFA))

)
where PFA is the probability of false alarm, the functions
φχ2

2(ν))
and φ−1

χ2
2(ν))

refer to the non-central chi-square cumu-
lative distribution function (CDF) with 2 degrees-of-freedoms
(DoFs) and its inverse function, respectively, and ν is the
non-centrality parameters for φχ2

2(ν))
, and it is expressed as:

ν = LPN tr
(

ΦDt

Geff Qxl GH
eff + σ2

R

)
.

In the above expression, we recall that Dt =∑
k σ

2
βk

v∗t (ϕk)v
T
t (ϕk), Qxl denotes the interference

covariance matrix of the radar sensing waveform for all
l ∈ N+

LP
, Geff = GH

1 +GH
2 ΘHH1 and FFH = LPΦ.

It is important to emphasize that the above expression of
PD of the MIMO radar is applicable only to scenarios where
white Gaussian noise is present [31], [32]. Assuming that
the resulting interference-plus-noise signal remains Gaussian
distributed with zero mean, but with a non-identity covariance
matrix, a whitening filter can be employed in our design,
ensuring that the derivation in [31] remains applicable to our
proposed model. Figure 7 illustrates the variation of PD versus
the radar to communication powers ratio for the proposed
RIS-assisted spectrum sharing framework at a probability of
false alarm, PFA, equal to 10−4. It is well known that PD is
an increasing function of the radar signal-to-interference-plus-
noise ratio (SINR). Therefore, the variation of PD versus γ
shown above is analogous to the variation of the SINR versus
γ shown in Fig. 6.

B. Imperfect Channel Scenario

We now study the performance of the proposed robust
RIS-aided spectrum sharing scenario described in Section IV.
The proposed framework under statistical error model with

Fig. 7. Radar probability of detection (PD) versus the radar to communica-
tion powers ratio for the proposed RIS-assisted framework, with probability
of false alarm PFA = 10−4.

Fig. 8. The convergence behavior of the proposed robust framework at
γ = 10 dB, N = 16, and Cth = 8 bits/Sec/Hz.

CSI uncertainty are labeled in the legend as “Imperfect CSI”
accompanied with the uncertainty level δh3 . For the statistical
CSI error model, the variance of h3 is defined as δ2h3

∥ĥ3∥22.
It is worth noting that δh3 ∈ [0, 1) specifies the level of CSI
uncertainties in the RIS-to-user channel h3.

Fig. 8 provides the convergence behavior of the proposed
robust RIS-assisted design framework. In this scenario, we set
the communication outage threshold as Cth = 8 bits/sec/Hz,
and the CSI uncertainty for the RIS-to-user channel as {δh3 =
0.03. It can be seen that all the proposed frameworks converge
within the first 8 outer iterations. It is worth noting that the
proposed framework converges to larger user SINR levels as
the uncertainty level implied by δh3 decreases. It is also of
great importance to note that the proposed robust framework
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Fig. 9. Feasibility rate versus the number of RIS elements for the proposed
robust RIS-assisted framework at different uncertainty levels, with N = 16,
γ = 10 dB, and Cth = 8 bits/sec/Hz.

converges approximately within the same number of iterations
as in the perfect full-CSI scenarios.

In Fig. 9, we study the feasibility of the proposed framework
with different number of RIS elements (LR) in terms of
the feasibility rate. Fig. 9 shows the feasibility rate versus
the number of RIS elements (LR) for the proposed robust
RIS-assisted framework while assuming different accuracy
levels for the CSI of channel h3. It is worth mentioning that
the accuracy becomes 100% when the uncertainty parameter
δh3 equals zero. Generally, the feasibility rate decreases as the
CSI uncertainty of channel h3 increases. With perfect CSI of
h3, the communication outage constraint is almost guaranteed
to be met, and accordingly, the feasibility rate is almost equal
one, while with CSI uncertainty, the feasibility rate decreases
as the uncertainty level increases. Additionally, the feasibility
of the design problem decreases as the number of RIS elements
increases.

Fig. 10 shows the effect of the communication outage
threshold level Cth on the performance of the proposed
robust RIS-assisted framework at different uncertainty levels.
Generally, the received user SINR increases as the commu-
nication outage threshold level increases at any number of
RIS elements. This is due to the fact that the radar and
communication systems are sharing the same spectrum band
and introduce interference to one another. So, the increase
in Cth implies an increase in the communication power. It is
seen in Fig. 10 that the framework based on the statistical CSI
error model provides a slightly lower users’ SINR compared
to the case with perfect h3 CSI. Thus, the proposed statistical
framework is quite robust to the lack of perfect CSI of the
channel h3. Also, as expected, the received user SINR is
generally decreasing as the CSI uncertainty increases.

In Fig. 11, the received SINR achieved by the communica-
tion user while employing statistical CSI uncertainty for h3,
is plotted versus the number of RIS elements for different

Fig. 10. Received user SINR with statistical CSI uncertainty versus the
communication outage threshold rate Cth, N = 16, γ = 10 dB, LR = 64.

Fig. 11. Received user SINR with statistical CSI uncertainty versus the
number of RIS elements at different levels of CSI accuracy, N = 16,
PC = PR.

levels of channel uncertainty. It is seen from Fig. 11 that,
except for δh3 = 0.15, the received SINR of the communica-
tion user increases by increasing the number of RIS elements.
However, the rate increases slowlier as the uncertainty param-
eter δh3 increases. However, as the uncertainty parameter
increases to 0.15, the received SINR of the communication
user begins to decrease when the number of RIS elements
increases. In other words, the received SINR at the user
decreases as the uncertainty parameter δh3 increases due to the
larger power required by the communication system to fulfill
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Fig. 12. Received SINR at the communication user under statistical CSI
uncertainty versus the uncertainty parameter δh3 at different communication
power budgets, N = 16, PC = PR, LR = 64.

the outage constraint due to the lower CSI accuracy. In turn,
this increases the received SINR at the user receiver. Here,
two benchmark scenarios have been shown for the case of no
RIS. The case labeled with No RIS Rad-Com represents the
lower bound where the radar system suffers interference from
the communication system and there is no RIS to improve the
diversity gain, and, consequently, the radar SINR. The other
benchmark considers the case of communication only with
no RIS deployment, so the received SINR at user receiver
does not suffer any interference. This case represents an
upper bound for the user SINR. Finally, Fig. 12 shows the
effect of the uncertainty parameter δh3 on the received SINR
at the communication user. At any level of communication
power budget, the received SINR at the communication user
receiver decreases as the uncertainty parameter increases,
which coincides with the conclusions from previous numerical
results.

VII. CONCLUSION

In this paper, we employed RIS to improve coexistence
between radar and communication systems through exploiting
the RIS capability to manipulate the propagation environment.
Under the assumption of perfect CSI, we investigated how
to jointly design the communication transmit covariance, the
passive beamforming of the RIS, and the active beamforming
at the radar system. The radar output SINR was maximized
subject to the constraints of radar and communication power
budgets, communication rate outage or QoS, and RIS coeffi-
cients. We also extended the proposed algorithm by developing
a robust RIS-aided radar communication framework while
considering a statistical CSI error model for the RIS-user
channel. The results have shown that employing a RIS in a
radar communication coexistence scenario can greatly improve
the communication performance while ensuring satisfactory
radar performance. Moreover, it has been shown that, if not

accounted for by a proper design, the channel uncertainty can
limit the improvement provided by the RIS.
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