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Abstract— Jamming attacks to hinder communication capabil-
ities are becoming a critical aspect of wireless networks. A chal-
lenging issue is the detection of reactive jammers that perform
spectrum sensing and attack the network only when legitimate
communication is in progress. In this scenario, we introduce a
novel framework for reactive jamming detection using a patrol
of radio-frequency (RF) sensors external to the network to be
protected. The solution relies on two key components: i) a novel
underdetermined blind source separation (UBSS) method that,
starting from the signal mixtures observed by the RF patrollers,
is capable of separating the jamming temporal profile from the
network nodes’ transmission profiles; ii) a new jamming detection
based on causal inference called all-versus-one transfer entropy
(AvOTE). The framework is then applied to a case study where
the victim network is a Long Range (LoRa)-based internet of
things (IoT) system with star topology. The solution outperforms
a state-of-the-art method and an approach that attempts to find
the causal relationship via time series correlation, exhibiting
very good performance in the presence of shadowing. Indeed,
a detection probability of 90% is achieved with a false alarm
probability of 6% in the presence of nuisances such as collisions
and severe shadowing.

Index Terms— Blind source separation, causal inference, jam-
ming detection, transfer entropy, wireless networks.

I. INTRODUCTION

PRIVATE information and sensitive data rely heavily on the
network infrastructure’s security. This aspect is becom-

ing of paramount importance in several applications such as
industrial IoT, remote e-health, and V2X communications,
where the wireless medium conveys critical data. To further
exacerbate the problem, the upcoming artificial intelligence
(AI) revolution, while making intelligent and efficient devices
on one side, may lead to a much more vulnerable technology
on the other [1], [2], [3].

Considering the different security threats of wireless net-
works, we distinguish between passive (i.e., eavesdropping)
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and active attacks [4]. Among the latter, the most common
threat is denial-of-service (DoS), in which a malicious trans-
mitter (i.e., jammer) generates interference attempting to pre-
vent legitimate users from accessing the network. DoS attacks
are even more harmful when aimed at networks that adopt
cognitive paradigms of dynamic reuse of the radio spectrum.
Systems operating in industrial, scientific and medical (ISM)
bands or shared commercial bands (e.g., 5G systems in Citi-
zens Broadband Radio Service (CBRS)) foresee techniques of
intelligent reuse of the spectrum in which legitimate users are
authorized to communicate based on the spectrum availability,
becoming extremely vulnerable to interferers [5].

A wide variety of jammers have been investigated in the last
two decades: the continuous jammer that emits a persistent
radio signal, the random jammer, the deceptive jammer that
mimics the behavior of a legitimate user, and the reactive
(smart) jammer capable of detecting ongoing communications
via spectrum sensing and opportunistically interfere them [6],
[7]. However, this last type of jammer can hide by inactivating
the interference when the legitimate user is not communicat-
ing, thus making its detection remarkably hard. Moreover,
considering that building a reactive jammer is becoming
more accessible thanks to technological advances in software-
defined radio, developing new techniques to counteract such
attackers is now of paramount importance [8], [9].

In this scenario, a solution that recently has been proposed
makes use of a spectrum patrol to enforce security of a
wireless network [3], [10], [11], [12]. The patrol can be
composed by one or many devices that cooperate to monitor a
region, sensing the RF spectrum and detecting the presence
of anomalies (i.e., malicious users). An illustration of the
aforementioned scenario is shown in Fig. 1. The patrollers
can pair the information received by the legitimate users and
e.g., the access points (APs) or the base stations (BSs) when
available, with the ones extracted from the spectrum analysis to
detect the presence of a jammer. Then, such information can be
forwarded to the authority (and, e.g., the network of legitimate
users) that will take the necessary actions to counteract the
jammer. However, due to the covert nature of smart jammers
that intelligently turn themself off when a communication is
not taking place, most of the spectrum sensing techniques
developed in the last two decades cannot be applied. This is
because when the smart jammer transmits, it does so in the
presence of legitimate communication; hence, discriminating
between the two transmissions is very challenging. Therefore,
in this work, we propose a new framework for detecting
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smart jammers via causal inference using a patrol of RF
sensors, leveraging the cause-and-effect relationship between
the jammer and the network of legitimate users.

A. Existing Works

In the last decade, several jamming detection schemes have
been proposed. In [13], a network node compares its packet
delivery ratio (PDR), the bad packet ratio (BPR), i.e., the
ratio between the number of erroneous packets and received
packets, and the energy consumption, with a threshold. In [14],
the authors study the detection of reactive jamming in direct
sequence spread spectrum (DSSS) wireless communications
systems. The detection is carried out using two metrics based
on the PDR, namely, an observed PDRo and an estimated
PDRe. The first is the ratio of correctly received packets over
the total number of transmitted ones, while the second PDR is
predicted through the chip error rate of the packet preamble.
The rationale behind this detection strategy is that the jammer
cannot interfere the first preamble symbols of a packet because
of the non-negligible sensing time. In [15], a scheme for
detecting a jammer exploiting the received signal strength
(RSS) and the errors of the received bits sequence is proposed.
If a bit is received with an error and the corresponding RSS
value is high, then there should be an external interferer (i.e.,
the jammer); instead, if the corresponding RSS is low, errors
are likely caused by the weak signal, e.g., due to fading or
shadowing. Since jamming can severely affect the performance
of Global Navigation Satellite Systems (GNSSs), characterized
by remarkably low received powers, several works tackle
this problem. For example, in [16], the authors exploit the
carrier-to-noise density power ratio to detect the attacker. The
rationale behind this is that the victim perceives a significant
increase in the noise power in the presence of jamming.
In [17], the authors study the physical layer security of a
pilot-based massive multiple-input multiple-output (MIMO)
system proposing a generalized likelihood ratio test (GLRT).
In [18], the authors present an algorithm for jammer detection
in wide-band cognitive radio networks based on compressed
sensing (CS) and energy detector (ED). They first sample the
wide-band signal through CS and identify a set of sub-bands
occupied by legitimate users and the jammer. Then, the power
spectral density (PSD) is used to detect the jammer based
on the information about licit transmitters and the jammer
stored on a database. The proposed method is computationally
inexpensive but exhibits a high missed detection rate and
relies on a database that contains information about all the
legitimate users and the jammer, which might not always be
feasible. In [19], the authors propose three classifiers, namely
K-nearest neighbors (K-NN), random forest, and Bayesian
classifier to detect a proactive jammer. In [20], a framework
to guide the receiver in selecting the most suitable between
many conventional anti-jamming schemes is proposed.

Recently, the introduction of AI techniques in the field of
wireless communications gave impetus to developing machine
learning (ML)-based jamming detectors. In [21], two neural
networks (NNs) are proposed to detect and classify a jam-
mer in orthogonal frequency division multiplexing (OFDM)

Fig. 1. A wireless network under attack by a jammer. A patrol composed
of RF sensors monitors the spectrum by sharing information with a fusion
center (FC) that performs jamming detection.

transmissions. The authors suggest the introduction of a
pre-processing stage in which a time-frequency transform is
performed to improve the NNs performance. A similar method
is applied in [22] to an OFDM-based satellite communication
system. Both detection and classification are also performed
in [23] where the authors propose an ML-based approach that
exploits only the PDR and the RSS, retrievable at the GW side
without demodulating the signals received from the network
nodes. In [24], a large dataset with signal features that identify
jamming signals is generated. Then, random forest, support
vector machine (SVM) and a NN are tested in a wireless
communication network using this dataset for training. In [25],
a multi-layer perceptron NN is used to classify and detect
a jammer attempting to interfere DVB-S2 signals. In [26],
the authors suggest combining cyclic spectral analysis and
NNs for jamming detection in wide-band cognitive radios.
All the proposed ML-based jamming detectors have the same
general operating scheme, composed of features extraction
and selection followed by training and testing of a specific
algorithm.

The detection schemes mentioned above need to be per-
formed on the receiver side, i.e., within the network, as they
require almost complete knowledge of the details of the com-
munication protocols and the transmitted signals. For example,
in [14], the prior knowledge of the first few jamming-free
bits in the preamble is assumed, while in [15] the capability
of detecting bit errors is mandatory for the detection, thus
requiring the demodulation of the received packets. Instead,
the AI-based solutions are sensitive to generalization errors
because if the training is performed using specific signal
formats (e.g., OFDM in [21] and [22]), then a change in the
format will require a brand new training procedure. Table I
summarizes and categorizes all the mentioned existing works.

The main problem of the listed approaches is that all the
computational burden is carried by only one device, which
is usually part of the network infrastructure, and this limits
the overall performance of both the network and the jamming
detection. From this perspective, the idea of adopting a set of
crowdsourced spectrum sensors (or patrollers) that cooperate
to detect violations of the spectrum usage policies appears
attractive [10], [11]. In [10], the authors address a collaborative
signal detection problem in which they aim to identify the
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TABLE I
COMPARISON AND KEY ASPECTS OF EXISTING DETECTORS

optimal subset of sensors and their configurations to maximize
the detection performance given certain resource limitations.
In [11], mobile users cooperate through a crowdsourced
enforcement architecture to detect and localize an infraction
effectively. Both the presented methods rely on the spectrum
patrollers receiving only the signal emitted by the intruder
(i.e., a jammer). However, in a more general scenario, the
transmission of the jammer concurs with the ones of the
legitimate users, causing the sensors to receive a mixture of
superposed signals.

B. Our Contribution

In this context, we propose a novel framework for detecting
reactive jammers that exploit the mixed signals received by
the spectrum patrollers and an original methodology based
on causal inference. The detection strategy is quite general,
including situations where legitimate users belong to different
networks sharing the same spectrum. For this reason, the
spectrum patrollers observe mixtures of signals transmitted
over the air by the network nodes and extract energy profiles;
such profiles retain information on the temporal behavior of
the nodes without requiring demodulation. After this pre-
processing stage, the solution performs blind source separation
(BSS) to separate the energy profiles transmitted by each node
of the network and the jammer.1 In particular, we propose a
novel solution to the UBSS problem, which includes substan-
tial changes to the approach presented in [27] to be tailored
for the specific needs. After the signal separation, we explore
the temporal relation between the signals emitted by the nodes
to detect the presence of an intruder. If the jammer is reactive,
it transmits only after detecting the transmission of a legitimate
user. Such behavior can be modeled via a causal relationship
in which the user is the cause, and the jammer is the effect.
Hence, we aim to detect the presence of the jammer by finding
such a relationship using causal inference tools [28]. For this
purpose, we propose a novel jamming detection methodology
based on directed information, a metric that quantifies the

1Since at this stage we do not know if the jammer is present, its transmission
is treated without distinction from legitimate communications.

causal relationship between time series introduced in [29] and
reinvented in [30] with the name transfer entropy (TE).

In summary, the contributions of this work are the following:

• We introduce a novel framework for reactive jamming
detection based on a patrol of RF sensors external to the
network to be protected.

• The solution requires sensors to collect only raw measure-
ments consisting of the received power calculated over
short time intervals.

• The framework is blind, meaning that most network
features are unknown (i.e., the number of nodes, their
position, the type of traffic, and the communication
protocol), and all the operations are carried out without
demodulating the received signals.

• A first key ingredient is a novel UBSS method that,
starting from the signal mixtures observed by the RF
patrollers, allows estimating the number of nodes of
the wireless network and reconstructing their transmitted
energy profiles.

• The second key element is a new jamming attack detec-
tion based on causal inference called AvOTE.

• We thoroughly analyze a case study where the victim
network is a LoRa-based IoT network with star topology.

Throughout the paper, capital and lowercase boldface letters
denote matrices and vectors, respectively, (·)T stands for
transposition, ∥·∥p is the lp-norm, | · | is the absolute value,
and ⊗ stands for Kronecker product. With vi,j , vi,:, and v:,j ,
we represent, respectively, the element, the ith row, and the
jth column of the matrix V; with vi,j:k we select the elements
between the jth and the kth entry of the ith row of V,
extremes included, and V:,j:k correspond to a sub-matrix of V
composed by the columns from jth to kth, extremes included.
We use x ∼ N (µ, σ2) to denote a Gaussian random variable
(r.v.) with mean µ and variance σ2, z ∼ CN (0, σ2) to denote
a zero-mean circularly symmetric complex Gaussian r.v. with
variance σ2, E[·] to denote the expectation operator, and ⟨·⟩
to indicate the sample mean operator. 1{A} is the indicator
function equal to one when A is true and zero otherwise.

The remainder of this paper is organized as follows.
We introduce the scenario and system model in Section II.
Section III presents the UBSS method adopted by the patroller
to separate the signals. In Section IV, a novel jamming detec-
tion algorithm based on TE is proposed. Numerical results are
given in Section V. Conclusions are drawn in Section VI.

II. SYSTEM OVERVIEW

Let us consider a scenario with a packet-based wireless
network, a reactive jammer, and a patrol. In particular, the
wireless network is composed by a set T of nodes (or users)
and the patrol is formed by a set S of radio-frequency sensors,
with cardinalities NT and NS, respectively. All the actors,
namely the nodes, the sensors and the jammer are randomly
deployed on a two-dimensional area. As further detailed in
Section V, the proposed methodology tolerates the presence
of collisions between the packets transmitted by the nodes.
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Fig. 2. (a) Finite-state machine model for the reactive jammer. Hypothesis
H1 is the detection of a transmission, whileH0 is the null hypothesis; S1 and
S2 are the sensing states; I and J are the idle and jamming states, respectively;
τ is the sojourn time in a given state. (b) An example of reactive jamming.
The jammer senses the spectrum for a period T1 and detects the transmission
of a user (in blue). Then, it alternates jamming (in red) and short sensing
phases to make the jamming operation more effective.

A. Jammer Model

In this work, we consider a reactive jammer that periodically
senses the channel to detect the users transmissions and
interfere. The advantage of using a reactive jammer is that,
even if it consumes energy to sense the spectrum, it can
perform targeted attacks that make it more efficient and less
detectable than simpler jammers.

The jammer is modeled by the 4-states machine shown in
Fig. 2a, where two sensing states, S1 and S2, alternate with
idle and jamming states, I and J, respectively. In the idle state,
the jammer remains silent for a time TI and then it jumps into
state S1. In state S1, the jammer senses the channel for a time
T1 to detect the transmission of a user; if no transmission is
detected (hypothesis H0), the jammer returns to the idle state.
When a signal is detected (hypothesis H1) the attacker goes
into state J and interferes the communication for a time TJ.
During TJ, the jamming signal with power PJ is transmitted.
Then, the attacker alternates between states J and S2, in which
it performs detection with sensing time T2.2 Fig. 2b shows an
example of a jammer attack.

1) Sensing at the Jammer: During S1 and S2, the jammer
senses the channel in a bandwidth W with sampling time
1/W . In the presence of frequency flat channel, the nth sample

2Note that the sensing time T2 is usually shorter than T1 to allow a more
effective sensing [31], [32].

of the equivalent low-pass signal received by the jammer is3

ỹJ
n =

NT∑
t=1

h̃J
t x̃t,n + ω̃J

n (1)

where x̃t,n for t = 1, . . . , NT is the nth sample of the signal
transmitted by node t, h̃J

t for t = 1, . . . , NT is the channel
gain between node t and the jammer, and ω̃J

n ∼ CN (0, σ2
J) is

the additive white Gaussian noise (AWGN) with independent,
identically distributed (i.i.d.) real and imaginary parts, with
noise power σ2

J = 2NJ
0 W , where NJ

0 is the two-sided power
spectral density.4 The channel gain consists of two components
h̃J

t = gJ
t eσdt , where gJ

t is the complex path gain, and
dt ∼ N (0, 1) are i.i.d. Gaussian r.v.s to model log-normal
shadowing with intensity σ [33].5

The detection of a transmission is performed with an
ED [31] represented by

2
σ2

J

NJ∑
n=1

|ỹJ
n|2

H1

≷
H0

ξ (2)

where ξ is the detection threshold obtained fixing the false
alarm probability. The time-bandwidth product of the ED is
thus NJ ∈ {WT1, WT2} depending on the current jammer
state.

2) Attack Signal: During the attack phase the jamming
signal can assume several forms, e.g., white noise, a sinusoid
or a signal with the same modulation of the victim communi-
cations.

B. The Patrol

Each RF sensor performs energy detection, collect the
received energy samples for a period Tob and forward the
data to a FC, which could be either one of the sensors or a
specific device. Information as number of transmitting nodes,
their positions, and physical and medium access protocol
(MAC) layer configurations are unknown to the FC. As will
be better explained in Section III the observation period
Tob should be long enough to detect the causal relationship
between the jammer and the victim network. Since such a
relationship depends on the interaction between the jammer
and the network at packet level, the observation period is much
longer than the packet duration.

1) Received Signals at the Sensors: Similarly to the jam-
mer, the nth sample of the equivalent low-pass signal received
by the sth sensor is

ỹs,n =
NT+1∑
t=1

h̃s,tx̃t,n + ω̃s,n (3)

where, differently from (1) the patrol sees also the signal
emitted by the jammer, indicated by t = NT + 1, h̃s,t for
t = 1, . . . , NT is the channel gain between node t and sensor
s, while h̃s,NT+1 is the jammer-sensor channel gain. The term

3We also consider that the coherence time of the channel is larger than the
sensing times, T1 and T2.

4We consider x̃t,n = 0 if node t is not transmitting at time instant n.
5The shadowing parameter is usually expressed as the standard deviation

of the channel loss in deciBel by σ(dB) = 20
ln10σ.
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Fig. 3. Block diagram of the patrol system with NS sensors. In the FC, after a transmission detection, UBSS is performed, then separated energy profiles
are transformed into binary series analyzed by TE to detect the presence of a jamming attack.

ω̃s,n ∼ CN (0, σ2
S) is the AWGN at the sth sensor with i.i.d.

real and imaginary parts, noise power σ2
S = 2NS

0 W and
two-sided power spectral density NS

0 .
Since the jammer and the patrol operate in the same

propagation environment, also the links between sensors and
transmitters/jammer is affected by log-normal shadowing with
intensity σ.

To reduce the number of collected samples and, conse-
quently, the computational burden for jammer detection, each
sensor extracts the energy of the received signal calculated
over short time bins of duration Te such that Tob = NeTe,
where Ne is the number of energy samples. Thus, we obtain
the matrix Y ∈ RNS×Ne , whose entries ys,i are the energy
samples

ys,i =
1
W

Nd∑
j=1

|ỹs,(i−1)Nd+j |2 (4)

where Nd = TeW is the number of signal samples used to
compute the energy. This form of subsampling, while remov-
ing details (modulation, phase, etc.) of the signals emitted
by the jammer and the nodes, it retains all the necessary
information about the traffic profiles of the actors necessary
to perform jamming detection through causal inference.

2) Received Energy Profiles: Under the assumptions of
signals emitted by the nodes mutually uncorrelated and uncor-
related with the noise, we can express Y as6

Y = HX + Ω (5)

where the tth row of X ∈ R(NT+1)×Ne is the corre-
sponding transmitter’s energy profile and the last row con-
tains the energy profile of the jammer. The entries ωs,i =
1
W

∑Nd
j=1 |ω̃s,(i−1)Nd+j |2 of Ω ∈ RNS×Ne are the noise energy

samples and H ∈ RNS×(NT+1) is the matrix of the channel
power gains hs,t = |h̃s,t|2.

The energy profiles are sent to a FC that performs the
jammer detection. The proposed methodology requires the
temporal dynamics of the transmitted packets for each node of

6Equation (5) holds for sufficiently large sample size Nd = TeW ; see the
numerical results for values of practical interest for our problem.

the wireless network and the jammer; thus, the first processing
stage is BSS. After the separation, we propose a jamming
detection algorithm that seeks a causal relationship between
the energy profiles transmitted by the nodes and the jammer.
The complete processing chain is depicted in Fig. 3.

III. BLIND SOURCE SEPARATION

The BSS aims at recovering the source matrix X starting
from the observations, Y, without any prior knowledge of the
channel matrix H. Without loss of generality, we consider
the worst-case scenario in which the number of RF sensors
is less than the number of transmitters, i.e., we solve an
underdetermined blind source separation (UBSS) problem.
This implies that the mixing matrix H is not invertible, making
the classical overdetermined BSS techniques inappropriate.
Therefore, as in [27], we tackle the UBSS problem by first
estimating the mixing matrix and then the source matrix,
leveraging on its sparse nature, i.e., assuming that each column
of X has few non-zero entries [34], [35], [36]. This assumption
means that few nodes are transmitting simultaneously. If the
MAC layer is based on scheduled access protocol, then at most
two actors will transmit simultaneously: a network node and
the jammer. Instead, if the network adopts a random access
protocol, multiple nodes might concur in the transmission and
collide. However, in a well-designed random access protocol
the network is not overloaded and the source matrix, X,
is likely to be highly sparse. In the following, we propose a
novel UBSS algorithm based on [27] that exploits such spar-
sity. Unlike most of the literature regarding UBSS, in which
the sources that have to be separated are audio signals,
we tailor our solution to deal with energy profiles transmitted
by wireless nodes. In this sense, we did not use operations
such as transformations to the time-frequency domain, that
are common in the UBSS methods to increase the sparsity. For
this reason, we propose a modified version of the algorithm
in [27].

A. Estimate of the Mixing Matrix

We now aim to estimate H starting from the observations,
Y, relying on the sparsity of X. For the sake of clarity, we first
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Algorithm 1 Transmission Detection

Input : Y ∈ RNS×Ne , ϵ†

Output: Y1, . . . ,YK

1 k ← 1
2 Initialize Yk ← 0
3 for i from 1 to Ne do
4 TXi = false
5 vs ← 2

σ2
S
ys,i >ϵ, ∀s=1, . . . , NS

6 if at least one vs is true then
7 Yk =

[
Yk y:,i

]
8 TXi = true
9 else

10 if TXi−1 = true and 2≤ i<Ne then
11 k ← k+1
12 Initialize Yk ← 0
13 end
14 end
15 end
† ϵ is the detection threshold obtained fixing the false alarm probability.

introduce the general estimation methodology and then remark
two different situations: with or without jammer.

1) Transmission Detection: Given the matrix of energy
profiles, Y, to reduce the number of samples and lighten
the channel matrix estimation, the FC performs transmission
detection. In particular, it aims to identify the samples corre-
sponding to the occurrence of a transmission. The transmission
detection algorithm is detailed in Algorithm 1 where, given
Y as input, we analyze one column at a time. When a
detection arises (line 5 of the algorithm) we start saving
the columns until positive detection continues to occur. The
output is a set of matrices Yk, with k = 1, . . . ,K, such
that Yk = Y:,ik:ik+Nk

is a sub-matrix of Y composed by
its Nk consecutive columns in which the kth transmission
has been detected. The transmission starting index is denoted
as ik. Each matrix Yk can contain the superposition of the
energy profiles transmitted by the nodes, the jammer, and the
thermal noise. Fig. 4 depicts an example of the jth row of Yk.
If the transmission detection is successful, the remaining rows
of Yk should have the same structure as the jth. However,
since each row of Yk corresponds to the measurement carried
out by a different RF sensor, the signals of the transmitters
will be mixed in different ways depending on the propagation
scenario. Let us now reformulate eq. (5) as

Yk = HXk + Ωk (6)

where Xk = X:,ik:ik+Nk
and Ωk = Ω:,ik:ik+Nk

.
2) Pseudo Channel Matrix Estimation: In this phase we

estimate a raw oversized version of the channel matrix, called
pseudo channel matrix. We now feed matrix Yk as input to
the algorithm in [27], that is further described in the following.
Initially, we divide element-wise each row of Yk by its qth
row, to obtain the ratio matrix

R = Yk/yk
q,:. (7)

Fig. 4 depicts an example of the jth row of R in which the
transmission of a smart jammer is partially overlapped with the
one of a legitimate user. This row is the result of the division
between the jth and the qth rows of Yk with j ̸= q.

Then, R is divided into the sub-matrices Ri, i = 1, . . . , I
using the quantization-based clustering algorithm proposed
in [27]. Fig. 4 offers a graphical illustration of this operation:
looking at the jth row of R, rj,:, it is possible to observe
Ij = 3 clusters of samples. Each cluster is the set of samples
whose energy values are all similar and are depicted in blue,
red, and purple, respectively. As an example, let us imagine
that the blue cluster is labeled as cluster 1. If we select all
the columns of R identified by the same column indexes of
cluster 1, we obtain the sub-matrix R1. The same operation
can be repeated for all the clusters identified by each row of R,
overall generating I =

∑NS
j=1 Ij sub-matrices. For more details

about the clustering algorithm please refer to [27, Section II].
Considering the generic sub-matrix Ri, we now estimate the

corresponding column of the pseudo channel matrix as [27]

ĥ:,i =
[⟨ri

1,:⟩, . . . , ⟨ri
NS,:⟩]T

∥[⟨ri
1,:⟩, . . . , ⟨ri

NS,:⟩]T∥2
i = 1, . . . , I (8)

As detailed in Algorithm 2, which summarizes the complete
mixing matrix estimation procedure, the steps between lines
4 and 8 are repeated for q = 1, . . . , NS to estimate a
pseudo channel matrix Ĥk ∈ RNS×Nh . Note that due to the
concatenation procedure on step 8 of Algorithm 2 the final
number of columns of Ĥk is now indicated with Nh.

3) Dimensionality Reduction: Due to the estimation pro-
cedure, the pseudo channel matrices are likely to have a
larger number of columns than H. For this reason, we reduce
the dimensionality of Ĥk as follows. By performing singular
value decomposition (SVD) of Ĥk = UΛVT, the matrices
of the singular vectors U, V, and the diagonal matrix of
the singular values Λ are obtained. The singular values Λn,
with n = 1, 2, . . . , Nh, are thus sorted in descending order
along with the corresponding singular vectors. The number of
independent columns Nw of Ĥk is given by the number of
significant singular values, i.e.,

Nw =
Nh∑
n=1

1{Λn>Λ1Λ̄} (9)

where Λ̄ is the singular value selection parameter chosen, e.g.,
according to the scree plot approach [37]. To accomplish the
dimensionality reduction, a linear transformation is performed
using a projection matrix Ṽ ∈ RNh×Nw obtained retaining
only the Nw singular vectors of V corresponding to the most
significant singular values. Therefore, Ĥk can be projected
onto a subspace whose dimensionality is reduced from Nh to
Nw by

Wk = ĤkṼ (10)

where Wk ∈ RNS×Nw is the kth reduced pseudo channel
matrix.7 Iterating the procedure for each pseudo channel

7It is important to note that, as a consequence of the dimensionality
reduction, the entries of Wk may not be equal to the channel gains, and
they can also be negative.
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Fig. 4. Above, example of the jth row of Yk in a scenario with a transmitter
and the jammer. Below, the corresponding jth row of R where we note the
presence of three clusters. R1, R2, and R3 are the sub-matrices obtained
after the clustering operation and corresponding to the samples associated to
the user transmission, the jammer, and the overlap of the two, respectively.

matrix Ĥk, we estimate a set of reduced pseudo channel
matrices Wk, with k = 1, . . . ,K and concatenate them such
that W̃ = [W1,W2, . . . ,WK ].

4) Duplicate Elimination: After the complex procedure
described above, it is possible that W̃ contains multiple esti-
mations of the same column of H. In this case, an additional
operation is performed to remove the duplicates from W̃.
Given a column w̃:,i, we recognise that w̃:,j is a duplicate
if

∥w̃:,j − w̃:,i∥2 < β (11)

where β is the elimination threshold. In the end, we obtain
the estimated channel matrix W ∈ RNS×NW , where NW is
the number of estimated columns.

Remark 1. Note that considering the absence of the jammer,
collisions, and thermal noise a graphical illustration of the
matrix Xk is shown in Fig. 5, where pk = [xk,ik

. . . xk,ik+Nk
]

is the vector of Nk energy samples of the packet transmitted
by node k, and ik is the index that identifies the packet
transmission starting time.8 Here we have K = NT matrices,
and Yk corresponds to the packet transmitted by the kth node,
pk. Therefore, (6) becomes Yk = h:,k ⊗ pk and the entries
of R are ri,j = hi,k/hq,k. Hence, the estimator (8) reduces to

ĥ:,k =
h:,k

∥h:,k∥2
(12)

providing a perfect estimation of the channel matrix coefficient
except for a normalization factor. Such normalization does
not affect the reconstruction of the temporal profiles of the
activities of the nodes. In this ideal scenario, the clustering

8To simplify the algorithm explanation, without loss of generality, the
example in Fig. 5 considers one transmitted packet per node.

Fig. 5. An illustration of the rows of X. Row XNT+1 contains the energy
profile of the signal emitted by the jammer. If the jammer is absent it is a
row of zeros.

operation in R returns the same whole matrix, from which it
is possible to estimate the kth column of H.

Remark 2. The problem becomes more challenging in the
presence of a jammer because each transmitted packet could
experience at least one collision with the jamming signal.9 In
this case, a graphical illustration of the matrix Xk is shown
in Fig. 5, where the jamming packets in row NT + 1 are
highlighted in red. Here, due to the presence of the jammer
packets, Yk is the superposition of the transmissions of the
jammer and the kth legitimate node. Evaluating the corre-
sponding matrix R and performing the clustering operation,
we obtain the three submatrices whose jth rows are depicted
in Fig 4. The first, in blue, is composed of the columns of
R corresponding only to the transmission of the kth node,
the second, in red, is obtained by the columns corresponding
only to the transmission of the jammer, while the third,
in purple, is composed by the columns corresponding to the
superposition of the transmissions of the node and the jammer.
The estimation in (8) is performed for the three sub-matrices,
obtaining three estimated pseudo channel matrix columns.
Considering the sub-matrix R3, the corresponding estimated
column ĥ:,3 is wrong because of the superposition of the two
signals. However, it is dependent of ĥ:,1 and ĥ:,2, and, thus,
deleted through dimensionality reduction.

B. Unmixing by Orthogonal Matching Pursuit

Once the mixing matrix W is estimated, the reconstruction
of the transmitted energy profiles is performed. More precisely,
we aim to estimate X starting from the observations Y and
the estimated mixing matrix W, exploiting the sparsity of the
sources. The problem is thus formulated as follows

min
x:,i
∥x:,i∥0

s.t. Wx:,i = y:,i (13)

9In the case of random access protocol, collisions can also occur between
the packets transmitted by legitimate users. However, the algorithm does not
need to distinguish between different types of collisions.
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for i = 1, . . . , Ne. This problem is known to be NP-hard and
can be tackled with a greedy iterative method or using the
well-known basis pursuit (BP) technique [38]. In this work,
we reformulate (13) to be solved via the orthogonal matching
pursuit (OMP) algorithm [39], i.e.,

min
x:,i
∥y:,i −Wx:,i∥2

s.t. ∥x:,i∥0 ≤ γ (14)

where γ is the sparsity constraint. The value of γ is chosen
according to the mutual coherence, the largest normalized
inner product between distinct columns of W, i.e.,

µ(W) = max
1≤i,j≤NW,i̸=j

|wT
:,iw:,j |

∥w:,i∥2∥w:,j∥2
. (15)

A large µ(W) means that the columns of W are highly
correlated and, thus, the signal reconstruction is hard (or even
impossible). It has been proved in [40] that if the problem (14)
admits a solution x:,i with ∥x:,i∥0 < 1

2

(
1 + 1

µ(W)

)
, then it is

the sparsest possible. Hence, the sparsity constraint is set to

γ =
1
2

(
1 +

1
µ(W)

)
. (16)

The output of the OMP is a matrix X̂ ∈ RNW×Ne where,
due to the dimensionality reduction adopted, some entries
could get a sign flip; hence, the absolute value of the elements
of X̂ is taken. Given that the number of columns of the
estimated mixing matrix W might be different from the real
one, even after OMP, the matrix X̂ might have a different
number NW of rows than X. Usually, in these cases, part
of the estimated sources contains only residual crosstalk due
to the separation. For this reason, we perform a skimming
operation that deletes all the negligible rows. This operation
is performed deleting all the rows X̂i,: that satisfy

max X̂i,:

max X̂
< Γ (17)

where max X̂ is the maximum value in X̂, and Γ ∈ [0, 1] is
the skimming threshold. In conclusion, at the end of the UBSS
we obtain a matrix Z ∈ RL×Ne where L is the final number
of estimated sources.

IV. JAMMER ATTACK DETECTION

After separating the transmitted energy profiles of legitimate
nodes and the jammer, we analyze the temporal relationship
between such emitted profiles, exploiting a causal inference
tool to detect the jammer.

A. Excision Filter

The jamming detection algorithm presented in Section IV-C
is based on the temporal dynamics of the packet flows gen-
erated by the nodes and the jammer. To lighten the causality
inference procedure, we process the time series in Z to obtain
sequences of 0s and 1s; this is performed by an excision filter
which zeroes out the energy samples due to crosstalk [34].
The output is matrix A ∈ RL×Ne with entries

al,n =
{

1 if zl,n ≥ λl

0 otherwise (18)

Algorithm 2 Estimate of the Mixing Matrix

Input : Yk ∈ RNS×Nk , k = 1, . . . ,K
Output: W

1 for k from 1 to K do
2 Ĥk ← [ ]
3 for q from 1 to NS do
4 R← Yk/yk

q,:

5 R1, . . . ,RI ← FindSubMatrices(R)
6 for i from 1 to I do

7 ĥ:,i ←
[⟨ri

1,:⟩,...,⟨r
i
NS,:⟩]

T

||[⟨ri
1,:⟩,...,⟨ri

NS,:⟩]T||2

8 Ĥk ←
[
Ĥk ĥ:,1 . . . ĥ:,I

]
9 end

10 end
11

12 Wk ← Step 3: DimensionalityReduction(Ĥk)
13 end
14 W← Step 4: DuplicateElimination(W1, . . . ,WK)

Step 2:
Pseudo
Channel
Matrix

Estimation

where the threshold λl is set as a fraction q ∈ [0, 1] of the
maximum of zl,:, i.e.,

λl = q ·max
n

zl,n, l = 1, . . . , L. (19)

B. Transfer Entropy for Causal Inference

The smart jammer transmits solely after the detection of
the transmission of a legitimate user. Hence, we expect to find
an underlying causal relationship between the energy profiles
transmitted by the users and the jammer, in which the latter is
the effect and the others are the causes. A state-of-the-art tool
for causal inference in time series is transfer entropy (TE) [29],
[30]. Considering two rows ai,: and aj,: of A, the TE from
ai,: to aj,: is a conditional mutual information defined as

TEi→j(k, r) = I (aj,n;ai,n−1:n−r|aj,n−1:n−k)

= E
[

log2

p (aj,n|ai,n−1:n−r,aj,n−1:n−k)
p (aj,n|aj,n−1:n−k)

]
(20)

where p(·|·) is a conditional probability mass function, I(·)
indicates the mutual information, and k and r are time
lags. As in [28], histogram based estimates are computed
for the probability mass functions p(·|·), for each possible
configurations of aj,n, aj,n−1:n−k, and ai,n−1:n−r. TE can be
interpreted as the amount of information in the current values
of aj,: that is contained in the past values of ai,:, given the
past values of aj,:. If ai,: has no influence on aj,:, then the two
probabilities in the fraction are equal and TEi→j(k, r) = 0.
Otherwise, if some information flows from ai,: to aj,:, then
TEi→j(k, r) > 0. TE, unlike mutual information and cross-
correlation, is asymmetrical and, thus, it allows identifying the
direction of the information flow between the time series.

C. Jammer Detection via Causal Inference

Let us consider a wireless network with a star topology,
in which the nodes communicate with the gateway or AP so
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Algorithm 3 AvOTE for Jammer Attack Detection

Input : A ∈ RL×Ne , kmax, rmax, θ
Output: Decision H ∈ {H0,H1}

1 v← 0
2 for j from 1 to L do
3 b←

∑L
i=1,i̸=j ai,:

4 Perform grid search to set k and r:
5 ksel ← 0
6 rsel ← 0
7 for k from 1 to kmax do
8 for r from 1 to rmax do
9 if TEb→j(k, r) > TEb→j(ksel, rsel) then

10 ksel ← k
11 rsel ← r
12 end
13 end
14 end
15 vj ← TEb→j(ksel, rsel)
16 end
17 TEmax ← maxj{vj}

18 H ← TEmax
H1

≷
H0

θ

that the energy profiles transmitted are not causally related.
We now seek to detect the information flow from the signals
emitted by the legitimate nodes toward the jammer. Hence,
we evaluate TEi→j(k, r) for each possible pair of transmitters
(i, j), expecting that the measure of causality will be more
significant when the ith transmitter is a legitimate node and
the jth is the jammer. On the contrary, TE will be negligible
when both transmitters are legitimate. This procedure implies
calculating L(L − 1) values of TE, where L is the number
of estimated transmitters. To reduce the number of TE com-
putations, we propose a novel approach named all-versus-one
transfer entropy (AvOTE). Considering that during its sensing
phase, the jammer collects energy samples corresponding to
the superposition of the signals emitted by all the legitimate
nodes, we expect to find a causal relationship in which the
sum of the signals emitted by the nodes is the cause and
the jamming signal is the effect. Therefore, let us introduce
the sum vector b ∈ R1×Ne , defined as b =

∑L
i=1 ai,: with

i ̸= j. Hence, we evaluate TEb→j(k, r) for each transmitter
j = 1, . . . , L, namely the TE from the sum of all the other
signals towards the jth signal. We expect that only when
the jth transmitter is the jammer the corresponding TE will
be significant and the highest among all. This procedure is
computationally lighter than the previous one because it only
requires the computation of L TEs. Then, given that we aim
to detect the presence of one jammer, we find the maximum
of the TEs evaluated, TEmax.

A high TEmax value indicates that a jammer is likely to be
present, while a small value denotes its absence. Thus, TEmax
can be interpreted as a test statistic, hence

TEmax
H1

≷
H0

θ. (21)

The null hypothesis, H0, stands for the case when no jamming
is present, while the alternate hypothesis, H1, corresponds
to its presence. The threshold θ is given by setting the
false alarm probability pFA = P(TEmax > θ|H0), where the
null distribution, is calculated via histogram based probability
density function estimation. The correct time lags for calcu-
lating TE are set by performing a grid search and finding
the combination that outputs the highest value of TE. The
complete AvOTE method is detailed in Algorithm 3.

V. NUMERICAL RESULTS

In this section, several tests to evaluate the performance
of the whole processing chain are presented. As a case study,
we simulated a wireless network composed of NT transmitters
and a gateway, a patrol of NS RF sensors, and a jammer,
all randomly deployed in a square area of side 100 m. The
positions of all the actors (nodes, sensors, and jammer) during
the following simulations are shown in the supplementary file.
The network nodes adopt the LoRa modulation and Long
Range Wide Area Network (LoRaWAN) MAC protocol [41],
[42]. The operating frequency is set to f0 = 868.1 MHz and
the channel bandwidth is fixed to W = 125 kHz. According to
the European regulation EU868, the transmission duty cycle
is set to 1% [43]. We then assume that during the sensors
observation time Tob, each wireless node transmits one LoRa
packet. Before sending the packet, each transmitter randomly
selects a spreading factor (SF) between the available ones,
from 7 to 12. In general, Tob has to be sufficiently large
to include several transmissions in order to ensure sufficient
statistical significance of the estimated TE.

The collision event is defined as the overlap between the
transmission of two or more signals (including the jammer),
as in a collision channel model. The packets are structured
according to [42] and [44], using the implicit header mode
and Hamming code with rate 4/7. The MAC payload size for
each packet is selected randomly in the interval between 1 byte
and the maximum payload size allowed by the EU868 regional
parameters [43].

Regarding the channel, a power-law path-loss model with
exponent α = 4 and log-normal shadowing is considered. The
transmit power of the nodes is PTX = 14 dBm according to
the EU868 regional parameters, while the jamming signal is
a sine wave at 868.1 MHz with power PJ = 27 dBm. The
receive antenna gain of all the devices (RF sensors and the
jammer) is set to 0 dBi and the noise figure is F = 14 dB.

The sensing, attack, and idle times of the jammer are set
to T1 = T2 = TI = TJ = 50 ms, while sensors estimate the
energy of the received signal within a time bin Te = 1 ms.

A. Algorithms’ Parameter Settings

Table II summarizes the parameter settings adopted in the
processing chain depicted in Fig. 3. The thresholds ξ and ϵ,
for transmission detection by the patrol and ED in the jammer,
respectively, ensure a false alarm probability pFA = 0.01.

The quantization-based clustering algorithm proposed
in [27] requires the setting of three parameters, the number of
bins M0 and two thresholds J1 and J2 that regulate the number
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TABLE II
SYSTEM PARAMETERS FOR THE CASE STUDY

of non-negligible bins that have to be considered. We consider
J1 = J2 = J and set both M0 and J at 50, i.e., quantization
is performed over 50 bins, and if one of them has a number
of samples less than 50, it is discarded.

The singular value selection parameter Λ̄ is fixed to
0.01 according to the scree plot approach [37]. The duplicate
elimination in the UBSS is carried out with a threshold
β = 0.05. Skimming is performed with Γ = 0.001 since the
negligible rows of X̂ are several orders of magnitude lower
than the significant ones.

Let us discuss the setting of the UBSS parameter, γ.
Since the estimated channel matrix, W, might have duplicated
columns, then µ(W) ≃ 1 and γ = 1 from eq. (16). Setting
the sparsity constraint to 1 has a direct consequence in the
estimation of the sources, clearly portrayed in Fig. 6, in which
a scenario with NS = 5 sensors, a single transmitter, and
the jammer is considered. In fig. 6, the image above shows
the transmitted signals, while in the middle and below the
reconstructed sources with and without the dimensionality
reduction procedure are depicted, respectively. It is possible
to notice how in both cases, the reconstructed signal in blue is
fragmented because of the sparsity constraint that imposes that
in each column x:,i only one entry has to be nonzero. Hence,
in case of a collision, only one of the colliding signals will be
correctly estimated in each energy sample. This approach leads
to a non-perfect signal reconstruction when collisions arise,
but it is tolerable since its impact on the jamming detection is
low, as shown in the following simulations. Moreover, Fig. 6
shows how dimensionality reduction allows a more accurate
reconstruction of the sources.

The excision filter threshold is set to q = 0.01, while the
time lags for TE are set to kmax = rmax = 8 samples.

B. TE, Cross-Correlation and Impact of Shadowing

As detailed in Section IV, TE is the tool we propose
to infer the causality between the jammer and the network
nodes. However, a much simpler approach is to use the
cross-correlation as an indicator of a possible causal rela-
tionship between two time series. In this case, given two
reconstructed energy profiles ai,: and aj,:, the cross-correlation
is

ci↔j(m) =
Ne−m∑
n=1

ai,naj,n+m (22)

where n indicates the time samples and m is the time lag. For
jamming detection through the cross-correlation, it is possible
to modify the Algorithm 3 by removing the lines from 4 to
14 corresponding to grid search for TE, while lines 15, 17,

Fig. 6. Above are the true energy profiles of a single transmitter and the
jammer. In the middle, the energy profiles recovered with the algorithm in
Section III. Below is the result with the algorithm in [27]. For both algorithms,
NS = 5, and OMP is used in the second step. Notice that three sources
are reconstructed instead of two in the image below. The phantom source
is represented in purple and corresponds to the overlap between transmitter
and jammer packets. On the contrary, the proposed solution correctly recovers
only two sources with appreciable fidelity of the jammer profile.

and 18 are replaced with

vj ← max
m
|cb↔j(m)| (23)

CCmax ← maxj{vj} (24)

CCmax
H1

≷
H0

θ. (25)

In this section, the performance of the complete jammer
detection algorithm under different shadowing regimes is
discussed, and a comparison between TE and cross-correlation
as a measure of causality is given. Fig. 7 shows the receiver
operating characteristic (ROC) curves of the proposed method-
ology in case of different shadowing intensities using both
TE and cross-correlation. For this simulation, we deployed
NT = 10 transmitters, NS = 5 sensors, and a jammer in
the area. The ROC curves are obtained across NMC = 104

Monte Carlo iterations in which the traffic profiles generated
by the nodes change and the position of all the actors is
provided in the attachment. The patrol observation time is
Tob = 20 s, in which every node transmits one packet. The
packet transmission start times vary so that the number of
collisions ranges between 0 and 2 across the Monte Carlo
iterations.

Although for low false alarm probabilities, the cross-
correlation ROC is above the TE’s, the latter quickly out-
performs the former, reaching a probability of detection over
0.9 with a relatively small false alarm probability, even in case
of high shadowing regime.

Fig. 7 shows that, as expected, an increase in the shadowing
intensity degrades the overall performance of the methodology.
This is due to a non-correct reconstruction of the transmitted
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Fig. 7. ROC curves for TE and cross-correlation with different values of
shadowing intensity σ(dB). Comparison with the state-of-the-art method [23].

Fig. 8. ROC curves as a function of the number of sensors NS.

energy profiles by the UBSS. However, note that TE exhibits
robust performance even for σ = 8 dB.

The presented method is compared with a ML-based
approach for jamming detection proposed in [23], in which
a gradient boosting algorithm is trained using RSS and PDR
as features and used to detect and classify the jammer. Since,
in our scenario, the PDR is not available at the patrol (it
should be part of the network to retrieve such information),
we trained the learning model using only RSS to ensure a fair
comparison. Fig. 7 includes the performance of both solutions.
Since the sensor positions are fixed during the Monte-Carlo
iterations, the performance of the ML-based algorithm is
optimal when σ(dB) = 0. In this case, RSS is sufficient to
detect the presence of the jammer transmitting at high power.
However, when increasing shadowing intensity, our algorithm
significantly outperforms the existing scheme.

C. Number of Patrol Sensors

In this section, we investigate the minimum number of
RF sensors that guarantee a required jammer detection per-
formance. Given NT = 10 transmitters and a jammer with
the same positions adopted for Subsection V-B, in Fig. 8 we

compute the ROC curve for different number of patrol sensors
NS = {4, 5, . . . , 9}. For each of the NMC = 104 Monte-
Carlo iterations the sensors positions are decided in a random
way keeping a minimum distance among them, in particular
we set at least 40 m of distance with NS = 4, 30 m for
NS = {5, 6, 7, 8}, and 25 m when NS = 9. A limit of at most
two collisions among transmitters in Tob = 20 s is considered
as in the previous subsection. We consider a shadowing with
σ(dB) = 3 both for transmitter/jammer-patrol channel and
for transmitter-jammer channel. It is possible to see that from
NS = 4 to NS = 7 the performance noticeably increases,
while from NS = 7 to NS = 9 it remains constant. Since we
tackled the underdetermined case, the number of sensors does
not exceed the number of transmitters, which is 10. If more
sensors are available, classical overdetermined BSS schemes,
e.g., independent component analysis (ICA) can be used [45].

Comparing the ROC curve for σ(dB) = 3 and NS = 5 in
Fig. 7 with the corresponding curve in Fig. 8, a drop in
performance can be notices. The reason lies in the different
setup for patrol sensors: in Fig. 7 sensors have fixed positions
chosen for good coverage of the area, while in Fig. 8 at every
iteration, their positions change in a random way respecting
only a minimum distance, so sometimes unfavorable place-
ment occurs. For the same reason, a complete degradation
in performance is observed for the algorithm [23]. Indeed,
by changing the positions, there is a loss of information
contained in the RSS values used during training.

The same simulation setup is employed to compare the
UBSS algorithm in Section III with the original algorithm
in [27]. In both cases, the second step of reconstruction
of the transmitted energy profiles is performed with OMP,
so the difference resides in the estimate of the mixing matrix
where in [27] they do not use a transmission detection and
dimensionality reduction steps. To underline the different
performance, given the matrix Z, we compute the correlation
among each row of Z and the original energy profiles in X.
The result is a matrix C ∈ RL×(NT+1) where the element
cij is the correlation between the ith estimated source and
the jth row of X. From C, only the maximum value of
each column is considered to obtain a vector m ∈ RNT+1

that becomes a matrix M ∈ RNMC×(NT+1), iterating the
simulation for NMC = 1000. In Fig. 9, a pixel pi,j depicts
the mean of M:,j for a given number of sensors NS = i.
This performance metric provides a measurement of similarity
among original and estimated energy profiles. pi,j with an high
value implies the original profile Xj,: is correctly estimated
during the NMC iterations for NS = i. In the absence of the
jammer, the two methods have comparable performance: the
first eight transmitters are estimated with good accuracy, while
the reconstruction of the last two, which cause the collision,
is affected. In the presence of a jammer, the situation is more
interesting because the jamming attack is poorly estimated
by the algorithm in [27], while, on the contrary, with our
methodology, it is the source estimated at best.

D. Effect of Collisions

As we have seen, since collisions among nodes’ packets
are a nuisance in the reconstruction stage, it is necessary
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Fig. 9. Similarity degree among transmitters profiles and estimated sources (the color scale is on the right). Each pixel of the images depicts, for a given
NS in the y-axis, the correlation coefficient of two time series: the true energy profile of the transmitter indicated in the x-axis and the corresponding profile
estimated via UBSS. Performance of the proposed algorithm in Section III without, (a), and with the jammer,(b). Performance of the algorithm in [27] without,
(c), and with the jammer, (d).

to investigate their impact on the performance of the pro-
posed methodology. In particular, there are two aspects to
analyze: the consequences of increased collisions and their
total absence. This last case summarizes the scheduled access
protocols where, since a better reconstruction performance of
the UBSS should be expected, then a better jammer detection
will occur.

Let us consider NT = 10, NS = 5, a jammer, with fixed
positions during simulation equal to Subsection V-B, Tob =
20 s, σ(dB) = 3, and an unique SF= 11. The jammer detection
probability is computed for a false alarm probability of 5%,
number of collisions Ncol from 0 to 4, and NMC = 5000 Monte
Carlo iterations. With no collisions, a time division multiple
access (TDMA) protocol is simulated, so each transmitter
sends its packet in a time slot equal to the packet duration,
and a guard time of half the packet duration is present among
the slots. A collision only occurs between two packets, e.g.,
Ncol = 4 and NT = 10 means that 8 packets are involved
in the collisions. The results are shown with a orange bar
plot in Fig 10. As already mentioned, in a TDMA protocol
without collisions, the performance exceeds the other scenarios
with a substantial gap. Increasing the collisions, the UBSS
performance decrease, however until Ncoll = 3 the detection
probability remains roughly constant and above the 90%.

The red bar plot in Fig 10 is obtained with the same setting
but placing NT = 20 and Tob = 30 s.10 Since the collisions
number is unchanged, the sparsity level in Y is the same and
the UBSS performance does not degrade. At the same time,
instead, the greater presence of packets permits to capture the
causal rapport more easily. Regarding Ncol = 4 and NT =
10 then 80% of the packets are involved in the collisions;
with NT = 20 the rate halves at the 40%. Thus, assuming
that the collision packets are badly estimated by the UBSS,
thanks to the most number of packets, the possibility to remain
more faithful to the original sources enhances.

E. Impact of signal-to-jammer ratio (SJR)

This section studies the performance of AvOTE varying
the SJR, defined as the ratio between the nodes and the
jammer transmit powers. The scenario consists of NT =
10 transmitters, NS = 5 patrol sensors, and a jammer, and for

10This scenario is also detailed in the supplementary file with all actor
positions. Furthermore, the observation time is increased here to ensure that
each node transmits at least one packet.

Fig. 10. Probability of detection as a function of the number of collisions
for two different values of the number of transmitting nodes NT.

each of the NMC = 3000 Monte-Carlo iterations, the positions
of the sensors are randomly chosen within the area keeping a
minimum distance among them of 30 m, while the positions of
network nodes and the jammer are the same of Section V-B.
In Fig. 11, the probability of detection for different values
of SJR is reported, considering a false alarm probability of
5%. As expected, the detection probability reduces when the
SJR grows. In fact, at high SJRs the power received from
the jammer becomes comparable to or even less than the ones
received from the legitimate nodes. In this situation, the drop in
the detection probability is presumably due to the inability of
UBSS to separate the jammer profile from the others. However,
notice that if the jamming power is low, the effectiveness of
the attack is also reduced.

F. Computational Complexity

This section discusses the computational complexity of
the proposed jamming detection scheme. To determine the
complexity, addition, subtraction, multiplication, and division
are valued one floating-point operation (FLOP).

• Transmission detection. Based on (4), each sensor com-
putes the energy profile, so the overall complexity for
Algorithm 1 is O(NSNeN

2
d).
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Fig. 11. Detection probability as a function of the SJR with different
shadowing intensities, σ(dB), and pFA = 5%.

• Estimate of the mixing matrix. Considering loops and
operations in Algorithm 2 we achieve a complexity

O
((

(2INS + INSNR + NSNk)NS + NSN2
h

)
K

)
(26)

where NR is the number of columns of the largest sub-
matrix Ri, i = 1, . . . , I . Row 5 is a quantization-based
clustering algorithm that does not contain any multipli-
cations or sums, but comparisons, so its complexity is
neglected [27].

• Orthogonal matching pursuit. Based on [46], the com-
plexity of reconstructing the transmitted energy profiles
is O(γNSNWNe).

• All-versus-one transfer entropy. The input vectors are
sequences of 0s and 1s of length Ne, hence, one computa-
tion of TE takes O(Ne) [28], [47]. Since TE is calculated
inside 3 loops in AvOTE algorithm, the complexity for
this step is O

(
LkmaxrmaxNe +L(L−1)

)
, where the term

L(L− 1) is due to the sum in row 3 of Algorithm 3.
• Cross-correlation. Adopting fast Fourier transform

(FFT) to compute the cross-correlation, the complexity
for this version of Algorithm 3 is O

(
LNe log2(Ne)

)
.

Considering Tob = 20 s and W = 125 kHz, we have
NdNe ∼ 106. Hence, the largest term of UBSS complexity
is the one related to the computation of the energy. There-
fore, the overall complexity of the UBSS can be reduced to
O(NSNeN

2
d).

VI. CONCLUSION

We proposed a novel framework for reactive jammer detec-
tion using a patrol of RF sensors external to the network to be
protected. Sensors collect the received power computed over
short time intervals and share such energy profiles with a FC.
A novel UBSS method, grounded on [27], is performed at
the FC to separate the transmitted energy profiles from the
mixtures received by the sensors. Finally, the TE is adopted
as a causal inference test to detect the presence of a reactive

jammer. Extensive numerical results proved that our UBSS
approach outperforms the reference method in literature, guar-
anteeing satisfactory reconstruction of the jammer temporal
activity profile, and that the overall methodology exhibits
excellent performance: up to 99% detection probability in the
absence of collisions between user packets, outperforming a
state-of-the-art algorithm. To provide a complete investigation
of the solution, we demonstrated that performance degradation
arises primarily when the sources are poorly reconstructed by
UBSS due to high shadowing intensity, an insufficient number
of sensors, and in the presence of many collisions.
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