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Abstract— The open-radio access network (O-RAN) embraces
cloudification and network function virtualization for base-band
function processing by dis-aggregated radio units (RUs), dis-
tributed units (DUs), and centralized units (CUs). These enable
the cloud-RAN vision in full, where multiple mobile network
operators (MNOs) can install their proprietary or open RUs, but
lease on-demand computational resources for DU-CU functions
from commonly available open-clouds via open x-haul interfaces.
In this paper, we propose and compare the performances of
min-max fairness and Vickrey-Clarke-Groves (VCG) auction-based
x-haul and DU-CU resource allocation mechanisms to create
a multi-tenant O-RAN ecosystem that is sustainable for small,
medium, and large MNOs. The min-max fair approach minimizes
the maximum OPEX of RUs through cost-sharing proportional
to their demands, whereas the VCG auction-based approach
minimizes the total OPEX for all resources utilized while extracting
truthful demands from RUs. We consider time-wavelength divi-
sion multiplexed (TWDM) passive optical network (PON)-based
x-haul interfaces where PON virtualization technique is used to
flexibly provide optical connections among RUs and edge-clouds
at macro-cell RU locations as well as open-clouds at the central
office locations. Moreover, we design efficient heuristics that yield
significantly better economic efficiency and network resource uti-
lization than conventional greedy resource allocation algorithms
and reinforcement learning-based algorithms.

Index Terms— Min-max fairness, multi-tenant Open-RAN,
reinforcement learning, resource allocation, VCG auction.

I. INTRODUCTION

THE fifth-generation (5G) radio access networks (RANs)
are standardized to meet a diverse set of QoS require-

ments to support broadband, low-latency, and machine-type
communications. Applications like mixed reality, telesurgery,
high-definition video streaming, and Industrial Internet-of-
Things, to name a few, will be free from the spectrum crunch
and network resource scarcity issues of the legacy RANs.
However, the existing mobile networks with their “one size
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Fig. 1. A schematic diagram showing O-RAN architecture with functions
of RU, O-DU, and O-CU and their corresponding interfaces.

fits all” architecture lack sufficient flexibility and intelligence
for efficient catering of such requirements [1]. Therefore, the
necessity for a major architectural revolution is envisaged for
beyond 5G and sixth-generation (6G) RANs. Over the past
few years, major mobile network operators (MNOs) across
the globe are collaborating within the Open-RAN (O-RAN)
Alliance to standardize an open and smart RAN architecture
that can perform complex RAN management with the aid of
software-defined networking (SDN), network function virtu-
alization (NFV), and edge computing (EC) technologies [2].
This architecture typically follows 3GPP recommendations
where the RUs perform low-PHY functions (typically split
7.2 and 7.3), while high-PHY, MAC, RLC, RRC, and PDCP
functions are processed by the DU-CUs that can be hosted on
OLT-Clouds with commercial off-the-shelf (COTS) hardware,
as shown in Fig. 1. Recently, the IEEE P1914.1 standardization
working group was created to specify the next-generation
front-haul interface (NGFI). The RU-DU interface is known
as the NGFI-I, or the front-haul (maximum one-way latency
bound = 100 µsec), and the DU-CU interface is known as the
NGFI-II or the mid-haul (maximum one-way latency bound =
1 msec) [3]. The interface beyond CU to the 5G core is
known as the back-haul; hence, the general term x-haul is
used.

The incorporation of open clouds for DU-CU function
processing over the open front/mid-haul interfaces in the
O-RAN architecture creates new business opportunities for
small, medium, and large MNOs as well as network service
providers (NSPs) [4]. In turn, this creates a multi-tenant
O-RAN ecosystem where several MNOs deploy their RUs with
macro and small-cell coverage over a certain geographic area
but procure front/mid-haul and DU-CU function processing
resources from the open and shared resource pool provided
by various NSPs [5]. The primary benefit of this multi-tenant
O-RAN architecture is minimization of the CAPEX and OPEX
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for the MNOs. The techno-economic analysis in [6] shows
that ∼40% CAPEX and ∼15% OPEX over 5 years can
be reduced by adopting SDN-based architectures for mobile
network virtualization. In practice, government, municipality,
or an alliance of MNOs can be the NSP that owns the open
x-haul and cloud resources and distribute the resources among
the MNOs. On the other hand, a competitive market model can
also be created where the MNOs compete against each other
or form opportunistic coalitions for procuring their required
x-haul and cloud resources. These observations motivate us to
propose efficient resource allocation mechanisms that create a
multi-tenant O-RAN ecosystem that is sustainable for small,
medium, and large MNOs.

The cloud servers installed at a central office (CO) or optical
line terminal (OLT) locations are referred to as OLT-Clouds,
but their significant intermediate distance may become disad-
vantageous for supporting low-latency applications and front-
haul interfaces (typical PON length ≥ 10 km). This hurdle
can be overcome by installing Edge-Clouds at macro-cell RU
locations to host DU-CU and local core functions for some
of the neighboring small-cell RUs [7]. Moreover, efficiently
utilizing geographically distributed Edge-Clouds can lead to a
better cost efficiency of a RAN than centralized OLT-Clouds.
Nonetheless, the RUs supporting latency-tolerant broadband
applications can be connected to OLT-Cloud and 5G core
without such issues. Therefore, we consider the TWDM-PON
architecture proposed in [8] as the x-haul interfaces to cre-
ate a logical mesh topology that facilitates the small-cell
RUs to be connected with OLT-Clouds at CO locations
or Edge-Clouds at macro-cell RU locations in a flexible
manner. This architecture supports East-West communication
along with traditional North-South communication and its effi-
ciency over similar architectures in literature was also proven
in [8].

We critically observe that a large body of the existing litera-
ture mainly focuses on allocating computational resources only
and ignores communication resources of the x-haul interfaces.
Moreover, while connecting RUs from different MNOs to
either Edge-Cloud or OLT-Cloud over the open front/mid-
haul interfaces, the OPEX of the RUs are calculated by
either of the well-known methods like uniform sharing, utility
maximization, min-max fairness, and proportional fairness [9].
Note that this resource allocation problem can be considered
as an assignment problem, but the RUs can not demand any
specific amount of resources as in the conventional setting.
Each RU only knows its front/mid-haul datarate and RU-
DU-CU processing requirements corresponding to its split
option. After all the RUs inform their respective front/mid-
haul datarate to the NSP, sufficient resources are allocated
by the NSP such that the front/mid-haul data generated by
the RUs in each slot duration (5G slot duration can be
125, 250, 500, or 1000 µsec) are transmitted and processed
within the maximum latency bounds. Therefore, in the uniform
sharing approach, when the cost of total utilized resources is
uniformly distributed among the RUs, inefficiency may arise
if RUs with lower resource requirements pay higher prices.
In the utility maximization approach, the profit of the NSP
is maximized while RUs are connected to Edge/OLT-Clouds.

Hence, the RUs from wealthy MNOs will get priority and the
RUs from poor MNOs may suffer from resource starvation
at high-load conditions. The proportional fairness is a fair
resource allocation method where fairness is achieved through
maximization of a logarithmic utility function.

Nevertheless, in this paper, we embrace the min-max fair-
ness approach with proportional cost sharing method, where
we connect the RUs to Edge/OLT-Clouds such that the
maximum OPEX of the RUs is minimized by allocating
resources proportional to their demands and satisfy their
latency requirements. Also, the RUs from different MNOs are
fairly chosen for allocation such that poor MNOs do not suffer
heavily during high-load conditions. We design this method
for creating a multi-tenant O-RAN ecosystem where all the
small, medium, and large MNOs get fair opportunities for
OPEX minimization. However, the decisions made by this
scheme strongly depend on the revealed resource demands of
the RUs to the NSPs and the RUs may not be always truthful
in revealing their resource demands if there exist opportunities
to gain extra incentives from the market. This motivates
us to design a Vickrey-Clarke-Groves (VCG) auction-based
mechanism that allocates resources to RUs while minimizing
the cost of total utilized resources but uses a special payment
rule that enforces truthful revelation of resource requirements
as a weakly dominant strategy equilibrium for the RUs [10].
Our contributions in this paper are:

(a) We propose a multi-tenant O-RAN architecture where RUs
from small, medium, and large MNOs can be connected
to Edge/OLT-Clouds for their DU-CU functions for low-
latency and broadband applications in a sustainable man-
ner over TWDM-PON-based front/mid-haul interfaces via
East-West and North-South links.

(b) We formulate an integer non-linear program (INLP) for
the min-max fair resource allocation. In this formulation,
we minimize the maximum cost for leasing front/mid-
haul and DU-CU resources of each RU (resource allo-
cation is proportional to demand) while satisfying the
latency requirements of the low-latency and broadband
applications.

(c) We formulate a second INLP for the VCG auction-based
resource allocation. In this formulation, we minimize the
total cost for leasing front/mid-haul and DU-CU resources
of all the RUs. Moreover, a payment rule is designed
that ensures truthful revelation of resource demands of the
RUs to prevent them from taking unfair advantages while
paying for consumed resources.

(d) We design polynomial-time algorithms for efficient imple-
mentation of the min-max fair and VCG auction formula-
tions. Furthermore, we compare the economic efficiency
and network resource utilization achieved by our proposed
algorithms against state-of-the-art nearest-first (greedy)
and reinforcement learning (RL)-based (multi-arm bandit)
algorithms through numerical evaluation to showcase their
usefulness in practice.

The rest of this paper is organized as follows. Section II
reviews some related works. Section III describes the multi-
tenant O-RAN architecture. Section IV presents the system
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model. Section V presents the min-max fairness, VCG auction,
and baseline (greedy nearest-first and RL-based) methods.
Section VI presents numerical evaluation results. Finally,
Section VII provides the concluding remarks.

II. REVIEW OF RELATED WORKS

Resource allocation and management problems are funda-
mental research challenges in any networking environment
and a large volume of literature exists on this area spanning
across all types of network scenarios [11]. The O-RAN for
beyond 5G/6G mobile communication systems is no excep-
tion to this as its flexibility in terms of bandwidth, latency,
and QoS requirements introduces several interesting research
challenges [12]. Before the O-RAN architecture was proposed,
several resource allocation or radio resource head (RRH) to
base-band unit (BBU) assignment problems were solved using
mathematical optimization and game theoretic tools for the
Cloud-RAN (C-RAN) architecture by the authors of [13], [14],
[15], [16]. The authors of [17] designed a dynamic two-stage
mechanism for downlink resource allocation and BBU-RRH
assignment in C-RAN. The authors of [18] investigated a
joint RRH-BBU association and energy sharing problem to
minimize brown energy usage. Again, the authors of [19]
investigated the RRH-BBU mapping problem to minimize
the network power consumption by reducing the number
of active BBUs. Moreover, the authors of [20] studied the
joint RRH clustering and RRU activation problem with QoS
constraints to minimize the energy consumption of RRHs. The
authors of [21] demonstrated a multi-vendor multi-standard
PON for 5G x-haul that performs the control and management
operations by SDN/NFV technologies.

After the formation of the O-RAN Alliance, as the standard-
ization of virtualized RAN started, researchers from academia
and industry started to propose various interesting solutions
to overcome O-RAN deployment and resource management
challenges. Recently, the authors of [22] provided a very
elaborate overview of the architecture and components of
O-RAN, explored artificial intelligence (AI)-based use cases,
and discussed various research opportunities across different
engineering sectors. The authors of [23] provided detailed
discussions on the ongoing O-RAN Alliance standardization
activities with various analyses supported by a study of the
traffic steering use case in a modular way following the
open networking approach. We also shared several insights
on optical transmission network (OTN) and optical dis-
tributed network (ODN)-based front/mid-haul network design
for O-RANs from our observations in [24]. Alongside these,
the authors of [25] formulated a two-step mixed-integer pro-
gramming problem for finding the optimal power allocation,
physical resource block (PRB) assignment, the number of
virtual network functions (VNFs), and the number of RUs. The
authors of [26] modeled the RU-DU assignment problem as a
2D bin packing problem and proposed a deep reinforcement
learning-based self-play method to achieve efficient RU-DU
resource management. Moreover, the authors of [27] designed
a team learning algorithm for implementing a near-real-
time (near-RT) radio intelligent controller (RIC) of O-RAN.

However, neither of the aforementioned works focused on
the challenges of designing flexible front/mid-haul interfaces
between RUs and Edge/OLT-Clouds. Moreover, no compar-
ative analysis is available between the conventional greedy
heuristics and learning-based resource allocation algorithms.

Another important aspect of the O-RAN architecture, which
essentially evolves from the C-RAN architecture, is its natural
ability to facilitate multi-tenancy, i.e., a pool of network
resources can be shared among multiple MNOs [28]. The
multi-operator RAN (MORAN) allows two or more MNOs to
share every component of a RAN except the radio carriers,
whereas the multi-operator core network (MOCN) allows
two or more core networks to share the same RAN or the
carriers [29]. In [30], the authors demonstrated a virtual
network controller enabled multi-tenant virtual network on
top of multi-technology OTNs. We also performed some
initial studies on the resource allocation problem for multi-
tenant O-RAN ecosystems in [31]. However, a more detailed
investigation of system performance, economic analysis, and
robust resource allocation mechanisms implementable in a
practical competitive market scenario is required.

III. MULTI-TENANT O-RAN ARCHITECTURE

Fig. 2 shows the considered O-RAN architecture in a
multi-tenant scenario where multiple MNOs install neighbor-
ing RUs with hexagonal macro-cell and circular small-cell
coverage. Each MNO pays a fee for leasing networking (i.e.,
for x-haul) and computing resources (i.e., DU-CU processing
at Edge/OLT-Clouds) according to a certain payment scheme.
Furthermore, all the MNOs need to pay a default price to
the mediator, acting as the open platform provider to cover
the cost of the resources required for RAN management and
control plane operations. Recently, ITU-T has drafted recom-
mendations for using TWDM-PONs as an optical front/mid-
haul solution as TWDM-PONs can support 100 Gbps or
more aggregated datarate (i.e., in upcoming standardization)
which can be scaled further by combining additional wave-
lengths [32]. Moreover, other recent work has addressed
PON slicing isolation [33] and compliance with service level
agreement (SLAs) [34]. Thus, TWDM-PON-based interfaces
are used to connect both the macro and small-cell RUs to a CO
with multi-level reflective splitters. These splitters are designed
so that they can be dynamically reconfigured to pass through
or reflect back (i.e., towards the end points) the desired set of
wavelengths (the concept is taken from [8]). The wavelengths
that are passed through, establish the North-South commu-
nication links (downlink: green, uplink: blue), whereas the
reflected wavelengths establish the East-West communication
links (downlink: purple, uplink: red). In terms of network
hierarchy, each level-1 reflective splitter aggregates multiple
RUs and each level-2 reflective splitter aggregates multiple
level-1 reflective splitters and all their respective RUs for a
cost-efficient deployment. A set of level-1 reflective splitters
are used to connect RUs and Edge-Clouds directly, while
multiple level-1 reflective splitters are connected to a level-
2 reflective splitter to reach through other PON branches.

A local connectivity between small-cells and macro-cells via
East-West communication links can be achieved by installing
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Fig. 2. The proposed TWDM-PON-based multi-tenant O-RAN architecture where RUs from multiple MNOs (hexagonal macro-cell and circular small-cell
coverage area are shown in blue, green, and orange for three different MNOs) can be connected to Edge-Cloud or CO OLT-Cloud via the North-South or
East-West virtual-PONs (indicated by red A, B, C) for the respective DUs and CUs.

an Edge-OLT at the macro-cell, while the small-cells can
host a simple ONU. Control signals via the North-South
communication links can be sent to these Edge-OLTs at macro-
cells and ONUs at small-cells to create virtual-PON instances
that communicate via the East-West communication links. For
example, three virtual-PON instances are shown in Fig. 2 and
the ONUs and Edge-OLTs belonging to the same virtual-PON
are labeled as A, B, and C in red. This direct communication
enables ultra-low latency and ultra-low jitter communications
as the signals remain in the optical domain while reflected
back at the splitter. Note that ONUs in virtual-PON instance
A communicate only via level-1 reflective splitter. The same
occurs for instance C. However, ONUs in virtual-PON instance
B can communicate via both level-1 and level-2 reflective split-
ters (i.e., they extend across two PON branches). Both OLT
and Edge-Clouds can host the DU-CU functions. Although
the OLT-Clouds host the main 5G core, the Edge-Clouds can
be used to host local 5G cores [7]. The back-haul traffic
can be routed to the remote data centers via metro and core
networks.

Fig. 3 shows the user plane and control plane interfaces of
the proposed TWDM-PON-based multi-tenant O-RAN archi-
tecture. The RUs for ultra-reliable and low-latency (uRLLC)
services are prioritized to be connected to Edge-Clouds,
whereas RUs for enhanced mobile broadband (eMBB) services
can be flexibly connected to Edge/OLT-Clouds. Although
Fig. 1 shows the most general schematic to highlight the
flexible RAN deployment options provided by the O-RAN
architecture, we choose to place DU and CU functions at a
common Edge/OLT-Cloud because this is the most efficient
configuration for uRLLC and eMBB applications in our judg-
ment. The near-RT RIC mainly interacts with DUs and CUs
through the E2 interface, whose control loops operate with

a periodicity between 10 msec and 1 sec. The near-RT RIC
consists of multiple applications called xApps for per-UE con-
trolled load-balancing, resource block management, interfer-
ence detection and mitigation, QoS management, connectivity
management, and seamless handover control [35]. Alongside
this, the near-RT RIC is connected to the non-real time (non-
RT) RIC by the A1 interface. This non-RT RIC is a com-
ponent of the service management and orchestration (SMO)
framework and consists of rApps to complement the near-RT
RIC for intelligent RAN operation and optimization on a time
scale larger than 1 sec. Therefore, our proposed resource allo-
cation algorithms in this paper can be implemented as control
mechanisms that involve the periodic exchange of information
and decision between RUs, Near-RT RIC, and Non-RT RIC.
We consider that the RUs report their incoming resource
demands to SMO every 1 sec over the O1 interface. Observing
the information over a few seconds interval (operators decide
based on the dynamicity of traffic), the rApps execute our
proposed decision-making algorithms and pass on the decision
to COs over the O1 interface. Accordingly, RUs are connected
to Edge/OLT-Clouds over North-South or East-West TWDM-
PON links. All the intermediate UE connectivity and handover
management functions are handled by the xApps in near-RT
RIC.

IV. SYSTEM MODEL

In this section, we describe the TWDM-PON-based
front/mid-haul communication and RU-DU-CU function pro-
cessing models considered for our problem formulation. The
datarate for the front/mid-haul interface mainly depends on
the split option chosen between RU and DU [36]. With
Split-7.2, all the radio frequency processing, fast Fourier
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Fig. 3. A schematic diagram showing the user plane and control plane inter-
faces of the proposed TWDM-PON-based multi-tenant O-RAN architecture
that supports uRLLC and eMBB services.

transform (FFT)/inverse FFT, cyclic prefix removal/addition,
digital beamforming, and resource element mapping are done
at the RU. The datarate can be calculated as follows [36]:

W7.2 = NP ×NRB ×NSC
RB ×NSF

sym × T−1
SF

×µ×NQ × 2× ζ, (1)

where, NP denotes the number of antenna ports, NRB denotes
the number of resource blocks (RB), NSC

RB denotes the number
of sub-carriers per RB, T−1

SF denotes sub-frame duration, µ
denotes the maximum RB utilization, NQ denotes the quan-
tizer bit resolution per I/Q dimension, and ζ denotes the front-
haul overhead. With Split-7.3, precoding, layer mapping, and
modulation are also done with the aforementioned tasks and
the datarate is calculated as follows:

W7.3 = NL ×NRB ×NRB
SC ×NSF

sym × T−1
SF

×µ× (1− η)×NQ × log2(Mmod)× ζ, (2)

where, NL denotes the number of spatial layers, η denotes
resource overhead, and Mmod denotes the modulation order.
Note that 3GPP recommends Split-7.3 mainly to be used
for downlink transmission, but Split-7.2 can be used for
both uplink and downlink [37]. As front/mid-haul data are
transmitted as periodic bursts of Ethernet frames, the number
of frames in a burst can be calculated as B = ⌈RD × δt/P⌉,
where RD denotes the front/mid-haul datarate, δt denotes the
burst interval duration, and P denotes the payload size of an
Ethernet frame (1500 Bytes). Hence, the actual throughput
of a flow can be calculated by (B × F/δt), where F is
the maximum Ethernet frame size (1542 Bytes). This data
is transmitted over TWDM-PON and cooperative dynamic
bandwidth allocation (Co-DBA) protocol [38] is used for
coordinating RAN and PON capacity scheduling in the uplink
transmission. Furthermore, it is crucial to note that sufficient
communication resources should be available for each RU to
transmit each burst of front/mid-haul data to DU-CU without
failure to ensure a successful end-to-end communication.

The total RU-DU-CU function processing effort per slot in
Giga operations per second (GOPS) is given by [39]:

CRDC =
(

3Na + N2
a +

1
3
×M×Ψ×NL

)
× NRB

5
, (3)

where, Na denotes the number of MIMO antennas,M denotes
the number of modulation bits, and Ψ denotes the coding rate.
This total computational effort CRDC is distributed among
RU, DU, and CU based on the chosen intermediate split
options. For example, 40% processing is done by RU with
Split-7.2, but 50% processing is done by RU with Split-7.3.
The remainder of the processing is done by the DU-CU and
the total RU-DU-CU processing time can be computed by the
polynomial expressions provided in [40].

V. ASSIGNMENT OF RUs TO EDGE/OLT-CLOUDS
HOSTING DU/CU FUNCTIONS

In this section, we formulate a min-max fairness-based
and a VCG auction-based problem for connecting the RUs
to some Edge/OLT-Cloud over front/mid-haul interfaces that
host both the corresponding DU and CU functions. We also
design some efficient heuristics for each of these problem
formulations that can be implemented in practice. We consider
that both macro-cell and small-cell RUs can support either or
both uRLLC and eMBB applications. Thus, for mathematical
convenience, we define two different sets for denoting RUs
supporting uRLLC and eMBB applications, but some members
of both these sets can be co-located and we need to optimally
connect them to Edge-Clouds via East-West communication
links or OLT-Clouds via North-South communication links.
The min-max fairness-based resource allocation creates a
multi-tenant O-RAN ecosystem where all the small, medium,
and large MNOs get fair opportunities for OPEX minimiza-
tion. In this scheme, each RU pays the price for allocated
resources in proportion to their demand. However, to prevent
affluent MNOs from influencing the fairness of resource allo-
cation by revealing a higher resource demand, we formulate
the VCG auction-based resource allocation problem with a
different allocation and payment rule that makes each RU
pay a price that is independent of their respective resource
demand but dependent on the resource demands of other
RUs. Thus, the RUs cannot gain any incentive by revealing
any false resource demand. Although this formulation ensures
truthful resource demand revelation from all the RUs, it cannot
guarantee a fair OPEX for all MNOs because it minimizes
the OPEX of the overall network and does not consider
the OPEX of RUs individually. Therefore, NSPs can choose
the min-max fairness resource allocation mechanism where
truthful demand revelation is possible through strict market
regulations (e.g., huge economic penalty or market ban on
detection of false information). For an open and competitive
market scenario, the NSPs can choose the VCG auction-based
mechanism. Furthermore, we describe a nearest-first (greedy)
and RL-based resource allocation mechanism for performance
comparison.

A. Min-Max Fairness Guaranteed Resource Allocation

Our primary objective here is to allocate front/mid-haul
and DU-CU resources for RUs such that the OPEX of RUs
with worst/high values are minimized. We denote the set
of uRLLC RUs by Ru = {1, 2, . . . , Ru} and the set of
eMBB RUs by Rm = R \ Ru, where R = {1, 2, . . . , Ru,
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Ru + 1, . . . , Ru + Rm}. Note that at each RU location, one
RU for uRLLC services and one RU for eMBB services
can coexist, whose data are scheduled to be transmitted at
different PRBs within each slot. Also, we denote the set of
Edge-Clouds by E = {1, 2, . . . , E}, and the set of OLT-Clouds
by Q = Y \ E , where Y = {1, 2, . . . , E, E + 1, . . . , E + Q}.
The binary variable xry denotes if an RU r ∈ R is connected
to an Edge/OLT-Cloud y ∈ Y , i.e.,

xry =

{
1; if RU r and Edge/OLT-Cloud y are connected
0; otherwise.

The parameter zry indicates if RU r ∈ R and
Edge/OLT-Cloud y ∈ Y can be connected over a virtual-PON
(East-West or North-South) when its value is 1. The parame-
ters Cr, Cλ, and CP denote the default cost to the mediator
(e), the cost for throughput used (e/Gbps), and the cost for
cloud resources leased (e/GOPS) by each RU r, respectively.
As the Edge-Clouds are located at some macro-cell RU
location, they can be owned by the respective MNO, and the
attached RUs from the same MNO do not need to pay the costs
of computational resources. The neutral NSP can also own the
Edge-Clouds, but it needs to provide some price discount to the
respective MNOs. To incorporate these facts, we incorporate
a discount factor γry ∈ [0, 1] where γry = 0 indicates full
discount and γry = 1 indicates no discount. The parameters
WUL

r and WDL
r denote the uplink and downlink front/mid-

haul datarate of RU r. The parameters BUL
y , BDL

y ,∀y ∈ E
denote the maximum uplink, and downlink throughput of the
East-West TWDM-PON links and BUL

y and BDL
y ,∀y ∈ Q

denote the maximum uplink and downlink throughput of the
North-South TWDM-PON links. The maximum throughput
of each PON link can vary according to the number of
configured wavelengths. The parameters ηUL

r and ηDL
r denote

the required uplink and downlink GOPS/slot, HUL
r and HDL

r

denote the available uplink and downlink GOPS/slot for RU
processing. The parameters ΓUL

r and ΓDL
r denote the required

GOPS/slot for DU-CU processing of RU r and GUL
y , GDL

y

denote maximum available GOPS/slot at Edge/OLT-Clouds y.
The parameter θry denotes the burst interval over which data
are transmitted from ONUs connected to RU r in East-West or
North-South TWDM-PONs. Finally, the parameters ∆H

r and
∆RDC

r denote the maximum one-way front/mid-haul latencies
and total RU-DU-CU processing for RU r. Now, we formulate
the min-max fair resource allocation problem for a multi-
tenant O-RAN ecosystem as follows:

P1 : min
xry

max
r

∑
y∈Y

(Cr + CλBry + γryCP Gry) xry

 (4)

subject to xry ≤ zry, ∀r ∈ R, y ∈ Y, (5)∑
y∈Y

xry ≤ 1, ∀r ∈ R, (6)

Bry =

(
WUL

r BUL
y

ε +
∑

r xryWUL
r

)

+

(
WDL

r BDL
y

ε +
∑

r xryWDL
r

)
, ∀r ∈ R, y ∈Y,

(7)

Gry =

(
ΓUL

r GUL
y

ε +
∑

r xryΓUL
r

)

+

(
ΓDL

r GDL
y

ε +
∑

r xryΓDL
r

)
, ∀r ∈ R, y ∈ Y, (8)

xry

{
δry+

Dry

vl

}
+
⌈

θslot

θry

⌉{∑
r xryWUL

r θry

BUL
y

}
≤ ∆H

r , ∀r ∈ R, y ∈ Y, (9)

xry

{
Dry

vl

}
+
⌈

θslot

θry

⌉{∑
r xryWDL

r θry

BDL
y

}
≤ ∆H

r , ∀r ∈ R, y ∈ Y, (10)

ηUL
r

HUL
r

+
{∑

r xryΓUL
r

GUL
y

}
≤ ∆RDC

r

θslot
,

∀r ∈ R, y ∈ Y, (11)

ηDL
r

HDL
r

+
{∑

r xryΓDL
r

GDL
y

}
≤ ∆RDC

r

θslot
,

∀r ∈ R, y ∈ Y, (12)

xry ∈ {0, 1}, ∀r ∈ R, y ∈ Y. (13)

The objective function of the problem P1 is given by (4),
which indicates the minimization of maximum OPEX of each
RU r. The first term is the default cost, the second term
is the front/mid-haul throughput leasing cost, and the third
term is the DU-CU function processing resources leasing
cost. Note that the price for throughput and computational
resources paid by each RU is proportional to their demands.
The constraint (5) ensures that RU r can be associated with
Edge/OLT-Cloud y only when an East-West or North-South
connection exists and the constraint (6) restricts RU r to
be connected to one Edge-Cloud or OLT-Cloud y at most.
The constraints (7) indicates the allocated share of throughput
to RU r over front/mid-haul interface to Edge/OLT-Cloud y.
Similarly, the constraint (8) indicates the allocated share of
GOPS to RU r for DU-CU processing at Edge/OLT-Cloud y.
Note that a very small constant ε ≈ 0 is added to the
denominator of each of the terms in (7)-(8) to avoid division by
zero. Furthermore, the constraint (9) ensures that the uplink
front/mid-haul latency from RU r to Edge/OLT-Cloud y is
within ∆H

r . The parameter δry denotes the average queuing
latency of uplink data due (considering the use of the Co-DBA
mechanism). The second term with xry indicates propagation
latency where the parameter Dry denotes the distance from
RU r to Edge/OLT-Cloud y and vl denotes speed of light
within fiber (2 × 105 km/s). The third term indicates data
transmission latency where data is transmitted in multiple
bursts of duration θry within each TTI, θslot. Similarly, con-
straint (10) ensures that the downlink front/mid-haul latency
from RU r to Edge/OLT-Cloud y is within ∆H

r . Finally, the
constraints (11)-(12) ensure the uplink and downlink RU-DU-
CU processing latencies are within ∆RDC

r , respectively. The
first term indicates the RU processing latency and the second
and third terms indicate the DU-CU processing latencies at
Edge/OLT-Cloud y, respectively.
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TABLE I
NETWORK PARAMETERS AND SETS

B. Heuristic for the Min-Max Fair Resource Allocation

We observe that P1 is an NP-hard problem and the primary
reason behind the NP-hardness is that the locations of active
Edge/OLT-Clouds are not known when we start to connect
RUs to Edge/OLT-Clouds. Note that the problem P1 has a
unique structure that converts a multi-objective problem into a
single-objective problem such that standard optimization meth-
ods can be employed. In this case, we convert the minimization
problem of OPEXs of multiple RUs into a minimization prob-
lem of the maximum OPEX of RUs. However, the problem
P1 is still very inconvenient to solve due to the presence of
max{., .} function in the objective. Therefore, we need to
reformulate this problem into an equivalent epigraph form as
follows:

Pr
1 : min

xry,M
M (14)

subject to M ≥
∑

y∈Y
(Cr + CλBry + γryCP Gry)

xry, ∀r ∈ R,

constraints (5)− (13). (15)

It is straightforward to show that an optimal solution for
Pr

1 is also a solution for P1 [41]. Nonetheless, as both these
problems are INLP, the evaluation of an optimal solution
cannot be guaranteed in polynomial time. Hence, a heuristic
algorithm is required. In general, we understand that OPEX
of each RU in (4) can be minimized if each front/mid-
haul link and Edge/OLT-Cloud resources are leased by a
maximum number of RUs while satisfying constraints (9)-(12).
In addition, we observe the following interesting property of
optimal solutions of Pr

1 .
Proposition 1: An optimal solution of Pr

1 can guarantee
fairness if and only if the OPEX of an RU with lower resource

Algorithm 1 Algorithm for min-max fair resource allocation

Input:R, E,Y, Dry , B
U/DL
y , W

U/DL
r , Γ

U/DL
r , G

U/DL
r

Output: Near-optimal solution: x∗ry and C∗r
Initialize: Sort the elements ofR in the increasing order
of (max{W DL

r , W UL
r }) and/or (max{ΓDL

r , ΓUL
r }) while

maintaining an uniform distribution of the percentage of
ownership of MNOs;

1: for r ← 1 to |R| do
2: if r = 1 then ▷ choose best possible r = 1

3: Set Ȳ ← Y;
4: Set assign← 0;
5: while assign ̸= 1 and Ȳ ̸= ∅ do
6: Find y′ = arg miny{Dry}, y′ ∈ Ȳ;
7: if constraints (5), (9)-(12) are satisfied then
8: Set xry′ ← 1;
9: Set assign← 1;

10: Calculate Bry , Gry , and Cr;
11: else
12: Set Ȳ ← Ȳ \ {y′};
13: end if
14: end while
15: if assign ̸= 1 and Ȳ = ∅ then
16: break; ▷ infeasibility condition
17: end if
18: else if 1 < r ≤ |R| then
19: Find all y ∈ Y such that constraints (5), (9)-(12)
20: are satisfied for the current RU r and create Ȳ;
21: if |Ȳ| ≥ 1 then ▷ if at least one such y exists
22: Calculate all dummy OPEX values for RU r,
23: Cry , if r was connected to each of y ∈ Ȳ;
24: Find y′ = arg miny{Cry}, y′ ∈ Ȳ;
25: Set xry′ ← 1;
26: Update Bry , Gry , and Cr, ∀r with

∑
y xry = 1;

27: else
28: Set Bry = 0, Gry = 0, and Cr = 0;
29: end if
30: end if
31: end for
32: return xry and Cr;

requirements does not exceed the OPEX of an RU with higher
resource requirements.

Please refer to Appendix A for the proof. In general,
we can achieve the best possible value of M if full-mesh
connectivity is available among RU and Edge/OLT-Clouds.
However, in practice, mostly partial-mesh connectivity can be
observed, i.e., constraint (6) along with constraints (9)-(12)
will have a strong influence on the solution. Nonetheless,
in general, we are able to connect a higher number of RUs
to Edge/OLT-Clouds if we start with lower resource require-
ments. Based on the above insights, we design a heuristic
algorithm, summarized as Algorithm 1. At first, we sort the
RUs in R in the increasing order of (max{WDL

r , WUL
r })

and (max{ΓDL
r , ΓUL

r }). This step is crucial to maintain con-
sistency with Proposition 1. We also order the RUs such
that the percentage of ownership of MNOs is uniformly
maintained. Then we start to iteratively connect each RU r
to an Edge/OLT-Cloud y. For r = 1, we initialize the flag
assign ← 0, the dummy set Ȳ ← Y , and find the nearest
y′ = arg miny{Dry}, y′ ∈ Ȳ . If the constraints (5), (9)-(12)
are satisfied for this y′, we set xry′ ← 1, assign ← 1,
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and calculate the corresponding OPEX value Cr =
∑

y(Cr +
CλBry + γryCP Gry)xry. If this is not successful, then we
remove y′ from Ȳ and continue this process until Ȳ = ∅.
In the subsequent iterations, i.e., for 1 < r ≤ |R|, we find
all y ∈ Y that satisfy constraints (5), (9)-(12) for the current
RU r and reinitialize the dummy set Ȳ . If at least one such y
exists, i.e., |Ȳ| ≥ 1, then we calculate the dummy OPEX
values Cry = (Cr + CλBry + γryCP Gry) if RU r was
connected to each of the Edge/OLT-Cloud y. Then we find
y′ = arg miny{Cry}, y′ ∈ Ȳ , set xry′ ← 1, and calculate the
updated values of Bry, Gry, and Cr for all RUs. The first for
loop iterates for |R| times to return xry and Cr while finding
a suitable Edge/OLT-Cloud y from a set of maximum size |Y|
at every iteration. Therefore, the worst-case time-complexity
of this loop, as well as Algorithm 1, is O(|R| × |Y|). Now,
if we denote the optimal number of Edge/OLT-Cloud as Y ∗,
then the number of remaining RUs yet to be connected at every
iteration t of Algorithm 1 is at most Rt ≤ Rt−1(1− (1/Y ∗)).
Thus, at the end of all |R| iterations, we must have 1 ≤ |R| ×
(1 − (1/Y ∗))Y|R| = |R| × (1 − (1/Y ∗))Y ∗×

Y|R|
Y ∗ . By using

the Taylor series approximation (1− (1/x))x ≈ (1/e), we get

1 ≤ |R| × ((1/e))
Y|R|
Y ∗ , or Y|R| ≤ Y ∗ loge(|R|), where

Y|R| denotes the number of active Edge/OLT-Clouds after all
|R| iterations. Hence, the solution produced by Algorithm 1
approximates the optimal solution by a factor of O(loge(|R|)).

C. VCG Auction-Based Resource Allocation

Although the solution obtained from the min-max fairness
method described in previous sub-sections is very efficient,
the solution is dependent on the private information like
WUL

r , WDL
r , ΓUL

r , and ΓDL
r shared by the RUs to the

NSP. To prevent the RUs from sharing false information and
gaining unfair incentives from the market, we design a VCG
auction-based resource allocation method in this sub-section.
Note that this problem is very close to an auction of multiple
divisible items [42] but with specific unique characteristics.
Each RU wants to connect to an Edge/OLT-Cloud via some
East-West or North-South TWDM-PON link to avail sufficient
throughput and Edge/OLT-Cloud resources to successfully
transmit its front/mid-haul data generated within each slot
duration, satisfying the maximum latency bounds. Therefore,
the private valuation function of each RU r is given as:

Vr(xry) =



(CλBy + CP Gy)xry; if r is connected to
some y with successful
front/mid-haul data
transmission,

0; otherwise,

where, By = (BUL
y + BDL

y ) and Gy = (GUL
y + GDL

y ). Note
that if an RU gets connected to some Edge/OLT-Cloud but
fails to transmit its front/mid-haul data, then also its valuation
of resources is zero. We assume that the NSP wants a fair
market competition and hence, keeps the cost parameters
Cr, Cλ, and CP the same for all the competing MNOs.
At first, each RU r submits their front/mid-haul datarate and
DU-CU processing requirements to the NSP as a message

br = (ŴUL
r , ŴDL

r , Γ̂UL
r , Γ̂DL

r ). After receiving messages
b = (b1, b2, . . . , b|R|) from all RUs, the NSP solves the follow-
ing cost-minimization problem while connecting a maximum
number of RUs to Edge/OLT-Clouds and the solution x̂∗ry can
be considered as the allocation rule [43].

P2 : min
xry,ty

∑
y∈Y

(CλBy + CP Gy) ty

 (16)

subject to ty ≤ xry, ∀r ∈ R, y ∈ Y,

constraints (5)− (6), (9)− (13), (17)

where ty is a binary decision variable and the constraint (17)
implies that ty is equal to 1 if at least one RU r is connected
to the Edge/OLT-Cloud y.

Proposition 2: The allocation rule x̂∗ry derived as a solution
of P2 is allocatively efficient.

Please refer to Appendix B for the proof. Although sev-
eral other dominant-strategy truthful mechanisms exist in the
quasi-linear setting,1 only with Groves mechanisms, we can
implement an allocative efficiency in dominant strategies
among agents with arbitrary quasi-linear utilities. Observe that
the valuation for resources of each RU r is non-zero only if
it is connected to some Edge/OLT-Cloud y and gets sufficient
resources to transmit its front/mid-haul data generated in each
slot within the maximum latency bounds. Otherwise, if an RU
r is unallocated or fails to transmit its front/mid-haul data
generated in each slot within the maximum latency bounds,
its valuation is zero. Note that the same resources By and Gy

are shared by multiple RUs that are allocated to Edge/OLT-
Cloud y. Therefore, the net worth of resources allocated to
each RU r, Ĉr varies within [0, (CλBy+CP Gy)]. This implies
that if only one RU is connected to an Edge/OLT-Cloud y, then
it must bear the cost of the consumed resources Ĉr = (CλBy+
CP Gy) all alone. However, if multiple RUs are connected to
an Edge/OLT-Cloud y, then the total cost is uniformly divided
among them, i.e., Ĉr = [(CλBy+CP Gy)/

∑
r x̂∗ry]. Using this

observation, we design a payment rule for the RUs similar to
Clarke’s mechanism [43] as follows:

Pr(xry, b) =

∑
j ̸=r

C̃j(x−r∗
jy (b−r), bj)

−
∑

j ̸=r

C̃j(x∗jy(b), bj)


=
∑
j ̸=r

(
CλBy+CP Gy∑

k ̸=r x∗ky

)

−
∑
j ̸=r

(
CλBy+CP Gy∑

k x∗ky

)
, (18)

which can be interpreted as the total cost of all RUs other
than r under an efficient allocation when RU r is absent in
the system minus the total cost of all RUs other than r under
an efficient allocation when RU r is present in the system.
Note that x̂−r∗

jy or x̂−r∗
ky denote allocation rules when RU r is

absent in the system.

1The utility of agent r with private valuation vr from obtaining a fraction
x of a divisible good at a price p is ur(x, p) = vr(x)− p.
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Algorithm 2 Algorithm for VCG Auction-Based Allocation

Input:R, E,Y, Dry , B
U/DL
y , W

U/DL
r , Γ

U/DL
r , G

U/DL
r

Output: Near-optimal solution: x∗ry and C∗r
Initialize: Sort the elements ofR in the increasing order
of (max{W DL

r , W UL
r }) and (max{ΓDL

r , ΓUL
r }) while

maintaining an uniform distribution of the percentage of
ownership of MNOs;

1: for r ← 1 to |R| do
2: if r = 1 then ▷ choose best possible r = 1

3: Set Ȳ ← Y;
4: Set assign← 0;
5: while assign ̸= 1 and Ȳ ̸= ∅ do
6: Find y′ = arg miny{Dry}, y′ ∈ Ȳ;
7: if constraints (5), (9)-(12) are satisfied then
8: Set xry′ ← 1 and ty′ ← 1;
9: Set assign← 1;

10: Calculate Ctot and C̃r;
11: else
12: Set Ȳ ← Ȳ \ {y′};
13: end if
14: end while
15: if assign ̸= 1 and Ȳ = ∅ then
16: break; ▷ infeasibility condition
17: end if
18: else if 1 < r ≤ |R| then
19: Find all y ∈ Y such that constraints (5), (9)-(12)
20: are satisfied for the current RU r and create Ȳ;
21: if |Ȳ| ≥ 1 then ▷ if at least one such y exists
22: Calculate all dummy cost values for RU r,
23: Ctot,y , if r was connected to each of y ∈ Ȳ;
24: Find y′ = arg miny{Ctot,y}, y′ ∈ Ȳ;
25: Set xry′ ← 1 and ty′ ← 1;
26: Update Ctot and C̃r, ∀r with

∑
y xry = 1;

27: else
28: Set C̃r = 0 and keep Ctot unchanged;
29: end if
30: end if
31: end for
32: for r ← 1 to |R| do
33: SetR← R \ {r} and execute lines 1-31;
34: Calculate Pr(xry , b) and Cr = Cr + Pr(xry , b);
35: SetR← R∪ {r}; ▷ add r back toR
36: end for
37: return xry and Cr;

Theorem 1: The payment rule (18) ensures that truthful
private information sharing to NSPs is a weakly dominant
strategy for all RUs.

Please refer to Appendix C for the proof. This also
shows that the mechanism is weakly budget balanced as∑

r Pr(x̂∗ry, b) ≥ 0. With the aforementioned allocation and
payment rules, the utility of each RU r is defined as follows:

Ur(x̂∗ry, b) = Vr(x̂∗ry, b)− Pr(x̂∗ry, b). (19)

Therefore, the individual rationality of the RUs is always
maintained in this mechanism as Ur(x̂∗ry, b) ≥ 0. In addition
to Pr(x̂∗ry, b), each RU r also needs to pay the default cost
Cr to the NSP if it is connected to some Edge/OLT-Cloud y.

D. Heuristic for the VCG Auction-Based Resource Allocation

As computational efficiency is an important property for
a mechanism design, we design a polynomial-time heuris-
tic to solve the problem P2 as outlined in Algorithm 2
(page 30). We start to iteratively connect each RU r to
an Edge/OLT-Cloud y. For r = 1, we initialize the flag
assign ← 0, the dummy set Ȳ ← Y , and find the near-
est y′ = arg miny{Dry}, y′ ∈ Ȳ . If the constraints (5),
(9)-(12) are satisfied for this y′, we set x̂ry′ ← 1, ty′ ← 1,
assign← 1, and calculate the cost of total utilized resources
Ctot =

∑
y∈Y (CλBy + CP Gy) ty , which is also equal to Ĉr,

the shared cost of RU r. If the assignment is not successful,
then we remove y′ from Ȳ and continue this process until
Ȳ = ∅. In the subsequent iterations, i.e., for 1 < r ≤ |R|,
we find all y ∈ Y that satisfy constraints (5), (9)-(12) are
satisfied for the current RU r and reinitialize the dummy set
Ȳ . If at least one such y exists, i.e., |Ȳ| ≥ 1, then we calculate
the dummy costs of total utilized resources Ctot,y if RU r
was connected to each of the Edge/OLT-Cloud y. Then we
find y′ = arg miny{Ctot,y}, y′ ∈ Ȳ , set x̂ry′ ← 1, ty′ ← 1,
and calculate the updated value of Ctot. We also calculate the
shared cost of RU r as [(CλBy +CP Gy)/

∑
r x̂ry] for y = y′.

Once the RU to Edge/OLT-Cloud allocation is complete,
we calculate the payment rule. For this purpose, we solve
P2 using steps 1-31 for another |R| times in the absence of
each of the RUs from R. Thus, we can calculate Pr(x̂ry, b),
the payment made by each RU r using (18) and the OPEX
of the RU r can be calculated as Ĉr = Cr + Pr(x̂ry, b).
Note that the first for loop iterates for |R| times to return x̂∗ry

and tries to find a suitable Edge/OLT-Cloud y from a set of
maximum size |Y| at every iteration. Therefore, the worst-case
time-complexity of this loop is O(|R| × |Y|). The second for
loop iterates for |R| times to return Ĉr, but it executes the first
for loop with complexity O(|R| − 1). Therefore, the overall
time-complexity of Algorithm 2 is O(|R|2×|Y|). Also, similar
to Algorithm 1, it can shown that the solution produced by
Algorithm 2 approximates the optimal solution by a factor of
O(loge(|R|)).

E. Nearest-First (Greedy) and Reinforcement Learning-Based
Resource Allocation Mechanisms

To create a performance baseline, we design conventional
nearest-first (greedy) and RL-based resource allocation mech-
anisms. In the greedy method, we select the RUs sequentially
and attempt to associate them to their nearest Edge/OLT-
Cloud subject to the network connectivity (5)-(6), commu-
nication latency (9)-(10), and processing latency (11)-(12)
constraints, i.e., y′ = arg min{Dry|y′ ∈ Y, (5) − (6),
(9) − (12)}. For each RU r, if their nearest Edge/OLT-
Cloud y′ is unavailable, then we remove y′ from the list of
Edge/OLT-Clouds and proceed to find the next nearest
Edge/OLT-Cloud. In this way, we iteratively try to assign each
RU r to an Edge/OLT-Cloud y and x̃∗ry provides the final
allocation. Once the maximum possible RUs are assigned to all
Edge/OLT-Clouds, we can calculate the OPEX of the assigned
RUs as C̃r =

∑
y∈Y

(
Cr + CλB̃ry + CP G̃ry

)
x̃∗ry, where the

share of throughput and DU-CU function processing resources
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Algorithm 3 Algorithm for Nearest-First Resource Allocation

Input:R, E,Y, Dry , B
U/DL
y , W

U/DL
r , Γ

U/DL
r , G

U/DL
r

Output: Near-optimal solution: x∗ry and C∗r
Initialize: Sort the elements ofR in the increasing order
of (max{W DL

r , W UL
r }) and (max{ΓDL

r , ΓUL
r }) while

maintaining an uniform distribution of the percentage of
ownership of MNOs;

1: for r ← 1 to |R| do
2: Set Ỹ ← Y;
3: Set assign← 0;
4: while assign ̸= 1 and Ỹ ̸= ∅ do
5: Find y′ = arg miny{Dry}, y′ ∈ Ỹ;
6: if constraints (5), (9)-(12) are satisfied then
7: Set xry′ ← 1;
8: Set assign← 1;
9: else

10: Set Ỹ ← Ỹ \ {y′};
11: end if
12: end while
13: end for
14: for r ← 1 to |R| do
15: if

∑
y xry = 1 then

16: Calculate B̃ry , G̃ry , and Cr;
17: else
18: Set B̃ry = 0, G̃ry = 0, and Cr = 0;
19: end if
20: end for
21: return xry and Cr;

for each RU r are considered either as proportional sharing:

B̃ry =

(
WUL

r BUL
y∑

r xryWUL
r

)
+

(
WDL

r BDL
y∑

r xryWDL
r

)
, (20)

G̃ry =

(
ΓUL

r GUL
y∑

r xryΓUL
r

)
+

(
ΓDL

r GDL
y∑

r xryΓDL
r

)
, (21)

or as uniform sharing:

B̃ry =

(
BUL

y∑
r xry

)
+

(
BDL

y∑
r xry

)
, (22)

G̃ry =

(
GUL

y∑
r xry

)
+

(
GDL

y∑
r xry

)
. (23)

The OPEX of the unassigned RUs are considered equal
to zero. All the steps of this algorithm are summarized in
Algorithm 3. We observe that the worst-case time-complexity
of the first for loop is O(|R| × |Y|) and the time-complexity
of the second for loop is O(|R|). This implies that the overall
time-complexity of Algorithm 3 is O(|R| × |Y|).

In the RL-based method, each RU r randomly selects an
Edge/OLT-Cloud y and attempts to establish a front/mid-haul
connection by following a multi-arm bandit algorithm [44].
The reward of each RU (Rr) is calculated as the average of
∆H

r to front/mid-haul latency ratio and ∆RDC
r to RU-DU-CU

processing latency ratio. The RUs perform both exploration
and exploitation (ϵ-greedy with ϵ = 0.3, i.e., explore strategies
with probability 0.3, else exploit) to maximize its cumulative
reward values and eventually find the best Edge/OLT-Cloud.
After RU to Edge/OLT-Cloud allocation is done, the OPEX of
the RUs are calculated as above.

Fig. 4. Comparison of the total number of active Edge/OLT-Clouds
obtained by the optimal solution, heuristics, and baseline methods with more
computational resources at Edge-Clouds than at OLT-Clouds.

VI. RESULTS AND DISCUSSIONS

To evaluate our proposed frameworks, we consider a multi-
tenant O-RAN deployment area of dimension 5 × 5 km2.
In this area, 8 macro-cell RUs (coverage = 1 km) and
30 small-cell RUs (coverage = 0.5 km) from three different
MNOs coexist (refer to Appendix D). The front/mid-haul
datarate and RU-DU-CU processing efforts of the RUs vary
over time depending on the RU configurations and the chosen
split option. For example, if the RUs are configured with
2 × 2 MIMO, 2 layers, 50 MHz bandwidth, 15 kHz sub-
carrier spacing, MCS index 16, and slot duration = 0.5 msec,
the maximum uplink datarate with Split-7.2 is 2.304 Gbps, and
the maximum downlink datarate with Split-7.3 is 0.432 Gbps.
Each radio head’s total RU-DU-CU processing requirement
is nearly 550 GOPS/slot. We consider that in each radio
head, 25% resources are used for uRLLC services and 75%
resources are used for eMBB services. The one-way front-
haul link latency bound is ∼100 µsec and we choose the
RU-DU-CU processing latency bound 325 µsec for uRLLC
services and 975 µsec for eMBB services [45]. The reduced
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Fig. 5. Comparison of overall O-RAN outage probability and outage probability for small, medium, and large MNOs against increasing front/mid-haul datarate
demand per RU with different Edge/OLT-Cloud resource distributions obtained by min-max fairness and baseline (greedy nearest-first and reinforcement
learning-based) algorithms.

Fig. 6. Comparison of overall O-RAN outage probability and outage probability for small, medium, and large MNOs against increasing front/mid-haul data per
RU with different Edge/OLT-Cloud resource distributions obtained by VCG auction-based and baseline (greedy nearest-first and reinforcement learning-based)
algorithms.

queueing latency of the uplink data at the ONUs is 15 µsec
as Co-DBA is used for uplink transmission [46] and the data
are transmitted as periodic bursts of duration 31.25 µsec [7].
Each wavelength of the TWDM-PON can support a throughput
of 25 Gbps and we can aggregate multiple such wavelengths
to achieve a few hundred Gbps of total throughput. A group
of RUs are connected to a level-1 reflective splitter (locations
found through k-means clustering) and a few level-1 reflective
splitters are connected to a level-2 reflective splitter located
at the center of the area. We assume that the RUs can
be connected to the OLT-Clouds via the North-South links
and to the Edge-Clouds via creating East-West virtual-PON
links. We arbitrarily assume that each RU pays a default cost
of e100/day to the NSP (other network economic pricing
schemes can also be employed but beyond the scope of this
paper), although it has very little effect on the results as it
is not associated with any decision variables. In addition, the
cost for throughput used is e0.5/Gbps [47], and the cost for
leasing DU/CU resources is e1.5/GOPS [48].

Firstly, we compare the optimal solutions of the min-max
fairness and VCG auction-based resource allocation methods
with their corresponding heuristics. In this evaluation, each
Edge-Cloud has a maximum capacity of 4.5 × 104 GOPS/slot
and each OLT-Cloud has a maximum capacity of 1.5 ×
104 GOPS/slot. These values are chosen such that a feasible

TABLE II
NETWORK EVALUATION SCENARIOS

benchmark solution can be obtained by the greedy baseline
algorithm with front/mid-haul datarate demand upto 2 Gbps
per RU. We use OCTERACT, a global optimal mixed-integer
nonlinear programming solver integrated with the AMPL
platform to evaluate the optimal solutions of our formulated
INLPs in a computer with Intel Core i7 processor and 32 GB
RAM. In Fig. 4(a), we compare the optimal solution of
Pr

1 against the solutions obtained using Algorithm 1, the
greedy baseline Algorithm 3, and the RL-based method.
Again, in Fig. 4(b), we compare the optimal solution of
P2 against the solutions obtained using Algorithm 2, the
greedy baseline Algorithm 3, and the RL-based method with
the same dataset. From these figures, we observe that the
optimal solution of Pr

1 is the highest performing during
lower load conditions. The nearest-first method makes several
sub-optimal RU to Edge/OLT-Cloud assignments as it connects
each RU to its nearest (based on intermediate North-South
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Fig. 7. Comparison of the total cost of leased resources (e) and OPEX reduction percentage for small, medium, and large MNOs against network load variation
with different Edge/OLT-Cloud resource distributions obtained by min-max fairness and baseline (greedy nearest-first and reinforcement learning-based)
algorithms.

Fig. 8. Comparison of the total cost of leased resources (e) and OPEX reduction percentage for small, medium, and large MNOs against network load variation
with different Edge/OLT-Cloud resource distributions obtained by VCG auction-based and baseline (greedy nearest-first and reinforcement learning-based)
algorithms.

or East-West link distance) Edge/OLT-Cloud if the latency
constraints are satisfied. The RL-based method requires less
computation than other methods, but each RU independently
attempts to connect to some Edge/OLT-Cloud that gives a
higher reward, in turn lower latency values. Thus, the RU
to Edge/OLT-Cloud assignment does not incorporate mini-
mization of overall network resource utilization. However, all
the solutions at medium and higher load conditions become
similar as network load increases, because a large percentage
of the potential Edge/OLT-Clouds gets activated and the scope
of sub-optimal RU to Edge/OLT-Cloud assignments is reduced.

Next, we compare the network outage probabilities (defined
as the ratio of the total number of RUs that could not
be connected to some Edge/OLT-Cloud to the total number
of RUs present in the network) achieved by our proposed
methods. We consider that the RUs are owned by three
different MNOs where a small MNO-1 has 20%, a medium
MNO-2 has 30%, and a large MNO-3 has 50% owner-
ship. Additionally, we consider three scenarios with different
computational resource distributions among Edge-Clouds and
OLT-Clouds as outlined in Table II. Figs. 5(a)-5(c) show
the overall O-RAN outage probabilities obtained through
the min-max fairness and baseline (greedy nearest-first and
RL-based) algorithms. Similarly, Figs. 6(a)-6(c) show the

overall O-RAN outage probabilities obtained through the
VCG auction-based and baseline (greedy nearest-first and
RL-based) algorithms. We observe that all the methods
show zero outage probability as long as there are suffi-
cient front/mid-haul and Edge/OLT-Cloud resources to accom-
modate all the RUs. However, network outage probability
increases fastest with the RL-based method, followed by the
nearest-first baseline method due to their inefficient utilization
of network resources, but the outage probability increases rela-
tively slower with the VCG auction-based method and slowest
with the min-max fairness method. We also plot the outage
probabilities of the small, medium, and large MNOs, which
show that the outage probabilities of the small, medium, and
large MNOs vary according to their percentage of ownership,
i.e., the highest for the large MNO and smallest for the small
MNO, in all scenarios.

Finally, we compare the total cost of leased front/mid-
haul and Edge/OLT-Cloud resources obtained by the min-max
fairness and baseline (greedy nearest-first and RL-based) algo-
rithms. In Figs. 7(a)-7(c), we observe that during the low-load
conditions, the performance of the min-max fairness approach
is significantly better than the baseline (greedy nearest-
first and RL-based) methods. However, as the front/mid-haul
datarate demand per RU increases, the performance of all
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algorithms becomes similar due to the saturation of available
resources. Note that the total cost of leased resources (right
y-axis) increases as we place more resources at the Edge-
Clouds. Also, the percentage of OPEX savings decreases (left
y-axis) as resource utilization increases for all the MNOs.
In all scenarios, the OPEX saving percentage is highest for
the small MNO and lowest for the large MNOs. Similarly,
Figs. 9(a)-9(c) compare the total cost of leased resources (right
y-axis) obtained and OPEX reduction percentages (left y-axis)
by the VCG auction-based and baseline (greedy nearest-first
and RL-based) algorithms. We observe that the total cost of
leased resources obtained by the VCG auction-based algorithm
is very similar to the min-max fairness algorithm, but the
OPEX saving percentages for small and medium MNOs are
not always lower than the large MNO because the cost of the
leased resources is uniformly shared among the RUs. Thus,
often the small and medium MNOs pay a much higher price
than their actual resource requirements. These results justify
that our proposed min-max fair resource allocation framework
creates a multi-tenant O-RAN ecosystem that is sustainable
for small, medium, and large MNOs.

VII. CONCLUSION

In this paper, we have proposed a multi-tenant O-RAN
architecture where RUs from multiple MNOs can lease
resources for their DU-CU function processing from
Edge/OLT-Clouds over TWDM-PON-based open front/mid-
haul interfaces. These TWDM-PONs use reflective splitters to
facilitate East-West communication links along with traditional
North-South communication links for better mesh connectivity
among the RUs and Edge/OLT-Clouds. We have proposed two
methods for allocating front/mid-haul and DU-CU processing
resources to RUs based on min-max fairness and VCG auction
mechanisms. In turn, we have formulated the corresponding
INLPs and have designed time-efficient heuristic algorithms.
Through numerical evaluation, we have investigated the per-
formance of these frameworks against different distributions
of cloud resources at Edge and OLT locations. We have
shown that both min-max fairness and VCG auction-based
methods achieve a much lower network outage probability
than the baseline (greedy nearest-first and RL-based) methods
due to the efficient utilization of network resources. Note that
the VCG auction-based method can ensure the extraction of
truthful information from the RUs, but the min-max fairness
method ensures that the OPEX of the RUs are proportional to
their actual resource requirements. Moreover, we have shown
that the min-max fairness method can reduce the OPEX of
all MNOs by more than 20% (at high load) to nearly 75%
(at low load). We believe that our proposed frameworks have
successfully laid cornerstones for developing further O-RAN
resource allocation strategies.

APPENDIX A
PROOF OF PROPOSITION 1

Proof: We observe that if our main problem formula-
tion P1 has an optimal solution x∗ry, then our reformulated
problem Pr

1 also has an optimal solution (x∗ry, M∗). This

implies that we have found the best possible M∗ as the
maximum value of

∑
y∈Y (Cr + CλBry + CP Gry) xry for

some r ∈ R but it is the minimum among all feasible values
of M . In this sense, the solution x∗ry guarantees fairness for
all r ∈ R. However, sometimes the network connectivity,
communication latency, and computation latency constraints
may play a very strong role to produce an optimal solution
(x∗ry, M∗) without maintaining fairness. Now, we analyze
all possible network scenarios to show the validity of this
proposition.

Case 1: Constraints (6), (9)-(12) are relaxed.
This is the trivial case when there is full-mesh connectivity

among the RUs and Edge/OLT-Clouds and no strict latency
bound exists. Therefore, any RU can be connected to any
Edge/OLT-Cloud and the optimal solution will be dictated
by the objective (4) and constraints (5) and (13). Therefore,
the optimum value of M will be achieved only when all
the RUs are connected to a single Edge/OLT-Cloud with
min{BUL

y + BDL
y } and/or min{GUL

y + GDL
y }. It is also

obvious from (4) that the OPEX of each RU will be directly
proportional to their resource demands WUL

r , WDL
r , ΓUL

r , and
ΓDL

r , which ensure fairness.
Case 2: Constraint (6) is relaxed only.
In this case, although there is full-mesh connectivity among

the RUs and Edge/OLT-Clouds, strict communication and pro-
cessing latency bounds are applied. Therefore, only a limited
number of RUs can be connected to each Edge/OLT-Cloud
to satisfy constraints (9)-(12). In this case, the best possible
solution can be achieved only if all RUs can be connected to
(one or multiple) Edge/OLT-Clouds with minimum total cost
of resources. Without loss of generality, consider that there
are total |R| number of RUs and 2 front/mid-haul links and
Edge/OLT-Clouds. If the front/mid-haul and Edge/OLT-Cloud
1 have sufficient resources to host all |R| number of RUs, then
there is no issue of fairness. However, if there are insufficient
resources in Edge/OLT-Cloud 1 and some RUs need to be
assigned to Edge/OLT-Cloud 2, then it is best to choose RUs
with higher resource demands. By following this method, the
fairness of the shared cost of each RU assigned to either of
the Edge/OLT-Cloud can be guaranteed. If we assign RUs in
any other randomized way, fairness cannot be guaranteed. For
example, if we can assign only the RU with the lowest demand
to Edge/OLT-Cloud 2 and the rest of the RUs to Edge/OLT-
Cloud 1, then the optimal value M∗ remains the same (total
cost of resources of front/mid-haul and Edge/OLT-Cloud 2),
but the fairness is not maintained. Note that this argument
remains valid even if we generalize our scenario with more
than 2 Edge/OLT-Clouds.

Case 3: Constraint (9)-(12) are relaxed only.
In this case, usually, there is partial-mesh connectivity

among the RUs and Edge/OLT-Clouds but communication and
processing latency bounds are relaxed. Therefore, in spite of
sufficient resources being present, we cannot connect all the
RUs to a single Edge/OLT-Cloud due to network connectivity
constraints. This implies that the cost of shared resources of
multiple RUs with the exact same resource demand may vary
if they are connected to different Edge/OLT-Clouds by being
forced by the network connectivity constraints. However, their
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shared costs will be proportionally fair in comparison with the
other RUs connected to each Edge/OLT-Clouds. For example,
let us consider two RUs with the exact same resource demands
but allocated to two different Edge/OLT-Clouds and a different
number of other RUs connected to these Edge/OLT-Clouds.
Therefore, the OPEX values may be different for these RUs
but their OPEX values will be fair in comparison to other RUs
connected to their corresponding Edge/OLT-Clouds.

Case 4: All constraints (6), (9)-(12) are active.
This is the most general case and characteristics of all the

previous cases can be observed. Depending on the dataset,
either constraint (6) or constraints (9)-(12) will dictate the
optimal solution. Although sufficient resources may be present
at some Edge/OLT-Cloud to serve a large number of RUs,
constraint (6) might interfere. Therefore, in this case, also the
cost of shared resources of multiple RUs with the exact same
resource demand may vary if they are connected to different
Edge/OLT-Clouds. However, the OPEX values of each RU will
be proportionally fair to their resource demands in comparison
with other RUs connected to each Edge/OLT-Clouds.

In general, we observe by testing a number of diverse
datasets that to obtain the best possible solution M∗ while
maintaining the fairness of the OPEX values of the RUs,
we must start to assign RUs to Edge/OLT-Clouds in the
increasing order of their resource requirements.

APPENDIX B
PROOF OF PROPOSITION 2

Proof: We consider a resource allocation mechanism is
allocatively efficient if it optimizes the sum of the valuations of
the agents for each given type profile of the agents [43]. Now,
in our problem formulation P2, the total cost of front/mid-haul
and Edge/OLT-Clouds are minimized. Although the binary
variable ty indicates if an Edge/OLT-Cloud y is activated or
not, the constraint ty ≤ xry,∀r ∈ R, y ∈ Y makes this
formulation equivalent to minimizing the sum of valuation
functions Vr(xry) for all RUs. Therefore, our allocation rule
x̂∗ry derived as an optimal solution of P2 can be considered
as allocatively efficient.

APPENDIX C
PROOF OF THEOREM 1

Proof: The proposed payment rule can be interpreted as
the total value of all RUs other than r under an efficient
allocation when RU r is absent in the system minus the total
value of all RUs other than r under an efficient allocation
when RU r is present in the system. Observe that each RU
r is connected to an Edge/OLT-Cloud y based on the shared
information br = (ŴUL

r , ŴDL
r , Γ̂UL

r , Γ̂DL
r ) from all RUs.

Case 1: If the shared information br is higher than its
actual requirement, then there is a risk that it might remain
unallocated when the network is in high-load condition. Then
the valuation, payment, and utility of the RU r are given by:

Vr(x̂∗ry) = 0,
Pr(x̂∗ry, b) = 0,
Ur(x̂∗ry, b) = 0.

Case 2: If the shared information br is lower than its
actual requirement, then the RU might get allocated to some
Edge/OLT-Cloud, but due to insufficient resources in the RU’s
share, the front/mid-haul data generated per slot may fail to
get delivered within the maximum one-way front/mid-haul
latency requirements. In this case, the valuation is zero but
the payment is non-zero, yielding a negative utility. Thus, the
valuation, payment, and utility of the RU r are:

Vr(x̂∗ry) = 0,

Pr(x̂∗ry, b) =
|R|∑

j=1,j ̸=r

(
CλBy + CP Gy∑

k ̸=r x̂−r∗
ky

)

−
|R|∑

j=1,j ̸=r

(
CλBy + CP Gy∑

k x̂∗ky

)
,

Ur(x̂∗ry, b) = 0− Pr(x̂∗ry, b) < 0.

Case 3: There may arise network scenarios where an RU r
might get connected to some Edge/OLT-Cloud by sharing false
information (both higher and lower) and its front/mid-haul
data generated per slot is also successfully delivered within
the maximum one-way front/mid-haul latency requirements.
However, after the RU to Edge/OLT-Cloud allocation, when
the payment amount is calculated for each RU r, only the
total number of RUs connected to each Edge/OLT-Cloud y is
used and the revealed front/mid-haul datarate does not have
any role to play. Thus, the utility of the RU with true revealed
information as well as false revealed information remains the
same. In this case, the valuation, payment, and utility of the
RU r are given below:

Vr(x̂∗ry) =
∑

y

(CλBy + CP Gy)x̂∗ry,

Pr(x̂∗ry, b) =
|R|∑

j=1,j ̸=r

(
CλBy + CP Gy∑

k ̸=r x̂−r∗
ky

)

−
|R|∑

j=1,j ̸=r

(
CλBy + CP Gy∑

k x̂∗ky

)
,

Ur(x̂∗ry, b) = Vr(x̂∗ry)− Pr(x̂∗ry, b) ≥ 0.

Therefore, any RU r can not gain any advantages in its
utility with the payment rule by sharing false information with
the NSP. This ensures that sharing truthful information with
the NSP is a weakly dominant strategy for all the RUs.
Example 1: [One RU and One Edge/OLT-Cloud]

Let us consider the total x-haul throughput is B1 and
total Edge/OLT-Cloud resources is G1. The RU 1 submits a
message b1 to the NSP. The results of Case 1 and Case 2 are
straight-forward to show. If the scenario is like Case 3, then
the RU 1 is connected to Edge/OLT-Cloud 1. Therefore the
valuation of the RU is:

V1 = (CλB1 + CP G1).

Now, the cost of resources for the RU 1 is (CλB1 +CP G1)
as there is no other RU to share the cost of resources. However,
if RU 1 was not present, then the entire block of resources
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Fig. 9. Considered O-RAN deployment areas with two CO locations at diagonally opposite corner points with total dimension (a) 2 km × 2 km, (b) 5 km ×
5 km, and (c) 10 km × 10 km (pink square: CO locations, orange pentagon: level-1 splitter, yellow hexagon: level-2 splitter, red circle: small-cell RU, green
triangle: macro-cell RU).

would have remain unallocated with zero cost of resources.
Hence, the actual payment made by RU 1 is given by:

P1 = (CλB1 + CP G1)− 0
= (CλB1 + CP G1) .

This shows that if an RU gets sufficient resources to transmit
its radio data generated in each TTI, then its payment rule
is independent of its shared private information. Therefore,
sharing truthful information is a weakly dominant strategy in
this scenario.

Example 2: [Two RUs and One Edge/OLT-Cloud]
Let us consider the total x-haul throughput is B1 and

total Edge/OLT-Cloud resources is G1. The RU 1 submits
a message b1 and the RU 2 submits a message b2 where
b1 ≤ b2. The results of Case 1 and Case 2 can be shown in
a straight-forward manner. If the scenario is like Case 3, then
both the RUs are connected to Edge/OLT-Cloud 1. Therefore
the valuations of both the RUs are:

V1 = V2 = (CλB1 + CP G1).

Now, the cost of resources for each of the RUs is (CλB1 +
CP G1)/2. However, if RU 1 was not present, then the entire
block of resources would have been allocated to RU 2 with
cost of resources = (CλB1 + CP G1). Therefore, the actual
payment made by RU 1 is given by:

P1 = (CλB1 + CP G1)−
(

CλB1 + CP G1

2

)
=
(

CλB1 + CP G1

2

)
.

A similar analysis is applicable for RU 2. This shows that
if an RU gets sufficient resources to transmit its radio data
generated in each TTI, then its payment rule is independent
of its shared private information. Therefore, sharing truthful
information is a weakly dominant strategy in this scenario.

Example 3: [Three RUs and Two Edge/OLT-Clouds]
Let us consider the total x-haul throughput are B1, B2 and

total Edge/OLT-Cloud resources are G1, G2. The RUs submit

messages (b1, b2, b3) to the NSP where b1 ≤ b2 ≤ b3. The
results of Case 1 and Case 2 are straight-forward to show.
If the scenario is like Case 3 and we assume that RU 1 and
RU 2 are allocated to Edge-Cloud 1 whereas RU 3 is allocated
to Edge-Cloud 2, then the valuations of all the RUs are:

V1 = V2 = (CλB1 + CP G1),
V3 = (CλB2 + CP G2).

Now, the cost of shared resources for each of the RUs are
given as follows:

C̃1 = C̃2 = (CλB1 + CP G1)/2,

C̃3 = (CλB2 + CP G2).

However, if RU 1 was not present, then two cases can
happen. Either RU 3 is allocated to Edge/OLT-Cloud 1 along
with RU 2 while Edge/OLT-Cloud 2 remains inactive, or RU 2
is allocated to Edge/OLT-Cloud 1 while RU 2 is allocated to
Edge/OLT-Cloud 2. Nonetheless, in both the cases, the total
cost of resources to be paid by RUs allocated to Edge/OLT-
Clouds 1 is (CλB1 + CP G1). Therefore, the actual payment
made by RU 1 is given by:

P1 = (CλB1 + CP G1)−
(

CλB1 + CP G1

2

)
=
(

CλB1 + CP G1

2

)
.

We can analyze the payment rules for RU 2 and RU 3 by
following the previous examples. Furthermore, if all the three
RUs were allocated to Edge/OLT-Cloud 1 in the first place,
then we can show through a similar analysis as is Example
2 that the payment made by RU 1 is given by:

P1 =
[(

CλB1 + CP G1

2

)
+
(

CλB1 + CP G1

2

)]
−
[(

CλB1 + CP G1

3

)
+
(

CλB1 + CP G1

3

)]
= (CλB1 + CP G1)−

2
3

(CλB1 + CP G1)
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=
(

CλB1 + CP G1

3

)
.

This clearly shows that if an RU gets sufficient resources
to transmit its radio data generated in each TTI, then its
payment rule is independent of its shared private information.
Therefore, sharing truthful information is a weakly dominant
strategy in this scenario.

APPENDIX D
CONSIDERED O-RAN DEPLOYMENT AREAS

In this section, we graphically show some O-RAN deploy-
ment areas that are considered for the numerical evaluation of
our proposed frameworks. Firstly, Fig. 9(a) shows an O-RAN
deployment area of dimension 2 km × 2 km, secondly,
Fig. 9(b) shows an O-RAN deployment area of dimension
5 km × 5 km, and thirdly, Fig. 9(c) shows an O-RAN
deployment area of dimension 10 km × 10 km. In all these
figures, each macro-cell RU has an approximate coverage area
of 1.0 km (shown using light-blue circles) and each small-cell
RU has an approximate coverage area of 0.5 km (shown using
light-yellow circles). Also, a few symbols are used to denote
key elements, i.e., pink square: CO locations, orange pentagon:
level-1 splitter, yellow hexagon: level-2 splitter, red circle:
small-cell RU, and green triangle: macro-cell RU. The actual
fiber connections are not shown to avoid the figures from
being over-crowded and stingy. The coordinates of the two CO
locations are given by (0, 0) and (D,D) where D ∈ {2, 5, 10}.
A group of TWDM-PONs branch out from each of the CO
locations that are used to connect the RUs, e.g., the RUs
located below the primary diagonal are all connected to the
CO at (0, 0), but the RUs located above the primary diagonal
are all connected to the CO at (D,D). Although a rectangular
grid-like deployment of RUs are considered for our proposed
framework evaluation, any practical RU deployment data can
be used as an input to this framework.
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