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Abstract— The optimal energy signal design for wireless
powered communication networks (WPCNs) enabling energy-
sustainable communication for a large number of low-power
devices is still an open problem in practical systems. In this
work, we study a multi-user WPCN, where a multi-antenna base
station (BS) sends an energy signal to multiple single-antenna
users, which, in turn, harvest energy from the received signal
and utilize it for information transmission in the uplink. In
contrast to the existing works on multiple-input single-output
(MISO) WPCN design, in this paper, we jointly optimize the
energy signal waveform and downlink beamforming at the BS for
energy harvesting (EH) devices described by non-linear circuit-
based models. To this end, we assume that the BS broadcasts a
pulse-modulated signal employing multiple energy signal vectors
and we formulate an optimization problem for the joint design
of the downlink transmit energy signal vectors, their number,
the durations of the transmit pulses, and the time allocation
policy for minimization of the average transmit power at the
BS. We show that for single-user WPCNs, a single energy signal
vector, which is collinear with the maximum ratio transmission
(MRT) vector and drives the EH circuit at the user device into
saturation, is optimal. Next, for the general multi-user case,
we show that the optimal signal design requires a maximum
number of energy signal vectors that exceeds the number of
users by one and propose an algorithm to obtain the optimal
energy signal vectors. Since the complexity of the optimal design
is high, we also propose two suboptimal schemes for WPCN
design. First, for asymptotic massive WPCNs, where the ratio of
the number of users to the number of BS antennas, i.e., the system
load, tends to zero, we show that the optimal downlink transmit
signal can be obtained in closed-form and comprises a sequence
of weighted sums of MRT vectors. Next, based on this result, for
general WPCNs with finite system loads, we propose a suboptimal
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closed-form MRT-based design and a suboptimal semidefinite
relaxation (SDR)-based scheme. Our simulation results reveal
that the proposed optimal scheme and suboptimal SDR-based
design achieve nearly identical performance and outperform
two baseline schemes, which are based on linear and sigmoidal
EH models. Furthermore, we show that, if the system load of
the WPCN is low, the performance gap between the proposed
suboptimal solutions is small and becomes negligible as the
number of BS antennas tends to infinity.

Index Terms— Wireless powered communication, non-linear
energy harvesting, multiple-input multiple-output (MIMO), sig-
nal design.

I. INTRODUCTION

THE growth of the number of low-power Internet-of-
Things (IoT) devices has fuelled significant interest in

wireless powered communication networks (WPCNs) that
enable energy-sustainable communication [1], [2], [3], [4], [5],
[6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25]. A typical multi-
user multiple-input single-output (MISO) WPCN comprises
a multi-antenna base station (BS) that broadcasts a radio
frequency (RF) signal to multiple single-antenna user devices
(e.g., small-scale biomedical sensors or implants) in the down-
link [2]. Each user device is equipped with an electrical
circuit for harvesting the received RF power and storing it
in a supercapacitor or a storage battery. The user devices
employ the harvested power for sensing, signal processing
and operational tasks, and information transmission in the
uplink [3]. Thus, such a low-power equipment can not only
communicate with the BS, but also recharge energy storage
devices, whose periodic replacement may be costly or even
impossible [4], [5].

For the design of WPCNs, a linear relationship between the
received and harvested powers at the user devices is assumed
in [6], [7], [8], [9], and [10]. In [6], for multi-user single-
input single-output (SISO) WPCNs, the authors formulate a
sum-throughput maximization problem and unveil a double-
near-far phenomenon resulting in an uneven rate allocation
among the users. To ensure reliable uplink communication,
the authors in [6] also considered a minimum-throughput
maximization problem and showed that, due to the distance-
dependent signal attenuation, the BS has to allocate signifi-
cantly more resources in the downlink to far users compared to
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near users. Next, in [7], the authors study multi-user WPCNs,
where the BS employs multiple antennas and utilizes zero forc-
ing (ZF) equalization to suppress the inter-user interference in
the uplink. For this setup, the authors propose an algorithm for
downlink energy beamforming that maximizes the minimum
information rate in the uplink. The authors in [8] study a
massive multiple-input multiple-output (MIMO) WPCN and
show that the optimal energy beamforming in the downlink is a
linear combination of the normalized channel vectors between
the BS and the user devices. In [9], the authors consider multi-
user WPCNs, where time division multiple access (TDMA) is
adopted for information transmission in the uplink and users
are equipped with infinite or finite capacity energy storage.
It is shown that the optimal transmit policy at the BS is to
radiate all available power as fast as possible, and then, remain
silent until the end of the scheduling time frame. The energy
storage at the user devices of a WPCN is further considered
in [10]. In this paper, the authors characterize the internal state
of the energy buffer via a Markov chain and, for Rayleigh
fading channels, determine the limiting distribution of the
stored power in closed-form.

Although the results in [6], [7], [8], [9], and [10] pro-
vide notable insights for WPCN design, they are based on
restrictive impractical assumptions. In fact, practical energy
harvesting (EH) circuits employ non-linear diodes for signal
rectification and thus, the dependence of the harvested power
on the input power is highly non-linear in both the low
and high input power regimes [4], [11]. If the received RF
power at a user device is low, the non-linearity is caused
by both the non-linear current-voltage (I-V) characteristic of
the rectifying diode [12] and the power-dependent impedance
mismatch between the receive antenna and the non-linear
rectifier circuit [13]. For high input powers, the non-linear
diode is driven into breakdown, which causes saturation of
the harvested power at the user device [3]. To take these
non-linear effects of the EH circuits into account, the authors
in [14] propose a sigmoid function-based EH model, whose
parameters are obtained via curve fitting to match simulation
data. This model is widely employed for the design of WPCNs,
see, e.g., [15], [16], [17], [18], and [19]. In particular, the
authors in [15] study multi-user MIMO WPCNs, where,
similarly to [9], a TDMA scheme is employed for information
transfer in the uplink. In [16], the authors consider a wireless
communication system, where a wirelessly charged multi-
antenna BS transmits information to multiple single-antenna
receivers in the presence of an eavesdropper. Furthermore,
the authors in [17], [18], and [19] study WPCNs assisted by
intelligent reflecting surfaces, which are employed to increase
the harvested powers at the user devices, and thus, improve the
overall uplink throughput. For the considered system setups,
the authors in [15], [16], [17], [18], and [19] formulate non-
convex resource allocation optimization problems for system
design and propose iterative algorithms to solve them.

The analysis in [15], [16], [17], [18], and [19] represents
a significant progress over the results in [6], [7], [8], [9],
and [10]. However, the model introduced in [14] and adopted
in [15], [16], [17], [18], and [19] characterizes the average har-
vested power at the user devices as a function of the average

received RF power, and therefore, cannot fully capture the
non-linearity of EH circuits. Interestingly, the authors in [20]
propose an EH model that maps the instantaneous received RF
power to the instantaneous harvested power. Based on this
EH model, the author in [21] considers single-user wireless
power transfer systems and shows that the power harvested at
the user is maximized if maximum ratio transmission (MRT) is
adopted at the multi-antenna BS in the downlink. Furthermore,
the EH model in [20] is utilized in [22] and [23] for the
analysis of backscatter communication systems which are also
based on wireless power transfer. In particular, the authors
in [22] highlight a trade-off between the harvested power at
the user device and the signal-to-noise ratio (SNR) of the
communication link between user and information receiver.
In [23], the authors extend the communication system in [22]
to the multi-user case and formulate an optimization problem
to analyze the trade-off between the weighted sum of harvested
powers at the user devices and the signal-to-interference-plus-
noise ratios (SINRs) of the communication links between the
users and the receiver.

In contrast to the linear and sigmoidal models in [6], [7], [8],
[9], and [10] and [14], [15], [16], [17], [18], and [19], respec-
tively, the EH model in [20] characterizes the instantaneous
behaviour of the EH circuits and thus, allows the optimization
of the transmit signal waveform for wireless power transfer.
However, since this model is based on the Taylor series
approximation of the current flow through the rectifying diode
and does not take into account the breakdown effect of the
diode, it still does not fully capture all non-linear effects of
practical EH circuits for both low and high input powers.
To overcome this limitation, the authors in [25] propose an
EH model based on a precise analysis of a standard EH circuit
with half-wave rectifier and show that On-Off transmission is
optimal for the maximization of the average harvested power
in single-antenna wireless power transfer systems. Next, since
the circuit-based model in [25] is valid for half-wave rectifying
EH circuits only, the authors in [13] propose a learning-based
approach to model a wide class of EH circuits and show that
the behaviour of an EH circuit depends on the number of
rectifying diodes, the characteristics of the matching circuit,
and other circuit parameters. The authors in [24] study a multi-
user MIMO wireless power transfer system with general non-
linear EH circuits. They design the optimal energy signal to
be transmitted by the BS to maximize a weighted sum of
the average harvested powers at the EH nodes and show that
it comprises multiple beamforming vectors. Finally, in [1],
which is the conference version of this paper, we adopt the
EH model from [25] and develop an iterative algorithm for
the design of two-user MISO WPCNs. However, to the best
of the authors’ knowledge, the optimal design of the downlink
energy signal waveform and the resource allocation for multi-
user MISO WPCNs taking into account all non-linear effects
of EH circuits is still an open problem, which is tackled in
this paper.

In this paper, we determine the optimal downlink energy
signal design and resource allocation policy for multi-user
MISO WPCNs, where the single-antenna user devices are
equipped with non-linear EH circuits, to minimize the average
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transmit power at the BS. In contrast to the WPCN designs
in [6], [7], [8], [9], [10], [14], [15], [16], [17], [18], [19], and
[20], in this work, to account for the non-linearities of the
EH circuits in both the low and high input power regimes,
we adopt a general non-linear circuit-based EH model that
characterizes the instantaneous harvested power at the user
devices. Furthermore, in contrast to the existing works on
multi-user WPCNs with multi-antenna BSs, to jointly optimize
beamforming and the waveform of the downlink energy signal,
we assume that the BS broadcasts a pulse-modulated energy
signal employing multiple transmit energy signal vectors. The
user devices, in turn, harvest the power from the received RF
energy signal and utilize it for information transmission in the
uplink, where we adopt ZF equalization at the BS to suppress
inter-user interference. The main contributions of this paper
can be summarized as follows:
• We formulate an optimization problem for the joint

design of the normalized durations of the downlink and
uplink transmission subframes and the number, durations,
values, and powers of the downlink transmit energy signal
vectors for minimization of the average transmit power
at the BS under per-user rate constraints in the uplink.

• First, as a special case, we consider a single-user WPCN
and show that the optimal energy signal in the downlink
employs a single vector, which is collinear with the MRT
vector and whose norm is chosen such that it drives the
EH circuit at the user device into saturation. Then, for
the general multi-user case, we show that the maximum
number of transmit energy signal vectors for the optimal
signal design in the downlink exceeds the number of users
by one. To obtain these energy signal vectors, we propose
an optimal algorithm whose computational complexity is
exponential in the number of user devices and polynomial
in the number of antennas equipped at the BS.

• Since the optimal solution for the general multi-user case
entails a high computational complexity if the number
of users is large, we also propose two low-complexity
suboptimal solutions. First, we show that for asymptotic
massive MISO WPCNs, where the ratio of the number of
users and number of BS antennas, i.e., the system load,
tends to zero, the optimal downlink energy signal com-
prises a sequence of weighted sums of MRT beamforming
vectors and can be obtained in closed-form. Next, based
on this result, we design an MRT-based scheme, which
is optimal for massive MISO WPCNs with vanishing
system loads and provides a suboptimal solution of the
formulated problem for general MISO WPCNs with finite
system loads. Furthermore, to improve the performance
of the MRT-based design for general WPCNs, we derive
a low-complexity suboptimal scheme, which is based on
semi-definite relaxation (SDR).

• Our simulation results reveal that the proposed
SDR-based suboptimal design has a significantly lower
computational complexity than the optimal scheme and
both WPCN designs achieve nearly identical performance
and significantly outperform two baseline schemes, which
are based on the linear and sigmoidal EH models, respec-
tively. Also, we show that for low system loads, the

proposed suboptimal MRT- and SDR-based schemes have
a similar performance and become identical when the
number of BS antennas tends to infinity. Finally, we show
that when the numbers of deployed BS antennas and user
devices grow, the average transmit power in the downlink
decreases and increases, respectively.

The remainder of this paper is organized as follows.
In Section II, we discuss the proposed system model.
In Section III, we formulate the optimization problem for
minimizing the average transmit power in the downlink under
per-user rate constraints in the uplink, and solve it for the
single-user case in closed form. Moreover, for the general
multi-user case, we characterize the optimal solution and pro-
pose an algorithm to compute it. In Section IV, we consider the
asymptotic massive MISO regime and determine a closed-form
solution for the resulting optimization problem. Furthermore,
for the general non-asymptotic case, we propose two low-
complexity suboptimal schemes. In Section V, we evaluate
the performance of the proposed framework via numerical
simulations. Finally, in Section VI, we draw some conclusions.

Notation: Bold upper case letters X represent matrices and
Xi,j denotes the element of X in row i and column j. Bold
lower case letters x stand for vectors and xi is the ith element
of x. XH , Tr{X}, and rank{X} denote the Hermitian,
trace, and rank of matrix X , respectively. E{x} denotes the
statistical expectation of x. The real part of a complex number
is denoted by ℜ{·}. The transpose and L2-norm of vector x
are represented by x⊤ and ∥x∥2, respectively. The sets of
real, real non-negative, and complex numbers are represented
by R, R+, and C, respectively, whereas SN

+ stands for the set
of complex positive semidefinite matrices of size N . X

1
2 and

∥X∥2 stand for the square root and spectral norm of matrix
X , respectively, whereas diag(x) with x ∈ CN represents a
diagonal matrix X ∈ CN×N , whose elements are all zero-
valued except for Xn,n = xn,∀n ∈ {1, 2, · · · , N}. The
imaginary unit is denoted by j. f−1(·) and f ′(x0) denote
the inverse function of f(·) and the first-order derivative of
f(x) evaluated at point x = x0, respectively. Generalized non-
strict inequalities are denoted by ⪰ and ⪯ and are associated
with RN

+ , i.e., ∀N ≥ 0 and ∀x,y ∈ RN , x ⪰ y and
y ⪯ x ⇐⇒ yn ≤ xn,∀n ∈ {1, 2, · · · , N}. Furthermore, 0
and IN stand for the all-zero vector of appropriate dimension
and the identity matrix of size N , respectively.

II. SYSTEM MODEL

We consider a single-carrier multi-user MISO WPCN,
where K ≥ 1 single-antenna users are equipped with EH
circuits [25] and information transmitters and Nt ≥ K
antennas are deployed at the BS, cf. Fig. 1. To enable
EH and information transmission in the uplink at the user
devices, we adopt time-division-duplex (TDD) transmission
and assume that each time frame of length Tf is divided
into two subframes. In particular, in the first subframe of
length τ̄Tf with τ̄ ∈ [0, 1], the BS transmits an RF energy
signal to transfer energy to the user devices, which harvest the
received power. In the subsequent subframe of length (1−τ̄)Tf,
this harvested power is utilized for information transmission
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Fig. 1. A WPCN with a multi-antenna BS and K single-antenna users. In the downlink, the BS sends an energy signal to the users (blue dashed arrows).
In turn, the users harvest the received energy and utilize it for information transmission in the uplink (orange solid arrows).

Fig. 2. Structure of a time frame of length Tf.

in the uplink. We assume block fading channels between
the BS and user devices, i.e., the channel of user k, k ∈
{1, 2, · · · ,K}, is constant for the duration of a time frame
but may change independently from one time frame to the
next. The channel between the BS and user k is characterized
by row vector1 hk ∈ C1×Nt . Furthermore, to investigate the
maximum achievable performance of WPCNs, as in, e.g., [22],
[23], [25], and [24], we assume that channel reciprocity holds
and hk is perfectly known2 at the BS.

A. Energy Transfer Phase

In the energy transfer phase, in contrast to the WPCN
designs in [6], [7], [8], [9], [10], [14], [15], [16], [17],
[18], [19], [20], [22], and [23], to jointly optimize transmit
beamforming at the BS and waveform of the energy signal,
we assume that the BS transmits a pulse-modulated RF energy
signal employing a sequence of N energy signal vectors
xn ∈ CNt , cf. Fig. 2. The equivalent complex baseband (ECB)
representation of this pulse-modulated RF energy signal is
modelled as x(t) =

∑N
n=1 xnψn(t) ∈ CNt , where ψn(t) =

Π
( t−

∑n−1
k=0 τ d

kTf

τ d
nTf

)
is the transmit pulse, τ d

0 = 0, Π(t) is a
rectangular function that takes value 1 if t ∈ [0, 1) and 0,
otherwise. Here, τ d

n, n ∈ {1, 2, · · · , N}, is the portion of the

1The statistics of channel vectors hk, k ∈ {1, 2, · · · , K}, may be
modelled as, e.g., Rayleigh, Rician, or Nakagami-m fading [8], [10], or via a
ray-based model, such as QuaDRiGa [26].

2To analyze the performance of WPCNs with imperfect channel knowledge,
one can adopt a practical channel estimation scheme at the BS, where a short
channel acquisition time slot is added at the beginning of each time frame.
In this time slot, the user devices utilize a portion of the energy harvested in
the previous time frames for uplink transmission of pilot sequences, which
are then exploited at the BS for channel estimation [27]. Furthermore, one can
design energy signals and resource allocation schemes for WPCNs which are
robust to imperfect channel knowledge [10], [15], [19]. The design of such
robust WPCNs is an interesting direction for further research and is beyond
the scope of this paper.

time frame of length Tf utilized for transmission of energy
signal vector xn with

∑N
n=1 τ

d
n = τ̄ .3

The RF energy signal received at user k in the energy
transfer phase is given by

zRF
k (t) =

√
2ℜ

{
hkx(t) exp(j2πfct)

}
, (1)

where fc denotes the carrier frequency. Similar to [25],
we neglect the noise received at the user terminals since its
contribution to the harvested power is negligible.

To harvest power, users are equipped with memoryless non-
linear EH circuits [1], [24], [25]. In contrast to the WPCN
designs in [6], [7], [8], [9], [10], [14], [15], [16], [17], [18], and
[19], in this work, we characterize the instantaneous behaviour
of an EH circuit and model it via the relationship between
the instantaneous received and harvested powers. Furthermore,
to take all non-linear and saturation effects of EH circuits into
account, we assume that the mapping between the instanta-
neous received and harvested powers at user k is characterized
by a circuit-based function ϕk(·), which is given by

ϕk(|z|2) = min{φk(|z|2), φk(A2
k)}. (2)

Here, z is the ECB representation of the received RF energy
signal at the user device, φk(·), k ∈ {1, 2, · · · ,K}, is a convex
monotonically increasing continuously differentiable function,
whose parameters are independent of the received signal and
determined by the EH circuit, and Ak is the minimum ampli-
tude of the received signal that drives the EH circuit of user k
into saturation [24], [25]. We note that φk(·) belongs to a wide
class of functions, which encompasses models for practical EH
circuits, and can be, e.g., linear [6], [7], [8], [9], [10] or derived
for a given rectifier circuit as in [13], [20], and [25]. For our

3We note that with the proposed energy signal model, arbitrary baseband
signal waveforms (e.g., sinusoidal waveforms) can be approximated with any
desired accuracy as N → ∞ by properly adjusting the downlink transmit
symbol vectors xn, n ∈ {1, 2, · · · , N}. However, in Section III-C, we show
that for the optimal energy signal design, the number of downlink transmit
symbol vectors N is upper-bounded.
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simulation results, we utilize a circuit-based EH model, whose
parameters are summarized in Table I introduced in Section V.

Thus, the average power harvested by user k during the
energy transfer phase can be expressed as follows

pd
k =

N∑
n=1

τ d
nϕk

(
|zk,n|2

)
, (3)

where zk,n = hkxn is the ECB representative of RF energy
signal zRF

k (t) received in time slot n at user k. Furthermore,
we assume that user k is equipped with a rechargeable built-
in battery, whose initial energy, qk, is known4 at the BS [10].
Thus, at the end of the downlink transmission phase, the

amount of energy available at user k is given by

ek(X, τ d, N) = qk + Tf

N∑
n=1

τ d
nϕk

(
|hkxn|2

)
, (4)

where matrix X = [x1 x2 · · · xN ] contains the transmit
energy signal vectors and τ d = [τ d

1 , τ
d
2 , · · · , τ d

N ]⊤ is the vector
of time durations allocated to the corresponding time slots.

B. Information Transmission Phase

In the uplink phase, the users transmit information to the BS
exploiting the energy available in their batteries. The symbol
vector r ∈ CNt received at the BS in the scheduled time slot
is given by

r =
K∑

k=1

hH
k

√
pu

ksk + n, (5)

where pu
k is the power utilized by user k for transmission of

information symbol sk ∈ C, which is modelled as a complex
zero-mean and unit-variance Gaussian random variable, and
n ∈ CNt is an additive white Gaussian noise (AWGN) vector
with zero mean and covariance matrix σ2INt . To reduce
computational complexity and suppress inter-user interference,
we assume ZF equalization5 at the BS. Thus, the detected
information symbol ŝk of user k at the BS can be expressed
as follows:

ŝk = fkr =
√
pu

ksk + ñk, (6)

where ñk = fkn is the equivalent AWGN with variance
σ̃2

k = ∥fk∥22σ2 impairing the detected information signal
transmitted by user k. Here, equalization vector fk ∈ C1×Nt

is the kth row of matrix F = (HH
u Hu)−1HH

u , where Hu =
[hH

1 hH
2 · · · hH

K ] is the composite uplink channel between
the users and the BS. Finally, the data rate of user k is given
by Rk(τ̄ , pu

k) = (1−τ̄) log2(1+Γk), where Γk = pu
k/σ̃

2
k is the

SNR at the BS for the detected information symbol transmitted
by user k.

4We note that if the initial energies of the user devices are not known at
the BS, we can assume qk = 0 J, ∀k.

5We note that space division multiple access (SDMA) is able to significantly
outperform time division multiple access (TDMA) for multi-user information
transmission [28]. Furthermore, ZF equalization is close to optimal if a large
number of antennas is deployed at the BS, i.e., Nt ≫ K, which is a preferred
regime for wireless power transfer systems, where a significant downlink
beamforming gain is generally required to be able to harvest meaningful
amounts of power [8], [29].

III. PROBLEM FORMULATION AND OPTIMAL SOLUTION

In this section, in contrast to the WPCN designs in [6],
[7], [8], [9], [10], [15], [16], [17], [18], [19], [22], and [23],
we develop a framework for the joint optimization of the
downlink energy signal waveform and time allocation policy
for the adopted general circuit-based EH model in (2). To this
end, we first formulate an optimization problem, and then,
we determine the optimal solution for single-user and multi-
user WPCNs, respectively.

A. Problem Formulation

In the following, we formulate an optimization problem for
the minimization of the average transmit power at the BS under
per-user rate constraints in the uplink. For a given time frame,
the optimal transmit energy signal vectors and time allocation
policy are obtained as the solution of the following non-convex
optimization problem:

minimize
τ d⪰0,τ̄∈[0,1],X,pu,N

PDL(τ d,X, N) (7a)

subject to Rk(τ̄ , pu
k) ≥ Rreq

k , ∀k, (7b)

ek(X, τ d, N) ≥ (1− τ̄)pu
kTf + preq

k Tf, ∀k,
(7c)

N∑
n=1

τ dn = τ̄ , (7d)

where PDL(τ d,X, N) =
∑N

n=1 τ
d
n∥xn∥22 and pu =

[pu
1 p

u
2 · · · pu

K ]⊤ are the average transmit power in the energy
transfer phase and the vector of powers utilized for informa-
tion transmission in the uplink, respectively. In problem (7),
we minimize the average transmit power at the BS (7a) in
the energy transfer phase subject to per-user information rate
constraints (7b), where Rreq

k is the required rate of user k in
the uplink. Constraint (7c) ensures that the available energy
at user k at the end of the energy transfer phase is not
lower than the sum of energies that are needed for the uplink
information transmission and performing other operational
tasks, e.g., sensing, channel estimation, transmission of pilot
sequences, and signal processing tasks. Finally, constraint (7d)
ensures that the obtained time allocation is feasible, i.e., the
normalized portions of the time frame τ d

n, n ∈ {1, 2, · · · , N},
utilized for transmission of the downlink energy signal vectors
sum up to the total normalized duration of the energy transfer
phase τ̄ . We assume that the values of Rreq

k and preq
k are set by

user k and communicated to the BS beforehand. We note that
in contrast to [6], [7], [8], [9], [10], [14], [15], [16], [17], [18],
and [19], where the covariance matrix X̃ =

∑N
n=1

τ d
n

Tf
xnx

H
n

of the downlink energy signal is optimized, the circuit-based
EH model in (2) allows the direct optimization of the individ-
ual transmit energy signal vectors x1,x2, · · · ,xN and their
number N or, equivalently, the waveform of signal x(t).

Due to the non-convexity of the objective function (7a) and
constraints (7b) and (7c), optimization problem (7) is, in gen-
eral, difficult to solve. In the following, we first show that for
single-user WPCNs, optimization problem (7) can be solved
in closed-form. Next, for multi-user WPCNs, we characterize
the optimal solution of (7) for the general case and determine
it based on a K-dimensional grid search.



SHANIN et al.: OPTIMAL ENERGY SIGNAL DESIGN FOR MULTIUSER MISO WPCNs 3407

B. Single-User WPCNs

In this section, we solve optimization problem (7) for single-
user WPCNs and thus, for notational convenience, we drop the
subscripts for user 1. The optimal power pu∗ for uplink infor-
mation transmission has to satisfy constraints (7b) and (7c)
and thus, can be chosen arbitrarily6 in the interval [pu

min, p
u
max].

Here, pu
min = (2

Rreq
1−τ̄ − 1)σ̃2 is the minimum power required

for uplink transmission with required rate Rreq and pu
max =

1
1−τ̄

(
q
Tf
− preq +

∑
n τ

d
nϕ(|hxn|2)

)
is the power available at

the user device at the end of the energy transfer phase. The
optimal time sharing parameter τ̄∗, the normalized lengths of
the time slots τ d

n
∗, and the transmit energy signal vectors in

the downlink x∗n, n ∈ {1, 2, · · · , N}, can be obtained as the
solution of the following optimization problem:

minimize
τ d⪰0,τ̄∈[0,1],X,N

N∑
n=1

τ d
n∥xn∥22 (8a)

subject to
N∑

n=1

τ d
nϕ(|hxn|2) ≥ ξ(τ̄), (8b)

N∑
n=1

τ d
n = τ̄ , (8c)

where ξ(τ̄) = preq − q
Tf

+ (1 − τ̄)
(
2

Rreq
1−τ̄ − 1

)
σ̃2. We note

that similar to (7), problem (8) is still non-convex. However,
in the following proposition, we show that the optimal solution
of (8) requires only a single energy signal vector, i.e., N∗ = 1,
which is collinear with the MRT vector.

Proposition 1: The optimal transmit signal in the energy
transfer phase as solution of problem (8) employs a single
energy signal vector x∗ = w∗s∗, where w∗ = hH

∥h∥2 is the
MRT beamformer and s∗ = α∗s exp(jθs) is a scalar symbol.
The magnitude of optimal symbol s∗ is given by α∗s = A

∥h∥2 ,
whereas the phase of s∗ can be arbitrarily chosen, i.e.,
θs ∈ [0, 2π).

Proof: Please refer to Appendix A.
Proposition 1 implies that in the downlink energy transfer

phase, the optimal signal consists of a single transmit energy
signal vector x∗, which is collinear with the MRT beamformer
and whose magnitude is chosen to drive the EH circuit into
saturation. Exploiting Proposition 1, we determine the optimal
τ̄∗ that solves (8) as follows:

τ̄∗ = min{τ̄ : fSU(τ̄) ≥ 0}, (9)

where fSU(τ̄) = τ̄ϕ(A2
)
− ξ(τ̄). Furthermore, if problem (8)

is feasible and does not have a trivial solution, i.e., τ̄∗ ∈ (0, 1],
the optimal τ̄∗ can be obtained as the minimum root of
equation fSU(τ̄) = 0, i.e., τ̄∗ = min{τ̄ : fSU(τ̄) = 0}.

C. Multi-User WPCNs

In this section, we determine the optimal solution of (7)
for multi-user WPCNs, i.e., for K > 1. First, we reformulate
constraint (7b) equivalently as pu

k ≥ ξu
k(τ̄), ∀k, where ξu

k(τ̄) =

σ̃2
k

(
2

R
req
k

1−τ̄ − 1
)

is the minimum power required by user k for

6We note that for power-efficient communication, if pu
max > pu

min, the user
devices may select pu∗ = pu

min to save power for future use.

information transmission with rate Rreq
k . Next, similarly to

single-user WPCNs in Section III-B, for given τ̄ , τ d,X , and
N , the optimal uplink transmit power pu*

k for user k satisfying
constraints (7b) and (7c) can be arbitrarily chosen from the
interval [ξu

k(τ̄), pu
max,k], where pu

max,k is the maximum power
available at user k for uplink transmission and is given by

pu
max,k =

1
1− τ̄

(qk
Tf
− preq

k +
N∑

n=1

τ d
nϕk(|hkxn|2)

)
. (10)

Then, problem (7) can be simplified as follows:

minimize
τ d⪰0,τ̄∈[0,1],X,N

N∑
n=1

τ d
n∥xn∥22 (11a)

subject to
N∑

n=1

τ d
n = τ̄ , (11b)

N∑
n=1

τ d
nϕk

(
|hkxn|2

)
≥ ξd

k(τ̄), ∀k, (11c)

where ξd
k(τ̄) = (1−τ̄)ξu

k(τ̄)+preq
k − qk

Tf
is the required harvested

power at user k.
In the following proposition, we characterize the optimal

solution of (11).
Proposition 2: The optimal transmit energy signal vectors

x∗n, n ∈ {1, 2, · · · , N}, as solution of (11) can be expressed
as follows

x∗n = w∗nsn, (12)

where sn = exp(jθn), n ∈ {1, 2, · · · , N}, are scalar unit-
norm symbols with arbitrary phases θn = [0, 2π). Energy
beamforming vectors w∗n, n ∈ {1, 2, · · · , N}, can be obtained
as solutions of the following optimization problem:

minimize
wn

∥wn∥22 (13a)

subject to ϕk(|hkwn|2) ≥ µn,k, ∀k. (13b)

For each n ∈ {1, 2, · · · , N}, vector µn =
[µn,1, µn,2, · · · , µn,K ]⊤ ∈ RK

+ contains the instantaneous
powers harvested at user devices 1, 2, · · · ,K in time
slot n. Furthermore, the optimal τ̄∗, τ d∗, vectors
µ∗n, n ∈ {1, 2, · · · , N}, and N∗ can be determined as
solution of the following resource allocation problem:

minimize
τ d⪰0,τ̄∈[0,1],µ1,··· ,µN ,N

N∑
n=1

τ d
nψ(µn) (14a)

subject to
N∑

n=1

τ d
nµn ⪰ ξ

d(τ̄), (14b)

N∑
n=1

τ d
n = τ̄ , (14c)

with ξd(τ̄) = [ξd
1(τ̄), ξ

d
2(τ̄), · · · , ξd

K(τ̄)]⊤. Here, ψ(µ) :
RK → R is a monotonic non-decreasing function given by

ψ(µ) = min
x∈Ω(µ)

∥x∥22 (15)

with Ω(µ) = {x : ϕk(|hkx|2) ≥ µk,∀k}.
Proof: Please refer to Appendix B.
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Proposition 2 reveals that problem (11) can be solved by first
determining function ψ(µ) in (15), and subsequently obtaining
the optimal time sharing parameter, number of time slots,
their normalized lengths, and vectors of harvested powers7 in
the downlink, τ̄∗, N∗, τ d∗, and µ∗n, n ∈ {1, 2, · · · , N∗},
respectively, as solution of optimization problem (14). Finally,
the optimal downlink transmit energy signal vectors in (12)
comprise energy beamformers w∗n and scalar unit-norm sym-
bols8 sn. The optimal energy beamforming vectors w∗n in (12)
can be obtained as solutions of the non-convex problem (13).

In the following, we separately solve optimization problems
(13), (14), and (15). Although problems (13) - (15) are
non-convex, we show that the computational complexity of
solving (14) and (15) depends on the number of users K and
is independent of the number of BS antennas Nt, whereas
the solution of (13) has a computational complexity that is
polynomial in Nt.

1) Solution of Problem (15): In this section, for any given
vector µ ∈ RK , we determine the value of function ψ(µ) in
(15). To this end, in the following proposition, we show that
problem (15) can be equivalently reformulated as a convex
optimization problem.

Proposition 3: For a given vector µ ∈ RK , the value of
function ψ(µ) can be determined as solution of the following
convex optimization problem:

ψ(µ) = max
λ⪰0

ρ⊤λ subject to ∥B diag(λ)B∥2 ≤ 1, (16)

where λ ∈ RK , ρk = ϕ−1
k (µk), k ∈ {1, 2, · · · ,K}, and B =

(HHH)
1
2 with H = HH

u = [hH
1 hH

2 · · · hH
K ]H .

Proof: Please refer to Appendix C.
Proposition 3 reveals that, for any given µ, the value of

ψ(µ) can be obtained as a solution of the convex optimization
problem (16) via a standard numerical optimization tool, such
as CVX [31]. Furthermore, we highlight that the computational
complexity of (16) does not depend on the number of transmit
antennas Nt [32].

2) Solution of Problem (14): In the following, for function
ψ(µ) introduced in (15), we solve optimization problem (14).
To this end, in the following proposition, we first show that
for any function ψ(µ), the optimal value of N satisfies N∗ ≤
K+1. Next, we propose a grid search algorithm to solve (14).

Proposition 4: For any given function ψ(µ), the optimal
number of time slots for the downlink power transfer phase
satisfies N∗ ≤ K + 1.

Proof: Please refer to Appendix D.
Proposition 4 provides an upper bound on the optimal

number of time slots N∗ in the downlink phase. Therefore,
to find the optimal solution of (14), we set N = N̄ =
K + 1 and determine the optimal τ̄∗ ∈ [0, 1], τ d∗ ∈ [0, 1]N̄ ,

7We note that for the optimal solution of optimization problem (7), the EH
circuits at the user devices may be driven into an interior point of the saturation
region, i.e., we may have |hkxn| > Ak for some n ∈ {1, 2, · · · , N} and
k ∈ {1, 2, · · · , K}. This may occur, e.g., if the user devices are collocated
and have different required rates R

req
k and powers p

req
k [30].

8Since scalar phase θn of s∗n can be chosen arbitrarily, it can be utilized
for, e.g., the transmission of power values pu

k, k ∈ {1, 2, · · · , K}, and time
allocation variables τ d and τ̄ to the user devices in the downlink [24].

and µ∗n, n ∈ {1, 2, · · · , N̄}, as solution of the resulting
optimization problem.

In the following, we exploit a grid search to solve (14).
First, we define a uniform grid Pτ = {τ̄1, τ̄2, · · · τ̄Lτ

} of size
Lτ , where τ̄p = p−1

Lτ−1 , p ∈ {1, 2, · · ·Lτ − 1}. Next, we obtain
the optimal τ d∗ and µ∗n, n ∈ {1, 2, · · · , N̄}, for each τ̄ ∈ Pτ ,
i.e., we solve the following optimization problem:

minimize
τ d⪰0,µ1,··· ,µN̄

N̄∑
n=1

τ d
nψ(µn) (17a)

subject to
N̄∑

n=1

τ d
nµn,k ≥ ξd

k(τ̄), (17b)

N̄∑
n=1

τ d
n = τ̄ . (17c)

To this end, we first define the uniform grids Pk =
{µ̂1,k, µ̂2,k, · · · , µ̂Lµ,k}, k ∈ {1, 2, · · · ,K}, of size Lµ that
span the feasible intervals of harvested powers at users k, k ∈
{1, 2, · · · ,K}. We note that the harvested powers µn,k, n ∈
{1, 2, · · · , N̄}, k ∈ {1, 2, · · · ,K}, are bounded, i.e., µn,k ∈
[0, φk(A2

k)],∀n, k. Thus, the elements of grid Pk are given by
µ̂j,k = (j−1)φk(A2

k)
Lµ−1 , j ∈ {1, 2, · · · , Lµ}, k ∈ {1, 2, · · · ,K}.

Next, based on grids Pk, k ∈ {1, 2, · · · ,K}, we construct
another grid Pµ of size LK

µ , whose elements are vectors µ̄j =
[µ̄j,1, µ̄j,2, · · · , µ̄j,K ]⊤, j ∈ {1, 2, · · · , LK

µ }, representing
unique combinations of harvested powers at the user devices,
i.e., for any i ̸= j, we have µ̄i ̸= µ̄j . To uniquely define vector
µ̄j , we consider the representation of j − 1 in the numeral
system with base Lµ, j ∈ {1, 2, · · ·LK

µ }, k ∈ {1, 2, · · · ,K},
i.e., ik ∈ {0, 1, · · · , Lµ− 1} and j =

∑K
k=1 ikL

K−k
µ + 1, and

set the elements of µ̄j to values µ̄j,k = ikϕk(A2
k)

Lµ−1 , where ik is
the digit in position k in the representation of j − 1.

Finally, we solve (17) on the grid Pµ, i.e., we optimally
select the K + 1 elements of Pµ with non-zero9 normalized
time durations. To this end, we solve the following linear
optimization problem:

minimize
τ̃ d⪰0

LK
µ∑

j=1

τ̃ d
jψ(µ̄j) (18a)

subject to Mτ̃ d ⪰ ξd(τ̄), (18b)
LK

µ∑
j=1

τ̃ d
j = τ̄ , (18c)

whereM = [µ̄1, µ̄2, · · · , µ̄LK
µ

] ∈ RK×LK
µ and τ̃ d ∈ [0, 1]L

K
µ .

Since problem (18) is linear, it can be efficiently solved using
a standard numerical optimization tool, such as CVX [31].
Finally, we choose the τ̄∗ ∈ Pτ that yields the minimum trans-
mit power in the downlink. For the optimal τ̄∗, the optimal
normalized lengths of the time slots τ d* and the corresponding
vectors of harvested powers µ∗n, n ∈ {1, 2, · · · , N̄}, are
obtained10 as the N̄ non-zero elements of τ̃ d*(τ̄∗) and the

9In our simulations, we observe that for the optimal time allocation τ̄∗,
the number of elements of Pµ with non-zero normalized time durations is
typically N∗ ≤ K.
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Algorithm 1 Algorithm for Determining the Optimal

Solution of (14)
Initialize: Grid sizes Lµ and Lτ , channel covariance

matrix B = (HHH)
1
2 , required rate Rreq

k , required

power preq
k , and initial energy qk at user k for

k ∈ {1, 2, · · · ,K}.

1. Create grid Pµ and calculate ψ(·) on its vertices:

for j = 0 to LK
µ − 1 do

1.1. Create vector µ̄j = [µ̄j,1 µ̄j,2 · · · µ̄j,K ]⊤,

where µ̄j,k = ik ϕk(A2
k)

Lµ−1 , ik ∈ {0, 1, · · · , Lµ}, and

j =
∑K

k=1 ikL
K−k
µ + 1

1.2. Calculate ψj = ψ(µ̄j) as solution of (16)

end

2. Create grid Pτ and solve (18) for each point on the

grid:

for p = 1 to Lτ do
2.1. Calculate the time sharing parameter

τ̄p = p−1
Lτ−1

2.2. For τ̄ = τ̄p, determine τ̃ d*
p as solution of (18)

and the corresponding value Ψ∗p = ψ⊤τ̃ d*
p

end

3. Find p∗ = arg minp Ψ∗p, the ratio τ̄∗ = τ̄p∗ , and the

corresponding vectors τ d∗ and µ∗n, n ∈ {1, 2, · · · , N̄}

Output: Optimal parameter τ̄∗, time slot lengths τ d*,

and harvested powers µ∗n, n ∈ {1, 2, · · · , N̄}

corresponding elements of Pµ, respectively, where τ̃ d*(τ̄) is
the solution of (18) for a given τ̄ .

The algorithm for determining the optimal solution of
problem (14) is summarized in Algorithm 1. We note that
the computational complexity of the algorithm is exponential
in the number of users K but does not depend on the number
of transmit antennas Nt employed at the BS.

3) Solution of Problem (13): In the following, for the opti-
mal vectors µ∗n obtained in Section III-C.2, we determine the
optimal energy beamforming vectors w∗n, n ∈ {1, 2, · · · , N̄},
as a solution of problem (13). Due to the non-concavity
of ϕk(·), k ∈ {1, 2, · · · ,K}, problem (13) is non-convex.
Nevertheless, in the following, we show that problem (13) can
be equivalently formulated as a convex optimization problem,
whose solution has a computational complexity, which is
polynomial in Nt.

10We note that, as the grid size Lµ grows, the optimal solution of (18), i.e.,
the N̄ non-zero elements of vector τ̃ d*(τ̄) and the corresponding elements of
Pµ, converges to the optimal solution of (7) for a given τ̄ , i.e., τ d* and
µ∗

n, n ∈ {1, 2, · · · , N̄}, at the expense of an increase in computational
complexity, see (22), [33], [34], [35].

Since problem (13) can be reformulated as a rank-
constrained semidefinite optimization problem [24], in the fol-
lowing lemma, we first consider a class of convex semidefinite
optimization problems with linear constraints and show that
the solutions of such problems are low-rank. The result of
this lemma is then exploited for the solution of problem (13).

Lemma 1: For any given vector b ∈ RK , the optimal
solution of the following convex optimization problem

minimize
X∈SNt

+

Tr{X} (19a)

subject to hkXh
H
k ≥ bk, ∀k ∈ {1, 2, · · · ,K}, (19b)

satisfies11 rank{X} ≤ 1.
Proof: Please refer to Appendix E.

Next, in the following proposition, we equivalently formu-
late (13) as a convex optimization problem.

Proposition 5: The optimal energy beamforming vectors
w∗n, n ∈ {1, 2, · · · , N̄}, are given by w∗n = γnvn, where γn

and vn are the dominant eigenvalue and the corresponding
eigenvector of matrix W ∗

n, which is obtained as solution of
the following convex optimization problem:

minimize
W n∈SNt

+

Tr{W n} (20a)

subject to hkW nh
H
k ≥ φ−1

k (µ∗n,k), ∀k. (20b)

Proof: Since function ϕk(·) is monotonically non-
decreasing, problem (13) can be equivalently reformulated as
follows

minimize
W n∈SNt

+

Tr{W n} (21a)

subject to hkW nh
H
k ≥ φ−1

k (µ∗n,k), ∀k, (21b)

rank{W n} ≤ 1. (21c)

Problems (20) and (21) are equivalent thanks to Lemma 1.
Then, the optimal energy beamforming vector w∗n, n ∈
{1, 2, · · · , N̄}, as solution of (13) can be determined as w∗n =
γnvn, where γn and vn are the dominant eigenvalue and
the corresponding eigenvector of matrix W ∗

n, which is the
solution of (21). This concludes the proof.

Proposition 5 reveals that the optimal energy beamforming
vectors w∗n, n ∈ {1, 2, · · · , N̄}, can be determined as solution
of convex optimization problem (20). We note that (20) can
be efficiently solved using numerical optimization tools, such
as CVX [31].

Thus, to optimally solve optimization problem (7), we first
determine the optimal time allocation τ̄∗, τ d∗, and the optimal
vectors of harvested powers µ∗n, n ∈ {1, 2, · · · , N̄}, with
Algorithm 1. Next, for this optimal time allocation and har-
vested powers at the user devices, we determine the optimal
beamforming vectors w∗n, n ∈ {1, 2, · · · , N̄}, according to
Proposition 5. The algorithm for determining the optimal
solution of problem (7) is summarized in Algorithm 2. The

11We note that if bk = 0,∀k, the optimal solution satisfies rank{X} = 0.
Otherwise, we have rank{X} = 1.
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Algorithm 2 Optimal Design of Multi-User WPCN.

Initialize: Channel vectors h1,h2, · · · ,hK , required

rates Rreq
k , power preq

k , and initial energy qk at user

k, k ∈ {1, 2, · · · ,K}.

1. Find the channel covariance matrix B = (HHH)
1
2

2. Determine the optimal time allocation τ̄∗, τ d∗, and

harvested powers µ∗n, n ∈ {1, 2, · · · , N̄}, with

Algorithm 1

3. For the optimal harvested powers, determine the

energy beamforming vectors w∗n in Proposition 5

Output: Energy beamforming vectors

w∗n, n ∈ {1, 2, · · · , N̄}, ratio τ̄∗, and time slot

lengths τ ∗

computational complexity of the optimal WPCN design as
function of Nt and K is given by

ΘOpt(Nt,K) = ΘRA(Nt,K) + ΘBF(Nt,K), (22)

where ΘRA(Nt,K) = O
(
LτL

K
µ K

3
)

and ΘBF(Nt,K) =

O
(
K2N

7
2

t +K3N
5
2

t +K4N
1
2

t
)

are the computational complex-
ities of the optimal resource allocation scheme in Algorithm 1
and the optimal energy beamforming design, i.e., the solution
of (20), respectively. Here, O(·) denotes the big-O notation12.
Thus, we conclude that the computational complexity of the

optimal energy signal and resource allocation policy is expo-
nential in the number of deployed users K and polynomial in
the number of transmit antennas Nt. Hence, determining the
optimal WPCN design may not be computationally efficient
for multi-user systems with K ≫ 1. Therefore, in the
following section, we propose two suboptimal low-complexity
schemes to solve optimization problem (7).

IV. LOW-COMPLEXITY DESIGN OF MULTI-USER WPCNS

In this section, we propose two suboptimal low-complexity
schemes for WPCN design. To this end, we first consider
asymptotic massive MISO WPCNs with Nt → ∞ and deter-
mine the optimal transmit policy in the downlink in closed-
form. Next, based on this result, we propose an MRT-based
scheme for WPCN design, which is optimal for massive
MISO WPCNs with vanishing system loads and provides a
suboptimal solution of (7) for general MISO WPCNs with
finite system loads. Finally, to improve the performance of
this design for the general case, we derive a low-complexity
suboptimal scheme that utilizes SDR.

12The computational complexities of a linear program and a convex
semidefinite problem that involve n variables and m constraints are given by
O
(
m3 + nm2 + n2

)
and O

(√
n(mn3 + m2n2 + m3)

)
, respectively [32].

A. Massive MISO WPCNs

In the following, we consider the optimal design of multi-
user MISO WPCNs, where the channel vectors hk, k ∈
{1, 2, · · · ,K}, become orthogonal, i.e., hih

H
j = 0, ∀i ̸= j,

as the WPCN load approaches zero, i.e., K
Nt
→ 0 [8]. We note

that this property holds for, e.g., massive MISO WPCNs with
Rayleigh fading channels as the number of antennas Nt at the
BS tends to infinity [8], [29].

To solve optimization problem (7), we first determine the
optimal fraction τ̄∗ using a one-dimensional grid search as
τ̄∗ = arg minτ̄∈[0,1] P

∗
DL(τ̄), where

P ∗DL(τ̄) = min
F
{PDL} (23)

with F = {W , τ d :
∑N̄

n=1 τ
d
nϕk

(
|hkwn|2

)
≥

ξd
k(τ̄),∀k;

∑N̄
n=1 τ

d
n = τ̄}, W = {w1,w2, · · · ,wN̄}, and

PDL =
∑N̄

n=1 τ
d
n ∥wn∥22.

Next, for a given τ̄ , in the following proposition, we show
that for massive MISO WPCNs, the optimal energy signal and
time allocation policy as solution of (11) can be obtained in
closed-form.

Proposition 6: If channel vectors hk, k ∈ {1, 2, · · · ,K},
are orthogonal, i.e., hih

H
j = 0,∀i ̸= j, for a given τ̄ , the K

energy beamforming vectors of the optimal energy signal in
Proposition 2 and the normalized lengths of the corresponding
time slots are given by

w∗n =
K∑

i=n

Aki

hH
ki

∥hki
∥22
, (24)

τ d*
n = t̄+kn

(τ̄)− t̄+kn−1
(τ̄), n ∈ {1, 2, · · · ,K}, (25)

with t̄+k0
(τ̄) = 0, respectively. Here, the elements of t̄+(τ̄) =

[t̄+k1
(τ̄), t̄+k2

(τ̄), · · · , t̄+kK
(τ̄)] ∈ RK

+ are obtained by sorting

the values t+k (τ̄) = max
{
0, ξd

k(τ̄)

ϕk(A2
k)

}
, k ∈ {1, 2, · · · ,K},

in ascending order. Furthermore, the (K + 1)th energy beam-
forming vector is the all-zero vector, i.e., w∗K+1 = 0, and its
normalized length is given by τ d*

K+1 = τ̄ −
∑K

n=1 τ
d*
n . Finally,

the corresponding optimal transmit power in the downlink is
given by P ∗DL(τ̄) =

∑K
k=1

A2
k

∥hk∥22
ξd

k(τ̄)

ϕk(A2
k)

.

Proof: Please refer to Appendix F.
Proposition 6 reveals that for multi-user massive MISO

WPCNs, the optimal energy signal comprises a sequence of
weighted sums of MRT beamforming vectors and can be
obtained in closed-form. Furthermore, similar to the single-
user WPCN in Section III-B, the magnitudes of the MRT
beamforming vectors in w∗n, n ∈ {1, 2, · · · , N̄}, are chosen
to drive the corresponding EH circuits at the user devices into
saturation. Thus, in the first time slot, it is optimal to drive
all EH circuits into saturation. The corresponding normalized
time slot duration depends on the power required by the least
demanding user k1, i.e., the user with the minimum normalized
required power ξd

k(τ̄)

ϕk(A2
k)
, k ∈ {1, 2, · · · ,K}. Furthermore, since

the channel vectors hk, k ∈ {1, 2, · · · ,K}, are orthogonal,
for the optimal resource allocation policy, in each subsequent
time slot, it is optimal to switch-off the power transmission
to the user whose power requirement is already satisfied, cf.
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Fig. 3. Optimal design of massive MISO WPCNs. The optimal energy beamforming vectors in the downlink are weighted sums of MRT beamformers,
where the weights are chosen such that the corresponding EH circuits are driven into saturation.

Fig. 3. Finally, in the (K + 1)th time slot, all constraints
in (11) are satisfied and, hence, the corresponding optimal
beamforming vector is the all-zero vector. We note that since
the time reserved for the last time slot can be utilized for
uplink information transmission, for the optimal τ̄∗, we have
τ d*
K+1 = 0.

Remark 1: The optimal downlink energy signal for mas-
sive MISO systems as solution of problem (7) may not be
unique. For example, the order in which w∗1,w

∗
2, · · · ,w∗K+1

are transmitted can be chosen arbitrarily. Furthermore, the
optimal normalized durations of the time slots may differ from
those in Proposition 6 if, e.g., the time slot of user k1 is split
into several parts to serve this user in multiple non-consecutive
time slots.

In the following, we exploit Proposition 6 for the derivation
of suboptimal WPCN designs. In particular, we first propose a
closed-form suboptimal MRT-based WPCN design that is opti-
mal for massive MISO WPCNs with vanishing system loads
and is a feasible point of optimization problem (7) for multi-
user MISO WPCNs with finite system loads. Next, exploiting
SDR, we derive a low-complexity suboptimal scheme that is
based on the MRT-based WPCN design and yields a scheme
with reduced required average transmit power at the BS in the
general case.

B. Suboptimal MRT-Based Scheme

In this section, based on the optimal energy beamforming
vectors for massive MISO WPCNs with vanishing system
loads in Proposition 6, we propose a suboptimal MRT-based
WPCN design that is optimal for massive MISO WPCNs and
solves (7) for general multi-user WPCNs. We note that the
scheme in Proposition 6 may not be a feasible solution of (7)
for the general case since the energy beamforming vectors
in Proposition 6 may not be able to drive the corresponding
EH circuits into saturation if the channel vectors are not
orthogonal. Thus, in the following, we adapt the energy
beamforming vectors in Proposition 6 to the case of general
WPCNs with finite system loads.

To this end, for a given τ̄ , we first determine the energy
beamforming vectors w∗n and the normalized lengths of
the corresponding time slots τ d*

n , n ∈ {1, 2, · · · ,K + 1},
as in Proposition 6. Next, to drive the EH circuits of
users k ∈ K(n) = {kn, kn+1, · · · , kK} into saturation,
in time slot n, we adopt a weighted energy beamforming
vector w̃∗n = ωnw

∗
n. We propose to choose the weights

ωn, n ∈ {1, 2, · · · , N̄}, as follows:

ωn = max
k′∈K(n)

Ak′

|hk′w∗n|
. (26)

We note that since w∗n in Proposition 6 is a weighted sum
of random channel vectors hk′ of users k′ ∈ K(n), we have
|hk′w

∗
n| > 0 and ωn < ∞,∀n, with probability 1. Further-

more, in the case of orthogonal channel vectors, we have
ωn = 1,∀n ∈ {1, 2, · · · ,K}, and w̃∗n = w∗n. The algorithm
proposed to obtain the suboptimal MRT-based WPCN design
is summarized in Algorithm 3.

In the proposed suboptimal MRT-based scheme, similar to
Proposition 6, energy beamforming vector w̃∗n in time slot
n, n ∈ {1, 2, · · · , N̄}, is chosen to drive the EH circuits
of the users in K(n) into saturation and, thus, the proposed
scheme is a feasible solution of (7). However, this scheme
may not be efficient for general multi-user WPCNs with finite
system loads since the EH circuits at the user devices may
be driven too deep into saturation, i.e., |hkw̃

∗
n|2 > A2

k for
some n ∈ {1, 2, · · · ,K} and k ∈ {1, 2, · · · , N̄}, and thus,
the constraints in (7b) and (7c) may not be tight. Therefore,
to cope with this issue, in the next section, we propose a
low-complexity suboptimal scheme that is initialized by the
solution attained with the suboptimal MRT-based scheme and
yields a scheme with reduced average transmit power in the
energy transfer phase for general WPCNs.

C. Suboptimal SDR-Based Scheme

Since the MRT-based WPCN design obtained with
Algorithm 3 may be severely suboptimal if the system load
K
Nt

does not tend to 0, in this section, we improve the
performance of the proposed suboptimal design for the general
case. In [1], we developed an iterative algorithm that converges
to a stationary point of (7). However, since the complexity
of this algorithm may be unreasonably high, in this work,
we propose a low-complexity solution of (7) that is based on
SDR and the MRT-based scheme, which is optimal for massive
MISO WPCNs with vanishing system loads.

Since the beamforming vectors w̃∗n, n ∈ {1, 2, · · · , N̄},
obtained with Algorithm 3 may drive the EH circuits at
the user devices too deep into saturation, i.e., |hkw̃

∗
n|2 ≫

A2
k for some k ∈ {1, 2, · · · ,K} and n ∈ {1, 2, · · · , N̄},

we propose to modify energy beamforming vectors w̃∗n such
that the modified vectors ŵ∗n, n ∈ {1, 2, · · · , N̄}, provide the
same harvested powers to the users, but avoid the waste of
energy and thus, reduce the average transmit power at the
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Algorithm 3 Algorithm for Suboptimal MRT-Based
Scheme
Initialize: Required rates Rreq

k , powers preq
k , initial

energies qk,∀k, grid size Lτ

1. Set initial value τ̄ = 0, i = 1.
repeat

2. Determine vector t+(τ̄) as in Proposition 6
3. Find w∗n and τ d*

n , n ∈ {1, 2, · · · , N̄}, as in
Proposition 6

4. Obtain w̃n = ωnw
∗
n, n ∈ {1, 2, · · · , N̄}, with

ωn = maxk′∈K(n)
Ak′

|hk′w
∗
n|

5. Save w̃n and τ d*
n in Wn

i and τn
i ,

n ∈ {1, 2, · · · , N̄}, respectively
6. Calculate ηi =

∑N̄
n=1 τ

d*
n ∥w̃∗n∥22

7. Set τ̄ = τ̄ + 1
Lτ−1 , i = i+ 1

until τ̄ ≥ 1;
8. Find index i∗ yielding the minimum value in
η = [η1, η2, · · · , ηi−1]

Output: w̃n, τ
d*
n from Wn

i∗ and τn
i∗ ,

∀n ∈ {1, 2, · · · , N̄}, respectively, and τ̄∗ = i∗−1
Lτ−1

BS. To this end, in time slot n, we first determine the har-
vested powers µ̃n,k = ϕk(|hkw̃

∗
n|2) that are achieved at user

devices k ∈ {1, 2, · · · ,K} with the suboptimal MRT-based
scheme. Next, we determine new energy beamforming vectors
ŵ∗n, n ∈ {1, 2, · · · , N̄}, such that ∥ŵ∗n∥2 ≤ ∥w̃∗n∥2 and
ϕk(|hkŵ

∗
n|2) ≥ µ̃n,k,∀n, k. To this end, in time slot n,

we solve the following optimization problem:

minimize
Ŵ n∈SNt

+

Tr{Ŵ n} (27a)

subject to hkŴ nh
H
k ≥ φ−1

k (µ̃n,k), ∀k. (27b)

Since (27) is a convex semidefinite optimization problem,
it can be solved with a numerical optimization tool, such as
CVX [31]. Furthermore, similar to problem (20), the optimal
solution Ŵ

∗
n of problem (27) satisfies rank{Ŵ

∗
n} ≤ 1,∀n ∈

{1, 2, · · · , N̄}, cf. Lemma 1. Hence, the beamforming vector
in time slot n, n ∈ {1, 2, · · · , N̄}, can be obtained as ŵ∗n =
γ̂∗nv̂

∗
n, where γ̂∗n and v̂∗n are the dominant eigenvalue and

the corresponding eigenvector of matrix Ŵ
∗
, respectively, see

Proposition 5.
The resulting suboptimal SDR-based design is summarized

in Algorithm 4. We note that since the suboptimal MRT-
and SDR-based designs provide identical harvested powers
at the user devices, the solution obtained with Algorithm 4
is also a feasible point of problem (7). Furthermore, since
problem (27) is similar to (20), the computational complexity
of the suboptimal SDR-based scheme is given by

ΘSDR(Nt,K) = ΘBF(Nt,K)

= O
(
K2N

7
2

t +K3N
5
2

t +K4N
1
2

t
)
.

(28)

Thus, the computational complexity of the proposed algorithm
is polynomial in the number of users K and the number
of transmit antennas Nt at the BS. We note that since the
time allocation parameter τ̄∗ of the SDR-based scheme in

Algorithm 4 Algorithm for Suboptimal SDR-Based
Scheme.
Initialize: Channel vectors h1,h2, · · · ,hK , required
rates Rreq

k , powers preq
k , and initial energy qk at user

k, k ∈ {1, 2, · · · ,K}.
1. Find w̃n, τ

d∗
n , n ∈ {1, 2, · · · , N̄}, and τ̄∗ with

Algorithm 3
2. Determine the optimal matrices
Ŵ

∗
n, n ∈ {1, 2, · · · , N̄}, as solutions of (27)

3. Obtain ŵ∗n = γ̂∗nv̂
∗
n,∀n

Output: τ̄∗, τd∗
n , ŵ∗n,∀n

Algorithm 4 is found with the low-complexity MRT-based
scheme, the computational complexity of the one-dimensional
grid search with respect to τ̄ is neglected in (28).

V. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
schemes for WPCN design via numerical simulations. First,
we discuss the adopted system setup. Next, we study the
complexity of the proposed optimal and suboptimal schemes.
Finally, we analyze the performances of the proposed schemes
and compare them with baseline schemes.

A. Simulation Setup

We assume that the elements of channel vectors hk, k ∈
{1, 2, · · · ,K}, are independent Rayleigh fading. Thus,
we model the elements of hk, k ∈ {1, 2, · · · ,K}, as hi,k =
h̄i,kh̃i,k, where h̄i,k and h̃i,k are the large and small scale
fading components of the channel, respectively. Furthermore,
to account for the path loss, we set the large scale fading com-
ponent between the BS and user device k to h̄i,k = cl

4πdkfc
,

where cl is the speed of light, fc = 868MHz is the carrier
frequency, and dk is the distance between the BS and user k ∈
{1, 2, · · · ,K}. The small-scale fading coefficients h̃i,k,∀i, k,
are modelled as independent and identically distributed (i.i.d.)
complex circularly-symmetric Gaussian random variables with
zero mean and unit variance. Next, for information trans-
mission in the uplink, we assume a noise variance of σ2

k =
−120dBM. Additionally, we assume that all user devices are
equipped with identical EH circuits and for the circuit-based
EH model ϕk(·) in (2), we adopt the non-linear function

φk(|z|2) = λ
[
µ−1W0

(
µ exp(µ)I0

(
ν
√

2|z|2
)
− 1

)2]
derived

in [25] for a half-wave rectifier with a single diode [12].
Here, λ, µ, and ν are parameters that depend on the circuit
elements but not on the received signal, whereas W0(·) and
I0(·) are the principle branch of the Lambert-W function and
the modified Bessel function of the first kind and order zero,
respectively. The simulation parameters are summarized in
Table I. All numerical results are averaged over 1000 random
channel realizations.

B. Complexity Analysis

First, we study the complexities of the proposed algo-
rithms. In Fig. 4, as a measure for complexity, we compare
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TABLE I
SIMULATION PARAMETERS

Fig. 4. Computation times of the optimal scheme and the suboptimal
SDR-based design for different values of Nt and K.

the times required to determine the energy signals for the
optimal scheme and the suboptimal SDR-based scheme. For
the simulations, we adopt preq

k = 0W and the required per-
user data rate is selected randomly from the interval Rk ∈
[1, 5] bit

channel use ,∀k. We note that the times required to obtain
the optimal and suboptimal WPCN designs depicted in Fig. 4
are proportional to the computational complexity orders ΘOpt
and ΘSDR in (22) and (28), respectively. Thus, as expected,
we observe in Fig. 4 that the computation times of both
considered schemes grow with the number of users K and
the number of BS antennas Nt. Furthermore, we note that for
any value of K, the suboptimal SDR-based scheme entails
a significantly lower complexity than the optimal WPCN
design and the complexity gap between the schemes increases
with the number of users K. This is due to the exponential
complexity of the optimal resource allocation ΘRA in K,
whereas, for the SDR-based scheme, the resource allocation is
obtained with the low-complexity MRT-based approach, and
thus, the complexity ΘSDR is significantly lower than that of
the optimal solution. Moreover, although the computational
complexity of the optimal and suboptimal SDR-based WPCN
designs may be high for large values of Nt, we note that in
this case, both schemes may not provide substantial gains
over the suboptimal MRT-based scheme which is optimal
for massive MISO WPCNs with vanishing system loads and
whose computational complexity is very small.

C. Performance Analysis

In the following, we analyze the performances of the
proposed energy signal designs for WPCNs. To this end,
in Figs. 5(a) and 5(b), we compare the average transmit powers
PDL obtained for different numbers of users K as functions
of the required per-user power, preq = preq

k , ∀k, and the
required per-user rate, Rreq = Rreq

k , ∀k, respectively. We adopt
Nt = 5 antennas at the BS and consider WPCNs with K = 1,

K = 2, and K = 3 user devices. We set the distances
between the BS and user devices to d1 = 3M, d2 = 5M,
and d3 = 7M, respectively. Furthermore, for the results in
Figs. 5(a) and 5(a)(b), we adopt Rreq

k = 0 bit
channel use and

preq
k = 0W, ∀k, respectively.
As Baseline Scheme 1 and Baseline Scheme 2, we adopt the

WPCN design obtained by solving optimization problem (7)
with the linear and sigmoidal EH models at the user devices,
utilizing the algorithms reported in [7] and [16], respectively.
For the linear EH model in Baseline Scheme 1, we adopt
energy conversion efficiency ηk = ϕk(A2

k)

A2
k

,∀k, whereas for
the sigmoidal model in Baseline Scheme 2, we determine the
model parameters to accurately match the adopted function
ϕk(·),∀k, as proposed in [14]. We note that since both baseline
EH models are designed to characterize the average harvested
power at the user devices, the related signal designs provide
covariance matrices X̃ =

∑ τn

τ̄ xnx
H
n and assume Gaussian

energy signal vectors xn. Therefore, as in [7], for the baseline
schemes, we could adopt Ñ = rank{X̃} transmit symbols
vectors that are obtained from the Ñ dominant eigenvectors
of X̃ . However, in our extensive simulations, we always
observed rank{X̃} = 1 and, thus, for both baseline schemes,
we adopt a single transmit vector in the downlink x1 =
λ̃1ṽ1, where λ̃1 and ṽ1 are the non-zero eigenvalue and the
corresponding eigenvector of X̃ , respectively. Furthermore,
since the baseline schemes may not be able to provide the
required harvested powers and uplink rates if the circuit-based
EH model in Table I is adopted, for the baseline schemes,
we plot in Figs. 5(a) and 5(b) the average transmit powers for
the achieved harvested powers and user rates, respectively.

First, we observe in Figs. 5(a) and 5(b) that for any number
of users K, the average transmit power PDL in the downlink
increases with the required power preq and the required rate
Rreq. Next, as expected, we observe that, for single-user
WPCNs with K = 1, all proposed schemes show identical per-
formance since the suboptimal MRT-based scheme coincides
with the optimal solution in this case. We note that due to the
saturation of the EH circuits, the achievable harvested power
in Fig. 5(a) and the uplink information rate in Fig. 5(b) are
upper bounded. Furthermore, since ZF is adopted at the BS to
mitigate inter-user interference, the upper bounds in Fig. 5(b)
are lower for larger numbers of users K. In Figs. 5(a) and 5(b),
we observe that all proposed schemes require a lower transmit
power than the baseline schemes for all considered values of
K, preq, and Rreq, respectively. This is achieved by a more
accurate modelling of the EH circuits for characterizing the
instantaneous powers harvested at the user devices, which
enables an optimal design of the downlink energy signal at
the BS. Furthermore, for the maximum achievable harvested
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Fig. 5. Average transmit powers PDL for different values of per-user required powers preq and rates Rreq.

Fig. 6. Average transmit powers PDL for different numbers of BS antennas Nt and users K.

powers and uplink information rates in Figs. 5(a) and 5(b),
respectively, the performance gaps between the optimal and
the baseline schemes are small since, in this limiting saturation
regime, the optimal energy signal and resource allocation
policy are determined by the weakest user, and thus, a lower
number of energy beamforming vectors may be optimal in the
downlink. Finally, although the suboptimal SDR-based scheme
typically requires lower computational complexity than the
optimal scheme, cf. Fig. 4, we observe that the performances
achieved by both schemes are practically identical for all
considered preq and Rreq

k .
In Figs. 6(a) and 6(b), we depict the average transmit

powers as functions of the numbers of users K and BS
antennas Nt, respectively. We adopt preq

k = 0W, Rreq
k =

3 bit
channel use ,∀k, and dk is taken randomly from the interval
dk ∈ [3M, 10M],∀k. For the results in Figs. 6(a) and 6(b),
we adopt Nt = 20 antennas at the BS and K = 5 users,
respectively. Since the suboptimal SDR-based scheme has
significantly lower computational complexity compared to the
optimal scheme for large K, cf. Fig. 4, and both schemes
achieve identical performance, cf. Fig. 5, for the results in
Fig. 6, we consider the suboptimal MRT- and SDR-based
schemes only.

First, in Figs. 6(a) and 6(b), we observe that the required
transmit power is smaller for lower numbers of users K
and larger numbers of BS antennas Nt, respectively. This is
expected since, for a given K, a higher number of transmit

antennas, i.e., a smaller ratio K
Nt

, leads to a larger beamforming
gain and channel hardening, which yields better WPCN perfor-
mance. Next, we note that similar to the results in Fig. 5, the
suboptimal SDR-based scheme achieves a significantly better
performance compared to the baseline schemes due to the
more accurate EH modelling which enables the optimization
of the transmit energy signal waveform. However, we observe
that the suboptimal MRT-based scheme shows a poor perfor-
mance and is even not able to outperform the baseline schemes
if the number of deployed users is high. Interestingly, the
performance gap between the proposed suboptimal schemes
decreases with increasing system load and for Nt ≫ K,
both proposed suboptimal schemes achieve nearly the same
performance. In fact, the MRT-based scheme becomes optimal
for massive MIMO WPCNs when Nt → ∞ and orthogonal
channel vectors, i.e., hih

H
j → 0,∀i ̸= j, and, thus, is more

efficient for smaller system loads, i.e., ratios K
Nt

.

VI. CONCLUSION

In this work, we considered multi-user MISO WPCNs,
where, in the downlink, the BS sent an energy signal com-
prising multiple energy transmit signal vectors to the users,
which, in turn, harvested the received power and utilized it
for information transmission in the uplink. To characterize the
instantaneous power harvested at the user devices, we adopted
a general non-linear EH model. Then, we formulated a non-
convex optimization problem, where we jointly designed the
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normalized durations of the downlink and uplink subframes
and the energy signal waveform. We showed that, for a single-
user WPCN, the optimal signal in the downlink comprises a
single energy signal vector which is collinear with the MRT
beamformer and drives the EH circuit into saturation. Then,
to obtain the optimal solution for general multi-user WPCNs,
we derived an optimal algorithm, whose computational com-
plexity was exponential and polynomial in the number of
users and BS antennas, respectively. Moreover, we showed
that the optimal energy signal for massive MISO WPCNs
with vanishing system loads employs a sequence of weighted
sums of the MRT beamforming vectors of the users. Then,
based on this solution, we proposed a closed-form MRT-based
WPCN design, which is optimal for the massive MISO regime
and suboptimal for MISO WPCNs with finite system loads.
Moreover, based on this scheme, we also derived a suboptimal
SDR-based design that improved the performance of the MRT-
based scheme for the general case. Our simulation results
revealed that the proposed suboptimal SDR-based scheme
entails a lower complexity than the optimal design and both
schemes achieve nearly identical performances and signifi-
cantly outperform two baseline schemes based on linear and
sigmoidal EH models, respectively. Moreover, we observed
that the performance gap between the proposed suboptimal
MRT- and SDR-based schemes is small for lightly loaded
WPCNs and becomes negligible when the number of BS
antennas tends to infinity.

Interesting directions for future research include, e.g., the
optimal design of the transmit signal waveform for multi-
antenna communication networks, where not only power
but also information is transmitted to the user devices in
the downlink [3], [25] and the design of WPCNs that
are robust to imperfect channel estimation and hardware
impairments [13], [16].

APPENDIX A
PROOF OF PROPOSITION 1

First, we note that for any given transmit power, the received
power at the user device is maximized if MRT beamforming
vector w∗ is adopted at the BS, i.e., ∀xn ∈ CNt , |hxn| ≤
|hw∗αn|, where αn = ∥xn∥2. Furthermore, since a scalar
phase rotation of xn does not influence the harvested power at
the user device, the optimal energy signal vectors are given by
x∗n = w∗s∗n, where sn = α∗n exp(jθn) are scalar symbols with
arbitrary phases θn ∈ [0, 2π). Here, α∗n are the optimal symbol
magnitudes that solve the following optimization problem:

minimize
τ d⪰0,τ̄∈[0,1],α,N

N∑
n=1

τ d
nα

2
n (29a)

subject to
N∑

n=1

τ d
nϕ(α2

n∥h∥22) ≥ ξ(τ̄), (29b)

N∑
n=1

τ d
n = τ̄ , (29c)

with α = [α1, α2, · · · , αN ].
Next, we note that function ϕ(|z|2) in (29) is convex for

|z| ≤ A and upper-bounded, i.e., ϕ(|z|2) = ϕ(A2), ∀|z| ≥ A.

Therefore, for any given value τ̄ , the optimal solution13 to
problem (29) includes at most N = 2 energy signal vectors,
whose magnitudes are α∗1 = α∗s and α2 = 0, respectively, with
corresponding time lengths τ d

1 = ξ(τ̄)
ϕ(A2) and τ d

2 = τ̄ − τ d
1 [24],

[25]. Thus, problem (29) can be further simplified as follows:

minimize
τ̄∈[0,1],τ d

1≥0
τ d
1 subject to τ d

1ϕ(A2) ≥ ξ(τ̄), τ d
1 ≤ τ̄ . (30)

Since a larger time slot duration τ̄ leads to a higher power
requirement (1 − τ̄)pu

min for the uplink transmission phase,
function ξ(τ̄) in (30) is monotonic increasing. Therefore,
if problem (30) is feasible, the optimal duration of the zero-
valued downlink energy signal vector with α2 = 0 is τ d

2 = 0.
Thus, the optimal time allocation is achieved with τ d

1 = τ̄ and
hence, one energy signal vector x∗ is utilized at the BS, i.e.,
N∗ = 1. This concludes the proof.

APPENDIX B
PROOF OF PROPOSITION 2

Let us reformulate optimization problem (11) equivalently
as follows:

minimize
τ d,τ̄ ,X,M ,N

N∑
n=1

τ d
n∥xn∥22 (31a)

subject to
N∑

n=1

τ d
n = τ̄ , (31b)

N∑
n=1

τ d
nµn ⪰ ξ

d(τ̄), (31c)

ϕk

(
|hkxn|2

)
≥ µn,k,∀k, (31d)

where M = [µ1, µ2, · · · , µN ]. Since the harvested
powers at the user devices are independent of a scalar phase
rotation of xn, n ∈ {1, 2, · · · , N}, we decompose the trans-
mit energy signal vectors as in (12). Next, we note that
for any given vector of harvested powers in time slot n,
µn = [µn,1, µn,2, · · · , µn,K ]⊤, the optimal energy beamform-
ing vectorw∗n that minimizes the instantaneous transmit power
∥wn∥22 and yields µn can be obtained as in (13) and the
corresponding minimum transmit power is given by ψ(µn).
Finally, since for the optimal x∗n and µ∗n, we have ∥x∗n∥22 =
ψ(µ∗n), problem (31) can be equivalently reformulated as (14).
This concludes the proof.

APPENDIX C
PROOF OF PROPOSITION 3

Since ϕk(·) is monotonic non-decreasing and is given by (2),
optimization problem (15) can be equivalently reformulated as
follows:

ψ(µ) = min
X∈ΩS(µ)

Tr{X} (32)

with ΩS(µ) = {X : hkXh
H
k ≥ ϕ−1

k (µk), k ∈
{1, 2, · · · ,K}, ∀k, X ∈ SNt

+ , rank{X} ≤ 1}, where

13The corresponding proof is similar to that of [24, Corollary 3] and is
omitted here due to space constraints.
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X = xxH . Furthermore, the matrix X∗ that solves the
following problem:

minimize
X∈SNt

+

Tr{X} (33a)

subject to hkXh
H
k ≥ ϕ−1

k (µk),∀k, (33b)

satisfies rank{X∗} ≤ 1, cf. Lemma 1 in Section III-C.3.
Hence, the value of function ψ(µ) can be equivalently
obtained as ψ(µ) = Tr{X∗}, where X∗ is the solution of
problem (33).

Let us consider optimization problem (33). We note that (33)
is a convex problem and, hence, its solution entails a compu-
tational complexity that is polynomial in Nt [32]. Since we
have Nt ≥ K, to reduce the complexity of determining ψ(µ),
in the following, we consider the dual problem associated with
optimization problem (33) and given by

maximize
λ⪰0

ρ⊤λ (34a)

subject to I −
K∑

k=1

hH
k hkλk ∈ SNt

+ , (34b)

where ρk = φ−1
k (µk) and λ ∈ RK is a vector of Lagrangian

multipliers associated with the constraints in (33). Since
problem (33) is convex and satisfies Slater’s conditions, the
duality gap is zero and the solutions X∗ and λ∗ satisfy
ψ(µ) = Tr{X∗} = ρ⊤λ∗.

Finally, we consider the constraint in (34). We note
that the constraint is satisfied if and only if all the
eigenvalues of matrix I − HHΛH , where Λ =
diag{λ}, are non-negative, i.e., ∥HHΛH∥2 ≤ 1. Further-

more, ∥HHΛH∥2 =
√
λmax

(
ΣUHΛUΣ2UHΛUΣ

)
=√

λmax
(
UΣ2UHΛUΣ2UHΛ

)
= ∥BΛB∥2, where H =

UΣV H is the singular value decomposition of H and
λmax(A) denotes the largest eigenvalue of A. Hence, the
constraint in (34) is equivalent to ∥BΛB∥2 ≤ 1. This
concludes the proof.

APPENDIX D
PROOF OF PROPOSITION 4

For any given τ̄ , N , and set of vectors µn, n ∈
{1, 2, · · · , N}, optimization problem (14) is linear in τ and
involves N variables and K + 1 constraints. We note that the
solution of a linear optimization problem with Ñ variables and
K̃ ≤ Ñ constraints is a vertex of the polytope defined by the
K̃ constraints, and thus, the corresponding vector determining
the solution of the linear problem has at most K̃ non-zero
elements [32]. Thus, for the optimal solution of (14) and,
hence, (11) and (7), at most N∗ = K + 1 time slots have
non-zero lengths. This concludes the proof.

APPENDIX E
PROOF OF LEMMA 1

The proof below follows along the lines of the proof
in [36, Appendix C]. Since problem (19) is convex and
Slater’s conditions are satisfied, strong duality holds and the

gap between problem (19) and its dual problem is equal to
zero [37]. We express the Lagrangian of (19) as follows:

L(X) = Tr{X} −
K∑

k=1

γkhkXh
H
k − Y X + γ̄, (35)

where γk, k ∈ {1, 2, · · · ,K}, are the Lagrangian multipliers
associated with the K constraints of problem (19) and γ̄
collects all terms that do not depend on X . Here, Y is the
Lagrangian multiplier associated with constraint X ∈ SNt

+ .
We note that the Karush-Kuhn-Tucker (KKT) conditions are
satisfied for the optimal solution X∗ of (19) and the solutions
γ∗k , k ∈ {1, 2, · · · ,K}, and Y ∗ of the corresponding dual
problem. The KKT conditions are given by [38]

▽L(X∗) = 0Nt×Nt (36a)
Y ∗ ⪰ 0Nt×Nt , γ

∗
k ≥ 0,∀k (36b)

Y ∗X∗ = 0Nt×Nt , (36c)

where 0Nt×Nt stands for the all-zero matrix of size Nt × Nt
and ▽L(X∗) denotes the gradient of L(X) evaluated at X∗.
Next, we express condition (36a) as follows

Y ∗ = INt −∆, (37)

where ∆ =
∑

k γ
∗
kh

H
k hk. Let us now investigate the structure

of ∆. We denote the maximum eigenvalue of ∆ by δmax ∈ R.
Due to the randomness of the channel, with probability 1,
only one eigenvalue of ∆ has value14 δmax [39]. Considering
(37), we note that if δmax < 1, then Y ∗ is a full-rank positive
definite matrix. In this case, (36c) yields X∗ = 0Nt×Nt , and
hence, rank{X∗} = 0. Furthermore, if δmax > 1, then Y ∗

is not a positive semidefinite matrix, which contradicts (36b).
Finally, if δmax = 1, then Y ∗ is a positive semidefinite matrix
with rank{Y ∗} = Nt − 1. Then, applying Sylvester’s rank
inequality to (36c), we have

0 = rank{Y ∗X∗} ≥ rank{Y ∗}
+ rank{X∗} −Nt = rank{X∗} − 1. (38)

Thus, we have rank{X∗} ≤ 1. This concludes the proof.

APPENDIX F
PROOF OF PROPOSITION 6

Since hih
H
j = 0, ∀i ̸= j, matrix B in Proposition 3

is diagonal and the solution of problem (16) is given
by λk = 1

∥hk∥22
, k ∈ {1, 2, · · · ,K}. Hence, the corre-

sponding instantaneous transmit power can be obtained as
ψ(µ) =

∑K
k=1 φ

−1
k (µk) 1

∥hk∥22
. Thus, we note that, for the

optimal downlink energy signal, the channel H between
the BS and the user devices can be equivalently decom-
posed into K parallel independent subchannels hk, k ∈
{1, 2, · · · ,K}, and the power harvested at user device k in
time slot n does not depend on the powers harvested at
the other devices. Furthermore, similarly, the optimal aver-
age transmit power in the downlink for energy transmission
to user k is independent of the powers transmitted to the

14In our exhaustive simulations, we have always observed that only one
eigenvalue of matrix ∆ has value δmax.



SHANIN et al.: OPTIMAL ENERGY SIGNAL DESIGN FOR MULTIUSER MISO WPCNs 3417

other users. Thus, the optimal average transmit power in
(23) can be expressed as P ∗DL(τ̄) =

∑N̄
n=1 τ

d*
n ψ(µ∗n) =∑K

k=1

∑N̄
n=1 τ̄

d*
n φ

−1
k (µ∗n,k) 1

∥hk∥22
=

∑K
k=1

1
∥hk∥22

P ∗DL,k(τ̄),

where P ∗DL,k(τ̄) =
∑N∗k

n=1 τ̃
d*
n,kφ

−1
k (µ∗n,k) is the normalized

optimal downlink average transmit power for energy transfer
to user k. Here, τ̃ d*

n,k and N∗
k are the duration of the time slot,

where user k harvests power µ∗n,k, n ∈ {1, 2, · · · , N∗
k}, k ∈

{1, 2, · · · ,K}, and the optimal number of time slots for user
k, respectively.

To determine N∗
k , τ̃

d*
n,k, and µ∗n,k, n ∈ {1, 2, · · · , N∗

k}, k ∈
{1, 2, · · · ,K}, we equivalently decompose problem (14) into
K subproblems, where subproblem k, k ∈ {1, 2, · · · ,K},
defines the optimal resource allocation for user k, and for-
mulate the subproblem for user k as follows:

minimize
τ̃ d

k⪰0,µ̃k,Nk

Nk∑
n=1

τ̃ d
n,kφ

−1
k (µn,k) (39a)

subject to
Nk∑
n=1

τ̃ d
n,kµn,k ≥ ξd

k(τ̄), (39b)

Nk∑
n=1

τ̃ d
n,k = τ̄ , (39c)

where τ̃ d
k = [τ̃ d

1,k, τ̃
d
2,k, · · · , τ̃ d

Nk,k] and µ̃k = [µ1,k,
µ2,k, · · · , µNk,k]. Similar to the single-user WPCN in
Proposition 1, at most N̄k = 2 time slots are needed for
problem (39). The optimal harvested powers and the durations
of the corresponding time slots are given by µ∗1,k = ϕk(A2

k),

µ∗2,k = 0 and τ̃ d
1,k = ξd

k(τ̄)

ϕk(A2
k)

, τ̃ d
2,k = τ̄ − τ̃ d

1,k, respectively.
Hence, the optimal average transmit power in (23) is given
by P ∗DL(τ̄) =

∑K
k=1

A2
k

∥hk∥22
ξd

k(τ̄)

ϕk(A2
k)

. We note that the downlink

transmit policy in Proposition 6 yields the optimal transmit
power P ∗DL(τ̄) and satisfies the constraints in (39). Hence,
for a given τ̄ , the energy beamforming vectors and time slot
durations in (25) are the solution of (11). This concludes the
proof.
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