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Abstract— Grant-free non-orthogonal multiple access
(GF-NOMA) is a potential technique to support massive
Ultra-Reliable and Low-Latency Communication (mURLLC)
service. However, the dynamic resource configuration in
GF-NOMA systems is challenging due to random traffics and
collisions, that are unknown at the base station (BS). Meanwhile,
joint consideration of the latency and reliability requirements
makes the resource configuration of GF-NOMA for mURLLC
more complex. To address this problem, we develop a novel
learning framework for signature-based GF-NOMA in mURLLC
service taking into account the multiple access signature collision,
the UE detection, as well as the data decoding procedures for
the K-repetition GF and the Proactive GF schemes. The goal
of our learning framework is to maximize the long-term
average number of successfully served users (UEs) under the
latency constraint. We first perform a real-time repetition value
configuration based on a double deep Q-Network (DDQN) and
then propose a Cooperative Multi-Agent learning technique
based DQN (CMA-DQN) to optimize the configuration of
both the repetition values and the contention-transmission unit
(CTU) numbers. Our results show the superior performance of
CMA-DQN over the conventional load estimation-based uplink
resource configuration approach (LE-URC) in heavy traffic
and demonstrate its capability in dynamically configuring in
long term for mURLLC service. In addition, with our learning
optimization, the Proactive scheme always outperforms the
K-repetition scheme in terms of the number of successfully
served UEs, especially under the high backlog traffic scenario.

Manuscript received 19 May 2022; revised 13 October 2022 and 4 January
2023; accepted 7 January 2023. Date of publication 19 January 2023; date
of current version 17 March 2023. This work was supported in part by the
Engineering and Physical Sciences Research Council (EPSRC), U.K., under
Grant EP/R006466/1 and Grant EP/W004348/1 and in part by the Postgradu-
ate Research & Practice Innovation Program of Jiangsu Province under Grant
KYCX17_0785. An earlier version of this paper was presented in part at
the IEEE International Conference on Communications (ICC), South Korea,
May 2022 [DOI: 10.1109/ICC45855.2022.9882276]. The associate editor
coordinating the review of this article and approving it for publication was
C.-H. Lee. (Corresponding author: Yansha Deng.)

Yan Liu was with the Key Laboratory of Ministry of Education in Broad-
band Wireless Communication and Sensor Network Technology, Nanjing
University of Posts and Telecommunications, Nanjing 210003, China, and also
with the School of Electronic Engineering and Computer Science, Queen Mary
University of London, E1 4NS London, U.K. She is now with the College of
Electronic and Information Engineering, Tongji University, Shanghai 201804,
China (e-mail: yanliu2022@tongji.edu.cn).

Yansha Deng is with the Department of Engineering, King’s College
London, WC2R 2LS London, U.K. (e-mail: yansha.deng@kcl.ac.uk).

Hui Zhou is with Huawei Technology Company Ltd., Shanghai 200121,
China (e-mail: zhouhui96@huawei.com).

Maged Elkashlan and Arumugam Nallanathan are with the School of
Electronic Engineering and Computer Science, Queen Mary University
of London, E1 4NS London, U.K. (e-mail: maged.elkashlan@qmul.ac.uk;
a.nallanathan@qmul.ac.uk).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TCOMM.2023.3238061.

Digital Object Identifier 10.1109/TCOMM.2023.3238061

Index Terms— mURLLC, NOMA, grant free, deep reinforce-
ment learning, resource configuration.

I. INTRODUCTION

AS A NEW and dominating service class in 6th Generation
(6G) networks, massive Ultra-Reliable and Low Latency

Communications (mURLLC) integrates URLLC with massive
access to support massive short-packet data communications
in time-sensitive wireless networks with high reliability and
low access latency [2]. This requires a reliability-latency-
scalability trade-off and mandates a principled and scal-
able framework accounting for the delay, reliability, and
decision-making under uncertainty [3]. Concretely speaking,
the Third Generation Partnership Project (3GPP) standard [4],
[5] has defined a general URLLC requirement as: 1 − 10−5

reliability within 1ms user plane latency for 32 bytes. It is also
anticipated that the device density may grow to hundred(s) of
devices per cubic meter in the 6G white paper [6].

Current cellular network can hardly fulfill the joint massive
connectivity, ultra-reliability, and low latency requirements in
mURLLC service. To achieve low latency, grant-free (GF)
access has been proposed [7], [8] as an alternative for tra-
ditional grant-based (GB) access due to its drawbacks in
high latency and heavy signaling overhead [9]. Different
from GB access, GF access allows a User Equipment (UE)
to transmit its data to the Base Station (BS) in an arrive-
and-go manner, without sending a scheduling request (SR)
and obtaining a resource grant (RG) from the network [10].
To achieve high reliability, several GF schemes, including
the K-repetition scheme and the Proactive scheme, have
been proposed, where a pre-defined number (K) of con-
secutive replicas of the same packet are transmitted [11],
[12]. To achieve massive connectivity, non-orthogonal multiple
access (NOMA) has been proposed to synergize with GF in
order to deal with the multiple access (MA) physical resource
collision of contention-based1 GF access. The signature-based
GF-NOMA transmission has been proposed and discussed
during 3GPP Release-14 NR Study, where NOMA signatures
(e.g, codebook, pilot sequence, mapping pattern, demodulation
reference signal, power, etc.) are taken as part of GF resource

1In UL GF access, the MA resources can be reserved in advance or allocated
when there is a request. Preallocation of the dedicated resource is more
suitable for periodic traffic with a fixed pattern, whereas contention-based
GF access is more suitable for sporadic packets, as it is more efficient and
flexible in terms of resource utilization [13]. Unless otherwise stated, the GF
and GB access described in this work are both contention-based.

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-2339-2161
https://orcid.org/0000-0003-1001-7036
https://orcid.org/0000-0002-0745-3235
https://orcid.org/0000-0002-5168-0160
https://orcid.org/0000-0001-8337-5884


1476 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 3, MARCH 2023

except from the traditional MA physical resource [14]. Prior to
transmission, a user can randomly select one signature from
a given resource pool. Then in each contention region (the
basic unit of MA physical resource for GF), multiple NOMA
signatures from different users will be multiplexed.

A. State-of-the-Art

In terms of analysis, a novel GF-NOMA strategy was
proposed in [15], in which active devices transmitted data
over a randomly selected available channel. In [16], a general
GF-NOMA analytical framework was proposed to analyze
the outage probability, where successive interference cancel-
lation (SIC) are considered by treating collisions as inter-
ference. In [17], [18], [19], [20], and [21], GF-NOMA is
designed empirically by directly incorporating the GF mech-
anism into several state-of-the-art NOMA schemes, including
SCMA, MUSA, and PDMA, that are categorized according
to their specially designed spreading signatures. The authors
in [21] proposed a message passing algorithm to solve the
problem of GF-NOMA using CS-based approaches, which
improves the bit error rate (BER) performance in comparison
to [22].

In terms of optimization, Machine Learning (ML), espe-
cially Reinforcement Learning (RL), are common optimiza-
tion tools utilized in many works [23], [24], including
Q-learning (Offline) and SARSA (Online) [25]. However,
RL is inapplicable to large-scale networks as it has to explore
and gain knowledge of an entire system and takes a lot of
time to reach the best policy. Recently, deep learning has
been introduced as a new breakthrough technique to overcome
the limitations of RL, namely Deep Reinforcement Learning
(DRL), including Policy Gradient (PG), Actor-Critic (AC), and
Deep Q-Network (DQN) for discrete action space and the
Deep Deterministic Policy Gradients (DDPG) for continuous
action space [26]. Deep learning [27] and deep multi-task
learning [28] werw used to solve optimization problem for
GF-NOMA. However, these works assumed that each UE is
pre-allocated with a unique sequence, and thus collisions are
not an issue. This assumption does not hold in massive UEs
settings in mURLLC, where the collision is the bottleneck of
the GF-NOMA performance.

Different from these works, we aim to develop a gen-
eral learning framework to optimize GF-NOMA systems for
mURLLC service taking into account the MA signature colli-
sion, the UE detection as well as the data decoding procedures.
Note that part of this work was presented in [1]. However, for
simplicity, work [1] only took into account the K-repetition
scheme without the Proactive scheme which leads to more
complicated modeling, analysis, and simulations.

B. Motivations and Contributions

It is important to know that the research challenges
in GF-NOMA are fundamentally different from those in
GB-NOMA [29], [30]. In GB scheme, the four-step random
access (RA) procedure as shown in Fig. 1 is executed by
the UE to request the BS to schedule dedicated resources

Fig. 1. Uplink transmissions for grant-based and grant-free random access.

for data transmission, where the data transmission is more
likely to be successful once the random access succeeds. While
in GF scheme, the data is transmitted along with the pilot
in a randomly chosen MA resource, which is unknown at
the BS, and can lead to new research problems, especially
for the GF-NOMA system, including: 1) the set of active
users and their respective channel conditions are unknown to
the BS, which prohibits the pre-configuration and the pre-
assignment of resources, including pilots/preambles, power,
repetition values, and etc; 2) simultaneously satisfy the reli-
ability and latency requirements under random traffics, the
optimal parameter configurations vary over different time slots,
which is hard to be described by a tractable mathematical
model; 3) the MA signature collision detection and the blind
UE activity detection, as well as the data decoding, need to be
considered, which largely impacts the resource configuration
in each time slot; 4) a general optimization framework for
GF-NOMA systems have never been established for various
signature-based NOMA schemes.

The above mentioned challenges can hardly be solved via
the traditional convex optimization method, due to the com-
plex communication environment with the lack of tractable
mathematical formulations. The complexity of the problem is
compounded by the lack of prior knowledge at the BS regard-
ing the stochastic traffic and unobservable channel statistics
(i.e., random collision, and effects of physical radio including
path-loss as well as fading). In the GF-NOMA system, the BS
can only observe the results of both collision detection (e.g.,
the number of non-collision UEs and collision MA signatures)
and data decoding (e.g., the number of successful decoding
UEs and failure decoding UEs) in each round trip time. This
historical information can be potentially used to facilitate
the long-term optimization of future configurations. Even if
one knew all the relevant statistics, tackling this problem
in an exact manner would result in a Partially Observable
Markov Decision Process (POMDP) with large state and
action spaces, which is generally intractable. To deal with it,
RL can be a promising tool to deal with this complex POMDP
problem due to that it solely relies on the self-learning of the
environment interaction, without the need to derive explicit
optimization solutions based on a complex mathematical
model.
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Fig. 2. Uplink GF-NOMA transmission procedure.

Our contributions can be summarized as follows:

1) We develop a general learning framework for dynamic
resource configuration optimization in signature-based
GF-NOMA systems for mURLLC services. In our
framework, we practically simulate the random traffics,
the resource selection and configuration, the transmis-
sion latency check, the collision detection, the data
decoding, and the Hybrid Automatic Repeat reQuest
(HARQ) retransmission procedures in this GF-NOMA
system. We use this generated simulation environment
to train the RL agents.

1) We first perform the repetition values dynamic opti-
mization via developing a double Deep Q-Network
(DDQN) to optimize the number of successfully served
UEs under the latency constraint for the K-repetition
GF scheme and the Proactive GF scheme, respectively.
We then develop a Cooperative Multi-Agent learning
based on DQN (CMA-DQN) to dynamically optimize
both the repetition values and contention-transmission
unit (CTU) numbers, which breaks down the selection
in high-dimensional parameters into multiple parallel
sub-tasks with a number of DQN agents cooperatively
being trained to produce each parameter.

1) Through our developed learning framework, we show
that the Proactive scheme outperforms the K-repetition
scheme in terms of the number of successfully served
UEs, especially under the high backlog traffic scenario,
which are opposite to the results without optimiza-
tion in our previous work [31] with only a single
packet transmission. Our results also show the supe-
rior performance of CMA-DQN over the conventional
load estimation-based approach (LE-URC) in heavy
traffic scenarios. Our general learning framework can
be extended to optimize other resource configuration
problems in GF-NOMA schemes.

C. Organization

The rest of the paper is organized as follows. Section II
illustrates the system model and formulates the problem.
Section III illustrates the preliminary and the conventional
approach. Section IV proposes Q-learning based uplink
GF-NOMA resource configuration approaches. Section V
elaborates the numerical results, and finally, Section VI con-
cludes the work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a single cell network consisting of a BS located
at the center and a set of N UEs randomly located in an area
of the plane R

2, where the UEs are unaware of the status of
each other. Once deployed, the UEs remain spatially static. The
time is divided into short transmission time intervals (TTIs),
and the small packets for each UE are generated according
to random inter-arrival processes over the short-TTIs, which
are Markovian as defined in [32] and [33] and unknown to
BS. In this paper, the TTI refers to a mini-slot. The Fifth
Generation (5G) New Radio (NR) introduces the concept of
‘mini-slots’ and supports a scalable numerology allowing the
sub-carrier spacing (SCS) to be expanded up to 240 kHz.
In contrast with the LTE slot consisting of 14 symbols per
TTI, the number of symbols in 5G NR mini-slots ranges
from 1 to 13 symbols, and the larger SCS decreases the length
of each symbol further. Collectively, mini-slots and flexible
numerology allow shorter slots to meet the stringent latency
requirement.

A. GF-NOMA Network Model

We consider the uplink contention-based GF-NOMA over
a set of preconfigured MA resources. To capture the effects
of the physical radio, we consider the standard power-law
path-loss model with the path-loss attenuation r−η , where r
is the Euclidean distance between the UE and the BS and
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η is the path-loss attenuation factor. We consider a Rayleigh
flat-fading environment, where the channel power gains h are
exponentially distributed (i.i.d.) random variables with unit
mean. We present the uplink GF-NOMA procedure in Fig. 2
following the 3GPP standard [14], [33], [34], [35], which
includes 1) traffic inter-arrival, 2) resources and parameters
configuration, 3) latency check; 4) collision detection, 5) data
decoding, and 6) HARQ retransmissions. These six stages
are explained in details in the following six subsections to
illustrate the system model.

1) Traffic Inter-Arrival: We consider delay-sensitive
URLLC applications in sensors-based IoT networks, which
is appropriate for a scenario that a large amount of IoT
devices access the network in a highly synchronized manner,
e.g., triggered due to an emergency event (earthquake alarm,
power outage, and fire alarms) [32]. This kind of time-varied
traffic has been ignored in most works, where devices were
assumed to have saturated data (i.e., the device essentially
always has data to be transmitted) for simplicity. According
to the 3GPP standard [33], the Beta distribution-based arrival
process is recommended to model the arrival intensity during
bursty traffic arrivals for a large number of UEs attempting
to access the same network simultaneously during a short
period of time. In this condition, the configured devices are
connected and synchronized to the cell, being always ready
for transmission once data arrived. More details can be found
in [36]. Each device would be activated (having data arrived)
at any time τ , according to a time-limited Beta probability
density function as [33, Section 6.1.1]

p(τ) =
τα−1(T − τ)β−1

T α+β−1Beta(α, β)
, (1)

where T is the total time of the bursty traffic and Beta (α, β) is
the Beta function with the constant parameters α and β [37].

Due to the nature of slotted-Aloha, a UE can only transmit
at the beginning of a round trip time (RTT) as shown in
Fig. 3 and Fig. 4, and the UE needs to wait for the feedback
before performing retransmission, which is determined by the
RTT, i.e., the time duration of the cycle from the beginning of
the transmission until processing its feedback [38]. Thus, the
newly activated UEs executing transmission comes from those
who received a packet within the interval between the last RTT
period (τ i−1,τ i). The traffic instantaneous rate in packets in
a period is described by a function p(τ), so that the packets
arrival rate in the ith RTT is given by

μi =
∫ τi

τi−1

p(τ)dτ. (2)

2) Resources and Parameters Configuration: The MA
resources, repetition values, and HARQ related parameters,
etc, are configured at the BS by radio resource control
(RRC) signaling and L1 signaling prior to the GF access (as
Type 2 GF [39]).

a) Repetition values: We consider the K-repetition GF
scheme and the Proactive GF scheme as shown in Fig. 3
and Fig. 4, respectively. The repetition values for K-repetition
scheme Kt

Krep and for Proactive scheme Kt
Proa are configured

at the beginning of each RTT.

Fig. 3. K-repetition GF transmission.

Fig. 4. Proactive GF transmission.

• K-repetition scheme: The K-repetition scheme is illus-
trated in Fig. 3, the UEs served by the BS are config-
ured to autonomously transmit (T) the same packet for
Kt

Krep repetitions in consecutive TTIs. The BS decodes
(D) each repetition independently and the transmission
in one RTT is successful when at least one repetition
succeeds. After processing all the received KT

Krep repe-
titions, the BS transmits the ACK/NACK feedback (F) to
the UE.

• Proactive scheme: The Proactive scheme is illustrated
in Fig. 4. Similar to the K-repetition scheme, the UEs
served by the BS are configured to repeat the trans-
mission for a maximum number of Kt

Proa repetitions,
but can receive the feedback after each repetition. This
allows the UE to terminate repetitions earlier once
receiving the ACK.

Considering the small packets of mURLLC traffic, we set
the packet transmission time Ttx as one TTI. The BS feedback
time Tfb and the BS (UE) processing time Tdp and Tup are
also assumed to be one TTI in this work same as our previous
work [31]. We use TTI as a unit, but the TTI duration varies
according to different subcarrier spacing. Once the repetition
value is configured, the duration of one RTT is known to the
UEs and the BS, which is given as

T t
RTT = KtTtx + Tdp + Tfb + Tup = (Kt + 3)TTIs, (3)

with Kt = Kt
Krep (Kt = Kt

Proa) for the K-repetition scheme
(the Proactive scheme).

b) MA resources: A contention-transmission unit (CTU) as
shown in Fig. 5 is defined as the basic MA resource, where
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Fig. 5. GF-NOMA resource.

each CTU may comprise of a MA physical resource and a MA
signature [40], [41]. The MA physical resources represent a set
of time-frequency resource blocks (RBs). The MA signatures
represent a set of pilot sequences for channel estimation and/or
UE activity detection, and a set of codebooks for robust data
transmission and interference whitening, etc. The receiver can
estimate channels of different UEs with different pilots. But
when two or more UEs transmit their data using the same
MA physical resource and the same pilot sequence, the pilot
collision occurs [35]. In this condition, not only the UE cannot
be identified, but also the data can not be recovered or canceled
since the channel condition is unknown. When two or more
UEs transmit their data sharing the same MA physical resource
using different pilot sequences but the same codebook, the
codebook collision occurs. In this condition, the detector can
still decoded these UEs’ data carried over the same codebook,
as long as different pilot sequences are used [18]. Although
a one-to-one mapping or a many-to-one mapping between the
pilot sequences and codebooks can be predefined, since it has
been verified in [17] that the performance loss due to codebook
collision is negligible for a real system, we focus on the
pilot sequence collision and consider the one-to-one mapping
as [16]. Without loss of generality, in one TTI, we consider
F orthogonal RBs and each RB is overlaid with L unique
codebook-pilot pairs [14]. Thus, at the beginning of each RTT,
the BS configures a resource pool of Ct = F × L unique
CTUs, and each UE randomly choose one CTU from the pool
to transmit in this RTT.

3) Latency Check: The HARQ index HHARQ is included
in the pilot sequence and can be detected by the BS. At the
beginning of each RTT, the HARQ index and the transmission
latency Tlate will be updated as shown in Fig. 2. For example,
for the initial RTT with initial K1, HHARQ = 1 and Tlate =
RTTHHARQ=1, where RTTHHARQ is calculated by using (3).
After this round time trip transmission, the BS optimizes a
K2 based on the observation of the reception and configures
it to the UE for the next RTT. Then, the UE updates its
HHARQ = 2 and calculated RTTHHARQ=2 by using (3)
with K2, and consequently, the transmission latency Tlate is
updated as Tlate = RTTHHARQ=1 + RTTHHARQ=2. When
Tlate > Tcons, the UE fails to be served and the packets
will be dropped. Note that the HARQ index, as well as
the transmission latency, will be updated at the beginning
of each RTT instead of at the end of each RTT due to that
we consider the user plane latency in this work. User plane

Fig. 6. Detection and Decoding in a network with L = 2 RBs, C = 6 CTUs
and N = 8 UEs.

latency is defined as the one-way latency from the processing
of the packet at the transmitter to the successful reception
of the packet, including the transmission processing time, the
transmission time, and the reception processing time. That is to
say, from the UE perspective, when the UE executes this RTT,
it will check transmission results after finishing the RTT. Thus,
the duration of this RTT should be included when calculating
the UE transmission latency.

4) Collision Detection: At each RTT, each active UE trans-
mits its packets to the BS by randomly choosing a CTU.
The BS can detect the UEs that have chosen different CTUs.
However, if multiple UEs choose the same CTU, the BS cannot
differentiate these UEs and therefore cannot decode the data.
We categorize the CTUs into three types: an idle CTU is a
CTU which has not been chosen by any UE; a singleton CTU
is a CTU chosen by only one UE; and a collision CTU is
a CTU chosen by two or more UEs [16]. One example is
illustrated in Fig. 6. The UE 1 and UE 5 have chosen the
unique CTU 6 and CTU 5, respectively, thus, the CTU 6 and
5 are singleton CTUs. The CTU 3 is an idle CTU. The UE
4 and UE 7 have chosen the CTU 1, the UE 2 and UE 3 have
chosen the CTU 2, and the UE 6 and UE 8 have chosen
the CTU 4, thus, CTU 1, 2 and 4 are collision CTUs. After
collision detection at the tth RTT, the BS observes the set of
singleton CTUs Ct

sc, the set of idle CTUs Ct
ic, and the set of

collision CTUs Ct
cc as shown in orange, blue and green color,

respectively, in Fig. 6.
5) Data Decoding: After detecting the UEs that have

chosen the singleton CTUs (e.g., UE 1 and UE 5 shown as
triangle in Fig. 6), the BS performs the successive interference
cancellation (SIC) technique to decode the data of these UEs.
During the decoding, the UEs that transmit in different RBs
do not interfere with each other due to the orthogonality, and
only UEs that transmit in the same RB cause interference,
i.e., as shown in Fig. 6, the interference UE set in RB
1 is {2, 3, 4, 7} shown in color grey and the interference UE
set in RB 2 is {1, 5, 6, 8} shown in color yellow. For SIC,
the detection and decoding can be implemented through a
simple algorithm. At first, the BS assumes that all the CTUs



1480 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 71, NO. 3, MARCH 2023

are singleton CTUs and orders the CTUs according to their
respective received powers in descending order. In the first
iteration, the BS attempts to decode the strongest CTU by
treating the received powers of other CTUs over the same RB
as the interference. The iterative stage of SIC decoding is suc-
cessful when the signal-to-interference-plus-noise ratio (SINR)
in that stage is larger than the SINR threshold. If decoding is
successful, the decoded signal is subtracted from the received
signal.2 If not, the BS assumes that this is a collision CTU.
In the second iteration, the BS attempts to decode the second
strongest CTU while regarding the previously undecoded CTU
as interference. The BS can continue to follow the same steps
until there are no more CTUs to decode. Thus, in the kth
repetition of the tth RTT, the sth stage of SIC decoding is
successful if the SINR is higher than a threshold γth [16],
i.e.,

SINRt
f,s(k)

=
Phs,krs

−η

∑Nt
f,sc(k)

m=s+1 Pmhm,kr−η
m +

∑
n′∈N t

f,cc(k) Pn′hn′,kr−η
n′ + σ2

≥ γth, (4)

where P is the transmission power, N t
f,sc is the set of other

devices that have chosen the singleton CTUs over the f th RB,
N t

f,cc is the set of devices that have chosen the collision CTUs
over the f th RB, σ2 is the noise power.

The SIC decoding procedure for each GF scheme is
described in the following.

i) K-repetition scheme: For the K-repetition scheme as
shown in Fig. 3, the successful decoding event occurs at least
one repetition decoding succeeds. Thus, the SIC decoding
procedure follows:

1) Step 1: Start the kth repetition with the initial k = 1,
N t

f,sc and N t
f,cc;

2) Step 2: Decode the sth CTU with the initial s = 1 using
(4);

3) Step 3: If the sth CTU is successfully decoded, put the
decoded UE in set N t

f,sd(k) and go to Step 4, otherwise
go to Step 5;

4) Step 4: If s ≤ N t
f,sc, do s = s + 1, go to Step 2,

otherwise go to Step 5;
5) Step 5: SIC for the kth repetition stops;
6) Step 6: If k ≤ KKrep, do k = k + 1, go to Step 1,

otherwise go to the end.

ii) Proactive scheme: For the Proactive scheme as shown
in Fig. 4, the successful decoding event occurs once the
repetition decoding succeeds. The successfully decoded UEs
will not transmit in the remaining repetitions in this RTT to
reduce interference to other UEs. It should be noted that the
ACK/NACK feedback can only be received after 3TTIs, which
means the ACK feedback of the kth successful repetition can
be received by the UE in the (k + 3)th repetition and the UE
stops transmission from the (k+4)th repetition. In addition, the

2We assume perfect SIC with no error propagation between iterations, as in
existing works like [16]. Our proposed DRL-based GF-NOMA framework
can also be extended to systems with imperfect SIC cases without affecting
the implement of DRL algorithms [42].

BS does not send any ACK/NACK feedback to the collision
UEs. The collision USs in the kth repetition that do not receive
feedback at the pre-defined timing after the UEs sent the
packet (e.g., after 3TTIs) will not transmit in the remaining
repetitions to reduce interference to other UEs.

1) Step 1: Initialize k = 1, N t
f,sc and N t

f,cc. If k < 4, go to
Step 3, otherwise go to Step 2;

2) Step 2: Update the N t
f,sc(k) = N t

f,sc(k)−N t
f,sd(k− 4)

and N t
f,cc(k) = ∅;

3) Step 3: Start the kth repetition with k, N t
f,sc(k) and

N t
f,cc(k);

4) Step 4: Decode the sth CTU with initial s = 1 using
(4);

5) Step 5: If the sth CTU is successfully decoded, put the
decoded UE in set N t

f,sd(k) and go to Step 6, otherwise
go to Step 7;

6) Step 6: If s ≤ N t
f,sc, do s = s + 1, go to Step 4,

otherwise go to Step 7;
7) Step 7: SIC for the kth repetition stops;
8) Step 8: If k ≤ KPro, do k = k + 1, go to Step 1,

otherwise go to the end.

Finally, the set N t
f,sd =

⋃KKrep

k=1 (N t
f,sd(k)) is the successfully

decoded UEs over the f th RB and N t
sd =

⋃F t

f=1 (N t
f,sd) is the

successfully decoded UEs in the tth RTT.
6) HARQ Retransmissions: We take into account the

GF-NOMA HARQ retransmissions to achieve high reliability
performance. However, due to the latency constraint Tcons, the
HARQ retransmission times are limited as shown in Fig. 2.
The UE determines a re-transmission or not based on the
following two different scenarios.

i) when the UE receives an ACK from the BS, it means
that the BS successfully detected the UE (i.e., the UE chooses
the singleton CTUs) and decoded the UE’s data (i.e., SIC
succeeds), no further re-transmission is needed;

ii) when the UE receives a NACK from the BS, it means
that the BS successfully detected the UE but failed to decode
the UE’s data (i.e., SIC fails). Otherwise, when the UE does
not receive any feedback at the pre-defined timing after the
UE sent the packet (e.g., at the end of one RTT), it means the
BS failed to identify the UE, the UE determines whether to
retransmit or not in the next RTT based on the transmission
latency check as shown in Fig. 2.

B. Problem Formulation

Once actived in a given RTT t, a UE executes the
GF-NOMA procedure, where the UE randomly chooses one of
the preconfigured Ct CTUs to transmit its packets for Kt

Krep

times or kt
Proa ≤ Kt

Proa times under the K-repetition scheme
and the Proactive scheme, respectively. During this RTT, the
GF-NOMA fails if: (i) a CTU collision occurs when two or
more UEs choose the same CTU (i.e., UE detection fails); or
(ii) the SIC decoding fails (i.e., data decoding fails). Once
failed, UEs decides whether to retransmit in the following
RTT or not based on the transmission latency check. When
Tlate > Tcons, the UE fails to be served and its packets will be
dropped. It is obvious that 1) increasing the repetition values
Kt could improve the GF-NOMA success probability, but



LIU et al.: DEEP REINFORCEMENT LEARNING-BASED GRANT-FREE NOMA OPTIMIZATION FOR mURLLC 1481

results in an increasing latency; 2) increasing CTU numbers
Ct could improve the UE detection success probability, but it
results in low resource utilization efficiency.

Thus, it is necessary to tackle the problem of optimizing
the GF-NOMA configuration defined by parameters3 At =
{Kt, Ct} for each RTT t under both the K-repetition scheme
and the Proactive scheme, where Kt is the repetition value and
Ct is the number of CTUs. At the beginning of each RTT t,
the decision is made by the BS according to the transmission
receptions U t′ for all prior RTTs (t� = 1, . . . , t− 1), consist-
ing of the following variables: the number of the collision
CTUs V t′

cc , the number of the idle CTUs V t′
ic , the number

of the singleton CTUs (non-collision UEs) V t′
sc , the number

of successfully served UEs (UEs that have been successfully
detected and decoded) V t′

sd , and the number of failure decoding
UEs ( UEs that have been successfully detected but not suc-
cessfully decoded) V t′

ud. We denote Ht = {O1, O2, . . . , Ot−1}
with Ot−1 = {U t−1, At−1} as the observation in each RTT t
including histories of all such measurements and past actions.

At each RRT t, the BS aims at maximizing a long-term
objective Rt related to the number of successfully transmitted
UEs under the latency constraint V t′

sd with respect to the sto-
chastic policy π that maps the current observation history Ot

to the probabilities of selecting each possible parameters in At.
It should be noted that though block error rate (BLER) (the
ratio of the number of erroneous blocks to the total number
of blocks) is a very important metric for the reliability perfor-
mance of short-packet transmission [43], which is a statistical
metric considered in statistical mathematical methods. While
in our learning optimization framework, the RL approaches
can only optimize the long-term performance metrics, such as
the total number of success packets or devices, but not the
statistical probability, like BLER. Actually, maximizing the
number of successfully served UEs has the same performance
meaning as minimizing the BLER, i.e., to increase network
reliability. The optimization problem (P1) is formulated as:

(P1 :) max
π(At|Ot)

∞∑
k=t

γk−t
Eπ [V k

sd] (5)

s.t. Tlate ≤ Tcons, (6)

where γ ∈ [0, 1) is the discount factor for the performance
accrued in the future RTTs, and γ = 0 means that the agent
just concerns the immediate reward.

Since the dynamics of the GF-NOMA system is Markovian
over the continuous RRTs, this is a Partially Observable
Markov Decision Process (POMDP) problem which is gen-
erally intractable. Here, the partial observation refers to that
a BS can not fully know all the information of the communi-
cation environment, including, but not limited to, the channel
conditions, the UE transmission latency, the random collision
process, and the traffic statistics. Approximate solutions will
be discussed in Section III and VI.

3According to the UE detection and data decoding procedure described in
Section II.A, for the same CTU number Ct, a large RB number F t leads to
fewer UEs in each RB, which increases the data decoding success probability.
That is to say, the larger RB number, the better. Thus, we fix the RB number
F = 4 in this work to optimize the CTU number.

III. PRELIMINARIES AND CONVENTIONAL SOLUTIONS

The optimization problem (P1) is really complicated, which
cannot be easily solved via the conventional uplink resource
optimization solutions, especially the dynamic optimization
taking into account the latency constraint. In addition, most
prior works simplified the optimization without consideration
of future performance [44]. We modify the load estimation
(LE) approach given in [44] via estimating based on the
last number of the collision CTUs V t−1

cc and the previous
numbers of idle CTUs V t−1

ic , V t−2
ic , · · · , V 1

ic . To simplify,
we propose a load estimation-based uplink resource configura-
tion (LE-URC) approach to dynamically configure the CTUs
number Ct with the fixed repetition value Kt in each RTT to
maximize the successfully served UEs without latency check
and SIC procedure described in Section III, which is expressed
as

(P2 :) max
π(Ct|Ot)

Eπ[V t
sc], (7)

In the conventional solution, we ignore the SIC detection
failure, i.e., UEs are successfully transmitted if there is no
CTU collision occurs. Then the number of non-collided UEs
is regarded as the upper bound of the number of successfully
served UEs and is utilized as a baseline to compare with our
proposed learning algorithm. Thus, V t

sc is the optimization
objective.

At the RTT t − 1 we consider that Dt−1
UE = n UEs

randomly choose one of the available Ct−1 CTUs with an
equal probability 1/Ct−1. The probability that no UE chooses
a CTU c is

P(Dc = 0|Dt−1
UE = n) = (1− 1/Ct−1)n. (8)

The expected number of idle CTUs is given by

E[V t−1
ic |Dt−1

UE = n]

=
Ct−1∑
c=1

P(Dc = 0|Dt−1
UE = n) =Ct−1(1− 1/Ct−1)n. (9)

Due to that the actual number of idle CTUs V t−1
ic can be

observed at the BS, the number of active UEs in the (t− 1)th
RTT is estimated as

D̃t−1
UE = f−1(E[V t−1

ic |Dt−1
UE = n])

= log(1−1/Ct−1)(V
t−1
ic /Ct−1). (10)

Next, we need to estimate the number of active UEs in the tth
RTT D̃t

UE. We use δt to represent the difference between the
estimated numbers of UEs in the (t− 1)th and the tth RTTs.
That is δt = D̃t

UE − D̃t−1
UE for t = 1, 2, · · · , where D̃0

UE = 0.
According to [44], we have δt ≈ δt−1. Therefore, the number
of UEs in RTT t is estimated as

D̃t
UE = max{2V t−1

cc , D̃t−1
UE + δt−1}, (11)

where 2V t−1
cc represents that there are at least 2V t−1

cc number
of UEs colliding in the last RTT.

Based on the estimated number of active UEs in the tth
RTT D̃t

UE, the probability that only one UE chooses CTU c
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(i.e., no collision occurs) is given by

P(Dc = 1|D̃t
UE = n) =

(
n
1

)
1/Ct(1 − 1/Ct)n−1. (12)

The the expected number of the successfully served UEs in
the tth RTT is given as

V t
suss(C

t) = E[V t
sc|D̃t

UE = n]

=
Ct∑
c=1

P(Dc = 1|Dt
UE = n) =n(1− 1/Ct)n−1.

(13)

The maximal expected number of the successfully served UEs
is obtained by choosing the number of CTUs as

Ct∗ = argmax
Ct∈NCTU

V t
suss(C

t). (14)

IV. DEEP REINFORCEMENT LEARNING-BASED

GF-NOMA RESOURCE CONFIGURATION

The deep reinforcement learning (DRL) is regarded as a
powerful tool to address complex dynamic control problems in
POMDP. In this section, we propose a Deep Q-network (DQN)
based algorithm to tackle the problem (P1). The reasons in
choosing DQN are that: 1) the Deep Neural Network (DNN)
function approximation is able to deal with several kinds of
partially observable problems [23], [45]; 2) DQN has the
potential to accurately approximate the desired value function
while addressing a problem with very large state spaces;
3) DQN is with high scalability, where the scale of its value
function can be easily fit to a more complicated problem; 4) a
variety of libraries have been established to facilitate building
DNN architectures and accelerate experiments, such as Tensor-
Flow, Pytorch, Theano, Keras, and etc.. To evaluate the capa-
bility of DQN in GF-NOMA, we first consider the dynamic
configuration of repetition value Kt with fixed CTU numbers
Ct, where the DQN agent dynamically configures the Kt at
the beginning of each RTT for K-repetition and Proactive GF
schemes. We then propose a cooperative multi-agent learning
technique based on the DQN to optimize the configuration of
both repetition value Kt and CTU numbers Ct simultaneously,
which breaks down the selection in high-dimensional action
space into multiple parallel sub-tasks.

A. Deep Reinforcement Learning-Based Single-Parameter
Configuration

1) Reinforcement Learning Framework: To optimize the
number of successfully served UEs under the latency con-
straint in GF-NOMA schemes, we consider a RL-agent
deployed at the BS to interact with the environment in order
to choose appropriate actions progressively leading to the
optimization goal. We define S ∈ S, A ∈ A, and R ∈ R
as any state, action, and reward from their corresponding
sets, respectively. The RL-agent first observes the current
state St corresponding to a set of previous observations
(Ot = {U t−1, U t−2, . . . , U1}) in order to select a specific
action At ∈ A(St). Here, the action At represents the

repetition values Kt in the tth RTT At = Kt in this
single-parameter configuration scenario and the St is a set of
indices mapping to the current observed information U t−1 =
[V t−1

cc , V t−1
ic , V t−1

sc , V t−1
sd , V t−1

ud ]. With the knowledge of the
state ST , the RL-agent chooses an action At from the set A.
Once an action At is performed, the RL-agent transits to a
new observed state St+1 and receives a corresponding reward
Rt+1 as the feedback from the environment, which is designed
based on the new observed state St+1 and guides the agent
to achieve the optimization goal. As the optimization goal is
to maximize the number of the successfully served UEs under
the latency constraint, we define the reward Rt+1 as

Rt+1 = V t
sd, (15)

where V t
sd is the observed number of successfully served UEs

under the latency constraint Tcons.
To select an action At based on the current state St,

a mapping policy π(a|s) learned from a state-action value
function Q(s, a) is needed to facilitate the action selection
process, which indicates probability distribution of actions
with given states. Accordingly, our objective is to find an
optimal value function Q∗(s, a) with optimal policy π∗(a|s).
At each RTT, Q(s, a) is updated based on the received reward
by following

Q(St, At)
= Q(St, At) + λ[Rt+1 + γ max

a∈A
Q(St+1, a)−Q(St, At)],

(16)

where λ is a constant learning rate reflecting how fast the
model adapting to the problem, γ ∈ [0, 1) is the discount
rate determining how current rewards affect the value function
updating. After enough iterations, the BS can learn the optimal
policy maximizing the long-term rewards.

2) Deep Q-Network: When the state and action spaces
are large, the RL algorithm becomes expensive in terms of
memory and computation complexity, which is difficult to
converge to the optimal solution. To overcome this problem,
DQN is proposed in [45], where the Q-learning is combined
with DNN to train a sufficiently accurate state-action value
function for the problems with high dimensional state space.
Furthermore, the DQN algorithm utilizes the experience replay
technique to enhance the convergence performance of RL.
When updating the DQN algorithm, mini-batch samples are
selected randomly from the experience memory as the input
of the neural network, which breaks down the correlation
among the training samples. In addition, through averaging
the selected samples, the distribution of training samples can
be smoothed, which avoids the training divergence.

In DQN algorithm, the action-state value function Q(s.a)
is parameterized via a function Q(s, a, θ), where θ represents
the weights matrix of a multiple layers DNN. We consider
the conventional fully-connected DNN, where the neurons
between two adjacent layers are fully pairwise connected. The
variables in the state St is fed in to the DNN as the input; the
Rectifier Linear Units (ReLUs) are adopted as intermediate
hidden layers by utilizing the function f(x) = max (0, x);
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while the output layer is consisted of linear units, which are
in one-to-one correspondence with all available actions in A.

To achieve exploitation, the forward propagation of
Q-function Q(s, a, θ) is performed according to the observed
state St. The online update of weights matrix θ is carried
out along each training episode to avoid the complexities of
eligibility traces, where a double deep Q-learning (DDQN)
training principle [46] is applied to reduce the overestimations
of value function (i.e., sub-optimal actions obtain higher
values than the optimal action). Accordingly, learning takes
place over multiple training episodes, where each episode
consists of several RTT periods. In each RTT, the parameter
θ of the Q-function approximator Q(s, a, θ) is updated using
RMSProp optimizer [47] as

θt+1 = θt − λRMS∇LDDQN(θt) (17)

where λRMS ∈ (0, 1] is RMSProp learning rate, ∇LDDQN(θt)
is the gradient of the loss function LDDQN(θt) used to train the
state-action value function. The gradient of the loss function
is

∇LDDQN(θt)

= ESi,Ai,Ri+1,Si+1 [(Ri+1 + γ max
a∈A

Q(Si+1, a, θ̄
t)

−Q(Si, Ai, θt))∇θQ(Si, Ai, θt)]. (18)

We consider the application of minibatch training, instead
of a single sample, to update the value function Q(s, a, θ),
which improves the convergent reliability of value function
Q(s, a, θ). Therefore, the expectation is taken over the mini-
batch, which are randomly selected from previous samples
(Si, Ai, Si+1, Ri+1) for i ∈ {t−Mr, . . . , t} with Mr being the
replay memory size [23]. When t−Mr is negative, it represents
to include samples from the previous episode. Furthermore,
θ̄

t
is the target Q-network in DDQN that is used to estimate

the future value of the Q-function in the update rule, and
θ̄

t
is periodically copied from the current value θt and kept

unchanged for several episodes.
Through calculating the expectation of the selected previous

samples in minibatch and updating the θt by (17), the DQN
value function Q(s, a, θ) can be obtained. The detailed DQN
algorithm is presented in Algorithm 1.

B. Cooperative Multi-Agent Learning-Based Multi-Parameter
Optimization

In practice, not only the repetition values but also the
CTU numbers, influence reliability-latency performance in
GF-NOMA. Fixed CTU numbers cannot adapt to the dynamic
random traffic, which may violate the stringent latency require-
ment or lead to low resource efficiency. Thus, we study the
problem (P1) of jointly optimizing the resource configuration
with parameters At = {Kt, Ct} to improve the network
performance. The learning algorithm provided in Sec. V.A is
model-free, and thus the learning structure can be extended in
this multi-parameter scenario.

Due to the high capability of DQN to handle prob-
lems with massive state spaces, we consider to improve the
state spaces with more observed information to support the

Algorithm 1 DQN-Based GF-NOMA Uplink Resource
Configuration

Input: The set of repetition values in each RTT K and
Operation Iteration I.

1 Algorithm hyperparameters: learning rate λRMS ∈ (0, 1],
discount rate γ ∈ [0, 1), �-greedy rate � ∈ (0, 1], target
network update frequency J ;

2 Initialization of replay memory M to capacity D, the
state-action value function Q(S, A, θ), the parameters of
primary Q-network θ, and the target Q-network θ̄;

3 for Iteration ← 1 to I do
4 Initialization of S1 by executing a random action

A0 and bursty traffic arrival rate μ0 = 0;
5 for t ← 1 to T do
6 Update μ0 using Eq. (2);
7 if pε < � Then select a random action At from A;
8 else select At = argmaxa∈A Q(St, a, θ).
9 The BS broadcasts K(At) and backlogged UEs

attempt communication in the tth RTT;
10 The BS observes state St+1, and calculate the

related reward Rt+1 using Eq. (15);
11 Store transition (St, At, Rt+1, St+1) in replay

memory M ;
12 Sample random minibatch of transitions

(St, At, Rt+1, St+1) from replay memory M ;
13 Perform a gradient descent step and update

parameters θ for Q(s, a, θ) using Eq. (18);
14 Update the parameter θ̄ = θ of the target

Q-network every J steps.
15 end
16 end

optimization of RL-agent. Therefore, we define the current
state St, to include information about the last Mo RTTs
(U t−1, U t−2, U t−3, . . . , U t−Mo), which enables the RL-agent
to estimate the trend of traffic. Similar to the state spaces,
the available action spaces also exponentially increases with
the increment of the adjustable parameter configurations in
GF-NOMA. The total number of available actions corresponds
to the possible combinations of all parameter configurations.

Although the GF-NOMA configuration is managed by a
central BS, breaking down the control of multiple parameters
as multiple sub-tasks is sufficient to deal with the problems
with unsolvable action space, which are cooperatively handled
by independent Q-agents. As shown in Fig. 7, we consider
multiple DQN agents that are centralized at the BS following
the same structure of value function approximator as Sec.
V.A. Each DQN agent controls their own action variable and
receives a common reward to guarantee the objective in P1
cooperatively.

However, the common reward design also poses challenge
on the evaluation of each action, because the individual
effect of specific action is deeply hidden in the effects of
the actions taken by all other DQN agents. For instance,
a positive action taken by a agent can receive a misleading low
reward due to other DQN agents’ negative actions. Fortunately,
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Fig. 7. The CMA-DQN agents and environment interaction in the POMDP.

in GF-NOMA scenario, all DQN agents are centralized at the
BS and share full information among each other. Accordingly,
we include the action selection histories of each DQN agent as
part of state function, and hence, the agents are able to learn
the relationship between the common reward and different
combinations of actions. To do so, we define state variable
St as

St = [At−1, U t−1, At−2, U t−2, . . . , At−Mo , U t−Mo ], (19)

where Mo is the number of stored observations, At−1 is the
set of selected action of each DQN agent in the (t−1)th TTI,
and U t−1 is the set of observed transmission receptions.

In each RTT, the kth agent update the parameters θk of
the value function Q(s, ak, θk) using RMSProp optimizer
following Eq. (17). The algorithm can be implemented follow-
ing Algorithm 1. Different from GF-NOMA single-parameter
configuration scenario in Section IV.A, it is required to ini-
tialize two primary networks θk, target networks θ̄k and the
replay memories Mk for each DQN agent. In step 10 of
Algorithm 1, each agent stores their own current transactions
in memory separately. In step 11 and 12 of Algorithm 1, the
minibatch of transaction should separately be sampled from
individual memory to train the corresponding DQN agent.

C. Complexity of the Proposed Algorithm

The computational complexity of the proposed algorithm
consists of two aspects, i.e., the computational complexity
related to the DRL model and the computational complexity
related to the training process. As demonstrated in [48],
the computational complexity of the DRL algorithm can be
calculated as O(m̄n̄logn̄), where m̄ is the number of layers,
and n̄ is the number of units per learning layer. In terms of
the training process, the training complexity for X agents, one
minibatch of I episodes with T time-steps until convergence
results is of order O(XIT ).

TABLE I

SIMULATION PARAMETERS

TABLE II

LEARNING HYPERPARAMETERS

V. SIMULATION RESULTS

In this section, we examine the effectiveness of our proposed
GF-NOMA schemes with DQN algorithm via simulation and
compare the results with LE-URC. We adopt the standard
network parameters listed in Table I following [49], and
hyperparameters for the DQN learning algorithm are listed
in Table II.
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Fig. 8. Low backlog traffic and high backlog traffic in each TTI.

All testing performance results are obtained by averaging
over 1000 episodes. The BS is located at the center of a
circular area with a 10 km radius, and the UEs are randomly
located within the cell. Unless otherwise stated, we consider
the number of bursty UEs to be N = 20000. The DQN
is set with two hidden layers, each with 128 ReLU units.
In the following, we present our simulation results of the
single-repetition configuration and the multi-parameter config-
uration in Section V-A and Section V-B, respectively. In the
single-repetition configuration scenario, we set the number of
CTU as C = 48. Throughout epoch, each UE has a periodical
bursty traffic profile, i.e., the time limited Beta profile defined
in (1) with parameters (2, 4) that has a peak around the 4000th
TTI. The single-repetition configuration is optimized under the
latency constraint Tcons = 2 ms (low backlog traffic). The
multi-parameter configuration is optimized under the latency
constraint Tcons = 8 ms (high backlog traffic).

Fig. 8 plots the low backlog traffic under the latency
constraint Tcons = 2 ms and high backlog traffic under the
latency constraint Tcons = 8 ms in each TTI, respectively.
It should be noted that the the backlog traffic in each TTI
does not only include the newly generated traffic, but also
the retransmission traffic, due to the fact that the UEs are
allowed to retransmit in the next RTT under the latency
constraint. The results have shown that when the latency
constraint increases, the backlog traffic in each TTI increase
as the retransmission traffic increases. Note that the successful
probability performance can be calculated by dividing the
number of successful UEs by the backlog traffic UE. However,
rather than the probability value, we take care of how our
approaches affect the long-term metrics like the number of
collision devices, non-collision devices, and decoding failure
devices, and thus affect the successful UEs (or the probability
value), which will be discussed in the analysis of the following
results.

A. Single-Repetition Configuration for Low Backlog Traffic

Fig. 9 shows the system convergence process of the
proposed DRL learning framework by plotting the aver-
age received reward for the K-repetition scheme and the
Proactive scheme under low backlog traffic scenario, respec-

Fig. 9. Average received reward for each GF scheme.

tively. It can be intuitively seen that the proposed framework
has a fast convergence speed and the episode required for
system convergence is very small for both K-repetition and
Proactive schemes. We can also observe that the average
received reward of Proactive scheme in Fig. 9 (b) is higher
than that of the K-repetition scheme in Fig. 9 (a). This
is because the Proactive scheme can terminate the repeti-
tion earlier and start new packet transmission with timely
ACK feedback, which is able to deal with the traffic more
effectively.

Fig. 10 plots the number of the successfully served UEs, the
non-collision UEs, the collision UEs, and the decoding failure
UEs for the K-repetition scheme and the Proactive scheme
respectively. It is shown that the number of non-collision
transmission UEs of both scheme is similar in the same
scenario. However, the number of decoding failure UEs of the
K-repetition scheme is more than that of the Proactive scheme,
due to more interference caused by multiple repetitions in
K-repetition scheme. That is to say, the earlier terminating of
the UEs in the Proactive scheme can reduce the interference
to other UEs, and thus leads to an increase in the number of
successfully decoding UEs. In both Fig. 10 (a) and Fig. 10 (b),
the number of collision UEs has a peak at around the 4000th
TTI with the peak traffic at this time as shown in Fig. 8.
In addition, the number of failure decoding UEs reaches a
peak due to the peak traffic at the 4000th TTI, which leads
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Fig. 10. The transmission results for each GF scheme.

to the decrease in the number of successful UEs at that
time.

B. Multi-Parameter Configuration for High Backlog Traffic

Fig. 11 shows the system convergence process of the
proposed CMA-DQN by plotting the average received reward
for the K-repetition scheme and the Proactive scheme with
multi-parameter configuration, including the repetition values
and the CTU number, under high backlog traffic scenario,
respectively. It can be intuitively seen that the Proactive
scheme has a little bit faster convergence speed than the
K-repetition scheme. Compared to Fig. 9 under lower backlog
traffic scenario, we observe that the average rewards of the
two schemes decrease significantly. This is because the larger
latency constraint Tcons = 8 ms leads to larger retransmis-
sion packets, thus higher backlog traffic, which results in
serious traffic congestion. It is noted that the performance
degradation of the K-repetition scheme is much larger than
that of the Proactive scheme, and the average reward for the
Proactive scheme is almost three times more than that for
the K-repetition scheme, which shows the potential of the
Proactive scheme in heavy traffic scenarios (mURLLC) due
to timely termination.

Fig. 11. Average received reward for each GF scheme with multi-parameter
configuration.

Fig. 12 plots the number of successful UEs, non-collision
UEs, and decoding failure UEs for K-repetition scheme and
Proactive scheme with multi-parameter configuration includ-
ing the repetition values and the CTU number, respectively.
Similar with Fig. 10, the number of decoding failure UEs of
the K-repetition scheme is almost up to five times more than
that of the Proactive scheme at the peak traffic, due to the
interference caused by multiple repetitions from collision UEs.
It is also noted that in both schemes, there is lower number
of successful UEs in high traffic (especially in peak traffic at
round 4000th TTI) and a higher number of successful UEs in
low traffic (especially around 1000th and 8000th TTIs). This
reveals that one design challenge for GF-NOMA transmission
is to deal with the potential signature collision, which will
happen in the case of random signature selection and when
the number of potential users is much larger than the pool
size of the NOMA signatures.

Fig. 13 plots the average number of successful UEs for
the K-repetition scheme and the Proactive scheme by compar-
ing the learning framework with fixed parameters, and with
the LE-URC approach, respectively. Here, we set the fixed
repetition value K = 8 and the CTU number C = 48.
Our results shown that the number of successfully served
UEs under the same latency constraint in our proposed
learning framework is up to ten times for the K-repetition
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Fig. 12. The transmission results for each GF scheme.

scheme, and fifteen times for the Proactive scheme, more
than that with fixed repetition values and CTU numbers,
respectively. In addition, since the LE-URC approach is
not aware of the latency constraint and SIC procedure, the
results are large at first, but still smaller than the number
of non-collision UEs of CMA-DQN (without SIC). However,
with increasing TTIs (above 6000), the cumulated traffic
increases due to unsuccessful transmissions and retransmis-
sions, the LE-URC method becomes worse and achieve lower
number of successful UEs than that of CMA-DQN due to
its ignorance in latency constraint during its optimization for
one time instance. The superior performance of CMA-DQN
in heavy traffic scenario also demonstrate its capability in
dynamically configure lower lower repetition values and
CTU numbers to alleviate the traffic congestion to obtain a
long-term reward.

Fig. 14 plots the average number K of repetition values
and the average number C of CTUs for each scheme that are
selected by CMA-DQN and LE-URC, respectively. First, for
the repetition values, it is known that increasing the repetition
value increases the success probability, as it offers more
opportunities to transmit. However, in overloaded traffic
scenarios, the repetition also increases the collisions and

Fig. 13. Average number of successfully served UEs for each GF scheme.

wastes extra time and potential resources. We can see that
in Fig. 14 (a), the repetition value of K-repetition scheme
decreases first and then increases back to a higher value. This
is because the agent in K-repetition scheme learns to sacrifice
the current successful transmission to alleviate the traffic
congestion in heavy traffic region to obtain a long-term reward,
while LE-URC approach just adopts the maximum repetition
value to optimize for one time instance. In Fig. 14 (b), we can
see that the Proactive scheme adopts a higher and more stable
repetition value due to its capability to deal with the traffic
congestion. Then, for the average CTUs number, we can see
that in Fig. 14 (a), the CTUs number increases during the
light traffic period and decreases during the high traffic period.
The chosen reason is similar to the choice of repetition value,
which may be caused by the sharing of actions as observations
among agents. Similarly, in Fig. 14 (b), we can see that the
Proactive scheme adopts a higher and more stable average
CTUs number due to its capability to deal with the traffic
congestion.

The realistic network conditions can be different from the
simulation environment, due to that the practical traffic and
physical channel vary and can be unpredictable. This differ-
ence may lead to the inaccurate configuration that can degrade
the system performance of each approach. Fortunately, the
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Fig. 14. Actions for each GF scheme.

proposed RL-based approaches can self-update after deploy-
ment according to the practical observation in GF-NOMA
networks in an online manner. To model this, we use the
trained CMA-DQN agents given in Fig. 14(a) (i.e., the number
of bursty UEs is 20000 and the latency constraint is 8ms),
and test them in a slightly modified traffic scenario as shown
in Fig. 15(a) (the number of bursty UEs is 10000 for low
traffic and the latency constraint is 2ms) and Fig. 15(b) (the
number of bursty UEs is 30000 for high traffic and the latency
constraint is 2ms). The superior performance of CMA-DQN in
heavy traffic scenarios (Fig. 15(b)) demonstrates its capability
to dynamically configure lower repetition values and CTU
numbers to alleviate traffic congestion to obtain a long-term
reward.

VI. CONCLUSION AND DISCUSSION

In this paper, we developed a general learning frame-
work for dynamic resource configuration optimization in
signature-based GF-NOMA systems for mURLLC service
under the K-repetition GF scheme and the Proactive GF
scheme. This proposed learning framework defined the obser-
vations, actions, and rewards to maximize long-term suc-
cessfully served UEs under the latency constraint, which
can be standardized as the collected parameters from the
environment. We first performed a real-time repetition value

Fig. 15. Average number of successfully served UEs for (a) light traffic and
(b) heavy traffic.

configuration, where a double Deep Q-Network (DDQN)
was developed. We then designed a Cooperative Multi-Agent
DQN (CMA-DQN) to optimize the configuration of both
the repetition values and the CTU numbers for these two
schemes, by dividing high-dimensional configurations into
multiple parallel sub-tasks.

Our results have shown that: 1) the number of successfully
served UEs under the same latency constraint in our proposed
learning framework is up to ten times for the K-repetition
scheme, and fifteen times for the Proactive scheme, more
than that with fixed repetition values and CTU numbers;
2) with learning optimization, the Proactive scheme always
outperforms the K-repetition scheme in terms of the number
of successfully served UEs, especially under the high backlog
traffic scenario; 3) the proposed CMA-DQN is superior to the
conventional load estimation-based approach (LE-URC) that
demonstrating its capability in dynamically configuring for
mURLLC in heavy traffic scenarios in long term; and 4) the
proposed learning framework can be extended to optimize
other resource configuration problems in GF-NOMA schemes,
such as retransmission times, starting offset of the grant, etc..
and for other signature-based GF-NOMA schemes with differ-
ent signatures. With realistic traffic, a direct implementation
of DRL may bring computational complexity and processing
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delay at the BSs, so how to reduce the complexity of DRL
algorithms can be considered in future work.
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