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Abstract— This paper revisits polar code design for a binary-
input additive white Gaussian noise (BI-AWGN) channel when
successive cancellation (SC) decoding is applied at the receiver.
We focus on the so-called reciprocal channel approximation (RCA),
which is often adopted in the design of low-density parity-
check (LDPC) codes. Implementation of RCA requires the com-
putation of the mutual information of BPSK signaling as well as a
corresponding function known as the reciprocal channel mapping,
and thus we develop rigorous closed-form approximations of
these that are easy to calculate numerically and also valid over
a wide range of SNR. Through numerical evaluation we find
that, compared to approaches based on the popular Gaussian
approximation (GA) as well as the so-called improved GA (IGA),
the proposed RCA approach offers better estimates of the bit
error rate of polarized channels with no additional computational
cost. As a result, polar codes designed by the proposed RCA can
achieve further improvement in terms of block error rate (BLER)
performance. The gain achieved by the new approach becomes
significant as the codeword length increases.

Index Terms— Code construction, density evolution, Gaussian
approximation, polar codes, reciprocal channel approximation.

I. INTRODUCTION

ONE of the most striking properties of polar codes [1]
is their capacity approaching behavior that is achievable

with low-complexity successive cancellation (SC) decoding.
Specifically, for a codeword length of N bits, the decoding
complexity is only O(N log N), which is significantly lower
than other known capacity approaching codes that are available
in practice. As a result of channel polarization, the design
of polar codes is equivalent to the identification of good
channels and bad channels, where the former channels are
used for information transmission and the latter channels are
left unused (i.e., frozen). The main focus of this paper is
on the design of polar codes with long codeword lengths
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over a binary-input additive white Gaussian noise (BI-AWGN)
channel.

There have been various techniques proposed for polar
code design over a BI-AWGN channel. The most accurate
analytical approach is the use of density evolution [2], [3],
originally developed for the design of low-density parity-
check (LDPC) codes, and its applicability to polar codes has
been identified in [4]. Density evolution tracks the probability
distribution of the channel or its log-likelihood ratio (LLR),
and in order to improve its accuracy, it should be computed
with sufficient quantization and dynamic range. Therefore,
density evolution is highly demanding in terms of space
and computational complexity, especially when the codeword
length increases. A more tractable approach with limited space
complexity was proposed in [5]. Nevertheless, the approach
involves quantization, and thus the overall complexity depends
not only on the codeword length but also on the required
precision. On the other hand, a significantly simpler approach
that tracks density evolution by a single parameter is Gaussian
approximation (GA) [6]. Also initially developed for the
design of LDPC codes, its applicability to polar code design
has been well investigated [7]. It has been pointed out in [8]
that GA with the original approximation function developed
in [6] may not necessarily work accurately when the equivalent
signal-to-noise power ratio (SNR) values of the channels after
polarization become low. Consequently, a modified version,
which will be referred to as improved GA (IGA) in this work,
has been proposed [8]. Furthermore, there have been various
design approaches proposed in the recent literature, targeting
specific polar decoding algorithms. For example, in the case
of successive cancellation list (SCL) decoding [9] or belief
propagation (BP) decoding [10], learning-based approaches
such as genetic algorithms and reinforcement learning have
been proposed in [11] and [12], respectively. The major
limitations of these approaches are their lack of flexibility and
scalability since computationally demanding training should
be performed for each given combination of the code para-
meters such as codeword length and code rate. Other related
works include multi-kernel polar codes [13] which generalize
Arıkan’s kernel so as to offer code design flexibility, while
GA would again be employed in the information bit selection
process.

In this work, we consider the application of the so-
called reciprocal channel approximation (RCA), introduced by
Chung in [14] as another single-parameter approximation of
density evolution, and it is motivated by the duality property
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of mutual information that holds between a repetition code and
parity-check code over a binary erasure channel (BEC) [15].
This approach has been originally adopted in the design of
LDPC and other related codes [14], [16], [17], [18], [19],
and it was numerically demonstrated in [14, Chapter 7]
that RCA may offer a better approximation even over
BI-AWGN channels than the conventional GA. By numerical
study and simulation, we will find that polar codes designed
based on RCA exhibit better performance than those based
on (improved) GA, and the gain becomes more significant
as the codeword length increases. The superior performance
improvement will be demonstrated for polar codes with very
long lengths (up to N = 218 bits), as is considered in practical
optical communications [20]. (See, also [21], where a polar
code of length 220 bits is considered.)

The design of polar codes based on RCA was initially
proposed in [22] as well as [23]. RCA-based designs make
use of the mutual information of BPSK signaling over an
AWGN channel as well as its inverse function, which should
be calculated numerically. There are several closed-form
approximations available in the literature. In [23] the two
approximations developed in [17] and [24] are compared,
indicating the sensitivity of polar code performance to the
choice of approximation. For this reason, in this work we
introduce rigorous closed-form expressions to approximate the
mutual information C(γ) of BPSK as a function of SNR γ as
well as its inverse function C−1(·) that can be used to design
polar codes with long codeword lengths.

The main contributions of this work are as follows:
• We derive a closed-form piece-wise continuous mutual

information expression for BPSK signaling over AWGN
channels with guaranteed convergence in the case of high
and low SNR based on the asymptotic analysis of the
mutual information function. This expression is exploited
to design polar codes based on RCA supporting a wide
range of SNR after polarization.

• We develop an explicit algorithm that identifies SNR after
channel polarization using only closed-form equations,
which can thus be calculated with low complexity or low
latency.

• By simulation, we demonstrate that, with a moderate
code rate (e.g., around 1/2), the RCA-based design
can offer better bit error rate (BER) as well as block
error rate (BLER) estimates compared to GA-based
approaches, where the gap becomes more significant as
the codeword length increases. As a result, the BLER
performance of polar codes designed by the proposed
RCA approach outperforms that of IGA when it is
compared at the same design SNR.

In summary, with no additional computational cost, the pro-
posed design approach based on RCA offers an improvement
over conventional low-complexity design approaches in terms
of the achievable BLER performance as well as their estimates,
especially when the codeword length of interest is large.

The remainder of the paper is organized as follows.
Section II reviews the principles of GA and RCA from
the viewpoint of polar code design and describes a general
algorithm for RCA. Upon development of RCA, the key

Fig. 1. Polar encoder and associated notations for N = 2.

function denoted by Λ(ξ), which corresponds to the reciprocal
channel mapping defined in [14] and with SNR given in
the log domain, is introduced. Section III develops a new
closed-form expression to approximate the mutual information
for BPSK signaling as well as its inverse, and its accuracy
is compared with conventional alternatives. Based on the
developed mathematical tools, closed-form approximations for
the associated function Λ(ξ) are derived in Section IV, which
completes the proposed algorithm. Simulation results and esti-
mated BER/BLER values are compared in Section V, which
reveals the effectiveness of the RCA-based polar code design
using the proposed algorithm. Finally, concluding remarks are
given in Section VI.

II. PRELIMINARIES

A. Polar Codes

We start with the simplest binary polar code of codeword
(or block) length N = 2 (Arıkan’s kernel) shown in Fig. 1,
where the information bits u0, u1 ∈ F2 and the coded bits
x0, x1 ∈ F2 are related by{

x0 = u0 + u1,

x1 = u1.
(1)

The coded bits x0 and x1 are modulated by BPSK and are
transmitted over AWGN channels, denoted by W0 and W1,
where the SNRs of the channels are γ0 and γ1, respectively,
as illustrated in Fig. 1, with the received symbols given
by y0 and y1.

Assuming that u0 is decoded first, since

u0 = x0 + x1, (2)

u0 can be seen as a check node connected to x0 and x1 in the
Tanner graph. Once the estimate of u0, denoted by û0 ∈ F2,
is given, u1 can be uniquely determined by either of x0 or x1,
i.e., u1 is a variable node connected to both x0 and x1.

Polar codes of length N = 2n for an integer n > 1 can be
obtained by the recursive application of the above kernel [1].

B. Gaussian Approximation

We briefly summarize the Gaussian approximation (GA)
approach, in the framework of polar codes based on the
original work of [6]. (More details can be found in [8] and the
references therein.) We note that GA is an approximation of
density evolution through the single parameter corresponding
to a mean value of the LLR, assuming that the LLR is
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Gaussian distributed. Let L0 and L1 denote the LLR values
corresponding to x0 and x1, respectively. Without loss of
generality, we assume that the all-zero input sequence and thus
all-zero codeword is transmitted. For a BI-AWGN channel,
it follows that L0 ∼ N (γ0, 2γ0) and L1 ∼ N (γ1, 2γ1),
where N (μ, σ2) denotes a real-valued Gaussian distribution
with mean μ and variance σ2. Due to the relationship in (2),
the LLR corresponding to the check node u0, denoted by L̂0,
should satisfy [25]

tanh
(

L̂0
2

)
= tanh

(
L0
2

)
tanh

(
L1
2

)
. (3)

The GA approach assumes that the LLR always follows a
Gaussian distribution N (γ, 2γ) for some mean value γ. The
mean value of L̂0 is then determined by taking expectations
of both sides of (3). For L ∼ N (γ, 2γ), by defining

φ(γ) � 1− E
[
tanh

(
L
2

)]
, (4)

the mean value of L̂0 can be expressed as

γ̂0 = φ−1 (1− (1− φ (γ0)) (1− φ (γ1))) . (5)

The LLR corresponding to the variable node u1, denoted
by L̂1, is then expressed as

L̂1 = L0 + L1. (6)

Based on the assumption that L0 and L1 are independent
Gaussian random variables, we have

γ̂1 = γ0 + γ1. (7)

Since the key function φ(γ) defined in (4) cannot be
expressed in closed form, the following approximation based
on [6] has also been adopted for polar code design [26], [27]:

φ(γ) ≈
⎧⎨
⎩

eaγc+b, γ < 10, (8a)√
π

γ
e−

γ
4

(
1− 10

7γ

)
, γ ≥ 10, (8b)

where (a, b, c) = (−0.4527, 0.0218, 0.86). We note that this
approximation becomes inaccurate as γ decreases due to
numerical error. Therefore, an improved version (IGA) that
solves this numerical issue was proposed in [8], where several
related approximations are also compared in detail.

Finally, it is worth noting that the inverse function of (8b),
as required when calculating (5), should be numerically cal-
culated using, e.g., the bisection method as discussed in [27].
This is also the case for most GA-based approaches including
IGA of [8].

C. Reciprocal Channel Approximation

Following [19], we describe the principle of reciprocal
channel approximation (RCA). Let us first consider a BEC
where the erasure probability is e−s and the non-erasure
probability is e−r, i.e., e−s + e−r = 1, for s, r > 0. Let C(s)
denote the capacity of this channel, i.e., C(s) = 1 − e−s.
Then, it follows that C(s) + C(r) = 1. Let si, i ∈ {0, 1},
denote the above parameter s for the bit xi transmitted
over the corresponding BEC and let us define ri such that

e−si + e−ri = 1. For a variable node u1 connected to x0 and
x1, its erasure probability is given by e−s0e−s1 = e−(s0+s1),
i.e., it is characterized by the sum of s0 and s1. For a check
node u0 connected to x0 and x1, its corresponding non-erasure
probability is given by (1 − e−s0)(1 − e−s1) = e−(r0+r1),
i.e., it is also characterized by the sum of r0 and r1. In other
words, for BEC, the parameter s is additive for variable nodes,
whereas the parameter r is additive for check nodes [19].
In this sense, they have a reciprocity property.

We now apply the above reciprocity concept to the binary-
input AWGN (BI-AWGN) channel. We define C(γ) as the
capacity of the BI-AWGN channel with the SNR given by γ.
Similar to BEC, the additive property holds for the parameter
γ in the case of the variable node as long as all the connect-
ing nodes are associated with mutually independent AWGN
channels. This stems from the fact that the LLR is additive
at the variable node, and both mean and variance of the LLR
corresponding to BI-AWGN channels are proportional to the
channel SNR as discussed in the previous subsection. Let us
now define the SNR parameter λ corresponding to the check
node such that C(γ) + C(λ) = 1, even though this property
does not strictly hold for general BI-AWGN channels.

For a given channel SNR γ, the parameter λ can be found
by solving

C(λ) = 1− C(γ), (9)

for λ. Since C(γ) is a strictly increasing function for γ > 0,
we can define its inverse function C−1(·) and write

λ = C−1 (1− C(γ)) � Ψ(γ). (10)

The above function corresponds to the reciprocal channel
mapping introduced in [14, Definition 7.3], also referred to as
self-inverting reciprocal energy function in [19], and applied to
BI-AWGN channels. Since density evolution is approximated
with a single parameter γ through the above reciprocal channel
mapping principle, it is referred to as the reciprocal channel
approximation (RCA) in [14, Section 7.4].

Our goal is to find a suitable expression for the function
Ψ(γ) that can support a wide range of SNR γ with high
accuracy. Note that since (9) holds with λ and γ interchanged,
one can easily verify that

Ψ (Ψ (γ)) = γ, (11)

i.e., Ψ(γ) is a self-inverse function satisfying Ψ(γ) =
Ψ−1(γ) [14].

With γ0 and γ1 representing the SNRs of the channels
corresponding to the bits x0 and x1, respectively, the SNR
corresponding to the variable node u1, denoted by γ̂1, is the
same as GA, i.e., (7). On the other hand, the SNR correspond-
ing to the check node u0, denoted by γ̂0, is similarly expressed
based on the RCA principle [14, Section 7.4] as

Ψ (γ̂0) = Ψ (γ0) + Ψ (γ1) , (12)

from which we obtain

γ̂0 = Ψ−1 (Ψ (γ0) + Ψ (γ1))
= Ψ (Ψ (γ0) + Ψ (γ1)) . (13)
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The above relationship between the pairs (γ0, γ1) and (γ̂0, γ̂1)
is illustrated in Fig. 1.

In what follows, we consider the case when γ is extremely
large or small due to the polarization effect. From the view-
point of numerical evaluation and similar to [8], it would
be convenient to express γ in the log domain. Therefore,
we define ξ � ln γ and also introduce the function

Λ(ξ) � ln Ψ
(
eξ
)

= ln Ψ (γ) . (14)

For the check node, by iteratively applying the relation-
ship (14) to (13), the output ξ̂0 � ln γ̂0 for a given pair of
inputs ξ0 = ln γ0 and ξ1 = ln γ1 can be expressed as

ξ̂0 = ln Ψ (Ψ (γ0) + Ψ (γ1))
= Λ (ln (Ψ (γ0) + Ψ (γ1)))

= Λ
(
ln
(
eΛ(ξ0) + eΛ(ξ1)

))
= Λ

(
max (Λ (ξ0) , Λ (ξ1)) + ln

(
1 + e−|Λ(ξ1)−Λ(ξ0)|

))
.

(15)

On the other hand, for the variable node, the output ξ̂1 is
expressed as

ξ̂1 = max(ξ0, ξ1) + ln
(
1 + e−|ξ0−ξ1|) . (16)

Note that if the SNRs of the two channels are identical, i.e.,
γ0 = γ1, then we have ξ0 = ξ1 and Λ(ξ0) = Λ(ξ1), and the
above equations reduce to

ξ̂0 = Λ (Λ (ξ0) + ln 2) , (17)

ξ̂1 = ξ0 + ln 2. (18)

Remark: While GA tracks the LLR distribution (as a simpli-
fication of density evolution), RCA tracks SNR using capacity
formulas. Therefore, unlike GA, for check node evaluation
RCA does not assume that LLRs are Gaussian distributed.
Nevertheless, to estimate the bit error rate of each channel
from SNR, in Section V we resort to the assumption that the
LLR is Gaussian distributed.

D. General RCA Algorithm

In the case of a binary polar code of length N = 2n,
let γ0, γ1, . . . , γN−1 denote the channel SNRs of the
coded bits x0, x1, . . . , xN−1. Then the SNRs for the input
bits u0, u1, . . . , uN−1, denoted by γ̂0, γ̂1, . . . , γ̂N−1, can be
obtained by the well-known recursive procedure in [1]. Based
on (15) and (16), the corresponding RCA algorithm when
each channel has a distinct SNR value is summarized in
Algorithm 1. The algorithm can be significantly simplified
when all the channels have the same SNR (or design SNR),
i.e., γ0 = γ1 = · · · = γN−1. In this case, (17) and (18) are
applicable and the algorithm reduces to Algorithm 2.

The remaining questions are: (i) how can one calculate
the function Λ(ξ) accurately with computational efficiency,
i.e., without resorting to numerical integration, and (ii) how
well does the algorithm operate compared to other known
approaches of similar complexity? These will be addressed
in the subsequent sections.

Algorithm 1 Channel Polarization With RCA (for Distinct
Channel SNRs)
Input: n = log2 N , ξ[0], ξ[1], . . . , ξ[N − 1] as

ln γ0, ln γ1, . . . , ln γN−1.
Output: ξ[0], ξ[1], . . . , ξ[N − 1] as ln γ̂0, ln γ̂1, . . . , ln γ̂N−1

1: for i = 1 : n do
2: J ← 2i

3: for k = 0 : N/J − 1 do
4: for j = 0 : J/2− 1 do
5: ξ0 ← ξ[kJ + j]
6: ξ1 ← ξ[kJ + j + J/2]
7: Λ0 ← Λ(ξ0)
8: Λ1 ← Λ(ξ1)
9: ξ[kJ + j]←Λ

(
max(Λ0, Λ1)+ln

(
1 + e−|Λ0−Λ1|))

10: ξ[kJ + j + J/2]← max(ξ0, ξ1) + ln
(
1+e−|ξ0−ξ1|)

11: end for
12: end for
13: end for
14: return ξ[0], ξ[1], . . . , ξ[N − 1]

Algorithm 2 Channel Polarization With RCA (for Uniform
Channel SNR)
Input: n = log2 N , ξ[0] = ln γ0

Output: ξ[0], ξ[1], . . . , ξ[N − 1] as ln γ̂0, ln γ̂1, . . . , ln γ̂N−1

1: for i = 1 : n do
2: J ← 2i

3: for j = 0 : J/2− 1 do
4: ξ0 ← ξ[j]
5: Λ0 ← Λ(ξ0)
6: ξ[j]← Λ (Λ0 + ln 2)
7: ξ[j + J/2]← ξ0 + ln 2
8: end for
9: end for

10: return ξ[0], ξ[1], . . . , ξ[N − 1]

III. A NEW CAPACITY EXPRESSION

We first review popular BI-AWGN capacity approximation
formulas available in the literature, based on which we derive
a new expression.

A. Existing BI-AWGN Capacity Approximation Expressions

Let Es denote the symbol energy of BPSK and the variance
of real-valued Gaussian noise be N0/2. We define the SNR
parameter γ as γ � Es/N0 in what follows. To compute
the mutual information C(γ) between a BPSK input and its
corresponding output over an AWGN channel, the following
equivalent J-function (see [17]) is often adopted:

J(x) = 1− 1√
2πx2

∫ ∞

−∞
e−

�
t− x2

2

�2

2x2 log2

(
1 + e−t

)
dt,

(19)

where x corresponds to the standard deviation of the LLR and
thus is related to γ by x =

√
8γ. Then C(γ) = J

(√
8γ
)
.
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According to [17], the function J(x) is well approximated
numerically by

J(x) ≈

⎧⎪⎨
⎪⎩

a1x
3 + b1x

2 + c1 x, 0 ≤ x ≤ 1.6363,

1− ea2x3+b2x2+c2x+d, 1.6363 < x ≤ 10,

1, x > 10,

(20)

with a1 = −0.0421061, b1 = 0.209252, c1 = −0.00640081,
a2 = 0.00181491, b2 = −0.142675, c2 = −0.0822054, and
d = 0.0549608. On the other hand, in [24], the approximation

J(x) ≈
(
1− 2−H1x2H2

)H3

, (21)

was proposed with H1 = 0.3073, H2 = 0.8935, and
H3 = 1.1064.

B. A New Approximation Formula

From (19) and C(γ) = J
(√

8γ
)
, we define

U(γ) � 1− C(γ)

=
1

4
√

πγ

∫ ∞

−∞
e−

1
16γ (t−4γ)2 log2

(
1 + e−t

)
dt.

(22)

In what follows, we divide the range of γ, R � (0,∞),
into the four sub-regions R1, R2, R3, and R4, where R1 =
(0, Γ1), R2 = [Γ1, Γ2), R3 = [Γ2, Γ3), and R4 = [Γ3,∞),
with Γ1, Γ2, and Γ3 representing appropriate boundaries to be
determined numerically.

1) Low SNR Case: For the sub-regionR1, i.e., when γ ≈ 0,
by Maclaurin series expansion we obtain

C(γ) ≈ 1
ln 2

(
γ − γ2 + 4

3γ3 − 10
3 γ4 + 208

15 γ5
)
. (23)

By truncating up to the third order, we may approximate U(γ)
as

U1(γ) � 1− 1
ln 2

(
γ − γ2 +

4
3
γ3

)
, γ < Γ1. (24)

The upper boundary Γ1 should be determined according to
the target approximation error. In what follows, we set Γ1 =
0.04 (i.e.,−14dB) resulting in a numerical error that is at most
about 10−5 (as will be shown in Fig. 2 later). More precisely,
the value of U(γ) at γ = Γ1 is calculated by numerical
integration as

U(Γ1) ≈ 0.9444880, (25)

whereas the corresponding approximation according to (24) is
given by

U1 � U1(Γ1) ≈ 0.9444774. (26)

Therefore, the approximation error of U(γ) by U1(γ) in the
region R1 is bounded by

|U(γ)− U1(γ)| < 1.1× 10−5, γ < Γ1. (27)

2) High SNR Case: We next consider the sub-region R4,
i.e., when γ becomes larger than some boundary Γ3. By apply-
ing the series expansion of the exponential function ex =∑∞

k=0
xk

k! to U(γ) of (22), we obtain

U(γ) =
e−γ

4
√

πγ

∞∑
k=0

(−1)k

k! (16γ)k
ck

=
e−γ

4
√

πγ

{
c0 − c1

16γ
+

c2

2 · (16γ)2
− · · ·

}
, (28)

where

ck �
∫ ∞

−∞
e

t
2 t2k log2

(
1 + e−t

)
dt. (29)

The above expression agrees with [3, Problem 4.12]. Note
that ck for specific values of k can be expressed in closed
form, e.g.,

c0 =
2π

ln 2
, c1 =

2π
(
8 + π2

)
ln 2

,

c2 =
2π
(
384 + 48π2 + 5π4

)
ln 2

. (30)

Although the approximation becomes tighter as we incorpo-
rate more terms in (28), it becomes infeasible to find the
corresponding inverse expression in closed form. Therefore,
we adopt the expression

U4(γ) � α
e−γ

√
γ

, γ > Γ3, (31)

where α and Γ3 are appropriate constants to be determined.
By setting the boundary as Γ3 = 10, the value at the boundary
becomes

U3 � U(Γ3) ≈ 1.667× 10−5, (32)

from which we fix the constant α as

α ≈ 1.16125142, (33)

such that U(Γ3) ≈ U4(Γ3). Note that this is different from
the exact coefficient of the first term in (28), which is given
by

α0 � c0/(4
√

π) =
√

π

2(ln 2)
≈ 1.27856, (34)

and thus the exact asymptotic form for large γ would be

U(γ)→
√

π

2(ln 2)
e−γ

√
γ

, (35)

as discussed in [3] and [28]. As γ increases, the use of α0 may
become more accurate eventually, but for our purpose, the use
of (33) may be more suitable as the piece-wise continuity of
the approximate function can then be guaranteed.
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3) Moderate SNR Case: We first note that the main advan-
tage of the capacity approximation expression in (21) is that its
inverse function can also be expressed in closed form. We thus
adopt this form for the remaining sub-regions R2 and R3 and
define the functions for the two adjacent regions as

U2(γ) � 1−
(
1− e−H2,1γH2,2

)H2,3

, Γ1 < γ < Γ2,

(36)

U3(γ) � 1−
(
1− e−H3,1γH3,2

)H3,3

, Γ2 < γ < Γ3,

(37)

where the constants Hi,j for i ∈ {2, 3} and j ∈ {1, 2, 3}
should be determined appropriately depending on the bound-
ary Γ2. In what follows, we fix the boundary as Γ2 = 1 for
simplicity of numerical evaluation. Then the precise value of
U(γ) at the boundary is obtained by numerical integration as

U2 � U(Γ2) ≈ 0.2785484. (38)

Furthermore, in order to guarantee the piece-wise continuity
of the approximate function for U(γ), it is required that

U2(Γ1) = U1, U3(Γ3) = U3. (39)

Let us first consider the function U2(γ). By the relationships
at the boundaries, one may express

H2,1 = − ln
(
1− (1− U2)

1
H2,3

)
, (40)

H2,2 =
[
ln
(

Γ2
Γ1

)]−1

ln

⎧⎨
⎩

ln

�
1−(1−U2)

1
H2,3

�

ln

�
1−(1−U1)

1
H2,3

�
⎫⎬
⎭ . (41)

As a consequence, U2(γ) can be expressed as a function of γ
and H2,3, which we explicitly write as U2(γ; H2,3). Based on
the minimization of∞-norm, we may optimize the coefficient
H2,3 as

H2,3 = arg min
H

max
Γ1<γ<Γ2

|U2(γ; H)− U(γ)| , (42)

from which we numerically obtain

H2,1 = 1.396634, H2,2 = 0.872764, H2,3 = 1.148562.

Likewise, by denoting U3(γ) as a function of H3,3, i.e.,
U3(γ; H3,3), since

H3,1 = − ln
(
1− (1− U2)

1
H3,3

)
, (43)

H3,2 =
[
ln
(

Γ3

Γ2

)]−1

ln

⎧⎨
⎩

ln
(
1− (1− U3)

1
H3,3

)
ln
(
1− (1− U2)

1
H3,3

)
⎫⎬
⎭ ,

(44)

one may determine H3,3 according to

H3,3 = arg min
H

max
Γ2<γ<Γ3

|U3(γ; H)− U(γ)| , (45)

and thus numerically obtain

H3,1 = 1.266967, H3,2 = 0.938175, H3,3 = 0.986830.

4) Summary: We summarize the closed-form piece-wise
continuous approximate function Û(γ) for U(γ):

Û(γ)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1(γ)=1− 1
ln 2

(
γ−γ2+

4
3
γ3

)
, γ ∈ R1, (46a)

U2(γ)=1−
(
1−e−H2,1γH2,2

)H2,3

, γ ∈ R2, (46b)

U3(γ)=1−
(
1−e−H3,1γH3,2

)H3,3

, γ ∈ R3, (46c)

U4(γ)=α
e−γ

√
γ

, γ ∈ R4, (46d)

where the boundaries of the four sub-regions are Γ1 =
0.04, Γ2 = 1, and Γ3 = 10. As a consequence, the approx-
imate formula of the capacity for the BI-AWGN channel,
Ĉ(γ) � 1− Û(γ), can be summarized as

Ĉ(γ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
ln 2

(
γ − γ2 +

4
3
γ3

)
, γ ∈ R1, (47a)(

1− e−H2,1γH2,2
)H2,3

, γ ∈ R2, (47b)(
1− e−H3,1γH3,2

)H3,3

, γ ∈ R3, (47c)

1− α
e−γ

√
γ

, γ ∈ R4. (47d)

C. Numerical Results

To investigate the accuracy of the developed approximation,
we define the error function as

	(γ) � U(γ)− Û(γ) = Ĉ(γ)− C(γ). (48)

We calculate C(γ) based on numerical integration and com-
pare with the developed expression as well as (20) of [17] and
(21) of [24]. In Fig. 2, we plot the absolute value of the error
function 	(γ) with respect to γ in dB. We observe that the
absolute values of the approximation error for all the three
expressions are less than 10−3, and monotonically decrease
for higher and lower SNR regions. Nevertheless, the most
significant difference of the proposed expression is that the
error becomes much less than 10−5 as SNR decreases since we
selected the associated parameters such that the condition (27)
holds. Also, since the proposed expression Ĉ(γ) in (47) is
designed to be piece-wise continuous with respect to γ, we
also observe that the error function is piece-wise continuous as
well. By comparison, as observed in Fig. 2, the approximation
based on (20) (introduced in [17]) exhibits discontinuities at
the boundaries corresponding to x = 1.6363 and x = 10, i.e.,
γ = −4.7536dB and γ = 10.969dB, respectively. From a
previous study on GA [8], if there is a discontinuity in the
function, this may result in an inaccurate ordering of channel
reliability. Therefore, we give more priority to continuity of
the function rather than its accuracy.

IV. DERIVATION OF CLOSED-FORM EXPRESSION FOR Λ(ξ)

Our next step is to find a suitable approximate expression for
Λ(ξ) introduced in (14). We first consider an approximation
for its constituent function Ψ(γ). From (10), we have

Ψ(γ) = C−1 (1− C(γ)) = C−1 (U(γ)) . (49)
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Fig. 2. Approximation error of the proposed expression. Those based on
ten Brink et al. [17] and Brännström et al. [24] are also shown for comparison.

Therefore, it is necessary to find the inverse function for Ĉ(γ)
defined in (47).

Let us first consider the case γ ∈ R1. From(47a), the inverse
function for the equation Ĉ(γ) = c can be expressed as

Ĉ−1(c) = 1
4

(
1− 3

A(c) + A(c)
)

, c < C1, (50)

where C1 � 1− U1 and

A(c) �
(
−5 + 24 (ln 2) c

+2
√

13 + 12 (ln 2) c(12 (ln 2) c− 5)
) 1

3
.

(51)

On the other hand, when γ ∈ R2, we have

Ĉ−1(c) =
[
− 1

H2,1
ln
(
1− c

1
H2,3

)] 1
H2,2

, C1 < c < C2,

(52)

where C2 � 1 − U2. The function Ĉ−1(c) in the case of
γ ∈ R3 can be derived in a similar manner. Finally, in the
case of γ ∈ R4, we have

Ĉ−1(c) = 1
2W0

(
2
(

α
1−c

)2
)

, c > C3, (53)

where C3 � 1−U3 and W0(x) is the corresponding Lambert
W function [29], i.e., the value of w that satisfies wew = x
for a given x > 0.

In summary, we have

Ĉ−1(c) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
4

(
1− 3

A(c)
+ A(c)

)
, c<C1, (54a)[

− 1
H2,1

ln
(
1−c

1
H2,3

)] 1
H2,2

, C1≤c < C2, (54b)[
− 1

H3,1
ln
(
1−c

1
H3,3

)] 1
H3,2

, C2≤c<C3, (54c)

1
2
W0

(
2
(

α

1− c

)2
)

, c≥C3, (54d)

where C1 ≈ 0.055523, C2 ≈ 0.721452, and C3 ≈ 0.999983.

By substituting Û(γ) of (46) into c of (54), we obtain the
approximate value of Ψ(γ) = C−1(U(γ)) for a given γ, which
we denote by Ψ̂(γ) � Ĉ−1(Û(γ)).

In what follows, we derive simple asymptotic closed-form
expressions of Ψ̂(γ) and thus Λ(ξ) when γ becomes extremely
small or large in order to simplify the computation with
negligible loss of accuracy. Also, as we will see, it is not
actually necessary to implement the W0(·) function for polar
code construction.

A. For Small γ

We consider the case where γ is small and satisfies γ ≤
Γ0 for some boundary Γ0 such that the condition of (54d)
holds, i.e., Γ0 is the value of γ that satisfies Û(γ) = C3 =
1−U3. Among the four possible expressions of Û(γ) in (46),
if we apply (46a) with γ replaced by Γ0, then we have

1
ln 2

(
Γ0 − Γ2

0 +
4
3
Γ3

0

)
= U3. (55)

By numerically solving the above equation with respect to Γ0,
we obtain,

Γ0 ≈ 1.21974× 10−5, (56)

and thus we observe that Γ0 � Γ1 = 0.04, satisfying the
condition of (46a) for γ. As a result, from (54d) with c
replaced by U1(γ) of (46a), we have

Ψ̂(γ) =
1
2
W0

⎛
⎝2

(
α

1
ln 2

(
γ − γ2 + 4

3γ3
)
)2
⎞
⎠ , γ < Γ0.

(57)

By defining f(γ) � γ − γ2 + 4
3γ3, we may express (57) as

Ψ̂(γ) =
1
2
W0

(
2α2 (ln 2)2 f−2(γ)

)
, γ < Γ0. (58)

Since the argument of the function W0(·) in (58) becomes
larger as γ decreases, we may invoke the following asymptotic
form of W0(x) for large x [29]:

W0(x) ≈ ln x− ln lnx +
ln lnx

ln x
+ · · · . (59)

On applying (59) to (58), we note that

ln
(
2α2 (ln 2)2 f−2(γ)

)
= ln 2 + 2 ln(ln 2) + 2 lnα− 2 ln γ − 2 ln

(
1− γ +

4
3
γ2

)
,

(60)

where the last term on the right hand side turns out to be
negligible in the range of γ < Γ0. Thus, by defining the
dominant terms in (60) as

B(ξ) � ln 2 + 2 (lnα + ln (ln 2))− 2ξ, (61)

where ξ � ln γ, we may equivalently express ln Ψ̂(γ) with
respect to ξ, denoted by Λ(ξ), as

Λ(ξ) = ln Ψ̂(γ)
∣∣∣
γ=eξ

≈ ln
(

B(ξ) +
(

1
B(ξ)

− 1
)

ln B(ξ)
)
− ln 2. (62)
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The above approximation is valid in the range of γ < Γ0, i.e.,

ξ < Ξ0 � ln Γ0 ≈ −11.3143. (63)

B. For Large γ

When γ ≥ Γ3, i.e., γ ∈ R4, we observe from (46d) with
the condition of (39) that Û(γ) ≤ U3 � C1 and thus from
(54a) we have

Ψ̂(γ) =
1
4

(
1− 3

A(c)
+ A(c)

)
, c = α

e−γ

√
γ

. (64)

For A(c) in (51) with small c, applying the first-order approx-
imation as√

13 + 12 (ln 2) c (12 (ln 2) c− 5) ≈
√

13− 30√
13

(ln 2) c,

(65)

we have

A(c) ≈ (−5 + 2
√

13
) 1

3
(
1 + 4√

13
(ln 2) c

)
, (66)

and by substituting (66) into (64), we obtain

Ψ̂(γ) ≈ (ln 2) c

(
1− 2(

√
13+1)(ln 2)

13+4
√

13(ln 2)c
c

)
. (67)

Taking the logarithm of both sides, we have

ln Ψ̂(γ) ≈ ln c + ln (ln 2) + ln
(

1− 2(
√

13+1)(ln 2)

13+4
√

13(ln 2)c
c

)
.

(68)

By substituting c = α e−γ√
γ from (46d) and noticing that the

third term on the right-hand side of (68) becomes negligible
as γ increases, we have

ln Ψ̂(γ) ≈ ln α + ln(ln 2)− γ − 1
2 ln γ, (69)

or in terms of ξ as

Λ(ξ) ≈ ln α + ln(ln 2)− eξ − 1
2
ξ. (70)

Note that (69) indicates that Ψ̂(γ) becomes infinitesimal as γ
increases.

C. Complete RCA Algorithm

In Section II, the RCA algorithm was summarized as
Algorithm 1 and Algorithm 2, depending on the condition
of the channel SNR. Based on the mathematical derivations
in this section, the calculation process of the function Λ(ξ) is
summarized as Algorithm 3. As mentioned in Section II-B,
GA-based approaches generally involve the use of an inverse
function that cannot be described (or accurately approximated)
using a closed form expression, and thus require some iterative
algorithms (such as the bisection method) to guarantee the
required precision. On the other hand, the proposed approach
does not require such numerical algorithms and thus the
computational effort is in general lower than those based on
GA (or IGA).

Algorithm 3 Calculating Λ(ξ)
Input: ξ = ln γ
Output: Λ(ξ) = ln Ψ̂(γ)
1: α = 1.16125, Γ1 = 0.04, Γ2 = 1, Γ3 = 10,

Ξ0 = −11.3143
2: C1 = 0.055523, C2 = 0.721452
3: H2,1 = 1.396634, H2,2 = 0.872764, H2,3 = 1.148562
4: H3,1 = 1.266967, H3,2 = 0.938175, H3,3 = 0.986830
5: if ξ < Ξ0 then
6: B = ln 2 + 2 ln(ln 2) + 2 lnα− 2ξ
7: return ln

(
B +

(
1
B − 1

)
ln B

)− ln 2
8: end if
9: γ ← exp(ξ)

10: if γ > Γ3 then
11: return ln (ln 2) + lnα− γ − ξ/2
12: else if γ < Γ1 then
13: U ← 1− 1

ln 2 (γ − γ2 + 4
3γ3)

14: else if γ < Γ2 then

15: U ← 1−
(
1− e−H2,1γH2,2

)H2,3

16: else
17: U ← 1−

(
1− e−H3,1γH3,2

)H3,3

18: end if
19: if U < C1 then
20: A = (−5 + 24(ln 2)U

+2
√

13 + 12(ln 2)U(12(ln 2)U − 5)
) 1

3

21: return ln
(
1− 3

A + A
)− 2 ln 2

22: else if U < C2 then
23: return 1

H2,2

[
ln
(
− ln

(
1− U

1
H2,3

))
− ln H2,1

]
24: else
25: return 1

H3,2

[
ln
(
− ln

(
1− U

1
H3,3

))
− ln H3,1

]
26: end if

V. SIMULATION RESULTS

In this section, we focus on AWGN channels with BPSK,
where the SNRs of all the channels are identical. Let
γ0 denote the design SNR input to Algorithm 2, and
γ̂0(γ0), γ̂1(γ0), . . . , γ̂N−1(γ0) denote all the output SNR values.

A. BER Estimation

Similar to the case of GA, for the purpose of BER estima-
tion we assume that the distribution of the LLR corresponding
to the kth bit channel is modeled as Gaussian with SNR γ̂k(γ0).
Then, under the assumption that all the previous bits in the SC
decoding are correctly decoded, the error rate of the kth bit
channel can be estimated as

Pb,k(γ0) = Q

(√
γ̂k(γ0)

2

)
, (71)

with the Q-function defined as Q(x) = 1
2erfc

(
x√
2

)
=

1√
2π

∫∞
x

e−
t2
2 dt.

By Monte-Carlo (MC) simulations (with 108 trials) we
obtained the BER for a given channel SNR γ0, and sorted
the channels in descending order of BER. We then compared
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Fig. 3. Comparison of BER based on Monte-Carlo simulation as well as
the corresponding BER estimates based on GA, IGA, and RCA. Polar code
length is N = 210 = 1024, and the channel indices are sorted according
to the BER of Monte-Carlo simulation in descending order. Only a subset
of BER above 10−5 is plotted. (a) Es/N0 = −6 dB. (b) Es/N0 = 0dB.
(c) Es/N0 = 3dB.

the sorted BERs obtained by MC with the estimated BER (71)
of the corresponding channels (i.e., sorted in the same order as
those of the MC simulation) based on estimates obtained by

Fig. 4. Comparison of BER based on Monte-Carlo simulation as well as
the corresponding BER estimates based on GA, IGA, and RCA. Polar code
length is N = 212 = 4096, and the channel indices are sorted according
to the BER of Monte-Carlo simulation in descending order. Only a subset
of BER above 10−5 is plotted. (a) Es/N0 = −6 dB. (b) Es/N0 = 0dB.
(c) Es/N0 = 3dB.

GA with (8), IGA of [8], and the proposed RCA. The results
are shown in Figs. 3, 4, and 5, where the codeword lengths are
chosen as N = 210 = 1024, 212 = 4096, and 214 = 16 384,
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Fig. 5. Comparison of BER based on Monte-Carlo simulation as well as
the corresponding BER estimates based on GA, IGA, and RCA. Polar code
length is N = 214 = 16 384, and the channel indices are sorted according
to the BER of Monte-Carlo simulation in descending order. Only a subset of
BER above 10−5 is plotted (except for GA that significantly underestimates
the BER). (a) Es/N0 = −6 dB. (b) Es/N0 = 0dB. (c) Es/N0 = 3dB.

respectively, and for each case the channel SNRs are selected
as γ0 = −6dB, 0dB, and 3dB.

We observe that in the case of a relatively short code-
word length (N = 210), all the three schemes show similar

Fig. 6. Simulated BLER of very low-rate polar codes with N = 2n

(n = 16 and 18) designed at each channel SNR as well as the corresponding
BLER estimates: (a) R = 0.125, (b) R = 0.25.

BER estimates as observed in Fig. 3. On the other hand,
as N increases and γ0 decreases, the BER estimates obtained
by the GA based on (8) show significant gaps from those
obtained by MC simulation. In particular, GA significantly
underestimates the BER of many bit channels, which would
lead to an inappropriate selection of unfrozen bits and poor
BLER performance. In all the compared long codeword cases,
we observe that RCA yields better BER estimates than IGA.

B. BLER Estimation and Comparison

We now estimate the BLER performance for a given code
rate. We sort the estimated SNR such that

γ̂I0(γ0) ≥ γ̂I1(γ0) ≥ · · · ≥ γ̂IN−1(γ0), (72)

where the subscript Ik(γ0) corresponds to the index of the bit
channel having the kth highest SNR (with k = 0 representing
the maximum), with emphasis on the fact that the design SNR
is γ0.
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Fig. 7. Simulated BLER of moderate to high-rate polar codes with N = 2n

(n = 16 and 18) designed at each channel SNR as well as the corresponding
BLER estimates: (a) R = 0.5, (b) R = 0.75.

Let us define the index set IK(γ0) consisting of the K ele-
ments with highest SNRs as

IK(γ0) � {I0(γ0), I1(γ0), . . . , IK−1(γ0)}, (73)

where R � K/N corresponds to the code rate. For each given
channel SNR γ0, we may define the estimated BLER as

PBL(K, γ0) � 1−∏k∈IK(γ0)
(1− Pb,k(γ0)) . (74)

The above estimate may serve as a good approximation if
(i) the estimated SNR values in the selected information set
IK(γ0) are accurate, and (ii) the LLRs of the corresponding
bit channels are approximately Gaussian and each BER is then
well characterized by (71).

Fig. 6 compares the BLER of polar codes designed based on
GA, IGA, and RCA with codeword lengths N = 216 and 218

in the case of very low code rates (R = 1/8 and R = 1/4).
The moderate to higher code rate cases (R = 1/2 and
R = 3/4) are shown in Fig. 7. The corresponding BLER
estimates based on (74) are also plotted. Note that for all

Fig. 8. Simulated BLER of very low-rate polar codes with N = 2n (n = 16
and 18) designed at specific SNR as well as the corresponding BLER
estimates: (a) R = 0.125, (b) R = 0.25. The vertical lines indicate the
corresponding design SNR.

simulation results presented here, the polar code is constructed
for each given channel SNR. As one can observe, the conven-
tional GA based on (8) fails to accurately estimate the BLER
from (74) in all the cases compared here. Furthermore, the
corresponding simulated BLER is almost 1 when the SNR
region of interest is low, which can be inferred from the BER
results shown in the previous subsection. Therefore, in what
follows, we only focus on the performance achieved by RCA
and IGA. From all the results compared, we observe that the
polar codes designed based on the proposed RCA algorithms
outperform those based on IGA, and the gap is especially
noticeable when the code rate is moderate. We also notice
that, as expected from the BER comparison results shown in
Section V-A, the estimated BLER values computed from (74)
and those obtained by simulation are in general closer when
RCA is employed, indicating that the estimation accuracy
of the equivalent SNR obtained by RCA is higher than that
of IGA. Therefore, considering the fact that the computational
complexity required for performing the proposed RCA is
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Fig. 9. Simulated BLER of moderate to high-rate polar codes with N = 2n

(n = 16 and 18) designed at specific SNR as well as the corresponding
BLER estimates: (a) R = 0.5, (b) R = 0.75. The vertical lines indicate the
corresponding design SNR.

lower than those of GA and IGA, the proposed RCA may
be preferable to GA-based approaches.

We also note that, as in Fig. 7(b), the BLER estimated
by RCA is slightly optimistic for high rate code cases. This
can also be inferred from the BER estimate results shown
in Figs. 4(c) and 5(c), where RCA tends to offer slightly
optimistic BER estimates when SNR increases.

C. BLER Comparison With Fixed Design SNR

Finally, we compare more practical cases where the code
is designed for a certain design SNR. In other words, instead
of (74), we evaluate

PBL(K, γ0, γc) � 1−∏k∈IK(γ0)
(1− Pb,k(γc)), (75)

where γc is the actual channel SNR, whereas γ0 remains the
design SNR. In other words, (74) corresponds to the case
with γ0 = γc, i.e., PBL(K, γc, γc) of (75). The simulation
results and the corresponding BLER estimates based on (75)

are compared in Fig. 8 for very low code rates (R = 1/8 and
R = 1/4) and in Fig. 9 for moderate to higher code rate cases
(R = 1/2 and R = 3/4), all of them with codeword lengths
N = 216 and 218. (Note that the performance of the conven-
tional GA based on (8) is not shown in the remaining figures
since, as seen in the previous subsection, it is significantly
worse than that of IGA.) For each result, the design SNR is
indicated by the vertical line, and the same design SNR is
applied to both IGA and RCA. Each design SNR is selected
as an approximate SNR where their BLER estimate achieves
below 10−2. We observe that in these cases, if we compare the
simulation results at the channel SNR equal to the design SNR
or higher (i.e., γc ≥ γ0), RCA is better than IGA, while for
lower channel SNR (i.e., γc < γ0), IGA may be marginally
better when the BLER is ≈ 10−1 or greater. This suggests
that RCA has better estimation accuracy at the target channel
SNR and thus outperforms IGA in terms of simulated BLER
as well as its estimated value in the range of practical interest.
Finally, we note that the BLER curves tend to decrease slowly
as SNR increases in all the cases evaluated here. The reason is
that the optimal code changes according to the channel SNR,
and thus the code designed at some specific SNR will become
sub-optimal when it is evaluated at different SNR due to the
inaccurate polarization caused by SNR mismatch.

VI. CONCLUSION

In this work, we have proposed an explicit closed-form
algorithm for polar code design based on RCA. Comparisons
with MC simulation results have revealed that RCA can
estimate BER and BLER more accurately than conventional
low-complexity approaches including improved GA. As a
result, polar code designed based on the proposed RCA
outperforms those based on the popular GA-based approaches
with no increase of computational complexity. The benefit of
the proposed approach becomes significant for polar codes
with large codeword lengths and moderate code rates.
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