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Abstract—Vehicular Edge Computing (VEC) systems exploit
resources on both vehicles and Roadside Units (RSUs) to provide
services for real-time vehicular applications that cannot be com-
pleted in the vehicles alone. Two types of decisions are critical
for VEC: one is for task offloading to migrate vehicular tasks to
suitable RSUs, and the other is for resource allocation at the RSUs
to provide the optimal amount of computational resource to the
migrated tasks under constraints on response time and energy
consumption. Most of the published optimization-based methods
determine the optimal solutions of the two types of decisions jointly
within one optimization problem at RSUs, but the complexity of
solving the optimization problem is extraordinary, because the
problem is not convex and has discrete variables. Meanwhile, the
nature of centralized solutions requires extra information exchange
between vehicles and RSUs, which is challenged by the additional
communication delay and security issues. The contribution of this
paper is to decompose the joint optimization problem into two
decoupled subproblems: task offloading and resource allocation.
Both subproblems are reformulated for efficient solutions. The
resource allocation problem is simplified by dual decomposition
and can be solved at vehicles in a decentralized way. The task
offloading problem is transformed from a discrete problem to a
continuous convex one by a probability-based solution. Our new
method efficiently achieves a near-optimal solution through decen-
tralized optimizations, and the error bound between the solution
and the true optimum is analyzed. Simulation results demonstrate
the advantage of the proposed approach.

Index Terms—Decentralized convex optimization, hierarchical
decomposition, multi-server resource allocation, task offloading,
vehicular Edge Computing.
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I. INTRODUCTION

THE substantial increase in the number of connected vehi-
cles and the latest advances in autonomous driving lead

to the emergence of various services and applications in the
intelligent transportation system, such as online path planning,
real data playback, localization, and perception [1]. These high-
complexity applications demand extraordinary computation ca-
pacities, but resource-constrained vehicles may not be capable of
serving the ever-increasing computational needs of new applica-
tions within their latency deadlines [2]. Driven by the evolution
of wireless communication, Vehicular Edge Computing (VEC)
systems, supported by Mobile Edge Computing (MEC)1 [4], [5],
are recognized as a promising paradigm in the development of
vehicular networks. Owing to the close proximity to vehicles [6],
VEC systems can provide computing services in Roadside Units
(RSUs) with reduced end-to-end transmission delays.

To facilitate VEC in accelerating task completion and saving
energy, the development of a vehicle computation offloading
policy is crucial. Existing studies focus on the design of optimal
offloading strategies to meet different performance require-
ments, such as low latency [7], high energy efficiency [8], and
load balancing [6]. There are mainly two challenges for task
offloading: the offloading decision, which determines where the
task is to be executed, and the resource allocation, which char-
acterizes how much computation and communication resources
are allocated to the tasks. The formulation of this problem arises
naturally in an intricate structure, which makes it challenging
to obtain an optimal solution, especially when the number of
variables grows exponentially in a high-dimensional scenario.

To address this challenge, researchers have proposed many
different solution approaches lately. The problem is formulated
as a constrained optimization problem in [9], [10], [11], [12],
[13] to minimize the offloading delay. To investigate a holistic
offloading solution in a multi-server MEC-assisted network,
Tran et al. [10] decompose the original problem and find the
resource allocation solution by quasi-convex optimization tech-
niques, where the task offloading problem is tackled by the
proposed heuristic approach. Tang et al. [12] address the energy-
constrained delay minimization problem, which is solved using

1We refer to MEC as Mobile Edge Computing in this study, while a more
recent interpretation of MEC is Multi-access Edge Computing [3].
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the decision tree and dynamic programming. The total network
delay is emphasized in [13], where a Lyapunov optimization is
used for the development of an online multi-decision making
algorithm. Besides the above works that apply optimization
techniques, studies on vehicular offloading policy also exploit
Reinforcement Learning (RL) algorithms [14], [15], [16], [17],
[18]. For instance, Qi et al. [17] consider the data dependency
in multiple tasks and apply the deep RL algorithm to find the
long-term optimal offloading policy. To minimize the processing
delay in VEC networks, Guo et al. [18] design an intelligent
task offloading scheme based on deep Q learning, which is a
centralized approach that requires all vehicles’ information to
be collected at a central RSU.

In the aforementioned studies, the vehicle plays the role only
of a service client, where the offloading strategy is calculated
and determined at the edge device. When the problem is both
formulated and solved in a centralized way, the vehicles must
send task parameters to the RSU and wait for the offloading
decisions returned from the RSU. The potential issues, in terms
of additional communication delay, increased computing com-
plexity, and security issues caused by the information exchange,
are not fully addressed yet. As an alternative, a decentralized
offloading policy is desired.

Recently, a few studies have also focused on exploiting the
benefits of decentralized computation offloading in VEC sys-
tems [19], [20], [21], [22], [23]. An adaptive learning-based task
offloading algorithm is proposed in [19] based on multi-armed
bandit theory. It works in a distributed manner and minimizes the
average offloading delay. The vehicle-to-vehicle communication
is considered in [20], where a decentralized resource allocation
mechanism is proposed based on deep RL, and the global in-
formation is not required for each vehicle to make its decisions.
The consensus ADMM-based energy-efficient resource alloca-
tion algorithm is proposed in [21], where the formulated joint
problem is decomposed into a set of subproblems and solved
in parallel. Jošilo et al. [22] develop a game-theoretical model
and allow users to make offloading decisions autonomously. Liu
et al. [23] design a user-centric control policy to optimize both
delay and energy consumption by formulating the problem as a
fully decentralized multi-agent Markov decision process.

Most of the existing decentralized solutions rely on a trained
deep RL model or reach global coordination through an iter-
ative way, which still requires high computational power or
synchronous updates among vehicles when implemented in a
real-time offloading application. In the context of vehicular
offloading, the high computation power requirements call for
effective energy management at the RSUs, which is an issue
not emphasized widely. Most existing studies concentrate on
reducing energy consumption at the vehicle but ignore the cor-
responding analysis at the edge [24]. Some recent studies [25],
[26], [27] have investigated this topic by considering the opti-
mization of both vehicles and RSUs. They optimize the energy
consumption and the execution time of the holistic vehicular ser-
vices, including vehicles, RSUs, and base stations. These works
justify the need for optimizing both the vehicles and RSUs. In
addition, because of the high mobility of vehicles and limited
coverage of the RSUs, the vehicle cannot select offloading
destinations arbitrarily. To address these problems, we develop a

Fig. 1. Illustration of the offloading scenario.

decentralized convex optimization approach that decomposes
a holistic Mixed-integer Nonlinear Problem (MINLP) into a
hierarchy of convex optimization problems. The decomposition
is obtained by the dual decomposition and the probability-based
offloading policy.

The main contributions are summarized as follows:
� A decentralized task offloading and resource allocation

problem in a multi-server VEC system is formulated as
an optimization problem. The optimization criteria include
the total latency of all tasks and the energy consumption in
both vehicles and RSUs.

� A hierarchical decomposition approach is designed to
break down the original MINLP into a group of convex
subproblems for optimal resource allocation. These sub-
problems have low complexity and can be efficiently solved
at the vehicle side. The vehicles only receive broadcasting
messages from RSUs, which enhances user privacy and
reduces information exchange delay.

� A convexification procedure is presented to transform the
discrete optimization problem for task offloading into a
continuous convex one. The integer design variables of
deterministic task offloading targets are replaced by prob-
abilities for offloading targets.

� To examine the application of the proposed decomposition
approach, we analyze two common RSU deployment sce-
narios. The task offloading and resource allocation methods
are studied and evaluated in both scenarios.

The rest of this paper is organized as follows. In Section II, the
system model is presented with the formulation of the joint task
offloading and resource allocation problem. Section III describes
the hierarchical decomposition approach and solves the resource
allocation problem in a single RSU scenario. We extend the
solution to the multi-RSUs scenario and investigate the task
offloading problem for load forecast coordination in Section IV.
The numerical performance evaluation of the proposed methods
is given in Section V, and Section VI concludes this paper.

II. SYSTEM MODEL

In this section, we present the system model of the VEC
network. After that, a vehicle-edge task offloading and resource
allocation problem is formulated.

A. Vehicular Computing System

As illustrated in Fig. 1, we consider a highway scenario with
m RSUs and n vehicles. Let M = {1, 2, . . . ,m} denote the
index set of RSUs and N = {1, 2, . . . , n} denote the index set
of vehicles. We use j ∈ M as the index of the RSU and i ∈ N as
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TABLE I
DEFINITIONS OF NOTATION

the index of the vehicle. The edge computing network consists
of RSUs, and each RSU contains an MEC server. The server
provides wireless radio access and computation resources to the
vehicles. The computing tasks of the vehicles can be offloaded
to an RSU so that the driving performance can be improved by
reducing the task execution time. The notation used in this paper
is summarized in Table I.

We consider that vehicles have to solve periodic tasks with the
period ΔT . At every time step t, every vehicle i ∈ N generates
a task. In the offloading system, we assume that the period ΔT
is the longest acceptable delay to finish a task. The computing
task from vehicle-i can be characterized by [Li, Ci], where Li

is the length of interactive transmission data (in bits) between
vehicles and RSUs. We consider that the transmission data
consist mainly of the computation instruction, and thus Li is
viewed as a constant. Ci represents the amount of computation
resources (in CPU cycles) required to finish the task with the
mean value of Ci [28].

In this study, a task is viewed as atomic and cannot be
split [10]. Hence, a task cannot be computed partially on dif-
ferent computation nodes. Particularly, we focus on the type
of computational resource-demanding tasks which have to be
accomplished at the edge side [29], such as high-complexity
motion planning and control modules. Further potential appli-
cations for offloading are, for example, given by cooperative
driving automation scenarios [30]. Thus, we only consider the

pure offloading case where a task is entirely executed on a single
RSU.

B. Traffic Scenario Model

The traffic system in our study is a bidirectional road network.
To describe the coverage of communication, we denote by T ⊆
R2 the set of two-dimensional geographical locations of every
drivable position in the system, and by pi∈T the position of
vehicle-i. Locations of RSUs are denoted by rj . The Euclidean
distance between two positions p1 and p2 is estimated by the
square norm ‖p1−p2‖, p1,p2 ∈ T ∪ {r1, . . . , rm}.

We define a circular area in the traffic system as U , which can
be viewed as the set of all drivable positions within the area.
Suppose the coverage radius of RSU-j is dj , U(rj , dj) � {p ∈
T |‖rj − p‖ ≤ dj}, which represents the set of positions on the
road within the communication range of RSU-j. In this study,
RSU-j is available for receiving a task from a vehicle only when
its position is within U(rj , dj). For simplicity, we consider that
the context transfer among RSUs is well managed by proactive
service migration [31]. We also assume that the vehicles’ move-
ments and the offloading workload in an area can be accurately
estimated. Therefore, the context transfer delay across RSUs is
considered to be known. The context transfer delay is assumed
to be proportional to the task computation workload Ci and
is estimated to be Ciε, for some ε > 0[12]. Also, we define the
expected offloading demand E(

∑
{i|pi∈U(rj ,dj)} Ci) for the area.

Note that the prediction method and task migration design are
not the focus of this work but will be investigated in the future.
State-of-the-art methods are, for instance, premigration [32] and
mobility-based services migration prediction (MSMP) [33].

We assume that each drivable position on the road is covered
by at least one RSU. If the distance between two RSUs is smaller
than the sum of their coverage radii, the corresponding service
areas will overlap. When solving the RSU deployment problem
in similar scenarios, authors in [34] prove that, in terms of profit
maximization, a non-overlapping solution performs no worse
than an overlapping one. However, the non-overlapping solution
does not consider the demand disparity under different traffic
densities. Due to the heterogeneity of the RSU capacity, it may
fail to handle the overload situation. To examine our approach
in a more complex scenario with high workload, we thus also
consider a deployment architecture with overlapped areas. More
details of the scenario are given later in Section IV.

C. Computation Model

As mentioned in Section II-A, this study focuses on periodic
tasks that cannot be accomplished onboard the vehicles, and
should thus be offloaded to an RSU for execution. We consider
that the computation capacity of the RSU is provided by a CPU
supporting dynamic voltage and frequency scaling (DVFS) [19].
DVFS is a technique to adjust the frequency of a CPU for
balancing the energy consumption and task execution time.
In practice, the available frequency is restricted to a finite set
of values F = {fj1, fj2, . . . , fjN}, referred to as the available
clock-frequency vector for RSU-j. Similar to [35], [36], [37],
we assume that the difference between consecutive frequencies
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is so small that the frequency can be approximately treated as a
continuous variable. The solution can be viewed as a reference to
the performance upper bound in realistic offloading policies. We
denote by fj the maximum nominal CPU frequency of RSU-j.
Letuij ∈ (0, 1] be the scaling ratio of fj determined for vehicle-i
to finish the task. Thus, the execution time is

T o
ij(uij) =

Ci

uijfj
, (1)

where the superscript o denotes the computation part in the
sequel.

An important aspect of computation is the energy consump-
tion of task execution. We focus on the dynamic energy con-
sumption of task execution [38]. Other energy consumption
on the RSU, such as energy consumption at idle mode and
cooling system, is assumed constant. The power consumption
of a CPU is modeled as θjfj

3 per CPU cycle, where θj is the
energy consumption coefficient depending on the chip architec-
ture [8]. Then, the energy consumption of the task-i executed at
RSU-j is

Eo
ij(uij) = θju

2
ijf

2
jCi. (2)

D. Communication Model

The vehicles can transmit data to the RSUs using wireless
communications. We denote by pi the maximal transmission
power of vehicle, and by rijpi the actual transmission power
used by vehicle-i for transmitting a task to RSU-j, where
rij ∈ (0, 1] is a decision variable. The decision variable rij
allows the vehicle to trade off between energy consumption and
transmission delay [23]. Let hij = g(‖pi − rj‖) be the channel
gain from vehicle-i to RSU-j. The channel gain includes path loss
and fading, and is a function of the distance ‖pi − rj‖ between
the RSU-j and the vehicle-i [9]. We consider that Orthogonal
Frequency Division Multiple Access (OFDMA) is used [22].
If a vehicle tries to communicate with an RSU, it occupies a
fixed bandwidth Bp. If the system bandwidth is Bj , then at most
N̂j = �Bj

Bp
� vehicles can offload to RSU-j. Given noise power

δj , the transmission rate can be expressed as

qij = Bplog2

(
1 +

rijpihij

δj

)
. (3)

We consider that the transmission delay from the RSU to
the vehicle is negligible since the result of the computation is
typically much smaller than the input data. Thus, given Li, the
transmission delay can be calculated as

T c
ij(rij) =

Li

qij
, (4)

where the superscript c denotes the communication part in the
sequel. If a context transfer occurs, the extra delay is Ciε.

The energy consumption of data transmission can be ex-
pressed based on the transmit power and the transmission delay
as

Ec
ij(rij) = rijpiT

c
ij(rij). (5)

We do not account for the communication energy consump-
tion on RSUs.

E. Problem Formulation

Our objective is to minimize the total task response times
and communication energy at vehicles while satisfying the
computation energy constraints at the RSUs. We focus on a
single time step, as a building block for solving the finite horizon
version of the problem, which we leave as the subject of future
work. In what follows, we refer to response time as the total task
completion time, including computation, communication, and
context transfer delay. Note that the response time is used for
simplicity sake, which does not rigorously follow the definition
in the real-time scheduling theory [39], since the task preemption
and blocking are omitted in this study.

We denote by φ the offloading decision variables:

φij =

{
1, if vehicle-i offloads a task to RSU-j

0, otherwise.

To estimate the possible context transfer delay, we consider
the decision matrixφφφ′ at the next time step. Note thatφφφ′ may not
reflect the actual offloading decision, but is only used to check
the offloading availability at the next time step based on the
vehicle position. The fundamental assumption is that if vehicle-i
offloads a task to RSU-j at the current step-t and is still within
U(rj , dj) at the next time step, then the vehicle maintains the
same offload target, i.e., (φij = 1) ∧ (‖rj − pi(t+ΔT )‖ ≤
dj) ⇒ φ′

ij = 1. Otherwise, it must start communication with a
different RSU, i.e., (φij = 1) ∧ (‖rj − pi(t+ΔT )‖ > dj) ⇒
φ′
ij = 0. Under the latter situation, the context transfer occurs,

and the additional communication delay must be counted. Since
the road network is fully covered by all RSUs, there must be
some j ′ �= j such that ‖rj′ − pi(t+ΔT )‖ ≤ dj′ and φ′

ij′ = 1.
The exact value of j′ is irrelevant for the optimization problem,
because we count the context transfer delay for vehicle-i as

Δdi =
∑

j∈M Ciε
|φij−φ′

ij |
2 .

Thus, we can formulate the joint problem of task placement
and resource allocation with the objective of minimizing the
weighted sum of overall task response times and communication
energy consumed at vehicles. ηi in the objective function is the
weighting parameter used for the balance between delay and
energy saving. The problem is defined in (P0):

(P0)min
u,r,φφφ

n∑
i=1

⎡
⎣ m∑

j=1

φij

(
T o
ij(uij) + T c

ij(rij)

+ηiE
c
ij(rij)

)
+Δdi

⎤
⎦ (6a)

s.t.

∑n
i=1 φijT

o
ij(uij)

ΔT
≤ Uj , ∀j (6b)

n∑
i=1

φijE
o
ij(uij) ≤ Eo

j , ∀j (6c)
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m∑
j=1

φij(T
o
ij(uij) + T c

ij(rij)) ≤ ΔT −Δdi, ∀i (6d)

uij , rij ∈ [0, 1], ∀i, j (6e)

uij + rij = 0, ∀(i, j) ∈ {N ×M | φij = 0} (6f)

m∑
j=1

φij = 1, ∀i (6g)

φij ∈ {0, 1} , ∀i, j (6h)

n∑
i=1

φij ≤ N̂j , ∀j (6i)

φij(dj − ‖rj − pi(t)‖) ≥ 0, ∀i, j, (6j)

with variables u = {uij |i ∈ N , j ∈ M}, r = {rij |i ∈ N , j ∈
M} and φφφ = {φij |i ∈ N , j ∈ M}.

In the set of constraints, (6b) states the total computation
utilization on each RSU, where Uj represents the upper bounds
on CPU utilization. Constraint (6c) regulates the energy con-
sumption at the RSU, whereEo

j denotes the energy consumption
limit at RSUs. (6d) guarantees the time constraint satisfaction
while (6e) determines the ranges of the control variables. For
each task, a vehicle can only have one RSU to offload. Thus,
the sum of φij over all RSUs should be 1, which is reflected in
(6f) ∼ (6h). (6i) defines the upper limit for offloading, and (6j)
examines the RSU service availability due to vehicle mobility.

III. HIERARCHICAL DECOMPOSITION AND RESOURCE

ALLOCATION PROBLEM SOLVING

Problem (P0) is nonlinear and has the binary variables φij .
It is an MINLP and generally difficult to solve. To address this
issue, we propose a hierarchical decomposition approach in this
section, which achieves a close-to-optimal solution that can be
computed in a decentralized way.

Fig. 2 gives an overview of the hierarchical decomposition
approach. The essential idea is to decompose the original prob-
lem into several decoupled subproblems, each of which is repre-
sented as a block in the figure. They have lower complexities and
can be solved efficiently. All methods to perform the decompo-
sition in this study are labeled in grey. The signals on the dashed
lines connecting different blocks are solutions from the prior
problems, which are used for coordination or problem-solving
in sequential problems.

The domain of the variables of (P0) is huge and not continu-
ous, and it requires the simultaneous exploration of three groups
of decision variables. One way to simplify the problem is to
search for the optimal solutions for the three groups of variables
sequentially via the Tammer decomposition method [10]. If we
first fix an arbitrary task offloading decision, then (P0) becomes
an optimization problem only with free variables u and r. Note
that the context transfer delay Δdi is independent of u and r.

Fig. 2. Hierarchical decomposition for the task offloading and resource allo-
cation problem.

Then (P0) is reduced to the subproblem

J∗(φφφ) = min
u,r

m∑
j=1

n∑
i=1

φij

[
T o
ij(uij) + T c

ij(rij) + ηiE
c
ij(rij)

]
(7)

s.t. (6b) ∼ (6f).

Note that if the given task offloading decision φφφ is infeasible,
then no solution of u and r may satisfy all constraints of (6b) ∼
(6f). In that case, let J∗(φφφ)=∞. Since the reduced optimization
problem (7) has only u and r as free variables, it is called the
resource allocation (RA) problem.

Subsequently, the searching for the optimal task offloading
decision is named the task offloading (TO) problem

min
φφφ

J∗(φφφ) +
n∑

i=1

Δdi (8)

s.t. (6g) ∼ (6j).

The decomposition of the overall problem (P0) into the TO and
the RA problems is illustrated at the top of Fig. 2.

By the definition of the RA problem in (7), since the value
of φφφ is given, we can determine the set of vehicles offloading to
each RSU-j as Vj={i ∈ N | φij=1}. According to constraint
(6g), Vj ∩ Vj′ =∅ if j �= j ′. Then the objective function of the
RA problem in (7) becomes:

J∗(φφφ) =
m∑
j=1

min
u,r

∑
i∈Vj

[
T o
ij(uij) + T c

ij(rij) + ηiE
c
ij(rij)

]
.

(9)
The RA problem is equivalent to the subproblems of finding

the optimal resource allocation at each RSU. The individual
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problem at RSU-j is defined in (P1):

(P1) min
u,r

∑
i∈Vj

[
T o
ij(uij) + T c

ij(rij) + ηiE
c
ij(rij)

]
(10a)

s.t.

∑
i∈Vj

T o
ij(uij)

ΔT
≤ Uj (10b)∑

i∈Vj

Eo
ij(uij) ≤ Eo

j (10c)

T o
ij(uij) + T c

ij(rij) ≤ ΔT ′
i , ∀i (10d)

0 < uij ≤ 1, ∀i (10e)

0 < rij ≤ 1, ∀i. (10f)

In (P1), we simplify the problem by removing φφφ-related
elements. Since only one RSU-j is considered, dimensions of
variables are decreased, and u, r ∈ (0, 1]|Vj |. Time constraint is
replaced by ΔT ′

i in (10d) to compensate context transfer delay
with: ΔT ′

i = ΔT −Δdi. Once the decision variableφφφ is given,
the corrected valuesΔT ′

i are known at the vehicles. As illustrated
in Fig. 2, the RA problem for the entire transportation system is
reduced to the decentralized RA problems at individual RSUs.

Note that (P0) and (P1) suffer a common disadvantage that
they are formulated and solved in a centralized manner, which
requires the entire observation of all vehicles connected to the
same RSU. Such an approach allocates the decision algorithms at
the RSUs, where they acquire the detailed task information from
each vehicle and then calculate the solution. This introduces an
extra communication burden and may cause security and privacy
concerns by its nature. Moreover, the optimization problem may
become intractable for large-scale systems since an excessive
delay is included. Thus, in Section III-B, we formulate a decen-
tralized strategy to overcome this issue via dual decomposition.

A. Convexification of the RA Problem

The objective function and constraints in (P1) are continuous
and twice differentiable in their domains. However, by the
properties of quasiconvexity (see, e.g., [40] Section 3.4.2), it can
be found that Ec

ij(rij) in (10a) is quasilinear but not convex.
In order to hold convexity, we can transform the problem by
substituting the variable rij . Note that the transmission rate qij
is always a non-zero value, which ensures the feasibility of the
substitution. Let us introduce ωij , where

ωij =
1
qij

⇒ rij =
δj(2

1
Bpωij − 1)
pihij

. (11)

Then problem (P1) can be rewritten as

(P2) min
u,ωωω

∑
i∈Vj

[
T o
ij(uij) + T c

ij(ωij) + ηiE
c
ij(ωij)

]
(12a)

s.t. (10b), (10c), (10e),

T o
ij(uij) + T c

ij(ωij) ≤ ΔT ′
i , ∀i (12b)

1 ≤ 2
1

Bpωij ≤ Zij , ∀i, (12c)

with variablesu={uij |i ∈ Vj},ωωω={ωij |i ∈ Vj}. In constraint
(12c), Zij=

pihij+δ
δ .

Lemma 1: (P2) is a convex optimization problem.
Proof: Please refer to Appendix A. �

B. Decomposition of the RA Problem

In (P2), the objective function (12a) can be viewed as the
sum of the objectives of all vehicles. Also, each vehicle has its
own constraints in (10e), (12b), and (12c). However, constraints
(10b) and (10c) are coupled among different vehicles, in which
the restrictions on CPU utilization and energy consumption can
be viewed as the aggregate amount on RSU-j. These coupled
constraints hinder us from solving the optimization problem for
individual vehicles. To tackle this issue, we form the dual prob-
lem by introducing the Lagrange variablesλλλ=(λ1, λ2) ∈ R2

+ for
the inequality constraints (10b) and (10c). For RSU-j, we denote
by λλλj the Lagrange variables. This results in the Lagrangian
function:

L(u,ωωω,λλλj) =
∑
i∈Vj

[
T o
ij(uij) + T c

ij(ωij) + ηiE
c
ij(ωij)

]

+λj1

[∑
i∈Vj

T o
ij(uij)

ΔT
− Uj

]
+ λj2

⎡
⎣∑
i∈Vj

Eo
ij(uij)− Eo

j

⎤
⎦.
(13)

Correspondingly, the dual function g(λλλj): R2
+ → R, as the

infimum value of the Lagrangian function over u,ωωω for λλλj ∈
R2

+, can be expressed as

g(λλλj) = inf
u,ωωω

{
L(u,ωωω,λλλj)

∣∣∣(10e), (12b), (12c)
}
. (14)

The dual function can be evaluated separately on each vehicle
with the Lagrangian variables. Moreover, the optimization ob-
jective comprises two parts: computation and communication.
They have an independent structure of the objective and con-
straint functions, but are coupled by (12b) in (P2) as the time
constraints. To analyze the problem appropriately, we can further
break down the problem into single-commodity [41] for each
vehicle. Assume that the optimal computation time of vehicle-i’s
task at the RSU-j is T o∗

ij , and T o∗
ij <ΔT ′

i should always hold;
otherwise (P2) does not have a feasible solution. Then, the
communication delay must satisfy: T c

ij(ωij) ≤ ΔT ′
i − T o∗

ij .
With T o∗

ij as an auxiliary parameter, we can decompose the
problem by separating the computation and the communication
part of each vehicle. Accordingly, the dual function is

g(λλλj) =
∑
i∈Vj

goi (λλλj) +
∑
i∈Vj

gci , (15)

where

goi (λλλj) = inf
uij

{
T 0
ij(uij) + λj1

[
T 0
ij(uij)

ΔT
− Uj

|Vj |

]

+λj2

[
E0

ij(uij)−
E0

j

|Vj |

] ∣∣∣0 < uij ≤ 1

}
, (16)
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gci = inf
ωij

{
T c
ij(ωij) + ηiE

c
ij(ωij)

∣∣∣∣∣T
c
ij(ωij) ≤ ΔT ′

i − T o∗
ij

1 ≤ 2
1

Bωij ≤ Zij

}
.

(17)

goi (λλλj) and gci represent the dual functions of computation
and communication subproblems at vehicle-i. Note that (17) is
independent of the primal coupling constraints (10b) and (10c).
By the definition, the corresponding subproblems are

(P3) min
uij

T o
ij(uij) + λj1

T o
ij(uij)

ΔT
+ λj2E

o
ij(uij) (18a)

s.t. 0 < uij ≤ 1, (18b)

and

(P4) min
ωij

T c
ij(ωij) + ηiE

c
ij(ωij) (19a)

s.t. T c
ij(ωij) ≤ ΔT ′

i − T o∗
ij (19b)

1 ≤ 2
1

Bpωij ≤ Zij . (19c)

Problems (P3) and (P4) are computation and communication
subproblems at the vehicle side. Note that the variation of |Vj |
in (16) does not influence the optimal solution. Similar to (P2),
both subproblems can be verified to be convex, and the duality
gap is zero. Hence, the dual optimum obtained by (P3) and (P4)
is equivalent to the primal solution of (P2), which enables us to
solve the centralized primal problem through the decentralized
dual subproblems.

Proposition 1: Given an RSU-j and n vehicles, when the
optimal solutions of the dual subproblems in (P3) and (P4)
at vehicles converge to the primal global optimum in (P2),
the values of Lagrangian variables (i.e., λj ∈ R2

+) are only
influenced by the total amount of computation workload (i.e.,∑

i∈Vj
Ci) and energy constraints (i.e., θj and Eo

j ), and:

λj = (λj1, λj2) =

(
0,

√
θj(
∑

i∈Vj
Ci)3

4(Eo
j )

3

)
(20)

Proof: Please refer to Appendix B. �
Remark 1: Proposition 1 reveals that the associated La-

grangian variable is only influenced by the energy-related pa-
rameters and the total amount of task load. Therefore, it enables
an RSU to predict Lagrangian variables from the estimated total
workload at the RSU.

Even with the closed-form expression of Lagrangian vari-
ables, the future workload

∑
i∈Vj

Ci is a posteriori knowledge,
which is only available after the optimal task offloading decision
φφφ has been determined. However, as shown in (8), the solution
of the TO problem requires the solution of the RA problem. We
need to break the circular dependency between the TO and the
RA problems. In Section II-B, we assume that the offloading
demand of an area can be accurately estimated. Therefore, we
apply E(Cj) as the load forecast on RSU-j to replace

∑
i∈Vj

Ci

when deriving Lagrangian variables and calculating the corre-
sponding objective function. It is given as

λλλj = (λj1, λj2) =

(
0,

√
θj [E(Cj)]3

4(Eo
j )

3

)
. (21)

Note that in this paper, λj1 is always treated as 0, since the
existence of Eo

j implies a more stringent constraint on the task
response time, and thus the schedulability limit is viewed as
relaxed. If the value of Eo

j is unrealistically large, then λj1 is not
zero, and the time constraint becomes dominant. This extreme
case is not explored in this study.

A major argument in Appendix B is (35): u∗=
1|Vj |

(2θjλ∗
j2)

1
3 fj

,

where 1|Vj | is an 1 × |Vj | vector of all ones. The closed-form
expression ofu∗

ij is independent of the task loadCi. It shows that
within the task period [t, t+ΔT ), the RSU works with a fixed
CPU frequency for all tasks from the connected vehicles. With
(21) and (35), the optimal computation time T o

ij(u
∗
ij) in (P2) is

T o
ij(u

∗
ij) = Ci

√
θjE(Cj)

Eo
j

. (22)

T o
ij(u

∗
ij) in (22) corresponds to T o∗

ij introduced in (19b). Con-
sequently, all terms in (P4) can be explicitly expressed. Since
(P4) does not include Lagrangian variables, its optimal solution
ω∗
ij can be determined independently by convex optimization.

Therefore, we have shown that the optimization problems (P3)
and (P4) can be efficiently solved with the given λλλj . As depicted
in Fig. 2, they give the fully decentralized RA solution for
the convex RA subproblem (P2), and thus the RA subproblem
(P1). Accordingly, the computing-intensive optimization at the
edge can be circumvented by leveraging the unidirectional com-
munication from RSUs to vehicles with the updated values of
Lagrangian variables. Meanwhile, as the resource provider, the
RSU coordinates vehicles by predicting and adjusting the values
of Lagrangian variables.

In this section, the problem is restricted to the single RSU
scenario with the RA solution. In what follows, we extend our
solution by considering the multiple RSUs scenario and solve
the top-level TO problem in (P0).

IV. LOAD FORECAST FOR TASK OFFLOADING

In (21) and (22), the optimal computation resource allocation
is influenced by E(Cj). Therefore, load forecast is essential
to vehicles when making the offloading decision. However,
even though we assume that the computational workloads of
all vehicles in the transportation system can be estimated from a
priori knowledge, we still cannot predict the estimated workload
on each RSU, because some vehicles may have the flexibility
of offloading to multiple RSUs. For instance, if vehicles offload
with the pure greedy strategy, then all the vehicles in the service
overlapped area will offload towards the RSU with the small-
est predicted workload. Consequently, the selected RSU may
quickly have a high workload or even become overloaded. All
vehicular tasks offloaded to the RSU will suffer longer response
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Fig. 3. Comparison between non-overlapped and overlapped architecture, the
reference scenario is a straight road segment, adapted from [42].

times or even miss the deadline. The greedy offloading strategy
is neither optimal nor stable.

This problem brings the challenge of reaching global coor-
dination on load forecast in multiple RSUs scenarios. To accu-
rately determine the expected offloading demand, as illustrated
in Fig. 3, we consider the following two cases with different
RSU deployment architectures, categorized based on whether
the coverage of RSUs is overlapped or not [42].

A. Non-Overlapped RSUs Scenario

Consider a VEC system with m RSUs. Recall that each RSU
is characterized by a deployment location rj and a coverage
range dj . For the non-overlapped architecture, the RSU has its
distinct service area, and each drivable position is covered by
only one RSU, i.e., U(rj1 , dj1) ∩ U(rj2 , dj2)=∅, ∀j1, j2 ∈ M.
Under this condition, the vehicle only has one feasible offloading
destination. Therefore, in non-overlapped scenarios, the original
problem (P0) degenerates to m independent (P1), and the prob-
lem can be trivially decoupled. The RA problem can be estimated
efficiently by solving (P3) and (P4), while the TO problem can
be omitted. Meanwhile, since there are no overlapped areas,
RSU-j can explicitly estimate its load within the covered area
by

E(Cj) = E

(∑
i∈S

Ci

)
, (23)

where S = {i ∈ N|pi ∈ U(rj , dj)}.
The Lagrangian variables can be estimated with a high-

accuracy load estimation system, and the proposed decentralized
offloading strategy via decomposition can be achieved. Thus,
with the non-overlapped deployment architecture, an optimal
offloading solution can be realized.

B. Overlapped RSUs Scenario

In the non-overlapped scenario, the single available offloading
destination within an area can be a bottleneck. The offloading

Fig. 4. Graph presentation of the overlapped scenario.

availability of the RSU gets exacerbated by the increase in traffic
density. Therefore, in order to provide alternative offloading
solutions, we assume that the coverage of different RSUs can
overlap. When an area is covered by several RSUs, the problem
is quite complex in general when performing decentralized
coordination. As shown in Fig. 3(b), we restrict the scenario
that an area can be covered by at most two RSUs. Despite this
simplification, the combinatorial structure of the problem is still
challenging to solve in polynomial time [10]. The complexity of
the exhaustive search is at most O(2n), which is hard to perform
by enumerating all possible solutions. Moreover, to tackle this
problem, existing heuristic search algorithms (e.g., [9], [10])
require global information from vehicles and execute in an
iterative manner, which is contradictory to our decentralized
ideas. To analyze the problem, we make the following two
assumptions:

Assumption 1: An overlapped area has a similar distance to
adjacent RSUs. For a vehicle in the overlapped area, the optimal
values of (P4) to adjacent RSUs are similar. Thus, the offloading
decision of vehicles in the overlapped area is dominated by the
result of (P3).

Assumption 2: An overlapped area is located at the bound-
aries of two RSUs’ coverage regions. For vehicles in overlapped
areas, context transfer delay only occurs when offloading to the
receding RSU.

Assumption 1 is reasonable because OFDMA is used in Sec-
tion II-D as the communication feature with RSUs. With a fixed
task and RA solution, (P4) only depends on the channel power
gain, which is influenced by the distance. Note that Assumption
2 is also used in [12] for the position offset consideration, and is
helpful in estimating the context transfer delay based on vehicle
mobility.

As shown in Fig. 4, we use a directed graph G consisting of
m RSU nodes to represent the offloading network considering
the vehicle mobility. Let Vjk be the set of vehicles driving from
RSU-j to RSU-k in the overlapped area of the two RSUs, ajk be
the estimated total computation workload of all these vehicles,
i.e., ajk=

∑
i∈Vjk

Ci. In addition, A=[ajk] ∈ Rm×m is the
adjacency matrix of G and ajk is the weight of the edge from
RSU-j to RSU-k. Thus, on the bidirectional road, akj is distinct
from ajk owing to driving directions. If RSU-k and RSU-j have
a shared region, then ajk, akj ≥ 0, otherwise ajk=akj=0. The
self-loop is denoted by ajj and represents the workload in the
exclusive areas.

Finding the binary task offloading decisions for vehicles in
the overlapped areas has exponential complexity. To avoid the
binary optimization problem, we propose a probabilistic task
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offloading strategy. As shown in Fig. 2, the strategy determines
the probabilities of allocating tasks to the adjacent RSUs, which
helps with the calculation of E(Cj) to solve (P2). The advan-
tage of this approach is to replace the original binary decision
problem by a continuous optimization problem.

The task offloading decision is made by optimizing the TO
problem in (8), where the cost function J∗(φφφ) is evaluated from
the optimal values of (P3) and (P4). According to Assumption 1,
the cost function J∗(φφφ) is primarily determined by (P3). Fur-
thermore, the solution to (P3) is the optimal computation time
of a task at an RSU, as estimated by (22). The equation implies
that, for all vehicles in the same area, the optimal computation
time of a task monotonically increases with the total workload
at the connected RSU. In addition, Assumption 2 implies that
the offloading probability is also related to the driving direction
of the vehicle. Therefore, all vehicles in Vjk which are on the
same edge in G should have an identical offloading probability
distribution.

Thus, we denote by P=[Pjk] ∈ [0, 1]m×m the offloading
probability matrix, which has the same dimension as A. The
element Pjk denotes the probability for vehicles in Vjk offload-
ing tasks to RSU-k. Correspondingly, the probability for these
vehicles to offload tasks to RSU-j is 1−Pjk. All elements on
the main diagonal of P are 1, due to the unique offloading choice
in the exclusive areas.

From the adjacency matrix A and the offloading probability
matrix P, the offloading workload on RSU-j can be shown as

E(Cj) = A(:, j)�P(:, j) +A(j, :)(1m −P(j, :))�, (24)

where (:, j) and (j, :) are the j-th column and row vectors of
the matrix. To count context transfer delay Δdi of all vehicles
offloading to RSU-j, Assumption 2 yields the total estimated
context transfer delay at RSU-j, denoted by ΔDj , through the
probability-based workload in overlapped areas:

ΔDj =
∑

i∈[Vj(j−1)∪Vj(j+1)]

Δdi = εA(j, :)(1m −P(j, :))�.

(25)
We can further approximate the constraint (6i) on the maxi-

mal connected vehicles at an RSU by a new constraint on the
maximal expected workload at the RSU with

E(Cj) ≤ Ci N̂j , (26)

where Ci is the mean computational workload of vehicle tasks.
Combining the results in (22) and (24), the optimal computa-

tion time for all vehicles offloading on RSU-j, denoted by T o∗
j ,

can be estimated as

T o∗
j =

∑
k∈{j−1,j,j+1}

⎡
⎣ ∑

i∈Vkj

PkjT
o
ij(u

∗
ij)

+
∑
i∈Vjk

[1 − Pjk]T
o
ij(u

∗
ij)

⎤
⎦ =

√
θj
Eo

j

[E(Cj)]
3
2 . (27)

And the computation time for all vehicles in the system under
optimization is

∑
j∈M

T o∗
j =

∑
j∈M

√
θj
Eo

j

[E(Cj)]
3
2 . (28)

Equation (28) corresponds to the objective function of the
computation part in (P0), and is determined by the offloading
probabilities in the overlapped areas. From Assumption 1, with
an optimal RA solution determined by (P3) and (P4), the TO
problem in (8) can be transferred to derive the offloading prob-
ability distribution that provides the minimal task computation
time plus the context transfer delay

(P5) J(P) = min
P∈[0,1]m×m

∑
j∈M

(√
θj
Eo

j

[E(Cj)]
3
2 +ΔDj

)

(29)

s.t. (24) ∼ (26).

Note that (P5) is not identical to (8) since the communica-
tion part is ignored. However, the focus of (P5) is to derive a
probability-based offloading solution, which can be leveraged
to estimate offloading workload E(Cj) through (24). And thus,
the Lagrangian variables λλλj can be evaluated with (21), which
contributes to the decentralized RA approach in Section III.

Problem (P5) can be solved at RSUs in a coordinated way be-
fore offloading periods. Its convexity can be confirmed similarly
to Lemma 1 by verifying the Hessian being positive semidefinite.
Thus, the proof is omitted for the sake of brevity. The value
of P can be determined either by convex optimization, or by
solving linear equations in the matrix form derived from the
first-order optimality condition. Both methods are efficient and
give vehicles in the overlapped areas a probability-based TO
solution.

Proposition 2: The difference between the optimal solution
J(P∗) of (29) using stochastic offloading and the optimal solu-
tion J∗(φφφ) of (8) using the binary offloading matrix is bounded
by the following inequality

Pr

(
|J(P∗)− J∗(φφφ)| ≥

∑
j∈M

var(Cj)σ

√
Eo

j

θjE(Cj)

)
≤ 1

σ2
,

(30)
where var(Cj) is the variance of estimated workload on
RSU-j with the expression of var(Cj)=

∑
k∈{j−1,j+1}[Pkj(1 −

Pkj)akj + Pjk(1 − Pjk)ajk], σ>1.
Proof: Please refer to Appendix C. �
Remark 2: Equation (30) gives a bound on the optimality

error in our probability-based offloading approach.σ denotes the
number of standard deviations away from the mean. For instance,
when σ=2, the probability-based offloading approach has more
than a 75% chance of being within two standard deviations of the
true optimal value J∗(φφφ). A general trend in the optimality error
can be observed. Notice that var(Cj) is affected by P, which
is correlated with delay ratio ε and workload distribution A.
With a higher value of ε and uneven distribution of workload in
the exclusive areas (i.e., the variance of main diagonal elements
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Algorithm 1: TO Coordination at RSU-j.
Data:Updated location of the vehicle pi

Result:Probability P(j, :), P(:, j) and Lagrangian
variable λλλj

1: Collect the updated adjacency matrix A through the
offloading workload prediction;

2: Obtain offloading probability matrix P by solving
(P5);

3: Update E(Cj) and λλλj through (24) and (20);
4: Broadcast P(j, :), P(:, j) and λλλj to the vehicles in

U(rj , dj);

Algorithm 2: TO and RA at Vehicle-i.
Data:Computation workload Ci, transmission data Li

Result:Control variable φij , uij and ωij

1: Collect the value of P(j, :), P(:, j) and λλλj from the
adjacent RSUs;

2: Select the probability-based offloading action φij ;
3: Obtain uij and T o∗

ij by solving (P3);
4: Obtain ωij by solving (P4);
5: Send requests to the corresponding RSU;

on A), we can see that Pjk approaches either 0 or 1. Such a
scenario gives a minor var(Cj), and our task approach tends to
reach the optimal point more closely. Especially, when Pjk=
{0, 1}, ∀j, k ∈ M, the overlapped scenario degenerates to the
non-overlapped one described in Section IV-A. The influence of
ε is also examined numerically in Section V-D.

C. Overall Solution Algorithm

Based on the analysis in the above sections, we summarize
the overall solution and present the algorithms on vehicles and
RSUs, respectively.

Algorithms 1 and 2 present the pseudo-code for the decen-
tralized joint task offloading and resource allocation solution in
one task period. The RSUs need to finish the coordination task
in Algorithm 1 first and broadcast the updated information to the
vehicles in their coverage areas, so that the vehicle can determine
the task offloading and resource allocation action when the
task arises. Note that all control variables are determined in
Algorithm 2 at the vehicles, which enables the decentralized
control with high efficiency.

V. PERFORMANCE EVALUATION

We simulate a stretch of a 1 km highway with 10 evenly
distributed RSUs. Each RSU is equipped with 10 Nvidia Jetson
TX2 NX modules2 as the edge computing server [11]. The
computing capacity of each module is 1 Gcycle/s, and the
power consumption when fully utilized is 25 W. Based on these

2[Online]. Available: https://docs.nvidia.com/jetson/l4t/index.html#page/
Tegra%20Linux%20Driver%20Package%20Development%20Guide/
power_management_tx2_32.html

TABLE II
PARAMETER VALUE SELECTION

numbers, we can estimate the values of the corresponding pa-
rameters shown in Table II. We set the allocated communication
bandwidth of each vehicle as Bp=2 MHz, and the average
noise power δj=2 × 10−13W. According to [15], the nominal
channel gain is expressed by the free-space path loss model
hij=g(||pi − rj ||)=Ad([3 · 108]/[4πfc||pi − rj ||])de , where
Ad=4.11 as the antenna gain, fc=915 MHz as the carrier fre-
quency, andde=2.8 as the path loss exponent. The channel gains
used in our model are then generated based on Rayleigh fading
channel model ashij=hijα, whereα is the independent random
channel fading factor following an exponential distribution with
unit mean.

For realistic evaluation, we adopt the real-time energy man-
agement control module proposed in [43], where the power and
thermal management problem in a connected hybrid electric
vehicle (HEV) system is investigated based on a model-based
optimization approach. Based on the type of task in [43], the
amount of data to be processed is known before starting the
execution, and the amount of data to be transmitted is Li=1
Mbits. From the numerical results shown in [43], we estimated
and selected the average required CPU cycle Ci of a task by
three levels with {1.5, 1.75, 2.0} Gcycles, where each level
represents a different planning horizon length. A random value
in the range of [−0.1Ci, 0.1Ci] is added to Ci to simulate the
uncertain convergence times for the optimization task. Without
loss of generality, the update of a motion planning iteration is
set to 2 s, and it defines the task period and the completion
deadline ΔT . Similar simulation settings can be found in [6],
[19], [44], showing that the parameters defined in our task model
are realistic and have practical relevance. According to [39], the
limit on schedulability is approximately Uj=0.7.

To evaluate the efficiency of the proposed Decentralized
Offloading approach, we compare its performance against the
following baselines.

1) Random Offloading: Each vehicle is randomly assigned
an available offloading decision. Then each RSU inde-
pendently performs optimization on communication and
computation resources [45].

2) Myopic Offloading: Each vehicle is offloaded to the near-
est RSU. Then each RSU independently performs resource
optimization [9].

3) Enumeration method: An exhaustive search is per-
formed on all possible offloading decisions to find the
global optimum. Only scenarios with limited vehicles are

https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_tx2_32.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_tx2_32.html
https://docs.nvidia.com/jetson/l4t/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_tx2_32.html
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Fig. 5. Comparison of λj2 under different conditions, SSk0 =0.001 when
Eo

j >120 J, otherwise SSk0 =0.002. (a) λj2 with varied
∑

Ci, Eo
j = 40 J.

(b) λj2 with varied Eo
j ,
∑

Ci = 10 Gcycles.

evaluated for this method due to its high computational
complexity.

For each set of parameters, we randomly generate 50 traffic
scenarios. Only overlapped scenarios are evaluated and shown,
since the non-overlapped ones can be trivially decoupled. All
the optimization algorithms in the case study were executed on
a laptop PC with Intel(R) Core(TM) i5-8300H CPU @2.30 GHz,
4 cores, and 16.0 GB installed memory (RAM). After simula-
tions, the average performance is shown.

A. Analysis of Lagrangian Variables

In Proposition 1, we study the Lagrangian variable and give
a closed-form expression. To validate the correctness, we first
compare values with the converged solution obtained by the
primal-dual gradient method, which is often applied in the
decomposition-based approach [46]. Note that our problem in
(P1) can also be adequately solved with the gradient method.
However, such approaches generally require a relatively long
time to converge to high accuracy iteratively; hence, we utilize
the primal-dual gradient method only for validation.

As shown in Fig. 5, when assigned with different energy con-
straints (i.e., Eo

j ) and task loads (i.e.,
∑n

i=1 Ci), the Lagrangian
variable λj2 varies. The initial value of λj2 is set to 0.1 with the
initial step size SSk0 =0.002. To better illustrate the figure, we

Fig. 6. Comparison of the response time per task for different approaches,
with error bars representing the ranges of performance in 50 random scenarios
and Eo

j =150 J.

also halve the initial step size when Eo
j >120 J to avoid oscilla-

tion and reach faster convergence. To guarantee the convergence,
we apply a diminishing step size with SSk=SSk0k

−0.5+γ ,
where k is the iteration number and γ=0.3 is a positive constant.
A larger γ gives a larger step size and may lead to stronger
oscillation. The stopping criterion is based on ε-suboptimal [40],
and the relative tolerance is set to εrel=1 × 10−4. Some of the
curves have larger overshoots than others, mainly because the
same initial value of λj2 is applied. By examining the values
from (20), it can be confirmed that our derived values coincide
with the results from the primal-dual gradient method.

B. Optimization Result and Runtime Comparison

To evaluate the optimality of our proposed method, we com-
pare its performance with other methods mentioned above.
Since the Enumeration method searches all possible offloading
decisions, and its runtime grows exponentially with the increase
of vehicle number, the number of vehicles is set to 30, and the
number in overlapped areas is limited up to 15. The response
time is shown in Fig. 6. We respectively set Ci=1.5, 1.75 and
2.0 Gcycles, and report the task response time in 50 scenarios for
each approach. With the increase of the task workload, the task
response time becomes longer. Our proposed Decentralized
Offloading performs closely to Enumeration method, which
searches over all possible offloading decisions and has the best
performance. Compared to Myopic Offloading, Decentralized
Offloading achieves slightly shorter task response times in a
decentralized way.

The average runtime per scenario finished by each algorithm
is reported in Table III. The Enumeration method consumes
the longest time, around 1000 times longer than Decentralized
Offloading, even for this light traffic scenario. Decentralized
Offloading runs faster than Myopic Offloading, mainly because
the resource allocation step is performed decentralized in paral-
lel at vehicles instead of at the RSU.
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TABLE III
RUNTIME COMPARISON

Fig. 7. Comparison of average response time per task with different numbers
of vehicles, Eo

j =250 J. The average workload Ci increases from 1.5 Gcycles
to 2.0 Gcycles. (D: Decentralized, M: Myopic, R: Random).

C. Effect of the Number of Vehicles

Fig. 7 shows the offloading behavior with different numbers
of vehicles. When the number of vehicles is less than 40, the av-
erage response times of Decentralized Offloading and Myopic
Offloading differ slightly. In general, Myopic Offloading has an
advantage over Decentralized Offloading when the number of
vehicles is lower than 20, mainly because in light traffic situa-
tions, every vehicle can share adequate computing resources.
In this regard, communication time has a more significant
influence on the performance compared to computation time.
Myopic Offloading offloads vehicle tasks to the nearest RSU;
thus, the communication delay is minimized. However, when
more vehicles offload under the same constrained computation
resources, Decentralized Offloading has a better performance
with a shorter completion time. Especially when the number
exceeds 50, vehicles in overlapped areas can collaboratively
select the offloading destination and prompt load balancing
among RSUs.

Since the energy, computation, and communication resources
are constrained in the above scenarios, with the increase of
vehicles, RSUs cannot serve all tasks and satisfy the timing
requirement simultaneously. Service outage [11] happens when
a task cannot be completed by the selected RSU, which is

Fig. 8. Comparison of average service outage with different number of vehi-
cles, with Eo

j =250 J. (D: Decentralized, M: Myopic, R: Random). (a) Ci =

1.75 Gcycles. (b) Ci = 2.0 Gcycles.

evaluated by the number of failure cases over the total number
of vehicles. We consider it as the indicator to assess the quality
of service (QoS) loss. Fig. 8 shows the service outage with
different numbers of vehicles. Scenarios with Ci=1.75 and
2.0 Gcycles are plotted as representatives. When the number
of vehicles increases, RSUs fail to handle all tasks within the
time constraint. The stochastic vehicle locations and unbalanced
traffic distribution can exacerbate the problem. Random Of-
floading and Myopic Offloading have similar outage rates with
the absence of demand coordination and balancing. With the load
forecast coordination, Decentralized Offloading outperforms
others significantly, especially when the traffic density is high.
This shows that our approach can scale well with the number of
vehicles.

D. Effect of RSU Capacity and User Preference

In this section, we fix the number of vehicles to 40, so that
the service outage problem when the task workload is high can
be mitigated. We try to examine the offloading performance
with varied RSU capacities in terms of CPU frequency fj and
energy consumption constraint Eo

j . Results are checked under
different task computation workloads Ci. Two types of RSU
configuration, homogeneous and heterogeneous servers [10],
are evaluated and compared. In the homogeneous scenario, all
servers have the same CPU speed of 10 Gcycles/s, while the CPU
speeds in the heterogeneous scenario are randomly selected from
{5, 10, 15} Gcycles/s. With the change of CPU speed, energy
constraint Eo

j is adjusted accordingly with {125, 250, 375} J to
keep the same level of stringency.

Average response times with the increase of Ci are shown
in Fig. 9. The performance obtained from the homogeneous
scenario is better than that in the heterogeneous scenario, mainly
because the latter scenario has an unbalanced deployment of
computation resources. Meanwhile, there is an increasing gap
between Decentralized Offloading and others with the growth
of task workload in both scenarios, and it is more apparent in
the heterogeneous scenario. This is because when vehicles are
close to RSUs with low computation capacities, Myopic Of-
floading selects the nearest one but Decentralized Offloading
may choose a further RSU to balance the workload. Thus the
latency performance gets improved.

The effect of user preference ηi in (6a) and context transfer
delay ratio ε are also studied, and the results are shown in
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Fig. 9. Comparison of average response time per task with different task
workloads, with Eo

j =250 J and 40 vehicles. (D: Decentralized, M: Myopic,
R: Random). (a) Homogeneous RSUs. (b) Heterogeneous RSUs.

Fig. 10. Comparison of average response time with different ηi and ε, with
Eo

j =250 J, Ci=2.0 Gcycles and 40 vehicles. (D: Decentralized, M: Myopic,
R: Random). (a) Comparison of average response time with different ηi. (b)
Comparison of average response time with different ε.

Fig. 10. We vary the values of weighted-sum parameter ηi in
Fig. 10(a). With the increase of ηi, the energy-saving demand
on communication is emphasized; thus, the advantage of De-
centralized Offloading over Myopic Offloading is decreased.
Fig. 10(b) shows the impact of the context transfer delay ratio
ε on the response time. Both Myopic Offloading and Random
Offloading experience a near proportional increase with a higher
ε, while Decentralized Offloading differs with a sub-linear
growth. It nearly reaches stabilized after ε > 0.2, mainly because
the solution of the task offloading optimization problem tends to
avoid offloading tasks to the receding RSU to reduce the chance
of context transfer.

E. Effect of Energy Constraint

In Fig. 11, the influence of the energy constraint on opti-
mization performance is analyzed. We fix the number of vehi-
cles to 50 and Ci=2.0 Gcycles. The values on the horizontal
axis decrease along the positive direction, indicating a more
constrained scenario. Fig. 11(b) compares the average energy
consumption at the RSUs, which is an indicator of load balancing
at the edge devices. Since there are 10 RSUs, from (1) and
(2), the average energy consumption per RSU is 250 J. In
Fig. 11(b), when Eo

j =500 J, all tasks can be executed with
the maximal frequency (i.e, uij=1), and the average energy
consumption reaches 250 J for all three policies. When the
energy constraint becomes more stringent, owing to the uneven
workload distribution among RSUs, tasks cannot be equally

Fig. 11. Comparison of time consumption and actual energy consumption
with different energy constraints, with Ci = 2.0 Gcycles and 50 vehicles. (D:
Decentralized, M: Myopic, R: Random). (a) Time consumption per task. (b)
Energy consumption per RSU.

solved with the same frequency, and the average utilization
gradually decreases. Among the three policies, Decentralized
Offloading has the best load balancing performance due to
the advantage in the task offloading. Fig. 11(a) evaluates the
average task response time when the energy constraint varies.
When the energy limit is high, all tasks can be computed with
adequate resources, and the average response time is short. In
such a scenario, Myopic Offloading performs slightly better
than Decentralized Offloading because Myopic Offloading
has a lower communication latency. However, when Eo

j gets
smaller, Decentralized Offloading shows better performance
in terms of load balancing with a more rapid response time.

VI. CONCLUSION AND FUTURE WORK

This study investigates the optimal computation task offload-
ing and resource allocation problem in vehicular edge computing
systems. A decentralized strategy is proposed to minimize the
overall response time while guaranteeing the deadline and en-
ergy limitations. The original MINLP is converted into tractable
convex subproblems through hierarchical decomposition, and it
enables the problem to be solved in a decentralized way at the
vehicle side. Besides, we study the coordination problem among
RSUs with two deployment architectures. A global coordination
on load estimation in multiple RSUs scenarios is reached. The
probability-based approach provides a near-optimal solution
with high efficiency, and the simulation results verify that our
approach outperforms baseline methods. In future work, the
system’s reliability will be investigated with the consideration of
disturbances and stochastic behaviors. We will also investigate
how to deal with offloading of safety-related tasks.

APPENDIX A
PROOF OF LEMMA 1

In (P1), the non-convexity manifests due to Ec
ij(rij). After

the substitution in Section III-A, rij is expressed by ωij . From
(11), we have

Ec
ij(ωij) = rijpiT

c
ij =

δjLiωij(2
1

Bpωij − 1)
hij

. (31)
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By taking the second-order derivative of Ec
ij(ωij), we have

d2Ec
ij(ωij)

dωij
2 =

ln22 δjLi

hijBp
2

2
1

Bpωij

ωij
3

. (32)

From (10f), we can get the feasible range of ωij :

ωij ∈
(

0,

(
Bplog2

(
pihij

δj
+ 1

))−1
]
. (33)

Since ωij is positive, we know (32) is always positive. Besides
Ec

ij(rij), other rij related elements, such as T c
ij(rij) in (10a)

and (10d), will be linear to ωij after the substitution. Therefore,
in (P2), the objective function and the inequality constraints are
all convex. Thus, (P2) is a convex problem. It allows us to solve
the primal via the dual.

APPENDIX B
PROOF OF PROPOSITION 1

We focus on the computation subproblem (P3) since the
communication part is not correlated with λλλj . The convexity of
(P3) can be examined similarly as in Lemma 1 by examining the
Hessian as positive semidefinite. Let u∗ be the optimal solution
to the primal problem and λλλ∗

j be the optimal solution to the dual
problem. The Karush-Kuhn-Tucker (KKT) conditions for the
corresponding problem are

d(
∑

i∈Vj
T o
ij(u

∗
ij))

du∗ + λ∗
j1

d
(∑

i∈Vj
T o
ij(u

∗
ij)/ΔT

)
du∗

+ λ∗
j2

d
(∑

i∈Vj
Eo

ij(u
∗
ij)
)

du∗ = 0, (34a)

(10b), (10c),

λ∗
j1

(∑
i∈Vj

T o
ij(u

∗
ij)

ΔT
− Uj

)
= 0 (34b)

λ∗
j2

⎛
⎝∑

i∈Vj

Eo
ij(u

∗
ij)− Eo

j

⎞
⎠ = 0. (34c)

Equations (34b) and (34c) state the complementary slackness
conditions. In our problem, the energy constraint is lower than
the nominal power, which means it is always tighter than the
utilization constraint. Thus, the energy consumption will exceed
Eo

j before the utilization reaches the maximal threshold Uj . We
first assume the strong inequality holds for (10b) by considering
it as an inactive constraint. Since it does not bind, we can
conclude that λ∗

j1 = 0. Meanwhile, since (10c) is an active
constraint, to satisfy complementary slackness conditions, we
have:

∑
i∈Vj

Eo
ij(uij)− Eo

j = 0. From (34a), we can obtain

u∗ =
1|Vj |

(2θjλ∗
j2)

1
3 fj

. (35)

Since ui ∈ (0, 1], ∀ui ∈ u, we have

0 <
1n

(2θjλ∗
j2)

1
3 fj

≤ 1 ⇒ λ∗
j2 >

1

2θjfj
3 . (36)

Also, to make sure our assumption above holds, u∗ should
satisfy the strong inequality in (10b):

∑
i∈Vj

Ci

u∗
ijfj

< UjΔT ⇒ λ∗
j2 <

1
2θj

(
UjΔT∑
i∈Vj

Ci

)3

. (37)

Therefore, the dual subproblem can be expressed as

max
λj2

g(λj2) = 3 · (2− 2
3 )
∑
i∈Vj

Ci(θjλj2)
1
3 − Eo

j λj2

s.t. (36), (37), (38a)

with variable λj2 ∈ R+. Thus, the optimal dual variable can be

found by: ∇g(λ∗
j2) = 0 ⇒ λ∗

j2 =

√
θj(

∑
i∈Vj Ci)3

4(Eo
j )

3 .

In our problem, to meet the schedulability requirement,
the total computation task cannot exceed an upper bound of:∑

i∈Vj
Ci < [Eo

j (UjΔT )2θ−1
j ]

1
3 , which is the maximal capacity

of an RSU under the energy constraint. Also, (36) gives a lower
bound of λj2. The satisfaction of both constraints is examined
in Section V.

APPENDIX C
PROOF OF PROPOSITION 2

In the graphG, RSU-j connects to RSU-(j-1) and RSU-(j+1).
Expand (24) with only the nonzero elements, we have

E(Cj) = ajj + a(j−1)jP(j−1)j + a(j+1)jP(j+1)j

+ aj(j−1)[1 − Pj(j−1)] + aj(j+1)[1 − Pj(j+1)]. (39)

Besides the self edge ajj , the offloading workload on RSU-j
is from four connected edges. With the probability-based of-
floading policy, it can be seen that, each of them follows the bi-
nomial distribution, e.g., a(j−1)jP(j−1)j∼B(a(j−1)j , P(j−1)j).
(39) gives the total offloading expected demand on RSU-j, and
its summation follows the Poisson binomial distribution, with
the mean value ofμ(Cj) = E(Cj), and the variance is calculated
as

var(Cj) = A(:, j)�[P(:, j) ◦ (1 −P(:, j))]

+A(j, :)[P(j, :) ◦ (1 −P(j, :))]�

=
∑

k∈{j−1,j+1}
[Pkj(1 − Pkj)akj + Pjk(1 − Pjk)ajk], (40)

where operator ◦ denotes Hadamard product.
The ideal computation delay in J∗(φφφ) is represented by (27)

with the expected workload E(Cj), and the actual offload-
ing workload Cj is expressed as a Poisson binomial distribu-
tion.With Assumption 1, an approximate optimal value differ-
ence between J(P∗) and J∗(φφφ) can be written as

J(P∗)− J∗(φφφ) �
∑
j∈M

√
θjE(Cj)

Eo
j

(Cj − E(Cj)) . (41)
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From Bienaymé-Chebyshev inequality [47], we can find an
estimate of the optimal value error:

Pr

(
|J(P∗)− J∗(φφφ)| ≥

∑
j∈M

var(Cj)σ

√
Eo

j

θjE(Cj)

)
≤ 1

σ2
,

(42)
where σ > 1 is a parameter to represent the number of standard
deviations from the mean value.
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