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Taylan Şahin , Ramin Khalili, Mate Boban , Senior Member, IEEE, and Adam Wolisz , Senior Member, IEEE

Abstract— Performance of vehicle-to-vehicle (V2V) communi-
cations depends highly on the employed scheduling approach.
While centralized network schedulers offer high V2V communi-
cation reliability, their operation is conventionally restricted to
areas with full cellular network coverage. In contrast, in out-of-
cellular-coverage areas, comparatively inefficient distributed radio
resource management is used. To exploit the benefits of the central-
ized approach for enhancing the reliability of V2V communications
on roads lacking cellular coverage, we propose VRLS (Vehicular
Reinforcement Learning Scheduler), a centralized scheduler that
proactively assigns resources for out-of-coverage V2V communi-
cations before vehicles leave the cellular network coverage. By
training in simulated vehicular environments, VRLS can learn a
scheduling policy that is robust and adaptable to environmental
changes, thus eliminating the need for targeted (re-)training in
complex real-life environments. We evaluate the performance of
VRLS under varying mobility, network load, wireless channel, and
resource configurations. VRLS outperforms the state-of-the-art
distributed scheduling algorithm in zones without cellular network
coverage by reducing the packet error rate by half in highly loaded
conditions and achieving near-maximum reliability in low-load
scenarios.

Index Terms—Out of coverage, reinforcement learning, resource
management, scheduling, V2V.

I. INTRODUCTION

COOPERATIVE awareness, defined as knowledge of the lo-
cation, speed, and bearing of surrounding vehicles, forms

a basis for most traffic safety and efficiency applications [1],
[2]. Such awareness can be best achieved in real time using
vehicle-to-vehicle (V2V) communication utilizing a dedicated
set of radio resources. However, achieving a collision-free trans-
mission under a highly dynamic vehicular environment is a
challenging task.

Recent work in the 3rd Generation Partnership Project (3GPP)
defines a solution where resources for V2V communication
are efficiently coordinated by a base station (BS) of a cellu-
lar network, resulting in highly reliable transmissions [3], [4].
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However, V2V transmissions should not rely completely on
ubiquitous availability of the cellular network coordination, as
there will always exist coverage gaps, either because of physical
impediments (e.g., tunnels, blockage of a link by large objects
such as buildings, etc.) or limited infrastructure deployment.

Existing solutions for scheduling V2V communications out-
side the network coverage are based on distributed methods,
where vehicles select resources autonomously. 3GPP defines
such a resource allocation method (named “mode 4” in Long
Term Evolution (LTE) [5], and “mode 2” in the fifth-generation
(5G) New Radio (NR) [6]), which is based on sensing of the
radio resources by the vehicles. Another solution is defined by
the IEEE standard 802.11p [7] (and its successor 802.11bd [8])
based on carrier-sensing multiple access. Although distributed
solutions do not require a network infrastructure, they suffer
from the hidden node problem due to the limited local view,
which results in reduced quality of service [9]–[11]. Given
that the use cases require consistently high reliability and low
latency of V2V communication to be maintained irrespective
of coverage [4], the intermittent coverage poses one of the key
problems in assuring proper V2V connectivity.

In this paper, we study an alternative approach to the V2V
resource scheduling in the out-of-coverage (OOC) zones. We
propose a centralized scheduler residing in the network, com-
prising a reinforcement learning (RL) agent that pre-assigns
resources to the vehicles for their V2V transmissions in an OOC
area, before the vehicles enter such an area. We are motivated to
use an RL-based approach due to its successful applications for
resource allocation problems in general [12], and for vehicular
communications in particular [13]. The scheduler, which we
call VRLS (Vehicular Reinforcement Learning Scheduler), was
proposed and demonstrated to be potentially efficient in [14].
VRLS design addresses two practical challenges. First, training
and deploying RL solutions in the real world is costly in terms
of training. In particular:
� Training an RL agent in a real-world setting is considerably

slower than training it in a simulated environment, because
of the limited availability of data samples.

� Collecting data from an actual vehicular network is ex-
pensive, or might not be even possible considering the
additional signaling and processing overhead it incurs.

� Any undesirable outcomes of an RL agent still under
training might threaten the safety-critical V2V use cases.

Second, in real-world problems, it is likely that the conditions
in a given environment, such as road traffic mobility or data
traffic load in a V2V communication network, would change
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over time. It would be impractical to re-design, re-train, and
re-evaluate a new RL solution every time the environment
changes, even if this change is substantial. Therefore, a single
RL-based solution should be applicable to varying conditions in
the environment.

By defining a unified state representation, we have designed
VRLS to be applicable to road sections without network cov-
erage, which can have arbitrary size and number of lanes, any
number of vehicles, utilizing any resource pool configuration
with different number of resources in time and frequency. VRLS
consists of a deep neural network, which processes the state
of the environment and decides on the resource allocation for
vehicles as an outcome of its trained policy. The reward provided
to the RL agent during its training is designed to maximize the
reliability of V2V transmissions. In this paper, we extend the
basic VLRS design with the following key contributions:

1) We train VRLS in simplified and simulated vehicular envi-
ronments, and show that it can be deployed without further
training in realistic, complex environments, varying in
terms of mobility, wireless channel characteristics, OOC
area size, network load, and traffic.

2) We evaluate the performance of VRLS in terms of reliabil-
ity, user fairness, packet inter-reception time, and latency,
as well as the impact of network quality of service on
V2V applications, in comparison to the state-of-the-art
distributed scheduler mode 4. In terms of reliability, VRLS
reduces by half the packet loss of mode 4 in highly
loaded conditions, and performs close to the theoretical
maximum in low-load scenarios. Further, VRLS does not
compromise on fairness across the vehicular users, while
achieving similar latency and higher “mutual awareness”
(defined in Section V-A) as compared to mode 4.

3) Considering that the network might need to operate differ-
ently configured resource pools in terms of the number of
resources in time and frequency, e.g., to support different
V2V services, we show that VRLS can be trained across
multiple predetermined resource configurations at once to
support any of them by learning a single policy.

In the rest of the paper, we first present the background and
the related work in Section II. Section III defines our system
model and the problem we address. We elaborate on our VRLS
design in Section IV. After describing our evaluation method-
ology in Section V, we present our performance evaluation and
analysis in Section VI, and the training performance of VRLS
in Section VII. Finally, Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

We first present the challenges of V2V communications in
terms of performance requirements in Section II-A. To satisfy
these requirements, radio resource allocation plays a critical
role, as we elaborate in Section II-B. The centralized resource
allocation mode introduced in cellular networks by 3GPP shows
clear performance benefits over the distributed methods. We
review the distributed resource allocation mechanism specified
by 3GPP in Section II-C, which we take as a baseline in our
evaluations. Finally, we introduce the centralized, RL-based

approach to resource allocation for V2V communications in
areas delimited by cellular network coverage, and identify its
difference from the prior art in Section II-D.

A. Intelligent Transport Systems and V2V Communications

V2V communications enable road safety and traffic efficiency
via intelligent transport system (ITS) applications: autonomous
driving and vehicle platooning, to name a few [1], [2]. To
achieve this, the V2V network has to satisfy the performance
requirements of target use cases, most notably the reliability,
latency, and throughput. The reliability requirements indicate the
maximum tolerable packet loss rate between vehicles, together
with a maximum application-level latency to be supported.
LTE V2V use cases typically require 80–90% reliability with
100 ms latency, targeting various basic road traffic safety ap-
plications [1], [3]. On the other hand, advanced use cases to be
supported by 5G NR, such as platooning vehicles with a high
degree of automation, require up to 99.99% of reliability with
10 ms latency [2]. Such requirements assume an abundance of
radio resources available for V2V communication. However,
under realistic conditions, where the availability of radio re-
sources is limited, achieving high reliability becomes difficult.
Under such conditions, resource allocation plays a vital role in
the performance of V2V applications.

B. Radio Resource Allocation for V2V Communications

In the context of the 3GPP standard, V2V communications
utilize a resource pool, which consists of a limited number of
time-frequency resources configured by the network. Assign-
ment of these resources to the vehicles in a reliable, timely, and
efficient manner becomes a critical task in order to satisfy the
demanding requirements of vehicular applications.

Conventionally, the resource allocation task can be performed
either in a centralized or distributed way. The authors in [9]
and [15] show that centralized resource allocation enables higher
road traffic efficiency and safety, as compared to distributed
scheduling mechanisms. To illustrate, the centralized schedul-
ing mode in LTE (called “mode 3” [6]) can achieve a shorter
inter-vehicle distance than LTE mode 4 and IEEE 802.11p in a
high-density platoon with a guaranteed crash rate≤ 1% [9]. This
is enabled by higher reliability and shorter latency of the V2V
transmissions via efficient resource reuse that cannot be achieved
by distributed scheduling. Despite providing very low latency,
802.11p is shown to suffer from the increasing collisions with
the load [9], and mode 4 is prone to collisions due to re-selection
or persistent usage of the same resources by the vehicles in
proximity [16], [17]. Irrespective of the underlying technology,
the reduced reliability degrades the performance of the V2V
use cases (e.g., a platoon can either have a larger inter-vehicle
spacing or can support fewer vehicles) [18].

C. Distributed Scheduler LTE Mode 4

If the centralized scheduling of V2V resources with the
help of the cellular network fails due to the loss of network
connectivity, vehicles need to switch to the distributed resource
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Fig. 1. Illustration of the scheduling mechanism of LTE mode 4. Resources
sensed with large power (represented with darker colors) are excluded from the
selection (crossed). The selected resource (green) among the remaining ones is
utilized to transmit semi-persistently.

allocation mode. Specifically, upon experiencing a connection
interruption long and often enough, vehicles stop using their
network-scheduled resources and resort to a random resource
selection procedure until the sensing results needed to operate
LTE mode 4 become available [6], [19].

In mode 4, vehicles autonomously make semi-persistent re-
source (re-)selections from the configured resource pool for V2V
communications, based on sensing [20], [21]. Specifically, as
illustrated in Fig. 1, upon a message generation at time tgen,
the vehicle selects a single resource from an upcoming resource
selection window between tgen + T1 and tgen + T2. The vehicle
can transmit using the selected resource on a periodic basis for
Cresel times, i.e., semi-persistently, where Cresel takes a random
value from a predefined interval. After Cresel transmissions,
the vehicle makes a new resource re-selection with probability
1− Pkeep, otherwise keeping the same resource by setting a
new random value for Cresel. Each resource (re-)selection is
based on the sensing results of the past 1000 ms from tgen,
excluding the subframes the vehicle transmitted, as no sensing
was conducted due to the half-duplex radio constraint (vehicles
can either transmit or receive, but not both at the same time).
The vehicle further excludes the resources where it sensed
an average received power larger than a predefined threshold
Thrsense. It sorts the remaining resources with respect to their
average Received Signal Strength Indicator (RSSI), and selects
a resource randomly from the top 20% (the lowest RSSI).

The sensing mechanism enables vehicles to find a “free”
resource, or, in case of heavy resource use, a resource with less
interference. On the other hand, the randomization aims at mit-
igating the persistent resource conflicts due to multiple vehicles
continuously selecting the same resource. Nonetheless, since
sensing measurements are limited in time and space, vehicles
in mode 4 are prone to the well-known hidden-node problem.
To illustrate, if vehicles far apart cannot sense each other’s
transmissions and select the same resource, their transmissions
can interfere on a receiver located between them.

Several works have focused on improving the performance
of mode 4. Most of them target the persistent resource colli-
sion problem. The authors in [22] and [23] propose reserving
resources at each resource selection instance and alternately
using them to mitigate the collision probability. Other works
propose exchange of information among the vehicles, such
as channel measurements [24], location [25], or status and
reservation information of resources [26]–[28]. Revisions to the

sensing mechanism are also proposed in several works, mainly
by considering different weighting strategies for selecting the
resources [29], [30]. Overall, the proposed extensions to mode
4 either require additional signaling or increase resource occu-
pancy, hence making them less efficient from resource utilization
point of view. Further, the parameters of the mode 4 algorithm,
as well as the extended methods, require careful tuning in order
to achieve the desired performance.

D. RL-Based Approach for V2V Radio Resource Allocation

RL has recently gained significant attention in vehicular
networks, with applications ranging from storage of data [31]
to controlling of information flow in sensing networks [32],
thanks to its ability to handle tasks in dynamic, time-varying
environments. The resource allocation task challenges the main-
stream approach of formulating an optimization problem and
solving it (sub-)optimally, because of the highly dynamic nature
of vehicular networks [13]. RL offers an alternative solution,
which interacts with, and adapts its actions to the unknown
environment. Further, sequential decision-making encountered
in resource allocation tasks is a native functionality of RL [33].

The majority of the works applying RL to the resource allo-
cation problem in vehicular networks consider joint optimiza-
tion of V2V and cellular links [34]–[36]. The authors in [37]
utilize V2V links to cooperatively relay the cellular downlink
data within a cluster of vehicles, with the aid of RL-based
scheduling. RL is also applied to distributed resource allocation
mechanisms [38], [39]. While RL-based approaches are shown
to solve resource allocation tasks efficiently, the cost of such
solutions comes in terms of an additional effort required for
training prior to deployment.

We have first applied RL for managing the V2V resources
centrally in [40], motivated by the above-mentioned works.
We later proposed VRLS in [14], where we demonstrated its
ability to avoid resource conflicts, and to reuse resources more
efficiently as compared to the state-of-the-art V2V scheduling
algorithms, in a basic OOC setting and under different resource
pool configurations. Compared to the previous works, our ap-
proach differs by proposing a centralized, RL-based approach
for managing the resources for V2V communications outside
the network coverage, whereby resources are provided to the
vehicles before they leave the coverage.

III. SYSTEM MODEL

A. Vehicular Network Environment

We consider a vehicular network where vehicles broadcast
V2V messages with periodic and event-triggered, i.e., aperi-
odic, traffic. A typical example of periodic traffic is the regular
broadcast of vehicle information such as position and speed,
as in cooperative awareness messages (CAMs) [41], whereas
aperiodic traffic is triggered on events to warn vehicles such as
of an accident, as in decentralized environmental notification
messages (DENMs) [42]. The V2V messages are assumed to
have a fixed size of Smsg, requiring a predefined number of
time-frequency resources based on the modulation and coding
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Fig. 2. VRLS applied to our vehicular network environment, which is a
delimited out-of-coverage area (DOCA). Vehicles communicate with each other
in a DOCA using the resources indicated by the scheduling assignments (SAs)
sent by the delimiting BSs before they enter the DOCA.

scheme (MCS). In the case of the periodic traffic, the messages
are generated with a fixed periodicity of Tmsg by all vehicles.
For the event-triggered traffic, the event arrivals are assumed to
follow a Poisson process with an arrival rate of Xevt per s for
each vehicle [3], upon which a single message is generated.1

We focus on V2V communications in a delimited out-of-
coverage area (DOCA). A DOCA can have any size and shape
depending on the scenario (e.g., two-dimensional in urban and
one-dimensional on highway). We assume a DOCA that consists
of a two-way highway segment of length LDOCA outside the
coverage of BSs at its two ends, as illustrated in Fig. 2. Vehicles
of length Lveh are assumed to travel on J lanes per direction.
The BSs are assumed to be aware of the existence of the DOCA,
as well as its location, length, etc.

B. Time-Frequency Resources

In line with the LTE and NR specifications, V2V communi-
cations outside the coverage utilize a dedicated pool of time-
frequency resources configured by the network. We denote pool
configuration byCK×M , whereK is the number of subchannels
and M is the number of subframes that the pool contains, over
the frequency and the time domains, respectively, repeating with
a periodicity of Tmsg. Fig. 2 illustrates an example resource pool
configuration with 2 subchannels and 2 subframes, i.e., C2×2.

Following the LTE V2V assumptions [3], a transmission of a
single V2V message occupies a single time-frequency resource
r ∈ CK×M , which is referred to as a transmission block (TB). A
TB consists of a single subframe of 1 ms, and a single subchannel
containing a sufficient number of resource blocks (RBs) to
carry the message. No redundant transmissions are considered.
Consequently, the latency of a successfully received message
is bounded by the time-length of the pool, i.e., the number of
subframes, to a maximum of M ms.

We assume half-duplex radios, that is, vehicles transmitting
at the same time are not able to receive each other’s message
(e.g., TBs r1 and r3 sharing the same subframe in Fig. 2) [45].

1According to the ETSI specifications [41], [42], while periodic by default,
the periodicity of CAM transmissions can be adjusted depending on vehicular
mobility and traffic load, and DENM transmissions might contain bursts of
several periodic messages. We evaluate the impact of the different modes of
traffic separately, by following previous research work (e.g., [43], [44]) and
applying the traffic models proposed in 3GPP [3]. This approach makes the
analysis easier and enables us to generalize our results to any type of V2V
traffic beyond the CAM and DENM applications.

We refer to the unsuccessful reception of the messages due
to the HD limitation as HD error or conflict, and the relation
among the TBs in the same subframe causing this phenomenon,
as HD constraint, in the paper. When no HD errors occur,
successful decoding of a message is further conditioned on
the signal-to-interference-plus-noise ratio (SINR) measured for
the corresponding TB at the receiver. The SINR of a single
transmission at receiver j from transmitter i is:

SINRij =
PTx|hij |2

σ2 +
∑L

l=1,l �=i PTx|hlj |2
, (1)

where PTx is the transmit power of the transmitter, and |hij |2
denotes the channel coefficient between the transmitter i and the
receiver j, which accounts for the path loss and fading effects
of the wireless channel on the transmitted signal. σ2 is the noise
power, and the summation term in the denominator denotes the
interference due to the other vehicles l = 1, . . ., Lusing the same
TB as i. The SINR depends on the interference level of the other
transmissions using the same TB, under the path loss and fading
effects of the propagation channel. Messages transmitted by
different vehicles using the same TB (i.e., the same subframe and
the same subchannel) may interfere, depending on the propaga-
tion conditions, and lead to decoding errors at the receiver, which
we refer to as collision errors. However, spatial reuse of the same
TB or the TBs sharing the same subframe is possible among
sufficiently far apart transmitters, without creating any collision
and HD errors, respectively. Further, unsuccessful receptions
could also result from the channel effects, e.g., due to path loss
and shadowing that considerably reduce the received SINR (or
SNR), which we refer to as propagation errors.

C. Problem Definition

In the absence of a cellular network assigning the resources
for V2V communications, as in the case of a DOCA, vehicles
can resort to distributed resource scheduling mechanisms based
on sensing or using resources randomly [6]. However, such dis-
tributed resource allocation methods result in degraded perfor-
mance of V2V communications as compared to the centralized
allocation of resources within the network coverage, given the
same limited number of resources available [9], [10].

We argue that the areas without network coverage, i.e.,
DOCAs, are usually well known to the network (such as via
map information providing the location of a tunnel or detecting
link interruptions by measured signals at a certain location).
Therefore, it is possible to create a centralized scheduler that
“pre-schedules” the resources for the DOCA. The centralized
scheduling entity is assumed to exchange information with the
BSs delimiting the DOCA, where it can gather the information
needed for scheduling. In turn, the BSs forward the scheduling
decisions to the vehicles via scheduling assignments (SAs)
before the vehicles enter the DOCA. An SA indicates the
resource to use from the next available resource pool period,
every time the vehicle generates a message during its travel
in the DOCA. Accordingly, the task is to assign a resource r
from the resource pool to each vehicle going into the DOCA,
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where the vehicle uses the assigned resource for all its V2V
transmissions throughout its journey.

Our objective is to find a centralized radio resource man-
agement algorithm that maximizes the reliability of the V2V
transmissions in the DOCA. To quantify the reliability, we use
the packet reception ratio (PRR) metric as defined in the 3GPP
standard [3]. For a single message transmitted from vehicle i,
the PRR is calculated by Xi/Yi, where Yi is the number of
vehicles located within the range (a, b) from the transmitter, and
Xi is the number of vehicles with successful reception among
Yi. The average PRR is then calculated for a series of messages
consecutively transmitted by all the vehicles in the environment
as (

∑V
i=1

∑Ni

n=1 Xi,n)/(
∑V

i=1

∑Ni

n=1 Yi,n) with Ni denoting
the number of generated messages by vehicle i, and V is the
number of vehicles [3]. Assuming a resource pool configuration
of CK×M , we would like to find a resource assignment (k,m)
for each vehicle i that maximizes the PRR of all vehicles, which
can be formally expressed as:

argmax
{αi

k,m}∀i

V∑
i=1

Ni∑
n=1

Xi,n, where Xi,n =

Yi,n∑
j=1

ηij , (2)

s.t.

ηij =

⎧⎪⎨
⎪⎩

1 if
PTx|hij |2αi

k,mβj
m

σ2 +
∑V

l=1,l �=i PTx|hlj |2αl
k,m

≥ γ,

0 otherwise.

(2a)

αi
k,m =

{
1 if i using subchannel k and subframe m,
0 otherwise.

(2b)

βj
m =

{
1 if j using subframe m,
0 otherwise.

(2c)

M∑
m=1

K∑
k=1

αi
k,m = 1, ∀i. (2d)

0 < PTx ≤ Pmax (2e)

In the above formulation, ηij is a binary variable indicating
whether the reception of a single message n at receiver j,
transmitted from i is successful or not. Successful reception
is conditioned on the SINRij being above a target threshold γ,
subject to collisions and the HD constraint represented by the
following variables. αi

k,m is a binary variable denoting whether
vehicle i is transmitting using the subchannel k and subframe
m, and βj

m imposes the HD constraint on vehicle j if it is
transmitting on the same subframe m that it was supposed to
receive another transmission. Constraint (2d) indicates that each
vehicle transmits at most using a single TB in a given period of
the resource pool. Note that the resource assignments to different
vehicles are not necessarily unique, i.e., the same resource could
be reused by different vehicles. Finally, constraint (2e) limits the
transmit power of vehicles.

Solving the above optimization problem is a challenging task
given the limited number of resources to be managed for tackling
the HD and collision constraints in a highly dynamic environ-
ment beyond the network coverage. As a solution, we propose an
RL-based scheduling approach called VRLS. VRLS is a logical

entity, deployed at the network infrastructure, whose function
is to allocate resources to vehicles entering the DOCA with the
goal of maximizing the reliability of their V2V transmissions
in the DOCA. While it is trained for maximizing the PRR
in the DOCA, which can be conducted off-line, in operation,
VRLS solely utilizes the information already available at the
network.

IV. VRLS: VEHICULAR REINFORCEMENT LEARNING

SCHEDULER

We formulate the centralized resource pre-allocation problem
for the DOCA as a single-agent RL problem, where VRLS acts
as the agent on the vehicular network environment. Based on the
observed state St of the environment at each discrete instant t in
which a new vehicle arrives at the DOCA, VRLS takes an action
At, which is to assign a single time-frequency resource to that
vehicle. The actions of VRLS are based on its trained policy π,
which we model as a deep neural network (DNN). The agent is
trained with a reward signal Rt+1 provided upon each action,
indicating how “good” the action was. In turn, the training goal
of the agent is to maximize the total reward it receives in the
long run. We train VRLS using the state-of-the-art actor-critic
RL algorithm.

Typically, RL solutions in the literature are designed, trained,
and evaluated in the same environment that has a specific distri-
bution of (or even fixed) parameters. However, particular design
choices tailored for a specific setting may not work as well
or even be applicable when the parameters of the environment
change significantly [46]. We have observed the same problem in
our earlier work [40], where we had to re-design the components
of our solution (thus, also re-train) in order to target different
vehicular environments. This turns into a serious limitation,
considering the diverse environments that V2V communications
need to support. Considering that the RL agent is trained “off-
line,” i.e., before its deployment, it is desirable to learn a policy
that is applicable to different environments of interest without
further training. This would eliminate the need of training a new
agent from scratch every time an unseen (yet similar) condi-
tion arises in the deployed environment. Furthermore, it would
offer the possibility to train the agent in a simpler, simulated
environment, saving from the burdens of real-world training.

As we elaborate in the following, we design the state, action,
reward, and training of VRLS to be applicable to any DOCA
environment having an arbitrary size and number of lanes,
with any number of vehicles inside, utilizing any resource pool
configuration with an arbitrary number of resources in time
and frequency. These design features aim at making VRLS a
practical solution that is deployable in a variety of realistic OOC
environments with different mobility, network load, and wireless
conditions, and further facilitate efficient and practical training
over simpler and simulated ones.

A. State Representation

We devise the state St to provide the agent with information
on how the resources are utilized at each instant t a vehicle is
entering the DOCA. Formally, St is a matrix (shown in Fig. 3)
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Fig. 3. State representation of a simple exemplary scenario in the DOCA provided to the DNN of VRLS.

with each row representing a resource (TB) in the resource pool,
and the columns providing the following information:
� C: number of vehicles each resource is assigned, normal-

ized to the maximum number of vehicles that the DOCA
can accommodate (derived by J × LDOCA/Lveh, consid-
ering the case where all lanes are fully occupied). C repre-
sents whether the resources are free and, if not, how much
loaded. The vehicle density in the DOCA could also be
obtained fromC by accounting for the sum of the allocated
resources in proportion to the calculated maximum number
of vehicles.

� Δx: distance from the entrance point of the DOCA to the
latest vehicle the resource was assigned to, normalized
to LDOCA. The distance is estimated by multiplying the
amount of time passed since the vehicle went out of cover-
age by the average speed vavg of the vehicles in the DOCA,
as their speed might vary over time. Δx represents how far
the potential interferers are, hence facilitating spatial reuse
of each resource.

� The order of the columns represents the direction of the
vehicle entering the DOCA. The first pair of columns
provides C and Δx for the vehicles traveling in the same
direction as the vehicle entering the DOCA, while the
second pair provides the information from the opposite
direction of the DOCA.

Algorithm 1 details how St is calculated. The following
variables are input for each vehicle i inside the DOCA: time
of its entry ti, assigned resource ri, traveling direction (i.e., east
or west) di; as well as the average speed of the vehicle traffic
vavg and the current time tnow.

St is applicable to any number of resources and vehicles, and
any DOCA size, thanks to the normalized state variables. An
example St is illustrated in Fig. 3 for a simple scenario with 4
resources and a DOCA of LDOCA = 250 m, where a maximum
of 50 vehicles of Lveh = 5 m can fit per lane.

B. Action Definition

The agent takes an actionAt at each instant t a vehicle is about
to enter the DOCA. In case multiple vehicles enter at the same
instant, the corresponding actions are taken in random order.
Action denotes assigning a single time-frequency resource, i.e.,
a TB, which the vehicle uses for its V2V transmissions through
the DOCA. Accordingly, the action-space is a vector of K ×M
TBs in the resource pool configured in the network. VRLS gives

Algorithm 1: Calculation of the State Representation St.
Require ti, ri, di ∀i, vavg, tnow

1: Update vehicle distances: Δxi ← vavg(tnow − ti) ∀i
2: Remove vehicle if it left the DOCA (Δxi > LDOCA)
3: for each resource in the pool r = 1, 2, . . .,K ×M do
4: for each road direction d = {east,west} do
5: Find vehicles using the same resource in the

same direction (check if di == d && ri == r)
6: Update C of the respective d and r with the

number of found vehicles
7: Sort distances of found vehicles to find

min(Δxi)
8: Update Δx of the respective d and r with

min(Δxi)
9: end for

10: end for
11: Order the columns of St w.r.t. the direction of the

entering vehicle
12: return St

the decision on which TB to be assigned at time t by its policy π.
The policy is a mapping π(at|st)→ [0, 1]K×M from the state
St of the environment at t, to a probability distribution over the
set of possible actions (the TBs in the resource pool). The TB to
be assigned is selected at random according to this distribution.

C. Deep Neural Network Architecture

The large space of possible combinations of vehicles and
resources makes tabular RL methods infeasible for this prob-
lem [47]. This leads us to apply approximate solution methods
by utilizing a DNN to represent the policy. DNN consists of a
set of adjustable parameters θ, i.e., πθ(at|st) that maps a given
state to action probabilities.

We utilize a convolutional neural network (CNN) to modelπθ .
At the input layer, we utilize 4 sets of convolutional filters, each
processing a different column of St, as illustrated in Fig. 3. Each
set contains 16 1D convolutional filters of length 10 and applies a
tanhnonlinearity. The output of these filters is then concatenated
and input to the hidden layer of the CNN, which is another
convolutional layer with 32 1D filters of length 10. The output
layer of the CNN is a fully-connected layer with the number of
units equal to the number of actions, i.e., K ×M TBs available
in the configured resource pool. The softmax activation function
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is applied at the output to produce a probability distribution over
the actions, from which the TB to be assigned is selected at
random.

D. Data Augmentation

The output of convolutional layers is variant to the order of
the input data they process, due to the convolution operation.
Although this is useful for their most common applications, such
as processing images or audio that present naturally ordered data
(e.g., ordered pixels in space), this feature poses a limitation in
our case. The policy of VRLS should not depend on the order of
resources presented inSt, but rather on the information provided
about them. That said, the HD constraint depends on the order of
resources in the resource pool, as the HD error is caused by using
the resources in the same subframe. For example, the two pool
configurations C4×5 and C2×10 have different HD constraints,
although both have the same number of resources, and there is no
information in the state representation to differentiate between
them.

To address this challenge, we resort to data augmentation
methods. Data augmentation is commonly utilized in deep
learning, e.g., for image classification tasks, where the agent
is made to learn becoming invariant to modifications of the
data, e.g., image rotation, clipping, etc., by providing the agent
with such modified inputs during the training [48]. In our case,
we apply data augmentation by randomly shuffling the order of
resources first in time and then in frequency. The rows of St

and the resource selection probabilities at the output layer of
the DNN follow this order. To illustrate our method, consider
the example in Fig. 3. A raster-scan ordering of the resources in
the resource pool is [r1, r2, r3, r4]. We first group the resources
sharing each subframe (corresponding to “columns” of the re-
source pool), and randomize the order of these groups. This
yields a raster-scan ordering of, e.g., [r2, r1, r4, r3]. Then, we
group the resources sharing each subchannel, i.e., the “rows”
of the pool, and randomly shuffle the order of the “rows”. This
way, the convolutional network becomes invariant to the order
of resources in time or frequency, while being able to infer the
HD constraints among the resources.

E. Reward Definition

We incorporate the reliability metric PRR into the reward
signal Rt+1 as a linear function of it: Rt+1 = −10× (1−PRR).
PRR is computed at a certain range of interest for all trans-
missions within the DOCA since the last action, i.e., in between
each vehicle arrival to the DOCA. The range at which the PRR is
measured for the reward could be determined by several factors,
such as the distance at which a target PRR value needs to be
satisfied; additionally, it can also be limited by the transmission
power of the vehicles. In case no transmissions take place
between consequent actions, e.g., when two vehicles enter the
DOCA almost at the same time, we provide the reward of the
previous action to the agent.

F. Training Algorithm

In any RL task, the goal of the agent is to maximize its return
Gt, i.e., the future rewards it receives in the long run. In its
simplest form,Gt =

∑Lepoch

l=1 Rt+l, given an epoch of experience
that consists of Lepoch sequential tuples of state-action-reward.
The return is estimated via a value function v(st), indicating
how “good” it is for the agent to be in a state and to follow the
policy π onwards. Given the large state space of our problem,
we also parametrize the value function with a DNN, with a set of
parametersw. vw(st) utilizes the same architecture as the policy
DNN in Section IV-C, except for its final layer, which is a single
fully connected neural unit that outputs the value of the given
state.

We employ a state-of-the-art RL algorithm called policy-
gradient actor-critic [47] to train both DNNs. “Actor” refers to
the component that learns the parameterized policy πθ(at|st),
and “critic” is the component that learns the parameterized
value function vw(st) in order to evaluate the actor’s policy,
i.e., to “criticize” it. The actor updates the policy parameters θ
by applying gradient ascent (with step-size α) in the direction
the critic indicates as “good”. The critic evaluates the actor’s
policy by measuring δ = Gt − vw(st), i.e., the error between
vw(st) that it estimated and the actual return received from the
environment. The parameters w of the critic are also trained in
the direction indicated by α× δ.

To improve training efficiency, we utilize parallel training.
Specifically, we employ multiple learning actors, referred to as
workers, as proposed in [49]. A total of Nworker workers are
executed in multiple instances of the training environment in
parallel. Each instance is simulated with a different random
seed and initialized with a random resource assignment to the
vehicles, with the first action being also randomized. Each
worker asynchronously gathers epochs of experience (of length
Lepoch) in its own environment. After every epoch, the worker
updates the parameters of a single global policy and a value
function that are shared by all the workers. In the end, we obtain
the global policy that is trained using multiple workers, to be
deployed in the target environment. This approach is beneficial
in terms of speeding up the training thanks to a more efficient
exploration of the state-space of the environment under distinct
policies of multiple actors, and the added diversity helps to learn
a general policy applicable to similar environments [49].

G. On Real-World Implementation of VRLS

In this study, we train and evaluate the performance of VRLS
in simulative environments. Yet, the proposed methods might
as well be implemented in a real-world vehicular network. In a
real-world scenario, network vendors or operators would imple-
ment VRLS as an intelligent controller deployed at the edge of
the network and integrated into the radio access network (RAN),
thanks to the enabling architecture envisioned for 5G and beyond
networks [50]. Within this architecture, the BSs deployed at
the entrance/exit of the DOCA can be realized as remote radio
units. While these radio units serve physical layer functions,
they are connected to a centralized entity that is responsible for
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TABLE I
ALGORITHMIC COMPLEXITY OF VRLS

V : number of vehicles within the DOCA; K, M : number of subchannels and subframes of the resource pool configured for V2V communications.

resource allocation and other higher-layer functionalities, where
VRLS can be implemented. By implementing VRLS, operators
would aim at ensuring seamless quality of V2V communications
when vehicular users experience coverage losses. This would in
turn ensure safer and more efficient road traffic. With regards to
deployment and operation costs of VRLS, since being a logical
entity, it can be implemented as software and can make use of the
processing hardware available at the network infrastructure. Ad-
ditional processing power is necessary to train the RL agent (with
high processing requirements and the possible need to pre-train
on the simulated environments), and to operate it (with relatively
low processing requirements). VRLS can again benefit from the
fact that in 5G RAN, there are more computational resources
deployed at the network edge to train learning algorithms [50].

To train and operate VRLS, the BSs delimiting the DOCA
would collect and report the required data constituting the state
information input to VRLS as described in Section IV-A. The
BSs can easily keep track of the time of entry ti and assigned
resource ri for each vehicle, autonomously, thus not requiring
any additional signaling between the vehicles and the BS. Fur-
ther, the BSs can obtain the information pertaining to di and
vavg from the regular V2V traffic such as CAMs that vehicles
transmit, thus again not requiring any additional signaling. The
collected information at the BSs is forwarded to the centralized
agent when an action is required. In turn, the actions of VRLS,
namely the resource allocation, will be signaled to the vehicles
via the BSs, before they enter the DOCA from the respective
direction. Considering a pool configuration ofCK×M , signaling
of an assigned resource would consist of log(K +M) bits of
information. Assuming a vehicle traffic of 0.4 vehicles/s/lane
arriving at a DOCA with 3 lanes per direction [3], and a pool
of C2×100, this would correspond to∼ 8 bits/s of downlink data
traffic per BS.

In Table I, we provide the algorithmic complexity of VRLS
during its real-time operation (i.e., online inference phase), by
decomposing it into two stages: i) the calculation of St as
described in Algorithm 1; and ii) the processing of St by the
trained CNN to select the resource as described in Section IV-C.
Stage (i) yields a time complexity of O(KMV log V ), which
is due to Step 7 that sorts at most V vehicles in the DOCA, for
each resource and direction, i.e., 2KM times. At stage (ii), the
time complexity of the CNN is dominated by the multiplications
at its fully-connected output layer, which yields O(K2 M 2).

Altogether, when both stages are combined, VRLS has a time
complexity of O(K2 M 2 +KMV log V ) during its real-time
operation, thereby allowing a practical implementation.

In terms of memory requirements, the algorithm in stage
(i) stores 3V + 2 + 4KM variables (3 per vehicle, vavg, tnow,
and St having 4KM entries), which results in a space com-
plexity of O(V +KM). At stage (ii), CNN stores a total
of 4× 16× 10, 32× 10, and 32× (4× 16(KM − 10 + 1)−
10 + 1)×KM parameters at its input, hidden, and output layer,
respectively, hence yielding a space complexity of O(K2 M 2).
Overall, the space complexity of VRLS is O(K2 M 2 +
KM + V ), which is practical from the implementation point
of view.

For training VRLS, it is possible to collect the reward signal
from the network also in a real-world implementation. For ex-
ample, vehicles could keep track of sent/received V2V message
IDs with time and location stamps, which they report to the BSs
after going back to the coverage. In turn, the BS calculates the
PRR using this information to derive the reward. Such report
sent by each vehicle would consist of the IDs and time/location
stamps of the messages it has transmitted and received during its
past travel within the DOCA. We illustrate the incurred overhead
with an example setting as follows. Assuming an average vehicle
speed of 50 km/h with an arrival rate of 0.4 vehicles/s/lane, there
will be 173 vehicles in a DOCA of 1000 m with 3 lanes/direction
at a given time, on average. It would take 72 s on average for
a vehicle to travel through the DOCA, where it transmits 720
V2V messages, and receives at most 123 840 messages from
other vehicles, assuming a message transmission rate of 10 MHz
(i.e., Tmsg = 100 ms [3]) per vehicle, and all transmissions
being successfully received by all vehicles. Further assuming
that vehicle IDs are represented with 10 bits of information, and
it takes 16 bits to represent the timestamp [41] and 64 bits to
represent the location stamp of each message [51], each vehicle
would then collect and report 1.40 MB of information to the BS.
This would correspond to around 1.69 MB/s of uplink traffic per
BS on average. The delay in gathering the information does not
pose a limitation for training since the agent acquires experience
(the sequence of state-action-reward tuples) in batches before
each training step.

On the other hand, training VRLS in simulative environments
(and, if needed, re-training during a real-world usage) would
circumvent numerous challenges associated with real-world



ŞAHIN et al.: SCHEDULING OUT-OF-COVERAGE VEHICULAR COMMUNICATIONS USING REINFORCEMENT LEARNING 11111

training from scratch. By simulation, it is easier to create and
collect sufficient data; hence the training becomes more flexible
and less time-consuming. Besides, the costs of additional signal-
ing and processing overhead at the network and at the vehicles
required to collect data would be avoided.

V. EVALUATION METHODOLOGY

A. Key Evaluation Metrics

In addition to the reliability metric PRR defined in Section III-
C, we also consider the following performance metrics:
� Mutual awareness: We use the mutual awareness met-

ric [52], [53] to study the impact of PRR on the per-
formance of applications running over V2V links. The
authors in [53] propose awareness probability PA as an
intermediate metric that relates the network quality of
service to the application performance. PA is defined as
“probability of successfully receiving at least n packets
from a transmitter within the application tolerance time
window T ,” i.e., PA =

∑k
n

(
k
n

)
pn(1− p)k−n, where p is

the PRR at the transmitter-receiver range of interest, and
k is the number of packets sent during T [53]. Thus, PA

reflects the network performance in the form of PRR, i.e.,
reliability, and can be used to evaluate its impact on the
performance of V2V applications. Each application can set
requirements on PA, as well as on n and T . Requirements
of several V2V applications are exemplified in [53], which
we provide in Section VI-B.

� Fairness: Since the PRR is reported for all vehicles and all
V2V transmissions, this does not indicate whether all vehi-
cles experience the same (or similar) reliability. Therefore,
the following fairness metric is additionally used in this
paper: the average PRRj is computed separately for each
vehicle j, and afterward, the standard deviation of these
per-user averages is estimated.

� Packet inter-reception time (PIR): PIR is defined as the time
elapsed between two successive successful receptions at a
certain vehicle, transmitted from another one [3]. It is used
to evaluate the “situational awareness” of the vehicles at
the V2V application layer [54].

� Latency: An important scheduling metric is the latency
of V2V messages. The latency is measured between the
time a V2V message is generated at the transmitter and
successfully received by the receiver, at their application
layers, respectively.

B. Training Environment Model and Methodology

The training environment (denoted as “E0”) has basic vehicu-
lar mobility and wireless channel characteristics, which enables
an efficient training thanks to reduced simulation time. The
communications in the training environment is abstracted by
the protocol model [55], i.e., a transmission is assumed to be
successful if: i) no other transmitter is using the same TB within
a transmission range of RTx = 120 m from the receiver; and ii)
the receiver is not transmitting at that time (HD constraint). The
impact of path loss and fading in the training environment is

simplified by assuming correct decoding of the received packets
within a range of RTx, and unsuccessful reception beyond that
distance. The mobility is simple with 30 vehicles having the
same constant speed of 50 km/h, initially placed uniformly
at random inside a DOCA of length LDOCA = 500 m with
J = 1 lane/direction of 4 m width. Upon exiting the DOCA,
the vehicles are returned back from the opposite direction after
a time offset∼ Exp(0.4), leading to an average inter-vehicle gap
of 2.5 s [3]. The V2V resource pool in the network is assumed to
be configured with C2×10, i.e., 2 subchannels by 10 subframes,
to generate loaded conditions with a V2V message traffic that
has a fixed periodicity of Tmsg = 100 ms.

The training is conducted usingNworker = 16 workers in paral-
lel, each interacting with a different instance of the environment
in epochs of length Lepoch = 60. Considering the transmission
range ofRTx = 120 m and the usage of the protocol model, PRR
is measured at a range of 0–100 m away from the transmitters
when calculating the reward signal Rt+1. Such a range is crucial
to avoid imminent crashes between vehicles, where communi-
cation reliability needs to be ensured according to V2V service
requirements [56].

C. Evaluation Environment Models and Methodology

We evaluate the performance of VRLS trained on the simple
environment E0, over realistic environments accommodating
various mobility, density, wireless channel conditions, and mes-
sage traffic in the DOCA. To simulate the vehicular network
in the evaluation environments, we use a full-stack LTE V2V
protocol in ns-3 [57], based on our own implementation that
extends the openly available D2D [58] and LTE [59] modules.
The V2V channel model consists of a realistic path loss and
shadow fading according to the 3GPP evaluation methodol-
ogy [3] (cf. Table II for details). Further, we simulate the vehic-
ular mobility in the evaluation environments using the realistic
traffic simulator SUMO [60]. Mobility traces from the simulated
scenarios we describe below are first generated using SUMO;
then, the traces are input to ns-3 to simulate the location of the
vehicular nodes. In SUMO, new vehicles are created at different
times, which continuously enter and leave the DOCA during the
simulated time. In ns-3, however, all nodes need to be created at
the beginning of a simulation. Therefore, we turn off the radio
functionality of any node outside the DOCA during the network
simulations in ns-3.

In our evaluations, we consider two realistic environments
denoted as “E1” and “E2”. E1 has a single lane per direction,
which obliges vehicles to drive in an ordered manner, thus
representing a use case similar to platooning. Whereas, E2 has
two lanes per direction, which yields more dynamic mobility
due to the second lane allowing overtaking. We consider two
DOCA lengths of LDOCA = 500 m and LDOCA = 1000 m for
both environments. The vehicle arrivals to the DOCA follow a
Poisson distribution with rate 0.4/s (mean of 2.5 s inter-arrival
time) per direction as per the 3GPP evaluation assumptions [3].
The vehicles follow a stochastic driving behavior by randomly
varying their speeds based on the utilized car-following and
lane-changing models [61], [62], which depend on, e.g., average
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TABLE II
SIMULATION PARAMETERS

speed, road length, etc., hence making the mobility even more
realistic in the evaluation environments. We vary the mean and
variance of the vehicle speeds in both environments to create
different loads of the vehicular traffic over time and space.
Specifically, we consider two scenarios in terms of vehicle
density, denoted as loaded (“L”) and highly loaded (“HL”), both
in E1 and E2, where the mean speed of the vehicles is set to
120 km/h and 50 km/h, respectively (i.e., the slower, the denser).
Further, the speeds among the vehicles are normally distributed,
where we set the variance to 10% and 30% of the mean speed
values in E1 and E2, respectively. The higher variance of speeds
in E2 increases the occurrence of vehicle take-overs across the
two lanes.

Unless otherwise stated, the vehicles generate a periodic V2V
traffic with Tmsg = 100 ms and Smsg = 190 B (as common to
CAMs [3]). We set the MCS index as 9 and the number of RBs
per subchannel as 16 to fit the transmission of a single message
of 190 B into a single subchannel. In order to simulate loaded
(and highly loaded) channel conditions in our evaluations, we
assume that the resource pool consists of 2 subchannels in
the frequency domain (within an overall V2V bandwidth of
10 MHz) and 10 subframes in the time domain (hence denoted
by C2×10) unless otherwise stated, considering the number of
vehicles and their V2V message generation rate. We accordingly
set the length of the resource selection window of the mode 4
algorithm to 10 ms with T1 = 4 [3] and T2 = 14 ms. T1 is to
allow a processing time for the vehicles before they transmit
their V2V messages, and T2 sets a limit on the maximum latency
of the transmissions. Pkeep is set to 0, which leads to a dynamic
re-selection of resources as much as possible, and has been
shown to improve the reliability by avoiding persistent collisions
especially under (highly) loaded channel conditions as in [63].
To enable multiple collision domains within smaller DOCA
lengths (500 m), we set the V2V transmit power as −5 dBm,
which yields a maximum communication range of around
200 m. This allows us to simulate environments with fewer

vehicles, thus taking shorter simulation times. Nevertheless, we
evaluate the performance of the algorithms also with the trans-
mission power set to its allowed maximum value of 23 dBm [64]
in Section VI-D. The further parameters related to the environ-
ment models, training of VRLS, and configuration of mode 4
are as listed in Table II.

VI. VRLS PERFORMANCE

A. Reliability Performance

In Fig. 4, we compare the reliability of VRLS and mode 4 in
E1 and E2 with loaded (L) and highly-loaded (HL) traffic
with two DOCA sizes of LDOCA = 500 m and 1000 m, using
different subfigures. The plots provide the mean (solid curve)
and the standard deviation (shaded region) of the average PRRs
calculated in 10 s intervals, for a simulation duration of 1000 s
(excluding the initial warm-up phase of 200 s due to the initial
random assignment of resources).

Fig. 4 shows that VRLS achieves better performance than
mode 4 in all of the considered scenarios. VRLS is typically
able to maintain a higher PRR over larger transmission ranges
in both E1 and E2. The performance of mode 4 degrades more
with the increasing distance between the transmitters and the
receivers, mainly caused by the hidden-node problem leading
to packet collisions. Beyond 100 m, the path loss effect of the
wireless channel becomes dominant, and inevitably reduces the
PRR of both algorithms.

To isolate the errors due to scheduling, in Table III, we
numerically show the percentage of the packet losses due to
the scheduling of the algorithms. The percentages at each
transmitter-receiver (Tx-Rx) range are calculated as the differ-
ence between the achieved mean PRR and a reference value
giving the maximum possible mean PRR in the environment.
The reference values represent an ideal scenario, which assumes
that there are always sufficient resources for all transmissions,
and the packet losses are only due to propagation errors. For
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Fig. 4. Performance of VRLS and distributed scheduling algorithm mode 4 in the DOCA environments E1 and E2 with different vehicular mobility scenarios.
PRR vs Tx-Rx distance shown with mean (solid curve) and standard deviation (shade).

TABLE III
PERCENTAGES OF PACKET LOSS DUE TO SCHEDULING, AND MEAN LATENCY IN E1 AND E2

convenience, we also plot the maximum possible PRR as a
reference curve in Fig. 4(a), 4(e), and in Fig. 6.

From Table III, we observe that VRLS has superior perfor-
mance compared to mode 4 in all scenarios. Within a 100 m
of Tx-Rx range, VRLS maintains a higher rate of successful
packets. Beyond this range, the packet losses are predominantly
caused by the propagation loss rather than the scheduling,
given the low transmit power. In scenarios E1-L and E2-L
with LDOCA = 500 m, VRLS shows a performance close to
the ideal scenario. The PRR for both algorithms is degraded
considerably with the increased vehicular density, as well as the
increased DOCA size that impact the interference conditions. In
the highly-loaded scenarios, the collisions increase due to the
allocation of the same resources to different vehicles. In such
cases, although both algorithms perform sub-optimally given
the limited number of resources, VRLS results in half the packet
losses compared to mode 4.

We examined the policy that VRLS learned by observing the
course of states and actions. VRLS develops a strategy to divide
the resource pool dynamically into two directions of the
highway, in proportion to the data traffic demand.
Simultaneously, VRLS performs resource reuse per direction,
hence mitigating the hidden-node problem. Given the loaded

conditions, HD errors in the network become inevitable even
though the collisions could be avoided. Namely, vehicles can
be allocated to different subchannels, yet sharing the same
subframe. To illustrate, with C2×10, when there are 20 vehicles
in the DOCA, each of the 10 subframes would be shared by
two vehicles using different subchannels in order to avoid any
resource collisions. Yet, such an allocation would result in HD
errors among these vehicles when they enter within each other’s
communication range. In fact, in such loaded scenarios, the prob-
ability of unsuccessful transmissions due to HD errors would be
even larger if the pool consisted of fewer subframes and more
subchannels (e.g., C4×5) as more vehicles would be required to
use the different subchannels sharing each subframe to avoid
any collision errors. We evaluate and observe such different
resource pool configurations in Section VI-F. Yet, VRLS learned
to assign the resources with HD conflicts, i.e., the subchannels
sharing the same subframe, to vehicles in the opposite directions
rather than to the nearby vehicles in the same direction. Such
assignment strategy results in comparatively fewer HD errors, as
those vehicles pass by each other for a shorter duration of time.
The outcome is especially observable in E1. The single-lane
traffic in E1 results in a minimum inter-vehicle distance of about
40 m within a lane. The Tx-Rx distances below 40 m have a
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Fig. 5. PRR evaluation of VRLS and mode 4 with aperiodic V2V traffic in the
environment E2-HL with LDOCA = 1000 m. PRR vs Tx-Rx distance shown
with mean (solid curve) and standard deviation (shade).

reduced PRR, which occurs only as a result of the vehicles from
opposite directions passing by each other. Compared to E1, the
second lane in E2 enables the vehicles to overtake each other,
hence resulting in a more dynamic environment. Subsequently,
the distance between the vehicles in the same direction can take
any value, resulting in a smoother decrease of the PRR with the
increasing Tx-Rx range, as compared to E1. The trained VRLS
policy is efficiently deployable in such a dynamic environment
with varying vehicular density and network load over time and
space, where it can deliver higher reliability than mode 4.

B. Impact of Network Quality of Service on V2V Applications

We evaluate the impact of PRR on the performance of V2V
applications, by utilizing the awareness probability PA. As
an illustrative example, the lane-change warning application
requires at least n = 3 messages to be received within T = 1 s
with PA = 99% to make the neighboring vehicles aware of the
intended maneuver [53]. Following our assumption of 10 Hz
message frequency, i.e., k = 10, and assuming independent
message errors, this translates into a PRR requirement (i.e.,
p given PA) of 61.12%. In our multi-lane environment E2,
VRLS can achieve such a PRR at up to a 120 m of range for
LDOCA = 500 m (see Fig. 4(e) and 4(g)), and up to around
80 m in LDOCA = 1000 m (Fig. 4(f) and 4(h)). In comparison,
mode 4 achieves around 100 m and 80 m of an awareness range
in LDOCA = 500 m under the loaded and highly-loaded traffic,
respectively. In the case of LDOCA = 1000 m, mode 4 yields
an awareness range of 30 m for the loaded scenario, and cannot
satisfy the requirement at all for the highly-loaded scenario.

C. Performance Under Aperiodic V2V Traffic

We further evaluate the performance of VRLS under event-
triggered V2V traffic. The vehicles are assumed to generate
a message upon each event, where the event arrivals for each
vehicle follow a Poisson distribution with a rate of 1 event/s
(Xevt = 1/s). In Fig. 5, we report the PRR performance of
the algorithms in scenario E2-HL with LDOCA = 1000 m by
considering aperiodic traffic only (not coexisting with periodic
traffic). The event-triggered traffic results in less frequent V2V
message generation as compared to the periodic traffic, which

Fig. 6. PRR vs Tx-Rx distance with mean (solid curve) and standard deviation
(shade) for VRLS and mode 4 in comparison to the maximum possible value
(reference) in E2-L with LDOCA = 1000 m, PTx = 23 dBm, and C2×50.

effectively creates a lower network load. Accordingly, the per-
formance of both algorithms is increased (observed also in other
scenarios), with VRLS achieving a PRR very close to 100% up
to a range of 80 m. The results show that the policy learned by
VRLS for the periodic traffic is applicable to the aperiodic type
of traffic as well. On the other hand, mode 4, which is a solution
primarily designed for periodic V2V traffic, underperforms in
this setting.

D. Performance Under High Transmit Power and Larger Pool

For all of the results above, the vehicle transmit powers are
set to PTx = −5 dBm, whereas the allowed maximum for V2V
transmissions is 23 dBm [64]. To ensure that the performance
of VRLS holds for larger and arguably more realistic commu-
nication ranges, we evaluate the performance of the algorithms
with the transmission power set to 23 dBm for all vehicles in
E2-L with LDOCA = 1000 m. In order to compensate for the
increased interference caused by the high-powered transmis-
sions, we consider a pool that consists of 2 subchannels and
50 subframes, i.e., C2×50, which is five times larger than the
resource pool configuration C2×10 we have considered so far.
For this scenario, VRLS is trained in E0 as well, but utilizing
the resource pool C2×50.

Results of the algorithms are provided in Fig. 6, where we
see that both algorithms achieve very high reliability, close to a
100% PRR at shorter Tx-Rx distances, owing to the sufficiently
provisioned resources. VRLS delivers a marginally higher PRR
than mode 4 at almost all Tx-Rx ranges. The results demonstrate
that VRLS is trainable in environments having different resource
pool configurations, and that the learned policy is applicable
to scenarios with different transmission ranges. The small per-
centage of the packet losses results mainly from propagation
errors, but also due to HD or even collisions to a small extent.
In the case of mode 4, vehicles cannot sense the subframes
they transmit on (due to the HD constraint); thus there exists
a probability of selecting the resources used by other vehicles
that might interfere or collide. In the case of VRLS, although the
learned policy avoids allocating the same resource to more than
a single vehicle, it is challenging for the agent to learn the HD
constraints in such a large and sparse state-space, where some
of its assignments lead to HD errors.
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Fig. 7. Per-user mean PRR of VRLS and mode 4 in E1-HL with LDOCA =
500 m; shown with mean (solid curve) and standard deviation (shade).

Fig. 8. PIR performance of the algorithms in E2-HL with LDOCA = 500 m,
shown with mean (green, dashed, denoted): 101.0V , 127.4M ; median (orange):
100.0V , 100.0M ; 25th and 75th percentiles (black): both 100.0V , 100.0M ; 0.1st

and 99.9th percentiles (whiskers): 100.0V , 100.0M and 200.0V , 2000.0M ; and
outliers (rings), measured at Tx-Rx distances of 0–50 m (V:VRLS, M:Mode 4,
values in ms).

E. User Fairness, Packet Inter Reception, and Latency

Although our solution gives an equal opportunity to all vehi-
cles to transmit in the DOCA by allocating resources, the PRR
results do not provide the information on whether fairness is
ensured, i.e., the PRR of a certain group of users is not sacrificed
in favor of system-wide performance. In Fig. 7, we provide the
mean and the standard deviation of the per-user average PRRs, to
evaluate the variation of reliability across the users. The results
are presented for the highly-loaded environment E1-HL with
LDOCA = 500 m. We observe that VRLS is able to deliver its
performance without sacrificing user fairness. Both VRLS and
mode 4 achieve a similar variation of mean PRR across the users,
where the standard deviation is around 0.025 considering all
Tx-Rx ranges.

In Fig. 8, we report another per-user performance metric, PIR,
in the environment E2-HL with LDOCA = 500 m, measured
within a 50 m of Tx-Rx range, in terms of mean and percentiles.
We observe that VRLS achieves better performance than mode
4, the latter resulting in at least 25% larger PIR on average. Note
that for both algorithms, all quartiles of the PIR are at 100 ms,
which is equal to Tmsg. We have observed that the relative PIR
performance of the algorithms in the other scenarios are also
similar, where VRLS achieves a mean PIR close to 100 ms, at

most reaching 106 ms, and mode 4 resulting in mean values
ranging from around 115 ms up to 200 ms that mainly increase
with the network load. For the high-transmit-power scenario
in Fig. 6, as the best case, VRLS and mode 4 can achieve
a mean PIR of 100.4 and 100.6 ms, respectively. Combined
with our analysis in Section VI-B, it is evident that VRLS is
able to provide superior awareness to the vehicular users while
maintaining fairness, which benefits the V2V applications.

We report the mean latency measured in all evaluation sce-
narios in the last row of Table III. Note that the messages are at
least delayed by the processing time across the communication
layers, which is assumed to be 4 ms [3], and at most delayed by
the time-length of the resource pool, which is 10 ms, plus the
processing time, as all messages are scheduled within the utilized
resource pool by both algorithms. Both VRLS and mode 4 yield
a similar latency of around 9 ms, on average.

F. Handling Different Resource Pool Configurations

The network might need to operate different resource pool
configurations that may vary in terms of the number of resources
in time and frequency, i.e., K and M , so as to serve different
V2V services with different traffic requirements, or depending
on the availability of resources. Therefore, we are interested in
studying whether and how VRLS can handle a set of different
resource pools configured with different number of resources in
time and frequency, with a single training. Note that the pool
configurations are usually a part of network planning; thus the
configuration information would be available before operating
the scheduler. Given this information, having a single policy that
can achieve an appropriate performance level under all different
configurations would be desirable, instead of training multiple
ones that can only operate on a specific configuration. That
said, it is a challenge to learn and solve the HD and collision
constraints of different pools at once by a single policy, as each
has a different impact on the performance. Such an approach
requires careful consideration of the state and the other RL
components.

We describe our method to train a single policy for multiple re-
source pool configurations as follows. Consider a set of different
resource pool configurations {CK1×M1

1 , CK2×M2
2 , . . .} to be op-

erated by the network, where each pool Ci consists of a different
number of subchannelsKi and subframesMi. We first determine
a superset (“master”) pool configuration CKms×Mms

ms , which can
accommodate any configuration in the set. Accordingly, the
dimensions of Cms are selected as Kms = max(K1,K2, . . .)
and Mms = max(M1,M2, . . .). VRLS is provided with a state-
and an action-space having the same number of resources as in
Cms, i.e., Kms ×Mms. As illustrated in Fig. 9, considering a
case where the network operates four different resource config-
urations {C2×10

1 , C4×5
2 , C5×4

3 , C10×2
4 }, a master pool of C10×10

ms
accommodates all four; thus the state- and the action-space of
VRLS consist of 100 resources. We provide the different pool
configurations to different groups of workers training the VRLS
policy in parallel. Each group of workers i is trained with the pool
configuration Ci, where we only “disclose” the resources of Ci

withinSt by replacing the rows corresponding to other resources
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Fig. 9. Training VRLS with multiple resource pool configurations in parallel.

with the row vector [1, 1, 1, 1]. Further, if the worker selects such
a resource, we provide a large negative reward and execute no
actions until the worker selects a resource within its own pool.
With such training, we aim at limiting the action selection of the
policy only to the represented subset of the resources in St.

In the following, we evaluate our solution for four different
configurations {C2×10

1 , C4×5
2 , C5×4

3 , C10×2
4 }. VRLS is trained

from scratch with a total of 40 workers in parallel, in four groups
of 10 workers. Each group is provided with one of the four
different configurations. If a worker selects a resource outside
its configuration, a reward of Rt+1 = −10 is provided. In turn,
to compensate for the higher variance in the rewards, the training
epoch length is increased to 200 actions. We evaluate VRLS in
a DOCA similar to E0, with 10 vehicles initially placed on the
highway with transmission range RTx = 500 m, resulting in a
single collision domain (transmissions using the same TB are
assumed to collide). Such a simple setting enables a determin-
istic calculation of performance bounds and better evaluation of
whether the learned policy can deal with the constraints of the
different resource pools. Namely, in the case of C2×10

1 , when
all 10 vehicles reside in the DOCA, a 100% PRR would be
achievable only if vehicles were assigned to TBs in different
subframes. With C4×5

2 , the allocation for all 10 vehicles would
be optimal if all TBs were assigned orthogonally first in time,
then in frequency. Every transmission would be received by all
other vehicles except the one transmitting in the same subframe,
due to the HD constraint. Thus, the best assignment of TBs
would result in eight successful receptions out of nine receiving
vehicles, yielding an 88.8̄% PRR. Similarly, in the case of C5×4

3
and C10×2

4 , when all of 10 vehicles exist in the DOCA at the
same time, orthogonal assignment of TBs first in time and then
in frequency would yield 82.2̄% and 55.5̄% PRR, respectively.

In Fig. 10, we report the performance of VRLS when applied
to the network with different resource pool configurations, in
terms of the PRR measured up to a 500 m of Tx-Rx range.
We observe that VRLS yields a mean PRR almost equal to the
calculated bounds of 1.0, 0.8̄, 0.82̄, and 0.5̄ for the configurations
C2×10

1 , C4×5
2 , C5×4

3 , and C10×2
4 , respectively. Note that the larger

Fig. 10. PRR performance of VRLS on different resource pool configurations
CK×M having K subchannels and M subframes, with mean (green, dashed,
denoted), median (orange), 25th and 75th percentiles (box), and 5th and 95th

percentiles (whiskers).

Fig. 11. Learning curves of VRLS in the training environment E0 with
resource pool configurationC2×10 (top left),C2×50 (top right), and with multiple
configurations {C2×10

1 , C4×5
2 , C5×4

3 , C10×2
4 } (bottom).

PRRs are reached when fewer than the maximum of 10 vehicles
reside in the DOCA. VRLS is able to achieve such performance
by learning a single policy that can handle distinct constraints
of HD and collisions for different pools simultaneously.

VII. LEARNING PERFORMANCE

We provide the learning curves of VRLS in the training
environment E0 with different resource pool configurations
that we considered throughout our evaluations, in Fig. 11. The
curves represent the average reward collected by the trained
workers versus the number of training epochs. VRLS converged
to a stable performance level after around 1000 epochs when
trained with a single resource configuration C2×10 as per
Section VI-A. With the larger resource pool of C2×50 as per
Section VI-D, it took around two times longer for the agent to
converge. This is because of additional exploration required by
the increased state and the action space. VRLS obtained a larger
average reward in the case of C2×50 owing to the sufficiently
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provisioned resources in the network. When VRLS is trained
with four resource pool configurations in parallel, i.e., with
{C2×10

1 , C4×5
2 , C5×4

3 , C10×2
4 } as per Section VI-F, it took a

longer time for the algorithm to converge as compared to the
training with a single pool configuration. This is due to the
different collision and HD constraints posed by each different
resource pool configuration that VRLS needs to learn, as well
as the larger state space, which results in slower convergence.
The collected reward is smaller as it represents the average of
dissimilar performance levels on the different pools reported in
Fig. 10. The overall performance is largely converged, which
could be yet further optimized, such as via exhaustive training
on the desired configuration, or with a larger number of workers,
however, calling for increased training time and resources.

VIII. CONCLUSIONS AND OUTLOOK

We designed VRLS, a centralized scheduling approach for
V2V communications outside the network coverage, based on
RL. VRLS is applicable to a variety of vehicular environments
having different sizes, densities, mobility, network load, wireless
conditions, and resource configurations. Because VRLS can be
pre-trained using simulations, it can be trained on a wider range
of environments and resource configurations than what would
be practically doable in the real world. In terms of V2V com-
munication reliability, VRLS outperforms the state-of-the-art
mode 4 scheduler by reducing the packet loss by half in case
of overloaded network conditions, and performing very close
to the maximum possible level under low load. Furthermore,
while achieving similar fairness and V2V communication
latency as mode 4, VRLS provides higher awareness among the
vehicles.

Nevertheless, the actions of VRLS, namely assigning a
single resource to each vehicle going outside the coverage,
might become unfeasible under certain conditions. There
could occur some situations such as road congestion due
to an accident, or cases for which the agent might not be
trained. Our complementary work [65] addresses such issues by
encompassing a hybrid solution that combines the centralized
RL-based approach with the distributed sensing-based
scheduling for areas outside the network coverage. In any
case, if the performance degradation is not tolerable, i.e., the
communications cannot satisfy the requirements of a given
V2V use case, the network could over-provision the resources,
as we have shown, or congestion control mechanisms could be
applied, considering such unforeseeable conditions.

In another line of our work [66], we proposed iVRLS
(in-coverage VRLS) for scheduling in-coverage V2V
communications, which extends the VRLS design by taking
advantage of resource assignments that are possible at all
times and making use of instantaneous and exact knowledge
of vehicular mobility. iVRLS is shown to improve the
V2V transmission reliability under high traffic load, with
less frequent scheduling as compared to a state-of-the-art
scheduling algorithm. Further work remains to evaluate the
network efficiency of the proposed algorithms, by measuring
the number of resources they demand to satisfy target reliability
requirements under varying conditions of network coverage.
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