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Convex Performance Envelope for Minimum Lap
Time Energy Management of Race Cars

Pol Duhr , Ashwin Sandeep , Alberto Cerofolini, and Christopher H. Onder

Abstract—The optimization of the energy management of mod-
ern hybrid-electric or fully electric race cars for minimum lap
time requires a description of the vehicle dynamics performance
envelope, that is, of the tires’ grip limit in corners, braking zones
and during acceleration. In this paper, we present a computation-
ally efficient performance envelope model in the form of convex
constraints on the achievable longitudinal and lateral acceleration,
on the assumption that the path on the track is given. The proposed
acceleration limits are modeled velocity-dependent to take into
account the effect of aerodynamic downforce present in many
circuit race cars. The formulation as linear equality, inequality
and second-order cone constraints allows to embed the model in a
convex energy management optimization framework. To showcase
the approach, we identify the model with data obtained from a
state-of-the-art hybrid-electric Formula 1 car and present results
for the Silverstone and Spa-Francorchamps circuits. The optimal
energy management strategies can be evaluated with a computa-
tional time of less than 1 s. The optimal velocity profile subject
to the performance envelope constraints is close to the measured
one. The good agreement between the optimal solution and the
measurement data shows that the proposed model captures the
vehicle dynamics accurately enough for the purposes of energy
management optimization.

Index Terms—Energy management, Formula 1, hybrid electric,
motor racing, optimal control, vehicle Dynamics.

I. INTRODUCTION

MOTOR racing is all about lapping a given circuit in
minimum time. Put simply, the driver should accelerate

as hard as possible out of each corner and keep accelerating
until braking as late as possible and decelerating just enough
to negotiate the next corner at maximum possible speed and
lateral acceleration. An intuitive manner to represent the driver
and vehicle performance is the so-called g-g diagram [1]. An
example is shown in Fig. 1 with measurement data of a pro-
fessional driver in a Formula 1 (F1) car, which are the fastest
circuit race cars. The diagram jointly represents the measured
longitudinal and lateral acceleration. By Newton’s second law,
the total combined acceleration is proportional to the total fric-
tion force generated by all four tires. The race driver tries to
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Fig. 1. g-g diagram of a contemporary F1 car, with the longitudinal acceler-
ation along represented on the vertical axis and the lateral acceleration alat on
the horizontal axis. The diagram is divided in four quadrants, corresponding to
acceleration and braking combined with right-hand (RH) and left-hand (LH)
cornering, respectively. The color-coding indicates the normalized velocity v.

bring the combined acceleration to the limit imposed by the
tire forces whenever possible, subject to the vehicle dynamics,
thereby operating at the boundary of the feasible space in the g-g
diagram. We call this boundary the performance envelope of the
race car. It can be seen that it is not constant, but varies with
the velocity. Indeed, F1 cars are equipped with an aerodynamic
package consisting of front and rear wings and a flat under-
body, generating an aerodynamic downforce and thus a normal
force on the tires that increases with velocity [2]. Hence, the
friction limit of the tires and therefore the feasible acceleration
increase - an effect exploited by many modern race cars. Given
these observations, any attempt to compute the achievable lap
time of a race car by simulation or optimization must include
some mathematical model that captures its performance enve-
lope.

The achievable longitudinal acceleration is not only deter-
mined by the tires’ friction force, but also by the drag forces
acting on the car and, most importantly, by the propulsive
force that can be provided by its powertrain at any time on
track. Recent years have seen many racing series move towards
ever more complex powertrain architectures. The hybrid-electric
F1 cars introduced in 2014 are certainly the most prominent
example. As shown in Fig. 2, their so-called power unit is of
a parallel-hybrid design and consists of a turbocharged internal
combustion engine coupled to two electric motors: The motor-
generator-unit-kinetic (MGU-K) is used for energy recuperation
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Fig. 2. Schematic of the mechanical and electrical components of the hybrid
electric F1 power unit, showing the turbocharged internal combustion engine
and the two electric motor-generator units MGU-K and MGU-H. Beside the
fuel tank, energy can be drawn from or stored in the battery. Propulsive power
is transmitted to the rear wheels via the gearbox.

in braking phases, to enable engine load-point shifting [3] and
to boost in acceleration phases. The motor-generator-unit-heat
(MGU-H) is coupled to the turbocharger shaft. It mainly recu-
perates excessive power generated by the turbine, but can also
accelerate the turbocharger compound to reduce turbo lag. Both
MGUs are connected to the battery, which serves as an energy
storage. The technical regulations [4] impose strict limits on the
fuel and battery energy consumption during a race, thereby creat-
ing the need for a supervisory energy management controller that
coordinates all the power flows. Considering these restrictions
and the complexity of the powertrain, the energy management
strategies must be carefully optimized for minimum lap time.
The same considerations are valid for other race cars with
energy consumption limits, such as hybrid-electric Le Mans
Hypercars [5] and electric Formula E cars [6].

Against this background, our paper proposes a set of con-
vex constraints that model the performance envelope of a race
car and can be included in a computationally efficient energy
management optimization framework.

A. Literature Review

We identify four relevant fields of research pertaining to the
topic of minimum-lap-time energy management optimization.
The first one concerns the aforementioned g-g diagram. It was
identified as a simple but suitable manner to analyze driver
and vehicle performance [1] and to represent a race car’s per-
formance envelope [7]. The practical applications of the g-g
diagram are very diverse, ranging from driver models [8] to
vehicle stability controllers [9], the analysis of a limited slip
differential’s impact on vehicle dynamics [10], the control of
autonomous vehicles at the grip limit [11], [12], and even
performance analysis of race motorcycles [13].

The second research field covers minimum-lap-time vehicle
dynamics. The most common approaches are quasi-steady-state
or transient lap time simulations [14], [15]. In quasi-steady-state
methods, the path on the circuit is given and subdivided into
sections of constant curvature, where the maximum steady-state
acceleration values are determined [7]. This can be done on the
basis of a g-g diagram [16]. To study the transient behavior of
a race car, more complex models are necessary which include,

e.g., the yaw dynamics. The first proper foray into numerical
lap time optimization with a transient vehicle model came
with [17], where the path and the velocity of a F1 car were
jointly optimized using non-linear programming (NLP). The
method was further extended in [18] with a more advanced
tire model, and computational time was drastically improved by
introducing curvilinear coordinates and numerical modifications
in [19], [20]. The problem was also solved for a go-kart [21]. A
comparison of direct NLP methods and indirect methods is given
in [22]. An alternative approach is to decouple the determination
of the optimal path from the minimum time problem. In [23],
a convex optimization framework was proposed, with the tire
friction circle formulated as a second-order cone constraint.
Recently, the focus was put on model predictive control ap-
proaches for the time-optimal online control of autonomous
race cars. Some authors have applied convex optimization [24],
[25], while others relied on NLP [26], [27]. In [28], iterative
learning control was combined with a trajectory modification
algorithm to gradually minimize the experimental lap time. All
these approaches do not include the modeling and control of the
powertrain.

The third stream of research deals with time-optimal en-
ergy management by only modeling the longitudinal vehicle
dynamics. A fixed path is assumed and a maximum velocity
profile is used to model the tire grip limits by constraining the
velocity in the braking zones, corners and corner exits. The
original formulation was in the form of a second-order cone
program [29]. Extensions included gearshift optimization with
an iterative scheme [30], the optimization of a continuously
variably transmission [31], the consideration of thermal con-
straints stemming from the electric motors using a quasi-convex
formulation [32] and the optimization of the low-level operation
of the F1 powertrain with NLP [33]. The maximum velocity
profile has several drawbacks: While it can be easily measured
at points on the circuit where the car was actually grip-limited,
extrapolation backwards in distance at corner entries and for-
wards at corner exits is required to specify a useful constraint,
relying either on imprecise heuristics or on complex vehicle
dynamic simulations. Moreover, scaling the maximum velocity
profile to emulate different grip levels [34] is devoid of physical
meaning, since in reality the car is not limited in velocity,
but rather in the acceleration stemming from the total tire
force.

Finally, some researchers have solved the minimum-lap-time
energy management problem while also considering the lateral
vehicle dynamics. This is mostly done with non-convex NLP,
and whilst these methods use very precise transient models,
they do not have optimality guarantees and are impractical for
large parametric studies due to long computational times. For
instance, the energy management, driving path and velocity
profile of the F1 car were jointly optimized in [35]. For electric
racing cars, the time-optimal interactions between the energy
management and the driving path were investigated in [36],
[37], and thermal constraints on the powertrain were considered
in [38]. Similarly, an indirect method was applied to solve the
minimum lap time problem for a series-hybrid car [39]. While
researchers lately have proposed extremely fast-computing NLP
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methods such as the alternating direction method of multipliers
to solve the energy management problem of road cars [40], these
were not yet adapted to the race car problem. Quite recently,
convex optimization [41] was used with a tire friction circle to
study the effect of torque vectoring in electric race cars on a
fixed driving path.

B. Research Statement

To the best of the authors’ knowledge, so far there exist no
simple phenomenological models for the performance envelope
of a race car that can be formulated as convex constraints, have a
useful number of fitting parameters and can be easily identified
with measurement data collected on the car. In this paper, we
bridge the gap between the approaches relying on a maximum
velocity profile and the fully transient models. We therefore
focus on a computationally efficient optimization framework
for the minimum lap time energy management problem which
includes a performance envelope model and addresses some
of the drawbacks of the maximum velocity profile approach.
Such a tool can be used to investigate the effect of different
tire grip levels on the energy management strategies, to conduct
parameter studies, to generate reference trajectories for causal
controllers and to benchmark them.

C. Contributions

Our contribution is threefold: First, we propose a set of
second-order cone and linear (in-)equality constraints that limit
the accelerations of the vehicle directly in the g-g diagram,
assuming a fixed driving path. This formulation differs from
other approaches such as [23], [41], which rather constrain the
forces of the individual tires, and facilitates the identification
of the model with data commonly recorded on race cars. We
include a velocity dependency to account for race cars with
aerodynamic downforce. To increase the degrees of freedom in
terms of fitting parameters of the model, we split the longitudinal
acceleration variable into a positive and negative part. As far
as we know, our splitting technique is novel and has not been
proposed yet for this type of problem. It enables us to constrain
acceleration and braking differently. The resulting second-order
cone program is solved with optimality guarantees. Second,
we present a systematic parameter identification approach for
this particular model, in the form of an auxiliary optimization
problem. Thus, the performance envelope model can be directly
identified in the g-g diagram based on measurement data. This
differs from the methods found in literature, where the boundary
of the feasible space in the g-g diagram is determined using
simulations of the vehicle dynamics [10], [15], [16]. Third,
we validate the entire approach by comparing the optimiza-
tion results with measurement data. Additionally, a comparison
between the obtained energy management strategies and those
yielded by the state-of-the-art method [29] based on a maxi-
mum velocity profile shows that our vehicle dynamics model
is sufficiently accurate for the purposes of energy management
optimization.

D. Outline

The case study of a state-of-the-art hybrid-electric F1 race
car serves to illustrate our approach. The remainder of the paper
is structured as follows: In Section II, we formulate the mini-
mum lap time problem and introduce the modeling equations
for the performance envelope. We then describe the parameter
identification procedure in Section III and showcase it with
data of the F1 car. In Section IV, we discuss the numerical
solution of the optimization problem and compare the results
to the measurement data and to the solution obtained with the
state-of-the-art method. Section V concludes the paper and gives
an outlook on future research.

II. MODELING

In this section, we formulate a model for the vehicle dynamics
performance envelope in the form of convex constraints. We first
introduce the concept of lap time minimization and the necessary
relaxations and reformulations which lead to a second-order
cone program [29]. Some details on second-order cone programs
are given in Appendix A. We then present the model of the
drag forces, followed by the novel performance envelope model.
Finally, we summarize the modeling equations for the hybrid-
electric F1 power unit as introduced in [29] and state the optimal
control problem. The identification of the model parameters is
discussed separately in Section III. All the measurements shown
in the subsequent sections were recorded by means of telemetry
on a state-of-the-art F1 car during a complete dry lap of the
Silverstone Grand Prix Circuit. For reasons of confidentiality,
some data has been normalized.

A. Minimum Lap Time Optimization

To achieve convexity, our approach builds on the assumption
that the path on the track, parameterized by the independent
path variable s ∈ [0, S], is known a priori and not subject to
optimization. Hence we assume that the path curvature γ(s) is
also known. It is related to the corner radius r(s) by

γ(s) =
1

r(s)
. (1)

The vehicle path for minimum lap time is called the ‘racing
line’ and in general differs strongly from the center line of the
racetrack. In [17], several methods for obtaining the racing line
are described. In practice, the vehicle path is solely determined
by the driver and his steering input. For the case studies presented
in this paper, the racing line in the form of γ(s) was therefore
synthesized from velocity and acceleration measurements of one
representative lap driven by an expert driver.

The objective of the optimization problem is to minimize
the lap time T along the racing line on a certain race circuit.
Since the track data is distance-based, we write the problem
in space domain and then apply relaxations and reformulations
that render the problem convex. For a start, the objective can be
manipulated as follows:

min T = min

∫ T

0
dt = min

∫ S

0

dt

ds
(s) · ds, (2)
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making it linear in the term dt
ds (s), which is called lethargy [29]

and represents the time consumption per unit distance. It is
related to the velocity v of the car by

dt

ds
(s) =

1
v(s)

. (3)

Equation (3) is the link between the lap time integration in (2) and
the velocity of the race car. Both the lethargy and the velocity are
independent optimization variables, making (3) a non-convex
constraint. However, it can be relaxed to inequality, resulting in
the geometric mean expression

dt

ds
(s) · v(s) ≥ 1. (4)

Using the technique described in [29], we rewrite this in the form
of the second-order cone constraint

dt

ds
(s) · ṽ + v(s) · 1

ṽ
≥

∥∥∥∥∥
2

dt
ds (s) · ṽ − v(s) · 1

ṽ

∥∥∥∥∥
2

, (5)

where ṽ = 1 m/s is a normalization constant. By the objec-
tive (2), it is optimal to minimize the lethargy, and thus (5)
will hold with equality in the optimal solution, meaning that
the originally intended constraint (3) will be fulfilled [29].

Next, we model the longitudinal dynamics of the car. We
consider the race car as a point mass m moving with velocity v
along the racing line. Its longitudinal dynamics are characterized
by Newton’s second law

along =
1
m

·
∑

Flong, (6)

which relates the longitudinal acceleration along to the sum of
the forces Flong acting in longitudinal direction. However, this
cannot be implemented directly in a second-order cone program.
Indeed, by applying the chain rule, we obtain

along =
dv

dt
=

ds

dt
· dv
ds

= v · dv
ds

, (7)

which is a non-convex expression. To circumvent this problem,
we introduce the normalized kinetic energy of the car as

Ẽkin =
1
2
· v2. (8)

The spatial derivative of this quantity is equal to the longitudinal
acceleration

d
ds

Ẽkin = v · dv
ds

= along. (9)

Hence, the longitudinal dynamics (7) can be written in a linear
fashion as

d
ds

Ẽkin(s) =
1
m

· (Fp(s)− Fd(s)), (10)

where Fp is the propulsive force acting at the driven wheels,
while Fd represents the external drag forces acting on the
vehicle. These forces will be modeled in Section II-B. Since
we optimize only a single lap, we add a periodicity constraint
on the kinetic energy state variable

Ẽkin(S) = Ẽkin(0). (11)

The only problem left to resolve is the non-convex equality
constraint (8) linking the kinetic energy to the velocity and thus,
by (5), to the objective. We relax it to the inequality

Ẽkin(s) ≥ 1
2
· v(s)2 (12)

and then rewrite it as a second-order cone constraint:

2 · Ẽkin(s) · 1
ṽ2

+ 1 ≥
∥∥∥∥∥

2 · v(s) · 1
ṽ

2 · Ẽkin(s) · 1
ṽ2 − 1

∥∥∥∥∥
2

. (13)

The following reasoning supports the claim that this relaxation
is admissible: In order to minimize the lethargy, the velocity
must be maximized, as is apparent in (4). Hence, (13) will hold
with equality in the optimal solution, meaning that the physical
relationship (8) will be respected.

B. Propulsive and Drag Forces

Pu denotes the total power produced by the race car’s power
unit and delivered at the driven wheels. Not all of this power
propels the vehicle; some of it is lost in wheel slip [29]. We use
a linear wheel slip equation to model these losses. The propulsive
power is then

Pp(s) = cs · Pu(s)− Pbrk(s), (14)

where cs is the wheel slip coefficient subject to identification,
andPbrk ≥ 0 is the power dissipated in the friction brakes. Using
the fact that force and power are linked by

F (s) =
P (s)

v(s)
= P (s) · dt

ds
(s), (15)

we express (14) in terms of forces and obtain an equation for the
propulsive force featuring in (10):

Fp(s) = cs · Fu(s)− Fbrk. (16)

The external drag forces acting on the vehicle are the aero-
dynamic drag Faero, the hill force Fgrav and the rolling friction
Froll:

Fd(s) = Faero(s) + Fgrav(s) + Froll(s). (17)

The aerodynamic drag force is assumed to be proportional to the
velocity squared. Additionally, we include a term that depends
on the path curvature γ(s) of the racing line. This is useful when
dealing with open-wheel race cars [29]. The modeling equation
is then

Faero(s) = (cd,0 + cd,1 · γ(s)) · v(s)2, (18)

where cd,0 and cd,1 are parameters that have to be identified with
measurement data. For the inclusion in the second-order cone
program, this equation has to be linearized using the kinetic
energy variable, resulting in

Faero(s) = (cd,0 + cd,1 · γ(s)) · 2 · Ẽkin(s). (19)

Denoting by g = 9.81 m/s2 the gravitational constant, the hill
force depends on the track’s slope θ(s) as

Fgrav(s) = m · g · sin(θ(s)). (20)
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Fig. 3. The vehicle dynamics model assumes a quasi-steady-state condition of
motion, separating the acceleration in longitudinal and lateral components. For
the depicted case, the vehicle is accelerating. Usually, the effective longitudinal
acceleration along is smaller in magnitude than the propulsive acceleration
proportional to the propulsive force ap ∝ Fp, due to the drag forces acting
on the car (except for steep hill descents).

Finally, the rolling friction is characterized by

Froll(s) = croll ·m · g · cos(θ(s)), (21)

with the parameter croll subject to identification.

C. Performance Envelope Model

So far, for this type of convex energy management problems,
the grip limit of the race car was modeled with a position-
dependent maximum velocity profile vmax by imposing the
following constraint on the normalized kinetic energy:

Ẽkin(s) ≤ 1
2
· v2

max(s). (22)

By contrast, in this section, we formulate a set of convex
constraints that model the performance envelope of the race car.
It limits the achievable longitudinal acceleration and deceler-
ation as a function of the lateral acceleration by specifying a
feasible set in the g-g diagram. Ultimately, it is comparable to
a quasi-steady-state approach: The longitudinal dynamics are
taken explicitly into account, as described in Section II-A, while
the lateral dynamics are not modeled. We start by defining two
auxiliary optimization variables, as illustrated in Fig. 3.

The first one is the component ap of the longitudinal acceler-
ation that is proportional to the propulsive force:

ap(s) =
1
m

· Fp(s). (23)

The second one is the lateral acceleration alat. In a quasi-steady-
state approximation [17], it increases with the square of the
velocity and is inversely proportional to the cornering radius,
resulting in the well-known formula derived from uniform cir-
cular motion [7]:

alat(s) =
v(s)2

r(s)
= v(s)2 · γ(s). (24)

This equality constraint can be linearized by substituting the
normalized kinetic energy

alat(s) = 2 · Ẽkin(s) · γ(s). (25)

Fig. 4. Schematic representation of an elliptic bound in the g-g diagram, given
by (26). The half-axes of the ellipse are denoted by alat,max and ap,max.

We now derive a set of elliptic boundary constraints that
models the feasible {alat(s), ap(s)} in a g-g diagram. Indeed,
the set enclosed by an ellipse is convex [42]. Our phenomeno-
logical model is instigated by two reasons: First, the boundaries
of g-g diagrams depicted in literature [7] and in Fig. 1 bear
resemblance to an ellipse. Second, the model is akin to Kamm’s
friction circle, which is often used in literature to describe the
capability of an individual tire to transmit forces in longitudinal
and lateral direction [43], but applied to the whole vehicle. The
proposed boundary thus captures the limitations imposed by the
achievable combined friction force of all four tires. Regarding
the component in the longitudinal direction, the constraint is
put on ap rather than along. Indeed, ap is proportional to the
forces transmitted by the tires, whilst along includes the effect of
the external forces, such as aerodynamic drag, and powertrain
limitations. In our model, these effects will be superimposed as
additional constraints. In its simplest form, an elliptic boundary
in the g-g diagram is parameterized by the length of its half-axes
ap,max > 0 and alat,max > 0, as shown in Fig. 4. Through a
series of simple manipulations, it can be stated equivalently as
a second-order cone constraint:

ap(s)
2

a2
p,max

+
alat(s)

2

a2
lat,max

≤ 1 (26)

⇔ ap(s)
2 +

(
ap,max

alat,max
· alat(s)

)2

≤ a2
p,max (27)

⇔
∥∥∥∥∥

ap(s)
ap,max

alat,max
· alat(s)

∥∥∥∥∥
2

≤ ap,max. (28)

Next, we extend (28) to capture two relevant effects. First, the
exploitable grip limit during braking and acceleration might be
different, and in practice it is more difficult for a driver to fully
exploit the combined braking/cornering capabilities compared
to combined acceleration/cornering [7]. Hence, we implement a
different elliptic boundary for acceleration (ap ≥ 0) and decel-
eration phases (ap < 0), as depicted schematically in Fig. 5. This
increases the degrees of freedom when fitting the performance
envelope model to measurement data. Since the second-order
cone formulation (28) of an elliptic constraint describes an entire
ellipse, a positive and a negative acceleration component a+p and
a−p have to be introduced in order to constrain acceleration and
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Fig. 5. Schematic representation of the proposed performance envelope
model. As velocity increases, the half-axes that define the upper and lower
half-ellipses are scaled homogeneously according to (34), (36), (37).

deceleration differently. These variables are limited by

a+p (s) ≥ 0, (29)

a−p (s) ≤ 0, (30)

and their sum must correspond to the actual propulsive acceler-
ation:

ap(s) = a+p (s) + a−p (s). (31)

We then constrain the positive component by∥∥∥∥∥
a+p (s)

a+
p,max

alat,max
· alat(s)

∥∥∥∥∥
2

≤ a+p,max (32)

linking a+p and alat, and analogously the negative component is
subject to ∥∥∥∥∥

a−p (s)
a−
p,max

alat,max
· alat(s)

∥∥∥∥∥
2

≤ a−p,max (33)

linking a−p and alat. As indicated in Fig. 5, the parameters
alat,max, a

+
p,max and alat,max, a

−
p,max denote the half-axes of

the upper and lower half-ellipses, respectively. The half-axis
alat,max must have an identical value for both ellipses, to avoid
a discontinuity under pure lateral acceleration. The validity
of the proposed ‘split acceleration’ approach will be veri-
fied and explained when analyzing the optimization results in
Section IV-C.

Second, we include a velocity dependency into our perfor-
mance envelope model in order to account for the effect of
aerodynamic downforce. This phenomenon is clearly visible
in the measurement data in Fig. 1, where the achieved lat-
eral acceleration is significantly higher at high velocity. As
described in [7], the downforce generated by the aero devices
is approximately proportional to the velocity squared, hence the
normal force on the tires increases at the same rate, leading
to limits on longitudinal and lateral acceleration that increase
with velocity. Consequently, we model the maximum lateral
acceleration (i.e., the horizontal half-axis of the half-ellipses in
Fig. 5) as a quadratic function of velocity:

alat,max(v(s)) = c1 · v(s)2 + c2 · v(s) + c3, (34)

with the fitting parameters c1, c2 and c3. We then formulate an
equivalent linear version of this constraint by substituting the
kinetic energy variable, leading to

alat,max(s) = 2 · c1 · Ẽkin(s) + c2 · v(s) + c3. (35)

The acceleration and deceleration capabilities of the vehicle in
longitudinal direction also increase with velocity. However, to
preserve convexity, the ratios a+p,max/alat and a−p,max/alat in (32)
and (33) must not be a function of any optimization variable, and
more specifically, must not be a function of the velocity or the
kinetic energy variable. We thus set these ratios to the constant
fitting parameters r+ > 0 and r− > 0 defined as

r+ =
a+p,max(s)

alat,max(s)
, (36)

r− =
a−p,max(s)

alat,max(s)
. (37)

Hence, the feasible region in the g-g diagram changes in a
shape-preserving manner as a function of velocity, as shown
schematically in Fig. 5. This convexity requirement reduces the
degrees of freedom when fitting the g-g diagram boundary, since
rather than identifying individual quadratic functions of v for
a+p,max and a−p,max, these quantities are linked to the velocity
dependency ofalat,max. Nonetheless, we will show in Section IV
that measurement data can be reproduced with very satisfying
precision using the presented approach.

By inserting (35), (36) in (32) and (35), (37) in (33), respec-
tively, we obtain the second-order cone constraints∥∥∥∥∥

a+p (s)
r+ · alat(s)

∥∥∥∥∥
2

≤ r+ ·
(

2 · c1 · Ẽkin(s) + c2 · v(s) + c3

)
,

(38)∥∥∥∥∥
a−p (s)

r− · alat(s)

∥∥∥∥∥
2

≤ r− ·
(

2 · c1 · Ẽkin(s) + c2 · v(s) + c3

)
.

(39)

To summarize, the model (38), (39) for the boundary of the
performance envelope consists of two velocity-dependent half-
ellipses in the g-g diagram. It is fully described by the five
constant parameters {c1, c2, c3, r

+, r−}. The parameter identi-
fication procedure will be discussed in Section III.

D. Powertrain Model

To complete the lap time optimization problem, we have to
formulate the equations that model the powertrain [29]. In the
simplest form, such a model could consist of linear inequality
constraints of the form

Pu,min · dt
ds

(s) ≤ Fu(s) ≤ Pu,max · dt
ds

(s), (40)

where the parameters Pu,min and Pu,max limit the power that is
achievable by the race car’s power unit.

For the energy management of a Formula 1 car under the
current technical regulations, the power flows shown in Fig. 6
must be considered. Denoting by Pe the engine power and by
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Fig. 6. Schematic representation of the power flows in the F1 powertrain.
Thick arrows illustrate mechanical power, whilst thin arrows illustrate electrical
power (with the exception of the chemical fuel power).

Pk the power of the MGU-K, the total power delivered by the
power unit to the driven rear wheels is given by

Pu(s) = Pe(s) + Pk(s). (41)

Using (15), we obtain for the power unit force:

Fu(s) = Fe(s) + Fk(s). (42)

The fuel mass flow ṁf with lower heating value Hlhv defines the
fuel power

Pf(s) = Hlhv · ṁf , (43)

which is constrained by the technical regulations [4] to

Pf(s) ≤ Hlhv · ṁf,max. (44)

For the purposes of a high-level energy management optimiza-
tion, the engine power can then be quantified with the simple
Willans model [29]

Pe(s) = ηe · Pf(s)− Pe,0, (45)

where ηe denotes the Willans efficiency andPe,0 the engine drag
power. Moreover, the MGU-H can be assumed to operate only
in generator mode, and its power is then related to the fuel power
by the recuperation efficiency ηh as

Ph(s) = ηh · Pf(s). (46)

Again using (15), the power variables in equations (44), (45),
(46) are transformed into forces, leading to constraints that can
be implemented in the second-order cone program:

Ff(s) ≥ 0, (47)

Ff(s) ≤ Hlhv · ṁf,max · dt
ds

(s), (48)

Fe(s) = ηe · Ff(s)− Pe,0 · dt
ds

(s), (49)

Fh(s) = ηh · Ff(s). (50)

Next, the electrical components must be modeled. The power
drawn from or fed to the battery terminals is given by

Pb(s) = Pk,dc(s) + Ph,dc(s) + Paux, (51)

wherePk,dc andPh,dc denote the electrical power of the MGU-K
and MGU-H, and Paux models a small constant auxiliary power.
Applying (15), this results in

Fb(s) = Fk,dc(s) + Fh,dc(s) + Paux · dt
ds

(s). (52)

It was shown in [29] that the electrical losses of the MGUs can
be accurately modeled by the quadratic relationships

Pk,dc(s) = αk · Pk(s)
2 + Pk(s), αk > 0, (53)

Ph,dc(s) = αh · Ph(s)
2 + Ph(s), αh > 0, (54)

withαk andαh being the model parameters subject to identifica-
tion. Similarly, the battery losses are captured with the internal
battery power Pi given by

Pi(s) = αb · Pb(s)
2 + Pb(s), αb > 0, (55)

with the model parameter αb. The relationships (53), (54), (55)
are of the form

Py(s) = α · Px(s)
2 + Px(s), α > 0. (56)

Following a loss-less relaxation reasoning [44], this is relaxed
to the convex inequality constraint

Py(s) ≥ α · Px(s)
2 + Px(s), α > 0, (57)

which will hold with equality in the optimal solution. After
applying (15), the inequality can be reformulated to the second-
order cone constraint∥∥∥∥∥

2 · √α · Fx(s) · ṽ
F̃

dt
ds · ṽ − (Fy − Fx) · 1

F̃

∥∥∥∥∥
2

≤ dt

ds
· ṽ + (Fy − Fx) · 1

F̃
, (58)

where F̃ = 1 N is a normalization constant. For the sake of
brevity, we do not discuss the reformulation in detail here, but
refer to [29].

Finally, the relevant on-board energy reservoirs must be mod-
eled. While the fuel force Ff is a purely mathematical concept,
it allows to capture the evolution of the fuel energy consumption
Ef in terms of its spatial derivative

d
ds

Ef(s) = Ff(s), (59)

while the battery energy varies as a function of the internal
battery power, which in space domain translates to the corre-
sponding force

d
ds

Eb(s) = −Fi(s), (60)

where the minus sign indicates that a positive power discharges
the battery. To render the energy management problem well-
posed, we specify initial and terminal conditions on the energy
variables. For the fuel consumption integration, these are

Ef(0) = 0, Ef(S) ≤ Ef,target, (61)

and for the battery energy, we require

Eb(0) = Eb,init, Eb(S) ≥ Eb,init +ΔEb,target, (62)

where Eb,init denotes the initial battery energy content. The
energy consumption is thus constrained by the strategy-defined
parameters Ef,target and ΔEb,target. The F1 regulations [4]
specify additional limits on the allowed boosting and recu-
peration per lap, which are implemented in the model but not
discussed here. For the modeling of those quantities, interested
readers are again referred to [29].
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E. Minimum Lap Time Control Problem

For the F1 powertrain, the minimimum lap time control prob-
lem is then formulated as follows:

Problem 1: With the performance envelope, the energy man-
agement strategies for minimum lap time are the solution of

min

∫ S

0

dt

ds
(s) · ds

subject to the constraints

Kinematics: (5), (10), (11), (13),

Propulsive and drag forces: (16), (17), (19), (20), (21),

Performance envelope: (23), (25), (29), (30),

(31), (38), (39),

Powertrain (F1): (47), (48), (49), (50), (52),

(58), (59), (60), (61), (62).

This convex optimization framework is flexible in the sense
that for a race car with a powertrain layout differing from the
F1 power unit, it is sufficient to modify the constraints related
to the powertrain and to adapt the model parameters.

III. PARAMETER IDENTIFICATION

To showcase the proposed optimization framework, we will
solve Problem 1 for a current-generation hybrid-electric F1 race
car. The model parameters pertaining to the drag forces and the
powertrain (see Sections II-B and II-D) were already identified
and validated in [29]. Hence, we do not discuss the parameter
identification for these components here.

We focus on the parameters {c1, c2, c3, r
+, r−} that describe

the convex performance envelope presented in Section II-C.
Whilst it is possible to determine the boundary of the feasible
space in the g-g diagram by means of simulation [15], [16], our
approach works directly with measurement data. We assume that
the given data set consists of N data points di comprising accel-
eration and velocity values and the throttle pedal position uth:

di = {alat,i, ap,i, vi, uth,i} for i = 1, . . . ,N. (63)

The proposed performance envelope represents a boundary
that models the feasible region for {alat, ap} in the g-g diagram.
To be robust against outliers, we do not determine the smallest
envelope that encloses all the data points, but we rather seek the
velocity-dependent half-ellipses that best represent the varying
boundary in the g-g diagram. Therefore, we have to extract the
data points that correspond to a grip-limited operation of the car.
We assume that in the quest to minimize lap time, an expert race
driver is demanding full power from the powertrain whenever
possible, that is, whenever the driver is not constrained by the
grip limit of the tires. Consequently, for classification we use the
throttle pedal signal to determine whether a data point belongs
to the grip-limited set GL, according to the following rule:

uth,i < 100% → i ∈ GL for i = 1, . . . ,N. (64)

For our case study, we use telemetry data from a state-of-
the-art F1 car, collected with a sampling time of 0.01 s on the

Fig. 7. Representation of the data points classified as grip-limited according
to (64), together with the performance envelope model identified by solving
Problem 2. In each plot, the two half-ellipses (38), (39) obtained for the upper
bound of the corresponding velocity category are plotted, along with the data
points falling in that category. There are no data points for the categories with
lowest and highest velocity. These ellipses are just shown to illustrate the speed-
dependency of the model. The velocity categories were normalized with the
same nominal velocity v0 as the horizontal axis in Fig. 8.

Silverstone Circuit. Fig. 7 shows the grip-limited data points in
g-g diagrams for different velocity categories, wherev0 denotes a
normalization constant. Generally, the velocity of a F1 car varies
between roughly 15 m/s in the slowest corners and 100 m/s on
the longest straights.

Three comments are in order: First, as expected, the points
lie further away from the origin as velocity increases, due to the
aerodynamic downforce. Second, while most points indeed seem
to form some sort of boundary of the g-g diagram space, a few lie
towards the inside of the others. This is visible in the categories
(0.38, 0.50] v0 and (0.50, 0.63] v0. These points are stemming
from fast transitions, for instance from right-hand to left-hand
corners, where due to the vehicle’s yaw, roll and pitch dynamics,
the driver was neither able to operate the vehicle at the grip limit
of the tires, nor to request full power. It is not a trivial task to
eliminate these points in an automated fashion from the data set,
which is why we simply include them in the fitting procedure.
Third, the number of data points in each velocity category
naturally depends on the characteristics of the racetrack, i.e.,
the number of slow, medium-speed and fast corners. With these
preparations, we propose the following parameter identification
procedure:

Problem 2: The parameters that characterize the performance
envelope of a given race car on a given circuit are the solution
to the following optimization problem:

min
c1,c2,c3,r+,r−

∑
i∈GL

δi(di, c1, c2, c3, r
+, r−),

where δi represents the distance between the data point di and
the closest point on the performance envelope boundary model
(i.e., the upper and lower half-ellipses) evaluated at the velocity
vi. Hence, δi is determined as follows:
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if ap,i ≥ 0

δi = min
ϕ∈[0,π]

((
ap,i − r+ · alat,max(c1, c2, c3, vi) · sin(ϕ)

)2

+ (alat,i − alat,max(c1, c2, c3, vi) · cos(ϕ))2
)1/2

,

else

δi = min
ϕ∈[−π,0]

((
ap,i − r− · alat,max(c1, c2, c3, vi) · sin(ϕ)

)2

+ (alat,i − alat,max(c1, c2, c3, vi) · cos(ϕ))2
)1/2

.

This case distinction ensures that the correct half-ellipse is
considered for each data point.

In the objective of Problem 2, each data point has the same
weight. For a given race track, the velocity range in which the
car spends most time at the grip limit is thus best represented
and has the largest impact on the objective. This is desirable
in order to achieve a high lap time accuracy when using the
identified performance envelope model in Problem 1. We solve
Problem 2 with the fminsearch optimization routine provided
by MATLAB, using reasonable initial guesses for the parameters.
The resulting fit is shown in Fig. 7. Some data points lie outside
of the largest ellipse for the respective velocity category, which
means that they are not contained by the identified performance
envelope. This is due to the nature of the objective defined
in Problem 2: The goal is to find the envelope which best
approximates the grip-limited data points in an ‘average’ sense,
i.e., which minimizes the sum of the distances δi between the
ellipses and the data points. An underestimation of a data point’s
grip level is penalized identically to an overestimation in the
objective. Hence, the fitting method does not guarantee that all
the data points lie inside the performance envelope, but overall
it approximates the data in a suitable manner. In this particular
case, there is only a very slight difference between the shapes
of the upper and lower half-ellipses, i.e., the identified values of
r+ and r− are very similar. The ‘inflation’ of the performance
envelope with increasing velocity clearly reflects the effect of
aerodynamic downforce.

The obtained velocity dependency of the model is also visu-
alized in Fig. 8 by plotting the length of the ellipses’ half-axes
alat,max, a+p,max and a−p,max as a function of velocity, together
with all the measured data points. The horizontal axis of the
figure has been normalized with respect to v0. The identified
alat,max from (34) is catching the achievable maximum lateral
acceleration very nicely. We note that the dependency on the
velocity is clearly less than quadratic, but rather almost linear,
resulting in a very small identified value for c1. Nonetheless,
we keep the quadratic term to showcase the flexibility of the
approach, since the additional degree of freedom might improve
the precision in other applications. The effect of the almost linear
velocity dependency was also observed and discussed in [7] and
could be attributed to the load sensitivity of the tire friction
coefficient. Indeed, the latter can decrease quite substantially
with increasing tire load, which counteracts the effect of the

Fig. 8. Acceleration of a F1 car as a function of velocity, plotted together
with the length of the half-axes of the half-ellipses describing the performance
envelope. The latter are given by (34), (36), (37) and were identified by solving
Problem 2. The effect of aerodynamic downforce is clearly visible, as the
acceleration capability provided by the chassis and the tires increases with
velocity. Section III gives a detailed discussion. The horizontal axis has been
normalized with the constant v0 also used in Fig. 7.

increasing normal force on the tire. Regarding the maximum
longitudinal acceleration, we observe that the data points show a
decreasing tendency for v > 0.5 v0. These data points are effec-
tively power-limited, in the sense that the maximum acceleration
which can be provided by the power unit is smaller than what
the tires could potentially transmit. At v < 0.5 v0, where the grip
limit of the tires actually determines the achievable acceleration,
the identified a+p,max obtained from (36) captures the trend of the
data. Since F1 cars have very powerful brakes, the power limit
effect is not observed under deceleration, and a−p,max obtained
from (37) is close to the boundary of the data points also at
high velocity. Conversely, for v < 0.5 v0, there is a gap between
a−p,max and the data points. This can be explained by the fact
that at these speeds, the data points feature combined braking
and cornering. Thereby, the driver starts turning into the corners
while still pressing the brake pedal, a driving technique that is
commonly referred to as trail-braking [45]. Our explanation is
corroborated by Fig. 7, where for v < 0.5 v0 there are no data
points with pure longitudinal deceleration (i.e., with ap < 0 and
alat = 0). Hence, the measured ap does not reach the values that
would be possible under pure longitudinal deceleration, which
is what the half-axis of the ellipse describes. To a lesser extent,
the equivalent effect of combined cornering and acceleration is
observed for v < 0.4 v0 in Fig. 8.

Given the above considerations, defining an error criterion to
quantify the quality of the fit with respect to the acceleration
values makes little sense. Moreover, stating the value of the ob-
jective of Problem 2 by itself does not yield additional insights.
We therefore choose to discuss the accuracy in terms of lap time
and velocity profile when solving Problem 1 with the identified
performance envelope.
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IV. RESULTS

In this section, we present the results obtained by solving
the minimum lap time problem with the performance envelope
model. To this end, Problem 1 is discretized using the stan-
dard Euler-forward method, resulting in a second-order cone
program (see Appendix A for details). All the results shown
were obtained with a spatial discretization step of Δs = 5 m.
The implementation is done in MATLAB: The problem is parsed
with YALMIP [46] and solved with the interior-point solver
ECOS [47]. Since Problem 1 is convex, it can be solved with
global optimality guarantees. Indeed, for the results presented
in this section, the solver issued a certificate of optimality.

First, we discuss the velocity profile obtained as a result of
the optimization. We compare it to measurement data, in order
to validate the proposed performance envelope model. Second,
we comment on the computational time required for solving the
problem, as well as the choice of the discretization step. Third,
we investigate in more detail the effect of the convex relaxations,
the performance envelope constraints, and the split acceleration
approach. Fourth, we analyze the energy management strategies
and validate the approach by comparing them to the strategies
generated with the state-of-the-art maximum velocity profile
approach. Fifth, the effect of scaling the performance envelope
is briefly analyzed. Sixth, we discuss the advantages of the
performance envelope formulation, compared to the maximum
velocity profile approach.

A. Optimal Solution and Vehicle Dynamics

In this section, we compare the optimization results with
measurement data recorded by telemetry during a specific lap,
in terms of velocity profile, lateral and longitudinal acceleration.
In order to do so, the path curvature associated with the measure-
ment has to be used in the constraints (19) and (25) when solving
Problem 1. It can be obtained by post-processing the velocity
and acceleration measurements following the method described
in [17]. Right-hand corners are characterized by γ < 0, and
left-hand corners by γ > 0.

First, we discuss the case of a lap of the Silverstone Circuit,
for which we have already identified the parameters of the
performance envelope in Section III. The track has a length of
roughly 5900 m and can be lapped by a state-of-the-art F1 car in
around 87 s. The results are shown in Fig. 9. The optimal velocity
profile subject to the performance envelope and powertrain
constraints is very similar to the measured one. In particular,
the convex performance envelope constraints correctly capture
the braking zones and corners. The difference in velocity Δv is
contained between −3 and 3 m/s. This is similar to the level of
precision achieved with quasi-steady-state simulations by other
authors [10].

Under pure lateral acceleration, the model is very precise,
underlined by the fact that at the apices of the corners (cor-
responding to local maxima or minima in the curvature γ), the
difference in velocity is in general less than 1 m/s. One exception
is the fast corner at s ≈ 3700 m, where the achievable velocity is
overestimated by around 2 m/s. Overall, the lateral acceleration
therefore follows the measurement very closely. The results also

Fig. 9. Silverstone Circuit: Comparison between measurement data and the
results obtained by solving Problem 1. Shaded in gray are the regions where
it is optimal to operate the car at the limit of grip, i.e., where one of the
performance envelope constraints (38), (39) holds with equality in the optimal
solution of Problem 1. The signal Δv describes the velocity difference between
the optimization result and the measurement data, whilst ΔT is the cumulative
lap time difference.

signify that the modeled velocity dependency is sensible, as
Silverstone is a circuit composed of high-speed corners, but
also some slow turns. Such a track characteristic highlights the
important aerodynamic downforce effect of a modern F1 car.
The model captures all types of corners in a satisfying manner.

In the longitudinal acceleration, some differences are visible.
In this particular case, the peak braking performance is a bit
underestimated by the identified performance envelope, a feature
which is already visible in Figs. 7 and 8 for high velocity.
Moreover, on the straights some small differences appear due to
the causal power unit energy management in the measurement,
which differs slightly from the non-causal optimal solution of
Problem 1. Velocity differences on the straight are not only
due to the limitations of the performance envelope model, but
also to the simple drag and power unit models used. As already
discussed in [29], such a model is only a rough approximation,
but nonetheless, the evolution of velocity on the straights is
remarkably similar to the measurement.

Accordingly, the lap time difference ΔT is only 0.5 s. The
cumulative time lost or gained when the grip limit constraints
are active, i.e., the difference stemming directly from the per-
formance envelope model, is even smaller and only amounts to
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Fig. 10. Spa-Francorchamps Circuit: Comparison between measurement
data and the results obtained by solving Problem 1. The plots are structured
identically to the description given in Fig. 9.

0.25 s. This constitutes less than 0.3 % with respect to a typical
lap time of the circuit in an F1 car.

In order to highlight that our method is applicable to different
circuits and scenarios, Fig. 10 contains the results of a second
case study conducted for a lap of the Spa-Francorchamps Circuit.
This track has a length of roughly 7000 m and can be lapped by
a F1 car in around 106 s. The parameters describing the perfor-
mance envelope were re-identified for this particular circuit and
scenario, due to the different configuration of the car and the
different track grip levels. The velocity difference between our
result and the measurement is generally observed to be within
± 4 m/s. The peak differences stem from slight mismatches in
the braking points, which we will further comment on in Sec-
tion IV-B. The cornering speeds are reproduced with a similar
precision to the Silverstone case study, and this is also reflected
by the lateral acceleration comparison. The long straights of
this particular circuit exacerbate the effect of any imprecision in
our drag and power unit model, leading to an overall lap time
deviation of 1.2 s, a large part of which is accumulated between
500 m and 2200 m, and between 5000 m and 6500 m. However,
the grip-limited regions only contribute 0.35 s to this value, again
underlining the satisfactory precision of the proposed vehicle
dynamics constraints.

To summarize, despite its simplicity, the performance enve-
lope model can capture the limitations in the longitudinal and

TABLE I
COMPUTATIONAL TIME REQUIRED TO SOLVE PROBLEM 1

lateral dynamics of the car surprisingly well. The result is a
highly satisfactory level of accuracy in terms of lap time.

B. Computational Time and Discretization Step

Table I reports the computational time required to solve
Problem 1 for different choices of the spatial discretization step
Δs. The experiments were conducted on a standard consumer
laptop with a 2.6 GHz processor and 16 GB RAM. As one would
expect, the smaller Δs, the larger the number of optimization
variables and the longer the computational time. Moreover, solv-
ing the problem for the Spa-Francorchamps Circuit generally
takes longer than solving it for the Silverstone Circuit. This is
due to the fact that the former track is longer, leading to more
optimization variables after discretization. The computational
times are in the order of 1 s to 10 s, highlighting the efficiency of
the presented convex optimization approach. Moreover, they are
almost identical to the ones reported in [29] for the state-of-the-
art approach with a maximum velocity profile, indicating that the
novel performance envelope constraints do not entail a penalty
in computational time. They also compare favorably to the ones
reported in [36] for a similar minimum-lap-time problem in the
form of an NLP including path optimization, which were in the
order of 1 min for Δs = 5 m on similar hardware.

Lastly, a comment on the choice of the discretization step
is appropriate. The largest velocity differences in Figs. 9 and
10 occur at the beginning of the braking zones. Indeed, with
a discretization step of 5 m, the measured braking point cannot
always be captured accurately, even if the performance envelope
models attained utmost precision. The braking point obtained
in the solution will either be too early or too late, resulting
in a large velocity difference due to the strong deceleration
capability of a F1 car. Experiments with a discretization step
of 1 m showed that this effect can be mitigated, albeit at the
expense of computational time increasing by a factor of ten.
However, the overall accuracy in terms of lap time did not im-
prove significantly,1 nor did the accuracy of the velocity profile
in the corners and on the straights. We therefore deem a choice
of Δs = 5 m a reasonable compromise between accuracy and
computational time, especially if the optimization tool is to be
used for parametric studies regarding the energy management.

C. Effect of the Performance Envelope Constraints

Fig. 11 shows that, as expected, the novel performance enve-
lope model does not affect the relaxations that were necessary to
obtain a convex formulation of the minimum lap time problem.

1In [29], with an identical Euler forward discretization method, it was also
observed that accuracy does not improve significantly anymore for choices of
Δs smaller than 10 m.
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Fig. 11. Silverstone Circuit: The second-order cone constraints (5) and (13),
linking 1

v , dt
ds and Ẽkin, always hold with equality in the optimal solution of

Problem 1. The lines in the plots show the exact relationship between these
quantities according to (3) and (8), while the dots represent the data from the
optimal solution.

Fig. 12. Silverstone Circuit: Investigation of the split acceleration approach
given in (31). Shown are the positive and negative components a+p and a−p of
the propulsive acceleration, as well as their product. In the grip-limited regions
highlighted in gray, complementarity holds, i.e., a+p · a−p = 0.

In particular, the inequality constraints (5) and (13) linking
velocity, lethargy and kinetic energy hold with equality in the
optimal solution. Hence, the computed solution is physically
meaningful.

Next, it is of interest to analyze the mathematical ‘trick’
of splitting up the propulsive acceleration in a positive and
negative component by (29), (30) and (31). Fig. 12 shows the
relevant optimization variables a+p , a−p and their product a+p · a−p
together with the velocity profile as a function of distance.
We note that a complementarity condition holds whenever the
car is grip-limited, i.e., when the point {alat(s), ap(s)} lies on
one of the half-ellipses evaluated at the velocity v(s): The
product of the two auxiliary variables is zero, meaning that
at most one of them is non-zero. This is best explained using
an example. Intuitively, after the apex of a corner it is op-
timal to accelerate at the grip limit. At a given velocity and
lateral acceleration, the propulsive acceleration ap should thus

Fig. 13. Silverstone Circuit: Three-dimensional representation of the modeled
performance envelope constraints (conic shape) and the optimal solution of
Problem 1 (dots). The conic shape limits the feasible space for the triple
{alat, ap, v}. The grip-limited points are those that lie exactly on the boundary
of the performance envelope, whilst all the other points lie inside.

be maximized. By (31), this means that a+p must be as large
as permitted by the elliptic boundary (38), whilst a−p must
be zero. With an analogous reasoning, one finds that when
braking at the grip limit, a+p = 0 must hold. Conversely, on
the straights the achievable ap is determined by the powertrain
constraints, hence a+ and a− can take arbitrary values within
their respective feasible sets given by (29), (38) and (30), (39),
as long as (31) is satisfied. On a sidenote, for the presented case
study, a single elliptic constraint instead of two half-ellipses
would not result in a significant loss of precision, since the
two identified half-ellipses have a very similar shape. However,
this proof-of-concept for the split acceleration approach paves
the way for optimizing scenarios where the difference between
acceleration and deceleration might be more pronounced.

To facilitate understanding, the implemented performance
envelope constraints (29), (30), (31), (38), (39) are summarized
in a three-dimensional graphical representation in Fig. 13. It
depicts the resulting feasible space2 for the triple{alat, ap, v}. As
one would intuitively expect, the performance envelope should
be exploited as much as possible to minimize lap time. This
is also exactly what an expert driver tries to achieve in a race
car. In the graphic, points that lie on the boundary are marked
as grip-limited. These correspond to the braking zones, the
corners and the corner exits. For the other points, which mostly
pertain to the power-limited straights, the performance envelope
constraints are inactive.

2Actually, one would have to depict the four-dimensional feasible region for
{alat, ap, v, Ẽkin}, since these variables are linked by the performance envelope
constraints. However, we leverage the fact that (13) holds with equality in an
optimal solution to achieve a three-dimensional plot.
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D. Energy Management Strategies

In this section, we compare the energy management strategy
obtained by solving Problem 1 with the one generated by the
state-of-the art approach [29] that relies on a maximum velocity
profile to capture the vehicle dynamics. It can be summarized
as follows:

Problem 3: With a maximum velocity profile, the minimum-
lap-time energy management strategies are the solution of

min

∫ S

0

dt

ds
(s) · ds

subject to the constraints

Kinematics: (5), (10), (11), (13),

Propulsive and drag forces: (16), (17), (19), (20), (21),

Maximum velocity profile: Ẽkin(s)≤ 1
2
·v2

max(s) ∀s (22),

Powertrain (F1): (47), (48), (49), (50), (52),

(58), (59), (60), (61), (62).

The only difference to Problem 1 consists in replacing the
performance envelope constraints with a maximum velocity
profile. Hence, this comparison allows us to isolate the effect of
the performance envelope on the energy management strategy
and to validate the usefulness of the proposed optimization
framework for energy management studies. The vmax-profile for
the braking zones and corners is generated directly from the
measured velocity by identifying the grip-limited regions, again
for instance based on the driver’s throttle pedal actuation. When
solving Problem 3, the obtained velocity in the corners, where
constraint (22) is active with v(s) = vmax(s), thus corresponds
exactly to the measured one.

The comparison is shown in Fig. 14 for the Silverstone Circuit.
The specified values for the fuel consumption target Ef,target

in the terminal constraint (61) and the battery energy target
ΔEb,target in (62) were the same in both problems. Hence, the
final values of fuel energy and battery energy are identical for
both cases. Note that the achievable lap time strongly depends
on the chosen consumption targets. Readers interested in that
dependency are referred to [29]. For this comparison, we focus
on the energy management strategy within the lap. We observe
that it displays very similar features in both solutions. The
engine is operated at full power along the entire straights in
both solutions. The MGU-K operation is also very similar: As
was established in previous works [29], [48], it is optimal to
boost at the beginning of the straights in order to reach a high
velocity quickly. Towards the end of the straights, when velocity
is already high and not a lot of lap time could be gained anymore,
it is optimal to switch off the electric motor, such that the battery
energy consumption constraint (62) can be respected. In the
grip-limited regions, the energy management task consists in
balancing the power split between MGU-K and engine in a lap-
time-optimal way, depending on the specified fuel and battery
consumption targets: The MGU-K recuperates under braking,
and in the corners, some load-point shifting [3] is done by using

Fig. 14. Silverstone Circuit: Energy management comparison of the solution
to Problem 1 with the proposed performance envelope constraints and the solu-
tion to Problem 3 with the state-of-the-art vmax-constraint. The plots show the
most relevant trajectories in the context of the energy management, i.e., engine,
MGU-K and MGU-H power, battery energy and fuel energy consumption.

part of the power generated by the engine to recharge the battery.
Both solutions reflect this behavior. The small differences in the
MGU-K operation (e.g., the earlier power cut at s ≈ 3500 m) and
in the engine/MGU-K interplay in part load operation stem from
small discrepancies in the velocity profile. Indeed, the velocity
that is feasible according to the performance envelope model and
the vmax-profile slightly differ, and hence the feasible propulsive
power is different at certain track locations. This can be very well
observed, for instance, at s ≈ 400 m. Here, for the solution of
Problem 1, the grip limit prescribed by the performance envelope
constraints briefly becomes active, requiring a drop in propulsive
power. Given that in our powertrain model, the MGU-H power is
coupled to the fuel power by (46), small differences between the
two solutions occur where the engine power is also differing.
Overall, these variations entailed by the limited accuracy of
the convex performance envelope model do not lead to big
deviations in the battery and fuel energy profiles. Therefore,
the presented performance envelope is a valid tool for use in
minimum-lap-time energy management optimization.

E. Adapting the Performance Envelope to Different Grip
Levels

Our last case study demonstrates the effect of applying
a shape-preserving scaling factor κ to the performance en-
velope. Given a performance envelope with parameters P =
{c1, c2, c3, r

+, r−}, this means that the scaled set of parameters
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Fig. 15. Silverstone Circuit: Effect of applying a scaling factor to the per-
formance envelope model. The measurement comes from a fast lap with low
car mass and soft tires with increased grip. The ‘Original’ result is obtained by
solving Problem 1 with the performance envelope parameters P identified with
the data from a slower lap in Fig. 7. The ‘Identified’ result is generated with
parameters Pfast that were identified with the measurement data from the fast
lap by solving Problem 2. The ‘Scaled’ result is for parameters P̃ obtained by
scaling P according to (65) with κ = 1.14.

P̃ = {c̃1, c̃2, c̃3, r̃
+, r̃−} is obtained as

c̃1 = κ · c1, c̃2 = κ · c2, c̃3 = κ · c3,

r̃+ = r+, r̃− = r−. (65)

Ultimately, this boils down to inflating (κ > 1) or shrinking
(κ < 1) the originally identified half-ellipses. Fig. 15 shows a
measurement recorded on the Silverstone Circuit during a lap
with soft tires and with a low car mass due to low fuel load.
The lap time was much lower compared to the measurement
discussed in Section IV-A. In particular, the reduced inertia
and increased tire grip led to higher lateral and longitudinal
acceleration capabilities. When solving Problem 1 by applying
the performance envelope parameters P identified in Fig. 7
for the slower lap, the obtained velocity profile is obviously
mismatched. The apex speed in almost all corners is drastically
too low, sometimes in excess of 5 m/s, and hence the lap time is
more than 5 s too high. Using a set of parameters Pfast that was
identified by applying the method described in Section III to the
measurement data of the fast lap, the agreement is much better.
The precision is similar to the results shown in Fig. 9 for the
slower lap. Interestingly, using a set of parameters P̃ obtained
from P by applying the scaling (65) with a well-chosen value of
κ = 1.14, a comparable level of precision can be achieved. The
lap time difference with respect to the measurement is reduced
to less than 0.75 s. As one would expect intuitively, scaling the

performance envelope P by a factor κ > 1 results in a faster
lap time, due to the increased acceleration capabilities. With the
exception of two braking zones, the difference in velocity comes
down to similar values as observed for the parameters Pfast. This
result suggests that on a given circuit, the effect of different tire
grip levels and car mass can be simulated by applying a scaling
factor to the performance envelope.

F. Advantages Compared to the State-of-the-art

Finally, we comment on the advantages of the novel for-
mulation compared to the state-of-the-art maximum velocity
profile approach [29]. First, both measuring a maximum velocity
profile and synthesizing it in simulation requires some energy
management controller, since the delivered propulsive power
determines the velocity, which in turn defines the available tire
grip of a race car with aerodynamic downforce. Hence, the
energy management optimization cannot be studied in a truly
independent manner with this method. By contrast, the new
approach achieves this ‘decoupling’ because it does not require
any a priori assumptions about the energy management. It thus
allows to study the interaction between grip limits and optimal
powertrain operation. Moreover, since the performance envelope
model describes the physical link between longitudinal and
lateral acceleration capabilities, the optimal energy management
can be studied for different vehicle configurations: Indeed, as
shown previously, modifying the parameters that describe the
envelope leads to realistic results. Conducting such investiga-
tions with a maximum velocity profile requires a detailed vehicle
dynamics simulation for each scenario beforehand, which can
be impractical. Lastly, whilst the state-of-the-art method can ex-
actly replicate the measured velocity in the grip-limited corners,
other corners that were not grip-limited in the measurement are
virtually non-existent for the optimization. However, the grip
limit might be attained if, e.g., more available power led to
a higher velocity, which can be relevant if investigations with
different powertrain parameters are carried out. With the new
formulation, all corners are included in the optimization via the
path curvature. This difference is visible at s ≈ 400 m in Fig. 14:
For Problem 1 the grip limit is attained (because the performance
envelope fit is somewhat underestimating the real grip), whereas
the vmax profile does not imply a corner at this track location.

V. CONCLUSION

In this paper, we presented a convex model for the perfor-
mance envelope of race car vehicle dynamics. The model is
suitable for use in computationally efficient energy management
optimization frameworks. Our approach does not optimize the
driving path on the circuit, but we rather assume that the path
is given in the form of a distance-based curvature trajectory.
The model then consists of a grip limit in the form of two
velocity-dependent half-ellipses that limit the achievable lateral
acceleration and propulsive longitudinal acceleration in the g-g
diagram. It is fully described by five fitting parameters and can
be readily integrated into a previously developed second-order
cone program which yields the energy management strategies for
minimum lap time. Our case study for a hybrid-electric F1 car on
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the Silverstone circuit shows that the method is accurate enough
for the intended purpose. Indeed, comparing the optimization
results to the measurement data, we found that the difference
between the optimal velocity profile and the measured velocity is
contained to ±2 m/s at most track locations (the few exceptions
stemming from the discretization of the problem), whilst the
lap time difference is only 0.5 s. Similar results were obtained
in a second case study for the Spa-Francorchamps Circuit,
which evidences that the method is easily applicable to different
scenarios. What is more, a comparison with the state-of-the-art
framework for lap-time-optimal energy management resulted
in very similar power and energy consumption trajectories.
This validates the presented model for optimizing the energy
management of hybrid-electric race cars. Finally, we showed
that the performance envelope can be scaled to simulate different
grip levels on a given race circuit.

Certainly, the convex performance envelope model can be
included with minimal effort in previously developed optimiza-
tion frameworks that so far have relied on a maximum velocity
profile approach, such as [30], [33], [49]. Further research could
investigate other shapes for the fit of the performance envelope
boundary, for instance a set of piece-wise affine constraints. An
increase in precision could possibly be achieved by identifying
the performance envelope separately for each corner. More-
over, a simulation framework for causal energy management
controllers in racing applications could be developed, using
the proposed performance envelope model to approximate the
vehicle dynamics. The scaling properties of the model could be
exploited in a model predictive control framework, in order to
adapt the energy management to varying grip levels.

APPENDIX

A. Second-order Cone Program

A second-order cone program is a particular type of a con-
vex optimization problem that can be stated in the following
form [42]:

min
x

f� · x (66)

subject to ‖Ai · x+ bi‖2 ≤ c�i · x+ di i = 1, . . . ,m
(67)

F · x = g (68)

The vector x ∈ Rn is the optimization variable, and the ma-
trices have the dimensions Ai ∈ Rni×n and F ∈ Rp×n. The
constraints (67) are called second-order cone constraints. Lin-
ear inequality constraints are a special form of second-order
cone constraints. Indeed, with Ai = 0 ∀ i, the above problem
reduces to a linear program. Like linear programs, second-order
cone programs can be solved in polynomial time with interior
point methods and optimality guarantees [50].
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