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Abstract—In recent years, the growing development of Con-
nected Autonomous Vehicles (CAV), Intelligent Transport Systems
(ITS), and 5G communication networks have led to the advent
of Autonomous Intersection Management (AIM) systems. AIMs
present a new paradigm for CAV control in future cities, taking
control of CAVs in scenarios where cooperation is necessary and
allowing safe and efficient traffic flows, eliminating traffic signals.
So far, the development of AIM algorithms has been based on
basic control algorithms, without the ability to adapt or keep
learning new situations. To solve this, in this paper we present a new
advanced AIM approach based on end-to-end Multi-Agent Deep
Reinforcement Learning (MADRL) and trained using Curriculum
through Self-Play, called advanced Reinforced AIM (adv.RAIM).
adv.RAIM enables the control of CAVs at intersections in a col-
laborative way, autonomously learning complex real-life traffic
dynamics. In addition, adv.RAIM provides a new way to build
smarter AIMs capable of proactively controlling CAVs in other
highly complex scenarios. Results show remarkable improvements
when compared to traffic light control techniques (reducing travel
time by 59% or reducing time lost due to congestion by 95%), as well
as outperforming other recently proposed AIMs (reducing waiting
time by 56%), highlighting the advantages of using MADRL.

Index Terms—Autonomous intersection management, connected
autonomous vehicles, deep reinforcement learning, intelligent
transport systems, intersection traffic management, multi-agent
deep reinforcement learning.

I. INTRODUCTION

TRAFFIC control is changing rapidly, as Connected Au-
tonomous Vehicles (CAVs) are bringing new opportunities

to control and manage vehicular, people, and goods flow in and
around our cities. The new Intelligent Transportation Systems
(ITS) are challenged to provide new ways to control CAVs
to reduce congestion, pollution, or accidents [1]. Therefore,
improving and introducing new control strategies is imperative
for efficient traffic management decisions. In recent years, nu-
merous approaches have been developed to implement CAVs
control algorithms, however, this task is really complex and
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requires knowledge of the state of all actors involved in the
traffic system (vehicles, pedestrians, priority vehicles, etc.).

Autonomous Intersection Management (AIM) systems are
designed to efficiently manage CAVs at urban intersections,
eliminating collisions, and optimizing overall traffic flow [2].
AIMs regulate the flow of vehicles through intersections by
acting on their state (speed, acceleration, braking, steering, etc.).
This control is usually based on simple rules and the intersec-
tion’s current state, without considering other vehicle-specific
parameters, environmental conditions, upcoming events, etc.
[3], [4].

Deep Reinforcement Learning (DRL) successfully connects
Reinforcement Learning (RL) algorithms with the strengths of
Deep Neural Networks (DNN), accelerating these RL algo-
rithms’ training processes and performance. As a consequence
of this success [5], DRL is being introduced in many areas.
In Multi-Agent (MA) environments, multiple agents execute
actions and can affect the states of other agents. Traditional
MA-RL algorithms have recently been successfully extended
with DNNs for MA DRL learning, giving rise to Multi-Agent
DRL (MADRL). The reason lies in the availability of high com-
putational power and the efficiency of distributed algorithms,
leading to unexpected impressive results such as those obtained
by DeepMind [6] and OpenAI [7].

Due to the advantages that MADRL can offer for cleverly
finding a cooperative control policy, we decided to explore
this path. In this work, we detail a new AIM system based
on MADRL, called advanced Reinforced AIM (adv.RAIM),
and its performance is extensively evaluated in a variety of
realistic and complex scenarios. The proposed adv.RAIM is
trained by DRL and uses end-to-end MADRL, along with
other advanced methods such as Curriculum through Self-Play
learning and Prioritized Experience Replay (PER), to learn and
model the complex dynamics of the environment in the control
of CAVs at urban intersections. The final goal of adv.RAIM
is to periodically act on the speed of all CAVs collectively at
intersections to reduce lost time, by eliminating collisions and
traffic lights. To the authors’ knowledge, this paper addresses
the use of end-to-end MADRL in the field of AIM for the first
time. Simulation results show that the performance of adv.RAIM
is remarkably superior to other traditional traffic light control
algorithms (like Fixed Time (FT) or iREDVD [8]). Furthermore,
when compared to other recently proposed AIMs [9], adv.RAIM
can reduce waiting time by 88%, and time loss by 55%, among
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other metrics. This demonstrates the multiple advantages of
MADRL to develop increasingly intelligent AIMs, which can
provide advanced control policies and achieve smarter CAVs.
Moreover, they can greatly surpass in control complexity the
currently proposed AIMs, where they usually only allow straight
or right turns, single-lane intersections, or very low vehicular
flows.

A tentative version of this work was previously presented in
[10], which served as a basis for the development of RAIM and
to demonstrate that RL-based AIM could offer advantages over
traditional control techniques. The present work adds significant
aspects to the initial version.
� First, RAIM has been enhanced with a recurrent module

(LSTM) to eliminate the problem of variation in the shape
of the variable observations as a function of the number of
vehicles. In addition, thanks to the nature of LSTMs, we
can capture the long-term spatial and temporal dynamics
of traffic conditions in the network. With this recurrent
module, the speed calculation for each vehicle considers
all other vehicles at the intersection.

� Secondly, the complexity of the simulation scenario has
been considerably increased from a maximum flow of 450
veh/h/lane to 1200 veh/h/lane and from 2 lanes to 3 lanes
per direction, which increases exponentially the complex-
ity and training time, but allows maximizing the advantages
offered by RL over traditional and other AIM techniques.
In addition, each simulated vehicle had different charac-
teristics within a random range of acceleration, shape, fuel
consumption, etc., which offered additional complexity in
learning how to model the simulated environment.

� Finally, the comparison of results is extended to more
recently published algorithms, such as an intelligent traffic
light control system (iREDVD [8]) and an already proposed
AIM [9], and we confirm that our model continues to
outperform existing approaches using different evaluation
metrics. Furthermore, considerable new analysis and in-
tuitive explanations are added to the training curves and
testing results.

The rest of this paper is organized as follows. Section II pro-
vides an overview of the operating principles of AIM. Section III
shows the state of the art of AIM. Section IV describes the system
proposed in this paper. The simulator and parameters used are
shown in Section V. Section VI includes the performance results
obtained both in the training process and in a test scenario.
Finally, the conclusions are summarized in Section VII.

II. AUTONOMOUS INTERSECTION MANAGEMENT

Intersections are responsible for regulating the right-of-way
of vehicles to control traffic flow, reduce accidents, and improve
travel time, which is usually done with traffic lights, or traffic
signals, in urban areas. With the arrival of CAVs, it requires a new
way of controlling vehicles as a whole [11], more efficient and
sophisticated than traditional techniques, allowing inefficient
traffic lights to be eliminated.

AIM emerges as a new approach to building intelligent
systems that can deal with the complex dynamics of real-life

Fig. 1. AIM basic operation. AIM includes a Conflict module and a Priority
module to control AV [10].

and control CAVs’ state (speed, acceleration, steering, etc.) at
intersections to provide the highest security level, increasing
flow while increasing flow and decreasing time loss [12]. Tradi-
tionally, these AIMs are based on two modules, one dealing with
conflict prediction and the other with the resolution of expected
conflicts.

A. Conflict Module

This module is responsible for deciding whether, or not, there
will be conflicts between two vehicles when approaching or
crossing the intersection. It follows a series of rules so that it can
predict the routes that vehicles will take within the intersection
along space-time and check if there are conflicts. That is, when
two or more vehicles coincide temporally and spatially, this
component identifies a conflict. The basic operation of AIM with
the conflict module and priority module can be seen in Fig. 1.

This module can follow several approaches to conflict identi-
fication: i) intersection-based [12]–[14], ii) tile-based [15]–[18],
iii) conflict point-based [9], [19]–[22], and iv) vehicle-based
[23]–[26]. A representation of each approach can be seen in
Fig. 2.

The first proposed approach laid the foundation for AIM [12].
This approach (intersection-based) does not allow more than one
vehicle to be inside the intersection at the same time, regardless
of the route the vehicles take. This option, while very simple,
has multiple obvious disadvantages.

A more elaborated approach is the tile-based [18], which cre-
ates a mesh within the intersection, and vehicles cannot coincide
in the same mesh cell simultaneously along their trajectory.

The conflict point-based [9] only takes into account the spots
where the trajectories of the vehicles within the intersection
overlap. This dramatically reduces the complexity of optimiza-
tion tasks, but due to the variable geometry of the vehicles,
unexpected accidents may occur, a situation that can never occur.

Finally, the vehicle-based [26] approach offers vehicles total
freedom of movement within the intersection. Here, vehicles are
free to choose the route they take to reach their exit lane. The
latter option is undoubtedly the one that offers the most freedom,
but it requires enormous computing power since it becomes a
multidimensional and multiagent problem of vast complexity.
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Fig. 2. Approaches developed for the conflict module of AIM.

B. Priority Module

When conflicts are encountered, the priority module resolves
them by acting on the vehicles’ state (e.g., speed, acceleration,
route, etc.) and managing the vehicles’ right-of-way. This mod-
ule is responsible for ensuring that the travel time of the vehicles
is reduced most fairly, ensuring that no vehicle is stuck infinitely.
Seeking to assign priorities to vehicles when crossing, this mod-
ule can give the right-of-way of vehicles in several manners: i)
based on the order of arrival at the intersection, with First-Come
First-Served (FCFS) [12], [19], [27], [28]; ii) assigning priorities
based on vehicle/intersection status, such as Fast First Service
(FFS) [9] where vehicles arriving at the intersection fastest are
given the highest priority, or Long Queue First (LQF) [17] where
those vehicles with the longest entry queue have the highest
priority; iii) using some heuristics like Dynamic Programming
(DP) or Linear Mixed Integer Programming (MILP) where given
a series of equations and conditions is used to solving them
[15], [22], [26], [29]–[32]; however, this method requires a huge
computational load every time a solution is required, and when
sudden changes occur, a solution has to be obtained again from
scratch, which increases the complexity to solve the problem in
an almost exponential way and the complexity is not acceptable
for real-time systems; iv) by auctions [13], [33] with higher
priority being given to those vehicles with the highest bids,
creating a market economy with the currency used for auctioning
and generating problems of equality; v) or through artificial
intelligence mechanisms such as genetic algorithms [34] or RL
[17].

III. STATE OF THE ART

Having seen the principle of operation of the different AIMs,
in this section we will look at the proposed works, as well as
their benefits, drawbacks, and performance. The work presented
by Stone et al. [12] was based on right-of-way reservations,

following a policy based on FCFS, and began the develop-
ment of these systems, which demonstrated that, in certain
situations, the control protocol they proposed outperformed
the traditional traffic light control protocols. Further, multiple
variants of this work were presented that allowed the incorpo-
ration of non-autonomous vehicles (FCFS-light) [2], [35], as
well as emergency vehicles such as ambulances or police cars
(FCFS-EMERG) [36]. The advantages offered by FCFS were a
reduction in travel time of up to 80% compared to traffic lights
and stop signals.

Another interesting work on AIM was proposed by [13],
where it presented an auction-based reserve approach. These
auctions were used to determine the order in which vehicles pass
through, that is, within the priority module. The vehicles that bid
the most were passed first. The results shown in four urban cities
showed superior performance in three of the four simulated road
networks when compared to traditional mechanisms, as well as
when compared to FCFS. However, this mechanism presents
several serious problems. The main problem is that the intrinsic
problem of any auction mechanism is vehicle starvation, in the
sense that the auction strategy may prevent others from winning,
with the risk that they will experience indefinitely long waiting
times, as well as generate a market economy of the currency
used, inflation, discrimination, etc.

Using DRL, an AIM was presented in [17] where DRL is
used in the priority module to create a Q-table with all possible
combinations of vehicles per entrance and the best car to pass.
This work offers improvements of more than 30% compared to
FCFS and LQF, but however, very extensive training is required.
Aside from creating all possible combinations of vehicles in the
entry, you must find the best vehicle for each case, something
that, for real situations, can take an enormous amount of training
time. Nevertheless, the advantage of RL is that when such a
policy has been found, the inference is extremely fast. However,
in the work proposed by Levin et al. [37] it was shown that
AIM has much room for improvement, since, in realistic ex-
amples, conventional traffic systems were able to outperform
the reservation-based systems proposed to date. To test this,
FCFS was compared with a traditional traffic light system.
In situations where vehicle flow is low, FCFS provided better
performance, but when traffic is high (> 800 veh/h) traffic light
control provided better performance. In addition, when traffic
is asymmetric, in bursts, or there is a main avenue and streets
connecting to it, the performance of FCFS was worse than that
of traffic light control.

It’s evident that having more control over autonomous ve-
hicles, both individually and collectively, gives these systems
a huge advantage over traditional control techniques in terms
of increasing vehicle flow, avoiding accidents, and shortening
vehicle travel times. However, the functioning of these modules
can have serious disadvantages compared to traditional traffic
light control techniques as they are based on simple control
techniques. These disadvantages have been previously detailed
in [37], where it is demonstrated that in the case of unstudied
situations, the systems’ behavior becomes unstable and obtains
unexpected results. Furthermore, these techniques are incapable
of considering past events or anticipating future ones.
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Fig. 3. New advanced RAIM (adv.RAIM) network. The action to be performed by the ego vehicle is calculated in the Policy. The output is the normalized speed
that the ego vehicle must follow in the next timestep. Note that there is only one LSTM cell that is iteratively fed with the features of each vehicle (14), starting
with the ego vehicle’s state, and continuing with other vehicles’ state. The State/Conflict Encoder output (hx) was set to 256 hidden parameters.

IV. ADVANCED REINFORCED AIM – ADV.RAIM

Considering the enormous potential offered by AIM and the
challenges that MADRL can address, in this work we proposed
advanced Reinforced AIM (adv.RAIM). This new approach
brings together the properties of the MADRL field with those of
AIM. adv.RAIM can offer a new approach within AIM, opening
an original path for the development of other advanced AIM
solutions.

Our prior work [10] showed that RAIM offers a great advan-
tage over the previously proposed AIM in simple scenarios. In
addition, RAIM was able to adapt to the different conditions
that may arise as well as, once trained, being able to infer a
result extremely quickly. Furthermore, the preliminary findings
suggested that RAIM could outperform other traffic control
systems in more realistic scenarios than those shown in the
previous.

However, the main problem of RAIM was that it could only
take into account 32 vehicles at a time, using a zero-filling
approach when faced with fewer vehicles and ignoring them
when there were more than 32 vehicles. To solve this problem,
the proposal we made is to use a recurrent network (Long-Short
Term Memory, LSTM) in which the features of each vehicle
are fed into the input and encoding of the conflicts between
the vehicle to be controlled and the other vehicles is obtained at
the output. This module is called State/Conflict encoder and can
be seen in Fig. 3, where an LSTM cell is used to which all the
vehicle states are recurrently input, and an encoded value of the
conflicts is learned during the training process.

The LSTM cell has the advantage of being able to learn
long-term dependencies [38], i.e., between different vehicles
depending on their state, since the feedback mechanism allows
it to remember previous states of the vehicles. In addition, the
output of the LSTM is a fixed-dimensional vector, eliminating
the problem that RAIM had. An output size of 256 variables was
used to allow encoding as much information as possible without

restricting the information learned. This is the first time we have
used an LSTM cell in a RAIM approach, and it is also a novel
approach to conflict-based controller design.

As for the order in which the module is fed, the state variables
of the ego vehicle are fed first, followed by those of the other
vehicles, in the order of their distance from the center of the
intersection. This allows learning the state variables in the local
neighborhood when a conflict occurs (fed by the reward signal).
The motivation for learning in this way is that it is easier to feed
the data in a way that considers the different states in which there
would be a conflict, or in which there would be a large impact on
the RL information about a given vehicle state, thus increasing
the reward for learning to encode conflicts.

After the State/Conflict encoder module, adv.RAIM presents a
set of fully connected layers, which compose the Motion Planner
module, see Fig. 3. This module decides the normalized speed to
be carried by each CAV at the next timestep based on its features
and the output of the state/conflict encoder to avoid collisions and
optimize the traffic flow. This module was composed of 4 layers
of fully connected neurons with ReLU activation functions and
the number of neurons in each layer is shown in Fig. 3. adv.RAIM
is termed as an ego-centric multi-agent system, having to deal
with all the CAVs at the intersection simultaneously, but con-
trolling each CAV individually. That is, adv.RAIM considers
the current state of the vehicle (ego) and the other vehicles to
obtain the normalized speed of the ego vehicle at the next time
step.

The action space is the normalized speed between 0 and 1
that the ego-vehicle must follow in the following time interval
(labeled ego-action in Fig. 3). The speed was denormalized
considering a maximum road speed of 13.9 m/s ( = 50 Km/h).
Each CAV has internal constraints of maximum accelerations
and decelerations given by the simulation tool that it will be
employed (typical values of 2.6 and 4.5 m/s2), so each vehicle
performs the indicated actions considering these speed change
constraints.
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TABLE I
INPUT FEATURES AND MEANING

TABLE II
SUMMARY OF THE SIMULATION SETUP AND RAIM PARAMETERS

TABLE III
TESTING SCENARIO 1 (FIXED 200 VEH/H/LANE) RESULTS

No collisions were recorded. [mean ± std. of 10 simulations].

The state variables of each vehicle used as input parameters
to adv.RAIM are shown in Table I. After coding the input
parameters, each vehicle provides 14 features. The parameters
with a continuous range (such as position, speed, and angle) are
normalized within the range of [-1, 1], and the parameters with
discrete values (i.e., lane, way, queue) are encoded with one-hot
encoding.

Algorithm 1: adv.RAIM.
Input: State of all vehicles
Output: Speed of each vehicle in the following timestep

1 # Reset the environment.
2 for timestep t ∈ {0, . . . , Maxepisodie} do:
3 # Obtain the vehicles currently being simulated.
4 vehicles = sim.get_current_vehicles()
5 # For each vehicle, the desired speed for the next

timestep is obtained.
6 # This loop is repeated for each vehicle in the

intersection.
7 # Clear input_params.
8 for vehicle ego_veh ∈ vehicles do:
9 # Obtain the params of ego_veh (position, speed,

lane, etc.) and append them to input_params.
10 vehicles_added = 0
11 # Obtain the params of the other vehicles.
12 for vehicle veh ∈ vehicles do:
13 # Obtain the params of veh and add to

input_params.
14 end for
15 # Obtain new speed of ego_veh using

input_params and actor net of TD3 and set
new_speed.

16 new_speed = actor_net(input_params)
17 sim.set_veh_speed(ego_veh, new_speed)
18 end for
19 end for

Therefore, the observation space for the entire control policy,
Fig. 3 (Policy), is formed by the 14 characteristics of the ego-
vehicle plus the n × 14 characteristics of the other vehicles,
where n is the number of other vehicles with which the ego-
vehicle must cooperate to ensure the safety and smooth flow of
traffic.

The control timestep was set to 250 ms, considering that it is a
sufficient time interval for efficient control without overloading
the processing and allowing real-time control. This means that
every 250 ms adv.RAIM updates the speed that all vehicles at
the intersection must follow to ensure safety and maximum flow,
considering the updated status of all vehicles. The pseudocode of
RAIM is shown in Algorithm 1 and the new adv.RAIM network
can be seen in Fig. 3. To optimize the controller, we use Twin
Delayed Deep Deterministic Policy Gradients (TD3) [39]. TD3
is an improvement of the Deep Deterministic Policy Gradient
(DDPG) algorithm, based on Actor/Critic control approach. It
has become one of the most popular algorithms for continuous
control problems within robotics and autonomous driving fields.
In this approach, there are two types of neural networks, one
that aims to predict the action to be taken (in this case, the
normalized speed of ego vehicle) based on the state (Actor, learn
the policy) and another that seeks to predict the expected reward
of performing that action (Critic, learn the action-value function,
Q-function).
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TABLE IV
TESTING SCENARIO 1 (FIXED 200 VEH/H/LANE) ADDITIONAL RESULTS

No collisions were recorded. [mean ± std. of 10 simulations].

TABLE V
TESTING SCENARIO 2 (FIXED 600 VEH/H/LANE) RESULTS

No collisions were recorded. [mean ± std. of 10 simulations].

As a reward signal, each vehicle (agent) received at each
timestep:
� −100 (strong negative reward) if there was a collision.
� +100 (strong positive reward) if the intersection was

crossed.
� −timestep (weak negative reward) to encourage crossing

as fast as possible.
Two main techniques are followed to achieve a more stable

and fast training:
i) Prioritized Experience Replay: (PER) [40]. In DRL, a

replay buffer is added to store past experiences and pro-
vide more stability during the training process. These
past experiences are known as transition tuples, usually
denoted as (st, at, rt, st+1) with states, actions, rewards,
and next states. Using this replay buffer, it is possible
to remember the past experiences, not forget them, and
thus approximate in a faster way Q-values of the DNN.
However, not all actions provide the same information,
and there are experiences where the critic can learn more.
The experiences that PER considers the most “learnable”
are those where the error committed between the predicted
Q-value (Q(s,a)) and the actual Q-value (Q∗(s,a)) is high.
This error is known as the Temporal Difference (TD) error
and measures the uncertainty that the DNN possesses,
being low when the error is low and high when it is
high. Therefore, the higher this error is, the more likely
it is to select an experience from the replay buffer in the
optimization process.

ii) Learning by curriculum [41]: Curriculum learning con-
sists of training an intelligent agent in tasks with increasing

complexity. First, the agent is trained in simple tasks,
and once the agent is capable of completing them, the
complexity of the tasks to be performed is gradually in-
creased [41]. Compared to training without it, the adoption
of the curriculum is expected to accelerate the speed of
convergence and may improve the final performance of
the model. Designing an efficient and effective curriculum
is not an easy task. A bad curriculum can even make
learning more difficult. In this work, curriculum-based
learning through Self-Play is used. With this approach,
the number of simulated vehicles was increased when a
stable solution was reached after several simulations, i.e.,
when after a certain time, the system could not improve
the solution found. Then, more vehicles were added to the
simulation so that the controller could learn to work in a
real multi-agent environment with multiple simultaneous
vehicles.

V. SIMULATION SETUP

We employed the microscopic traffic simulation tool SUMO
[42]. With this simulator, each vehicle is explicitly modeled. Py-
torch 1.5.0 and Python 3.7 were also used to develop adv.RAIM.
A 16-core processor was used together with an Nvidia 2080TI.
The overall training process required 14 days (336 hours) due to
the increasing complexity of the scenario and the convergence
time of the DRL algorithm. Once adv.RAIM is trained, the
size of the actor architecture is 20.3 MB, which any current
GPU with more than 4 GB of memory can handle. In addition,
adv.RAIM has an inference time of 1.89 ± 0.08 ms (mean
± est. dev. of 10,000 runs), so, during the 250 ms control
period (the selected control time interval), a single adv.RAIM
instance could control up to 106 vehicles in real-time. To control
more vehicles simultaneously, several instances could be run in
parallel, multiplying the control capacity.

The setup was divided into two parts: i) a training scenario,
where the optimization of adv.RAIM was performed; and ii) four
testing scenarios, three with a fixed flow rate and one closer to a
“real-world scenario” with a variable flow rate. In all the testing
scenarios, adv.RAIM was compared with 1) traditional traffic
light control (Fixed Time, FT) with different cycle lengths (40,
60, 80, and 120 seconds, FT10, FT15, FT20, and FT30), 2) an
advanced traffic-light control mechanism based on queue theory
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TABLE VI
TESTING SCENARIO 2 (FIXED 600 VEH/H/LANE) ADDITIONAL RESULTS

No collisions were recorded. [mean ± std. of 10 simulations].

TABLE VII
TESTING SCENARIO 3 (FIXED 1200 VEH/H/LANE) RESULTS

No collisions were recorded. [mean ± std. of 10 simulations].

Fig. 4. Simulated intersection with 4 approaches and 3 lanes/approach, where
the movements go straight, turn right, and turn left are allowed.

called iREDVD [8], and 3) an AIM previously proposed by Qian
et al. [9].

A. Training Scenario

The training scenario consisted of an intersection with 4
branches of 3 lanes per direction, where left turns, right turns, and
straight ahead were allowed. In our opinion, this is an important
feature, as it offers a great variety of routes and possible collision
zones, and very few AIMs allow it due to its high control
complexity. A representation of the simulated intersection can
be seen in Fig. 4. In each simulation, the random seed used
was changed, to obtain a wider set of experiences. In this way,

adv.RAIM was able to learn to deal with a variety of different
input states and obtain a stable model.

Each simulation represented a 5-minute time-lapse, where
the flow of vehicles increased (+150 veh/h) when a series of
conditions were met (the variance of the reward in the last 150
simulations was less than 0.005 × the total simulated flow),
following the curriculum methodology through Self-Play previ-
ously explained. This allowed us to train both the State/Conflict
Encoder module and the Motion Planner simply and progres-
sively, allowing the TD3 algorithm to find a stable control policy
that allows it to instruct the speed of each autonomous vehicle
at a busy intersection.

The metrics analyzed in the training scenario were global
reward, number of collisions, and time loss (due to congestion).
Time loss is due to having to drive slower than desired (below
the desired speed), and includes waiting time.

The system took control of the vehicles when they were less
than 100 m from the center of the intersection. A summary of
the parameters used in the simulation can be seen in Table II.
Therefore, the main objective of adv.RAIM was to maximize
the total individual reward of each vehicle and to do so it strived
to eliminate collisions (since it is a large penalty), as well as to
reduce the travel time of the vehicles (since it will penalize each
time step that the vehicles are within the intersection).

B. Testing Scenarios

The test scenarios provide a clear comparison of the perfor-
mance offered by adv.RAIM and other traffic control algorithms
in a more realistic scenario with conditions similar to reality.
The simulated scenario consisted of an intersection with 4
approaches, and 3 lanes per approach as in the training scenario.
Each simulation was run 10 times and represented a time span of
14 hours. To simulate various conditions, the simulated flow was
separated into flow with vertical origin, and flow with horizontal
origin. These flows could go in a straight line, turn right, or
turn left. Four different scenarios were simulated, 3 with a fixed
flow and one with a variable flow, shown in Fig. 5. The fixed
flow scenarios were: one with low flow (200 veh/h/lane), one
with medium flow (600 veh/h/lane), and one with high flow
(1200 veh/h/lane). In the fourth variable flow test scenario,
Fig. 5 shows that there were multiple different situations, with
low (200 veh/h/lane), medium (600 veh/h/lane), and high (1200
veh/h/lane) flows, asymmetric and symmetric flows, and slow
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TABLE VIII
TESTING SCENARIO 3 (FIXED 1200 VEH/H/LANE) ADDITIONAL RESULTS

No collisions were recorded. [mean ± std. of 10 simulations].

TABLE IX
TESTING SCENARIO 4 (VARIABLE FLOW RATE) RESULTS

No collisions were recorded. [mean ± std. of 10 simulations].

Fig. 5. Vehicle flow rate per lane used in the testing scenario.

and fast flow variations. This allowed us to test adv.RAIM in
a large number of conditions as close to reality as possible, as
well as to see the evolution of performance in different isolated
scenarios.

Several metrics were studied. Due to the optimization tech-
nique, the metrics directly optimized and studied were travel
time, waiting time, and time loss due to congestion. Waiting
time refers to the time in which the vehicle speed was less than
or equal to 0.1 m/s. This time can be due to a variety of factors,
including congestion. Although the travel time and time loss due
to congestion metrics are directly related, we left both to show in
perspective the time loss due to congestion in relation to the total
travel time. Indirectly, pollution and consumption metrics (CO,
CO2, HC, PMx, NOx, and fuel and electricity) were analyzed
to show the environmental benefits that these systems can offer,

in addition to the reduction in travel time and congestion. The
traditional traffic light algorithms used for comparison were:
fixed time algorithm (FT) and iREDVD algorithm [8].

The FT algorithm sets a fixed passing priority time for each
of the branches of an intersection and only allows vehicles from
one branch to pass at a time. Several passing priority times were
tested, 10, 15, 20, and 30 seconds (total cycle lengths of 40,
60, 80, and 120 seconds). They were named FT10, FT15, FT20,
and FT30. iREDVD is an adaptive algorithm based on queuing
theory and traffic lights. RAIM was also compared with the AIM
approach developed by Qian et al. [9]. The vehicle distribution
used was: 35% of diesel cars, 35% of gasoline cars, and 30% of
electric cars with zero emissions.

VI. RESULTS

The following section highlights the results obtained in the
test scenario, along with a detailed comparative analysis of the
test scenario results.

A. Training Scenario

Fig. 6 shows the results obtained in the training scenario in
the studied metrics (number of collisions, reward, and time loss)
versus the simulated vehicle flow throughout all simulations.
One of the main quick observations is the stability of the system.
This is especially noticeable at the peak of the first simulations in
the average number of collisions metric (Fig. 6a) and is mitigated
by the automatic Self-Play curriculum and RL nature. There are
some outliers in the metrics as the flow increases. However, they
eventually converge to stable values, demonstrating that TD3
and PER allow training to converge with increasing complexity.
In addition, it is worth noting that the number of collisions shows
a downward trend from the peak in the initial 750 simulations
approximately, due in part, to the large negative reward when a
collision occurs. Finally, the number of collisions can be seen to
trend to 0 and presents a very low value from simulation 7000
onwards.

The average reward per vehicle metric (Fig. 6b) also shows
a negative trend, but acceptable stability within the confidence
intervals. This negative trend is because the number of simulated
vehicles increases over time, making the intersection increas-
ingly congested. This causes vehicles (on average) to drive
progressively slower, but optimally to maximize the average
reward received by each vehicle.
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TABLE X
TESTING SCENARIO 4 (VARIABLE FLOW RATE) ADDITIONAL RESULTS

No collisions were recorded. [mean ± std. of 10 simulations].

Fig. 6. Training results. We plot the smoothed mean with an exponential moving average and 90% confidence interval across 3 seeds. The red vertical axis on
the right and the red curve show the flow of vehicles (veh/hour). The blue vertical axis on the left and the blue curve show each of the metrics studied: a) Average
number of collisions; b) Average reward per vehicle; c) Average Time Loss.

Finally, if we look at the average time loss (Fig. 6c), it follows
a trend inversely proportional to that of the reward received by
each vehicle. As the number of simulated vehicles increases, the
average time loss per vehicle also increases. In this metric, it is
observed that as the flow increases, there are very abrupt changes
in the trend, and after a few simulations, they stabilize. All the
metrics analyzed remain stable within the confidence intervals,
which confirms the good performance of the algorithms used.

The three figures show the convergence offered by TD3 and
PER when the flow of vehicles increases. For all metrics, when
the flow increases, some values break the trend they have (e.g.,
the number of collisions increases), but after a few simulations,
the system can handle more vehicles and learns to deal with
them to further optimize each metric.

B. Testing Scenarios

The results obtained in the fixed scenarios are shown in Tables
III–VIII.

As can be seen, the advantage of not having traffic lights for the
control of autonomous vehicles increases when traffic density
is lower, particularly in the low traffic scenario (200 veh/h/lane,
Tables III and IV), where the improvement in metrics is more
significant in all cases.

For the medium flow scenario, the performance of the AIM
approaches still outperforms that offered by the traffic lights-
based approaches (Tables V and VI). Lastly, if we look at the
high flow scenario (Tables VII and VIII), all algorithms present
similar performance.

This behavior is because when the vehicular flow rate is low,
the use of traffic light-based control algorithms to control an
intersection is very inefficient since the use of the intersection
is considerably reduced. Alternatively, if vehicles are allowed
to circulate freely, taking into account safety regulations, the
throughput they experience is superior, eliminating waiting
times when there are almost no vehicles. However, this is not the
case for high traffic flow rate scenarios, where traffic lights show
good performance. In this case, the AIM algorithms behave like
traffic light-based control algorithms.

Finally, Table IX includes the results obtained by the different
algorithms in the fourth test scenario. This scenario is the closest
to reality since it presents a wide variety of flows and conditions.
If we focus on traditional traffic light control (FT and iREDVD),
for all metrics under study, adv.RAIM shows its superiority.
Using adv.RAIM, travel time is reduced by up to 59%. In turn,
time loss is decreased by up to 95%. Another key result is
achieved indirectly. The emissions of polluting gases (CO, CO2,
HC, PMx, and NOx) and consumption (fuel and electricity) are
reduced, showing significant reductions of up to 37%, 13%,
28%, 37%, 50%, 21%, and 27%, respectively.

If we look at the additional results tables (Tables IV, VI, VIII,
and X), we can see that adv.RAIM offers an improvement over
the other methods. This can be explained because adv.RAIM is
optimized to find a control policy that ensures that vehicles cross
an intersection as fast as possible while guaranteeing safety.
That is, vehicles spend as little time as possible within the
intersection. Thus, since vehicles rarely stop at intersections
(reducing waiting time and wasted time), vehicles do not have to
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brake and then accelerate, but rather find the appropriate speed
for each vehicle with which each vehicle crosses the intersection
in the shortest possible time without collision. By not having to
accelerate, other metrics such as fuel/energy consumption and
pollutant emissions are reduced since it is at these times that
higher consumption is realized.

On the other hand, if we compare the results obtained by
adv.RAIM with the AIM algorithm proposed by Qian et al. in
[9], we can observe similar results. However, if we focus on the
operation of [9], we can see that this algorithm must have in
advance the planning of all the vehicles. Then, employing FFS,
it can organize the vehicles in a suboptimal way. In the event that
there is a new vehicle or if the vehicles cannot adjust their speeds
to those imposed by [9], the system must recalculate all vehicles’
routes. Consequently, this prevents it from easily adapting to
changing environmental conditions, which is very common at
intersections where accidents, emergency vehicles, pedestrians,
etc., may occur. With adv.RAIM, this does not happen because
it can be trained to take into account these incidents and offer
optimal solutions, considering all vehicles in each time interval
and obtaining for each one the optimal speed that guarantees the
greatest expected reward.

VII. CONCLUSION AND FUTURE WORK

The fields of robotics, CAVs, and ITS are advancing rapidly
by virtue of MADRL, which provides a flexible and efficient
way to solve complex and extreme optimization problems in
these areas. This paper presents and evaluates adv.RAIM, a new
and inspiring approach in AIM based on MADRL. adv.RAIM
periodically controls the speed of CAVs passing through an
intersection in a cooperative and decentralized manner, ensuring
safety and maximum fluidity. adv.RAIM presents an architecture
with an LSTM capable of capturing the long-term spatial and
temporal dynamics of traffic conditions in the network. This
allows it to better understand and encode possible collisions
in space/time between different CAVs passing through an in-
tersection and thus act proactively. In addition, apart from the
LSTM module, it presents a module composed of deep neural
networks in charge of crossing the collision information encoded
by the LSTM module and the state of the CAV to be controlled,
obtaining the speed at which the CAV should circulate during
the following time interval. The control process is performed
sequentially and periodically for all CAVs.

The results show that adv.RAIM is able to overcome some
important disadvantages of traditional AIMs (performance loss
when the vehicular flow is heavy), controlling challenging sce-
narios and achieving robust results through the coexistence of RL
techniques such as TD3, PER, and Self-Play curriculum-based
training techniques.

Quantitatively, the results show an improvement in several
metrics, such as a reduction in travel time by 59%, or a reduction
in time loss by 95% in the most complex scenario. The intensive
training and the capability of operating proactively can explain
the good outcomes obtained. Moreover, thanks to the nature of
the optimization, adv.RAIM is able to obtain a control policy
capable of indirectly optimizing other very important metrics

such as fuel/energy consumption or pollutant gas emissions,
due to the smaller number of accelerations/decelerations of the
CAVs. Furthermore, the modularity of adv.RAIM could be an
advantage to explore its use in other scenarios such as highways
or sub-urban areas.

As future work, we will address some improvements such
as incorporating a Transformer-based attention mechanism to
identify conflicts, the crossing order of vehicles, or the exchange
of information between intersections to increase collective in-
telligence.
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