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Learning-Based Decentralized Offloading Decision
Making in an Adversarial Environment

Byungjin Cho and Yu Xiao , Member, IEEE

Abstract—Vehicular fog computing (VFC) pushes the cloud com-
puting capability to the distributed fog nodes at the edge of the
Internet, enabling compute-intensive and latency-sensitive com-
puting services for vehicles through task offloading. However, a het-
erogeneous mobility environment introduces uncertainties in terms
of resource supply and demand, which are inevitable bottlenecks
for the optimal offloading decision. Also, these uncertainties bring
extra challenges to task offloading under the oblivious adversary
attack and data privacy risks. In this article, we develop a new
adversarial online learning algorithm with bandit feedback based
on the adversarial multi-armed bandit theory, to enable scalable
and low-complexity offloading decision making. Specifically, we
focus on optimizing fog node selection with the aim of minimizing
the offloading service costs in terms of delay and energy. The key
is to implicitly tune the exploration bonus in the selection process
and the assessment rules of the designed algorithm, taking into
account volatile resource supply and demand. We theoretically
prove that the input-size dependent selection rule allows to choose
a suitable fog node without exploring the sub-optimal actions, and
also an appropriate score patching rule allows to quickly adapt to
evolving circumstances, which reduce variance and bias simultane-
ously, thereby achieving a better exploitation-exploration balance.
Simulation results verify the effectiveness and robustness of the
proposed algorithm.

Index Terms—Vehicular fog computing, task offloading, online
learning, adversarial multi-armed bandit.

I. INTRODUCTION

INCREASING demand for high-complexity but low-latency
computation, triggered by emerging applications, e.g. au-

tonomous driving, motivates the use of rising technologies,
mobile edge/fog computing, that bring cloud-like computing
services, closer to end-users [1]–[3]. To boost up additional
but limited edge computing resources, vehicular fog computing
(VFC) [4], [5] has emerged as a new computing paradigm where
moving fog nodes with surplus resources and good connectiv-
ity, named vehicular fog nodes (VFNs), are utilized as viable
components that serve to execute computation tasks offloaded
from service clients. As such, leveraging distributed fog nodes
for task offloading could benefit from direct communication,
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e.g. 5G V2V, between a client and a VFN, i.e., reduced trans-
mission delay, and similar trajectories when a client is traveling
along with VFNs, i.e., relatively long contact duration and less
handoffs, resulting in a substantial improvement in quality of
experience, compared with using fixed infrastructure. VFNs are
heterogeneous in terms of location, availability and reputation,
and thus the computing service has diverse preferences towards
them [6], i.e., one may prefer a vehicle with high processing ca-
pability and efficiency. One issue is how to make task offloading
decisions, especially the fog node selection, considering distinct
characteristics/preferences.

Computation task offloading decision algorithms have been
investigated in [7], [8] where a centralized coordinator schedules
the computation offloading tasks. A decision-making problem
has been formulated in [7] as a stochastic control process, e.g.,
semi-Markov, to minimize the offloading service cost in terms
of delay and energy. The trade-off between the delay and energy
cost is investigated in [8] based on matching theory. However,
such centralized decision-making might be challenging to run
due to i) signaling overhead burden caused by gathering and
processing a massive amount of information, e.g., requested
tasks of service users, available resources of VFNs, and mobility
of both, and ii) a privacy concern raised by exchanging such
private information with a central controller.

Decentralized decision-making is considered as an alternative
for the issues above. Each client can make a decision inde-
pendently and perform task offloading in a distributed manner.
A client may lack the state information of neighboring VFNs
within its communication range, and thus it is unknown in prior
that which VFN would provide the best performance, i.e., the
lowest offloading cost. Exchanging the state between the client
and the potential VFN, may be informative and helpful for
making a decision appropriately. However, such decentralized
decision-making is still challenging to conduct in a mobile
environment where i) frequent state updates are needed to adapt
to system fluctuation, and ii) such heavy signaling load could
cause transmission failure and thus outdated state. One approach
to deal with the issues above is, rather than obtaining the state
information of VFNs from signaling messages, to enable a client
to directly learn the state information of VFNs and to map the
decision history to the current offloading decision.

Given the availability of a huge amount of data, historical data
can be used to improve the quality of resource management poli-
cies, since they contain statistics of the environment which varies
in a non-stationary and unknown manner, and learning from
them can mitigate the uncertainty of future management tasks.
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Further capability to reinforce the current policies allows envi-
sioning a learn-to-optimize framework where a decision is made
in an environment to optimize a given notion of cumulative loss
with the fewest possible assumptions. In a nutshell, the adaptive
decision-making procedure becomes two-fold, i) exploration:
learning as much as possible about different candidate actions
that lead to good estimates of their loss, and ii) exploitation:
optimizing the desired objective to select the optimal actions
given the learned information.

One fundamental issue is to balance the exploration and ex-
ploitation trade-off in the learning process, i.e., making decisions
with the aim of reducing uncertainty over states, or maximizing
cumulative reward given its current estimates. Such an explo-
ration versus exploitation dilemma can be formulated as a multi-
armed bandit (MAB) problem where each neighboring VFN
is treated as an independent arm, and its associated offloading
service cost, e.g., latency and energy at edge node, is dominated
by the computing capability. A task requester performs an online
learning process, while running the offloading service and up-
dating the optimal decision on the VFN selection. However, the
variations in the requested workload (dynamic resource demand)
and the candidate VFN set (dynamic resource supply) make it
non-trivial for the task requester to learn the latency and energy
consumption of the candidate VFNs especially in a rapidly
changing or adversarial environment on which an attacker may
give some stress.

In our task offloading problem, two dynamic factors are
considered in terms of resource supply and demand: i) a time-
varying volatile candidate fog node set which results from its
inherent mobility [9], and ii) a time-varying task size which
results from different types of applications or even different parts
of the same application workload [10]. Both factors above cause
unnecessary but inevitable costs, i.e., sub-optimal actions are
possibly explored thereby unbalancing exploration and exploita-
tion activities. In particular, newly and re-appeared arms may fail
to quickly adapt to the evolving circumstance. Also, a large-size
task offloaded to a fog node with weak service capability may
provoke worse performance. In the literature, such dynamic
attributes have not been taken into account due to challenges
associated with i) randomized selection rules and ii) unbiased
estimation assessment rules in an adversarial environment, shed
lighted in this work.

To the best of our knowledge, this is the first work aiming
at bridging such dynamics to an adversarial domain, addressing
the following contributions;
� This work proposes a modified implicit exploration-

based algorithm for adaptive learning-based task offload-
ing (MIX-AALTO) which enables scalable and low-
complexity decision making on VFN selection toward
minimizing task offloading service cost in terms of latency
and energy. Such a model-free algorithm permits to capture
the unknown offloading cost variations under oblivious ad-
versary, e.g., weighted-average randomized selection rule,
biased cost estimation, e.g., implicit-exploration, and data
privacy considerations, e.g., full-bandit feedback.

� The proposed algorithm facilitates to make an offloading
decision in a manner adaptive to the volatile and time-
varying resource necessitate and provision by appropriate

adjustment on cumulative learning score in the selection
rule. As such, the modified learning score considering the
coming task demand and evolving circumstance, allows
to select a suitable fog node, rather than a capable one,
i.e., choosing a VFN better suited for the next task with
time-varying size, rather than the one providing the lowest
service cost for the current task.

� The proposed algorithm makes it possible to alleviate the
uncertainty of the empirical cost estimates in assessment
rule. The robust learning based on implicit exploration
which controls the variance at the price of introducing some
bias could guarantee near-optimal performance, rather than
exploring the sub-optimal actions due to large variability
attributable to unbiased estimation process.

� The theoretical analysis about efficiency of the proposed
algorithm is provided in terms of learning regret. It is
proved that such a modified implicit exploration approach
renders the reduction of variance and bias simultaneously,
thereby achieving a better exploitation-exploration balance
in an adversarial environment. Simulation results in syn-
thetic and real-world scenarios verify its effectiveness and
robustness.

The rest of this paper is organized as follows: In Section II,
the system model and problem formulation are presented. In
Section III, the task offloading algorithm is then proposed. In
Section IV, and the learning regret is analyzed. Simulation
results are then provided in Section V, and finally comes the
conclusions in Section VI.

II. RELATED WORK

This section presents related works in the area of VFC enabled
task offloading, in terms of the potential scenarios of VFC and
the task offloading algoritihms.

A. Task Offloading Scenarios

A variety of use cases have been identified as potential sce-
narios for VFC, i.e., efficient dissemination of real-time vehicle
traffic and emergency information in cooperative driving of
autonomous vehicles for road safety and intelligent firefighting
for rescue safety [11]. In particular, emerging assisted driv-
ing applications, such as real-time situational awareness [12],
lane changing and seethrough for passing [13], and localiza-
tion/mapping applications, such as HD map generation and road
construction detection [14], involve time-critical and compu-
tationally intensive tasks, i.e., on-road object recognition and
scene understanding from images/videos, and have requirements
for the validity period of task and reducing its consumed power.
Safety-related services require low-latency responses, such as
10 ms for cooperative collision avoidance, 25 ms for vehicle pla-
tooning, and 500 ms for collective environment perception [15].
The work in [14] investigated the feasibility and challenges of
applying VFC for real-time analytics of high-resolution video
streams, and proved the efficiency of VFC-based task offloading
in terms of the latency, packet loss ratio and throughput. The
work in [16] reduced the offloading latency considering the
efficiency of power usage in fog computing by balancing the
workload of fog nodes. Powerful computers are required for
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processing computationally complex tasks. Such computers also
consume energy at a high rate, which affects vehicles’ driving
endurances if computers are powered by vehicles. The work
in [17] indicated that the driving distance reduced by 6% due to
the consumption of a computing engine equipped with 1 CPU,
Intel Xeon E5-2630, and 3 GPUs, NVIDIA TitanX.

B. Task Offloading Algorithms

Some efforts have been made to address the decision-
making strategies for VFC-based task offloading. Specifically,
the works [9], [18]–[24] designed decentralized task offloading
strategies where offloading decisions are made by the task
generators independently. The works in [18], [19] proposed
task assignment algorithms for VFC enabled system, without
centralized control, according to the collected information of
adjacent vehicles. The proposed task caching and Ant Colony
Optimization (ACO) based algorithm in [18] attains efficient
time complexity than brute-force approach, but may suffer from
high complexity for a large number of vehicles and failure to
adapt to a volatile environment. In [19], the task is processed in
an online manner, but the proposed algorithm may suffer from
high signaling overhead, i.e., heavily relying on frequent state
information exchange, and thus failure to process subsequent
tasks properly in case of outdated information provided by
vehicles. To overcome such scalability issues, learning-based
task offloading schemes have been considered in [9], [20]–[24].

The work in [20] proposed a learning-based task replication
algorithm based on combinatorial MAB, where task replicas
can be offloaded to multiple vehicles to be processed simultane-
ously. Some enhancements to this approach were achieved by
adjusting the exploration weight according to the computation
workload [21] and the appearance time [22] of fog nodes.
The work in [23] proposed a fluctuation-aware learning-based
computation offloading algorithm based on MAB, where base
stations are regarded as agents to learn the state of moving server.
The work in [24] proposed an efficient online task offloading
strategy to minimize the long-term cost of non-stationary fog-
enabled networks. The work in [9] considers a mortal bandit
formulation to address the time-varying set of VFNs for a given
task generator, where the computation capacities of the edge
nodes are used as contextual information in order to reduce
the exploration space. However, all previous works assume that
the task offloading performance experienced by an offloading
service client is in a stochastic domain where some private
information could be inferred by an attacker, and will be severely
compromised by the non-stochastic task offloading strategies of
other devices, i.e., the task offloading problem is adversarial
and conventional upper confidence bound-based task offloading
algorithms cannot be directly applied in an arbitrary dynamic
environment.

To solve the non-stochastic task offloading problem, adver-
sarial MAB approach can be considered, where each strategy
is assigned an arbitrary and unknown sequence of rewards,
one for each time step, chosen from a bounded real interval.
Especially, Exponential-weight algorithm for Exploration and
Exploitation (Exp3) is a well-known learning algorithm for

Fig. 1. Online learning in an adversarial envrionment.

adversarial setting, and has been studied in resource provider
selection problems [25]–[27]. Exp3-based online scheme has
been proposed with the objective of optimizing the QoS, such as
the throughput [25], energy consumption [26] and latency [27].
However, the previous works fail to address mobility-induced
volatile resource availability and resource demand in an adver-
sarial environment at the same time.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, the system model and problem formulation are
considered, applicable to offloading services.

A. System Model

An offloading service client generates tasks, while a set of
offloading service providers k ∈ K = {1, . . .,K} support the
requested tasks with their own available computational resources
(see Fig. 1). Any vehicles on the ground could become task
offloading service clients or service providers. A service client
can offload a task t to any VFN k within its communication
range. Here k ∈ Kt ⊆ K where Kt is the candidate VFN set
varied due to their inherent mobility. VFNs available to a service
client are discovered and selected by the client based on their
topological states, including moving direction and speed [14].
For example, VFNs periodically broadcast single-hop messages
including such state information following vehicular communi-
cation protocols, such as dedicated short-range communication
(DSRC) or cellular vehicle-to-everything (C-V2X). Each client
forms a candidate VFN set by selecting from the accessible
VFNs which follow the same driving direction as the client.
Due to inherent mobility, the candidate VFN set Kt varies.
It is assumed that the client interacts with accessible VFNs
continuously and updates the candidate VFN set Kt �= ∅1 in
real-time.

1) Demand Model: In general, computing tasks can be di-
vided into subtasks at different levels of granularity [28], and can
be divided into atomic tasks.2 Multiple divisible subtasks can be
executed in a parallel, serial or mixed manner. Some of these
subtasks must be performed locally and some of them can be
either performed locally or offloaded to the external computing
resources. In this work, each atomic task is considered as a basic
unit for offloading, i.e., offloaded to and processed by a fog

1IfKt = ∅,∀n, t, the task tmay be processed locally or forwarded to a remote
cloud server, which is left for the future work.

2A task with a larger workload can be further partitioned into multiple ones.



CHO AND XIAO: LEARNING-BASED DECENTRALIZED OFFLOADING DECISION MAKING IN AN ADVERSARIAL ENVIRONMENT 11311

node within one time period, and the operational timeline is
discretized based on the atomic task unit, t ∈ [t, t+ 1) [9]. One
can characterize an atomic task, t, by two parameters, the input
size qt (bits/task) and its required computation resource defined
as the number of CPU cycles ct (cycles/task). The resource
demand can be estimated from measurements by applying the
methods described in [29], and expressed as the multiplication
of two parameters, the input size qt and the computational
complexity wt representing the number of CPU cycles required
for processing one bit of input data. The value of wt varies with
applications, depending on the nature of performed applications3

2) Resource Model: The computational capability of a fog
node k ∈ Kt is described by its maximum CPU frequency Fk

(cycles/second). One atomic task is offloaded as a whole to a sin-
gle fog node who may execute tasks in parallel depending on its
own resource allocation rules. To deal with multiple computation
tasks simultaneously, a fog node dynamically adjusts its CPU
frequency with dynamic frequency and voltage scaling (DFVS)
technique. This work considers that the computing capability
allocated to a fog node k, denoted by f t

k (cycles/second), is
determined by the computing resource allocation policy, remains
static for each task t and in general is a non-increasing function
of the total number of clients that offload to the same fog node
k. It is assumed that each fog node employs equal fair resource
scheduling over different tasks. The wireless medium of a fog
node k is shared by the clients that choose to offload to the fog
node k. The achievable uplink and downlink transmission rates
between a client and fog node k are determined by the physical
characteristics of the wireless medium, such as distance, fading
gain, bandwidth, and interference.

3) Cost Model: Performing task offloading incurs transmis-
sion and computation costs.4 Two kinds of cost can be consid-
ered, the offloading service latency L and the related energy
consumption E. Specifically, the latency for offloading includes
the time for uploading the input to a fog nodek, and the execution
time at the fog node, downloading the result to the service client.
It is assumed that the feedback size is small enough that the
downlink transmission latency can be safely ignored. Thus, the
latency of completing a task is expressed as

Dt
k =

qt

rtk
+

qtwt

f t
k

where rtk = B log[1 + Pgk
N+Ik

] is the link rate for transmitting
input data t from a client to a fog nodek,B is channel bandwidth,
P denotes transmission powers of a client, gk is the uplink
channel gains between a client and a fog node k, N is the noise
power, and Ik denotes interference measured at the fog node.
Given the orthogonal channel allocation [31], the co-channel
interference can be avoided. Furthermore, the cross-channel
interference can be ignored according to the experimental results
in [32]. The channel gains are static during the uploading process
of each computation task and downloading processes of the

3wt is approximated by a Gamma distribution in [30], e.g., face recognition
requires 2339 (cycles/bit) and video transcoding requirement varies from 200–
1200 (cycles/bit).

4The term cost is often interchangeable with the loss in this work

computation result. The energy consumption of completing a
task is expressed as

Et
k =

P · qt
rtk

+
P t
kq

twt

f t
k

where P t
k = ρ(f t

k)
3 is the computing power with effective

switched capacitance related to the chip architecture5 [33]. To
take into account two types of costs for task t to a VFN k, we
define the cost function as the weighted sum over the latency
and energy consumption,

U(t, k) = ξDt
k + (1− ξ)Et

k (1)

where ξ denotes the weighting parameter of latency [34].

B. Problem Formulation

We define the unit cost of task offloading as the overall cost
of offloading the processing of one bit of input data for task t to
a VFN k,

l(t, k) = U(t, k)/qt = ξDt
k,o + (1− ξ)Et

k,o (2)

where Dt
k,o = Dt

k/q
t and Et

k,o = Et
k/q

t denote the per-bit la-
tency cost and per-bit energy cost, reflecting the service ca-
pability of each candidate VFN k. We aim at minimizing the
average unit cost of task offloading by optimizing the fog node
selection, done by each client, for each task (up to a finite
T tasks) in each round, kt. If all state information related to
the per-bit cost are exactly known by the task requester before
offloading each task, the optimization problem can be expressed
as follows: kt = mink∈Kt

l(t, k) where kt is the optimization
variable representing the index of fog node selected for task t,
kt ∈ Kt.

In fact, the state information of fog nodes in heterogeneous
and dynamic networks is hard-to-predict and exchanging the in-
formation among the clients and fog nodes causes high signaling
overhead. Thus, the clients may lack the state information of fog
nodes and could not make accurate predictions about which fog
node would provide the optimal offloading service for each task.
To overcome this, one may utilize learning-and-adapting-based
offloading scheme where a client observes and learns the costs
of each task offloaded to the candidate fog nodes and makes
an offloading decision based on the historical cost observations
without exact knowledge about the current state information. For
this, we aim to design a learning-based algorithm minimizing
the expectation of the unit offloading cost, formulated as

P : min
k1,k2,...,kT

E

[
T∑
t=1

l(t, kt)

]
(3)

where E[·] is the expectation operator, l(k, kt) is a sequence of
unit cost for the t-th task in the set of tasksT , andT = |T | ∈ N+

is the number of tasks.

5Local execution does not cause transmission cost, but computation cost in
terms of latency and energy consumption. In this work, a task is assumed to be
for being transmitted to a fog node.
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IV. ONLINE LEARNING-BASED TASK OFFLOADING

In this section, a learning-based task offloading algorithm
is developed based on MAB, which enables a client to learn
the offloading cost of candidate fog nodes and optimizes the
expected task offloading cost. The problem (3) requires online
sequential decision making whose nature enables to design a
lightweight algorithm but suffers from uncertainty associated
with the lack of knowledge about the properties and conditions
of the phenomena underlying the behaviour of the systems.

A. Learning Under Uncertainty: An Adversarial Approach

Consider a general framework of online learning where a task
client selects one fog node, k from a finite set Kt based on
an a priori unknown payoff function. The previously offloaded
tasks allow an empirical mean as an estimate of the expectation,
but if there are not enough observations, this guess may not be
accurate. In order to get more information about one specific
fog node, the client needs to offload more tasks to that node
even though it may not be the empirically best fog node to
offload. However, the empirically best node is preferred for
the sake of instantaneous benefits in online decision-making.
Therefore, there exists a tradeoff between exploiting the em-
pirically best node for instantaneous rewards and exploring
other nodes for potential benefits. Also, note that learning under
uncertainty relies on feedback in general. Thus, quality6 of the
feedback in terms of completeness has significant implications
in assessment rule. Incomplete feedback stands in contrast to
full-information feedback where utilities of all actions a client
could have taken are observed in each stage. Incompleteness can
be spatial/temporal across the action space/stages. When a client
sends a task to a fog node, there is no way to know how other
fog nodes would have performed on the same task. Moreover,
local visibility of loss makes decision-making challenging. A
commonly studied model is the so-called bandit feedback, where
only the utility of the chosen action is revealed. The term bandit
feedback has its roots in the classical online learning problem
to play a multi-armed slot machine known as a bandit. A MAB
problem is specified by a set of arms (actions or available VFNs)
Kt and a sequence of cost ltk, t ∈ T . For each task, a client selects
an arm and receives the cost from the selected arm, not from other
arms.

The objective of a client is to minimize the long-term cost as
shown in equation (3), while managing exploration-exploitation
trade-off in bandit setting. Each arm pulled by the client gen-
erates cost in an adversarial fashion. An adversary is changing
the future cost for arms, and the distribution of cost for each
arm would change over time, which is not inherently proba-
bilistic and does not include stochastic averaging in contrast to
stochastic MAB case. In this sense, non-stochastic formulation
of MAB is more appropriate to evaluate the most promising

6While many works take assumption requiring the noise to have a well-
conditioned, stochastic component, i.e., independent, identically distributed
Gaussian process noise, imperfect feedback referring to the inaccuracy of the
observed utilities in revealing the quality of the selected actions is assumed to be
null in adversarial regime due to its arbitrary property. One may further consider
adversarial noise sequence which is left for the future work.

strategy in an arbitrarily changing environment where there
could even exist an oblivious adversary, e.g., jamming attack.
Also, existing stochastic MAB may characterize the exploration
bonus in determined selection rule with a padding function
addressing the variations of additional informative data such as
the history of playing up to the current round, which would result
in better performance. However, incorporating such information
into an adversarial setting is challenging due to randomized arm
selection rule, and the payoff generated in an adversarial fashion
under information limited environment weakens the robustness
and smoothness of the estimation process in its subsequent
assessment rule.

B. Exploration in Selection Rule

In an adversarial MAB problem, randomized policy is needed
due to the possibility that a client using deterministic policy or
stochastic one such as Upper Confidence Bound (UCB)-style
exploration [35] may be easily fooled by adversaries. Thus,
instead of choosing an arm k′ ∈ Kt directly, the clientn selects a
probability distributionΛt = [ptk]k∈K ∈ [0, 1]|K

t| :
∑

k∈Kt ptk =
1 over the available arms for task t. The resulting probability
vector Λt is called a mixed strategy for the mixed strategy space
of a client who draws an arm according to this distribution,
k′ ∼ p. The selected probability distribution is proportional
to its loss, weighted appropriately. The idea is to give more
weight to actions that performed well in the past. One may
employ weighted-average randomized strategy with potentials7

to achieve a cumulative cost (almost) as small as that of the best
action [36, Section 6]. An arm k is assigned with the selected
probability for task t, ptk which is proportional to weighted

accumulated cost caused by that arm in the past, ptk =
Wt

k∑
kWt

k
.

The parameter,Wt
k, is a weight of each arm k maintained by the

client, representing the confidence that the arm is a good choice.
In a bandit setting, rather than concerning about how to get

the estimated cost of an arm which was not pulled, one seeks to
investigate how such information can be used when it becomes
available. To that end, the score (penalty) based learning process
is considered as follows: The service capability of a fog node can
be represented by the score parameter, the cumulative estimated
bit-per cost up to s− 1, L̂s−1

k =
∑s−1

t=1 ηt l̂
t
k where l̂tk is the

estimate of loss from the arm k for task t and ηt ∈ (0, 1] is the
learning rate. If all of arms newly appear in round t = 1, their
scores are initialized with zero, L̂0

k = 0, /,∀k ∈ K1 and thus
the resulting probability follows a uniform distribution initially,
p1
k ∼ 1/|K1|. In each round s, a task requester chooses an action

k′ based on the resulting probabilityΛs and updates the estimate
of loss l̂sk based on the selected arm. The resulting probability
Λs is determined based on the scores L̂s−1

k .
Essentially, one would leverage past experiences to gain the

intuition on what is the best value to use. Considering the
exponential potential function with the score, the weighting
parameter can be expressed asWs

k = e−L̂
s−1
k , and the resulting

probability vector Λs is expressed as psk = e
−L̂s−1

k
∑

m e−L̂
s−1
m

, ∀k ∈ Ks

7Polynomial and exponential potentials can be used [36, Section 6].
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in round s. Note that such importance-weighted mechanism
assigns exponentially higher probability to strategy with lower
cumulative scores up to s− 1 due to the relation ∂

∂x (
e−x

X+e−x ) =
−e−xX

(X+e−x)2 < 0 where x = L̂s−1
k and X =

∑
m �=k e

−L̂s−1
m . These

scores reinforce the success of each strategy measured by the
estimated offloading cost l̂s−1

k , so a client would rely on the
strategy with the lowest score.

Appropriate selection rule could achieve a balance between
exploitation and exploration, i.e., exploiting known resources
with certainties and exploring for new possibilities, by differ-
entially choosing among actions, favoring those with lower
cumulative scores perceived to be more attractive. While the
exploration and exploitation trade-off conventionally depends
on the service provider’s state i.e., candidate fog node’ capa-
bility, its balance can be improved by considering additional
information on the service requesters’ necessity and providers’
activities. However, in an adversarial setting, it is nontrivial
to improve the performance with such additional information.
Non-stochastic property nullifies the statistics of the historical
data on the service providers’ activities, i.e., the numbers of
computational tasks that an arm has served and for which it has
been connected to the requester since its initial connection [22],
are void especially in a volatile dynamic environment. Also,
a padding function in the UCB based selection rule allows to
characterize an exploration bonus addressing such informative
data, while it is not straightforward to do that in an adversarial
setting due to its randomized policy.

This work aims at incorporating the observation on the re-
source provider’s volatility and resource requester’s task size
into the selection rule in an adversarial setting to achieve a
better balance between exploration and exploitation. To do so, in
the following, the dynamic resource supply and demand-based
exploration bonus is augmented in the score L̂s−1

k toward fair
and suitable fog node selection.

1) Dynamic Resource Supply: If an arm k̄ newly appears in
round τ , Kτ = Kτ−1 ∪ k̄, as the previous candidate set of fog
nodes did, i) all arms including the new arm could be reset,
L̂τ−1
k = 0, named full reset, or ii) only the new arm’s score

could be initialized with zero, L̂τ−1
k̄

= 0, named partial reset.
However, such a resetting mechanism may invalidate the score
based learning benefit in the rapidly changing environment. The
bandit may take a long time to collect enough samples for those
arms to correct their null scores again. Also, such incomparable
scores due to the partial nullification may fail to fairly explore
all of the available arms to identify the best arm within a total
number of tasks, T . For instance, if the existing scores of the
arms L̂τ−1

k , ∀k ∈ Kτ−1 are as high as those in making the corre-
sponding resulting probabilities too low, the newly appeared arm
k̄ will be dominant pτ

k̄

 pτk, ∀k ∈ Kτ−1 and thus repeatedly be

selected for all eligible rounds τ ′ > τ until the arm’s score goes
up enough to make more accurate estimation comparative to
other arms s > τ ′. In other words, the old arms may sacrifice
their opportunities, regardless of their accumulated experience,
to learn the dynamic task offloading environment. Such an unfair
selection rule from the perspective of old arms could be amended
by setting the initial score of an appearing arm with the already

existing one from oneself or others L̂τ−1
k̄

= L̂τ−1
k̄

+ βk̄ where

βk̄ = max(min(L̂τ−1
m ), L̂τ−1

k̄
),m ∈ Kτ−1 > 0 and Kτ−1 is the

set of the old arms in round τ − 1.
2) Dynamic Resource Demand: Note that while the objective

in equation (3) is to optimize the expected bit cost of offloading
the task to a fog node k for task t, what actually needs to be
learned is the potential capability of each candidate fog node
and its projected suitability for the upcoming task under an
adversarial framework. The service suitability of a fog node
can be assessed by the normalized total delay of offloading the
next task L̂t−1

k qt which would be further additive to the service
capability to build refined weights for better arm selection and
thus improved quality of service, e.g., cost per task. Such joint
consideration of both the normalized offloading delay per bit and
per task L̂t−1

k (1 + qt) may take some coordination in terms of
input data size-dependent exploration-exploitation trade-off. For
the feature scaling, the normalized size of the upcoming task qt

is used as a weight factor δt = 1 + (qt − qmin)/(qmax − qmin)
where qmax and qmin are the upper and lower thresholds of the
input data size, respectively, on the offloading delay in decision-
making algorithm, i.e.,Wt

k = e−L̂
t−1
k δt . This approach turns out

to be analogy to the Boltzmann (or softmax) exploration [37],
which creates a graded function of estimated value with the
maximum inverse temperature parameter equal to 2 [38]. The
higher values of δt →∞ will lead to a fully greedy strategy,
while the lower values δt → 1 will move the selection strategy
more towards offloading service capability-based one.

C. Exploration in Assessment Rule

According to the selection rule above, one client selects a
suitable fog node for the upcoming task, offloads it to the selected
node, and receives real-valued payoffs, i.e., offloading service
cost per bit, and then uses its own assessment rule to indepen-
dently convert the realized payoff into the learning-weighted
estimate of the payoff additive to the previous score representing
the fog node’s estimated capability.

1) Iteration-Varying Learning: Learning rate is a parameter
controlling how much the weights of the current estimated
payoff is taken into account for the upcoming cumulative score,
which determines the importance of the estimated payoff at each
time in term of contribution to the cumulative score. Convention-
ally, the learning factor ηt is predefined as a empirically constant
or variable depending on the horizon T , which requires advance
knowledge of the horizon and weakens the learning ability of
algorithm. Note that achieving the perfect knowledge of T is
usually not feasible in practice. While one could use a standard
doubling trick [39] to overcome this difficulty, we choose to
take a different path to circumvent this issue, and propose to
tune its learning rate iteration-dependently η = ηt, ∀t and other
parameters solely based on observation. Thus, from technical
perspective, the task requester should take positive actions to
explore unfamiliar environment and learn the loss statistics l̂tk of
all strategies in the initial stage. As learning iteration goes on,
the client may want to exploit observations obtained so far to
identify the best strategy without engaging others too often.
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However, it is nontrivial to select a proper ηt which should
be large enough to avoid selecting a bad arm too many times,
while small enough to limit the transient effect. One way is to
encourage an algorithm to explore less over round, decreasing
learning factor with round; the more distant the past, the more
its learning factor. When the learning rate is large, ptk becomes
more uniform, and the algorithm explores more frequently.
For a lower learning rate, ptk concentrates on the arm with
the lowest estimated cost and the resulting algorithm exploits
aggressively. Furthermore, if the exploration-exploitation levels
change too fast, it would be too short to obtain the inflection
point from exploration to exploitation. For this matter, one may
further consider varying the learning factor with the number of
candidate sets; the larger the number of arms is, the more slowly
the learning factor decreases.

2) Robust Learning: Learning algorithms are based on a
model of reality, and their performance depends on the degree
of agreement on their assumed model with reality. The robust-
ness of an algorithm is its sensitivity to discrepancies between
the assumed model l̂tk and the reality ltk, which is essentially
determined by how the related assessment rule is set.

The loss from an arm k �= k′ could not be observed due to
incomplete feedback in the bandit problem. This motivates us to
use unbiased estimate that the client observes, enabled by i) using
the loss ltk if one observes it and 0 otherwise, l̂tk = ltk · 1k=k′ ,
and ii) correcting the bias from dividing it by the probability
of selecting the arm, l̂tk = ltk/p

t
k · 1k=k′ , thereby maintaining

the expectation property and making arms that have not been
pulled yet optimistic and being likely to be explored. However,
the unbiased estimate causes large fluctuation in the loss due to
inverse-proportion to ptk. One idea is to avoid ptk being too small.
The first thing that comes to mind is to mix ptk with the uniform
distribution. This is an explicit way of forcing exploration, which
after further modification can be made to work. The idea to
reduce the variance of importance-weighted estimators has been
applied in various forms [40]–[42], but all of these works are
based on truncating the estimators, which makes the resulting
estimator less smooth.

This work takes the similar approach for a simpler and em-
pirically superior algorithm. They key idea is to change the cost
estimates to control the variance at the price of extra bias. To
achieve this, we consider Exp3 algorithm endowed with implicit
exploration (IX)-style cost estimates [43]. After each action,
the cost is first calculated as l̂tk = ltk/(p

t
k + γt) · 1tk=k′ , which is

a biased estimator due to E[l̂tk] =
∑

k p
t
k l̂

t
k = ltk −

γt·ltk′
pt
k′+γt

≤ ltk

where ptk is the probability, percentage of weight, that arm k
will be chosen for task t. The implicit exploration parameter
γt ∈ (0, 1] makes ptk smooth so that actions with large losses for
which classical recipe in exponential weights algorithm scheme,
would assign negligible probability, are still chosen occasion-
ally, and thus the estimator is allowed to guarantee reliable
performance in rapidly changing, adversarial environments.

D. Proposed Algorithm

In this work, taking into account the above mentioned
motivations, an algorithm for adaptive learning-based task

Algorithm 1: MIX-AALTO: Modified Implicit Exploration
based Algorithm for Adaptive Learning-based Task Offload-
ing.

1: Input: sequences ηt > 0, γt > 0, K′ = ∅
2: for t ∈ T do
3: Set η ← ηt, γ ← γt, q ← qt,K ← Kt,K′ ← K′ ∪ K
4: Set Lk ← 0, βk ← 0, k ∈ K �Dynamic supply
5: for Any k ∈ K̄ do
6: if k ∈ K̄\(K̄ ∩ K′) then
7: Update βk ← min(L̂m),m ∈ K
8: end if
9: if k ∈ K̄ ∩ K′ then

10: Update βk ← max(min(L̂m), L̂k),m ∈ K
11: end if
12: end for
13: Update Lk ← L̂k, k ∈ K
14: Update δ ← q �Dynamic demand
15: UpdateWk ← δ · (Lk + βk) �Selection rule
16: Set p← [ exp(−Wk)∑

m exp(−Wk)
]k∈K

17: Select action k′ ∼ p
18: Receive the cost lk′ ← Uk′ �Assessment rule
19: Compute l̂k ← [ lk ·1k=k′

pk+γ ]k∈K

20: Update scores: L̂k ← L̂k + ηl̂k, ∀k
21: end for

offloading is proposed to solve the offloading decision problem
where a client decides for each task to which fog computing
node to offload it. The proposed algorithm makes use of two
exploration processes. One is modified Boltzmann distribution
based exploration that supports time-varying resource supply
and demand dependent offloading, emphasizing feasibility and
fairness in fog node selection. The other is an implicit explo-
ration based on biased loss estimation to alleviate the uncertainty
of the importance-weighted estimator.

In Algorithm 1, the vanishing learning factor ηt, exploration
factor γt, and the set of previously used fog nodes K′ which
is here assumed to be empty initially, are considered as the
input parameters (Line 1). And then the iteration dependent
parameters, ηt, γt,Kt and qt, are set. Upon generating each task
from the application the information on the input data size qt is
known by the task requester. Also, the up-to-date information on
a set of candidate VFNsKt from the neighbor discovery process
is available andK′ is updated (Line 3). Afteward, the algorithm is
structured in three parts: i) exploration bonus adjustment where
two dynamic factors in terms of resource supply and demand, βk

and δ, are updated, which would be used to tune the weighting
parameter, wt

k (Lines 4–14), ii) selection rule domain where the
selected probability is proportional to the cumulative score tuned
by considering the resource demand and supply aspects for suit-
able and fair selections via modified exploration bonus (Lines
15–17), iii) assessment rule domain where the utility function
defined in Eq. (3) is used to evaluate the service capability of
each fog node, by observing the empirical offloading cost and
converting it to the estimated cost via implicit exploration factor,
and then the cumulative learning score is updated (Lines 18–20).
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1) Adaptivity: Adaptivity is an essential property that has
steadily gained importance for solving the offloading decision
problem, particularly for dynamic environments. For the adapta-
tion to dynamic resource supply and demand, a cumulative learn-
ing score is fine-tuned with parameters βk and δ such that the
available arms are fairly and suitably explored. While the param-
eter δ, identical for all candidate VFNs, plays a role in modifying
the explore-exploit behavior for demand dependent suitability,
the parameter βk, possibly different for different VFNs, plays
a role in reducing the large disparity between the cumulative
learning scores of different VFNs, thereby avoiding unfair se-
lection. Prior to performing the offloading decision for each task,
a neighboring VFN set is discovered within its communication
range [14] and those in the same moving direction are considered
as candidate VFNs [22]. Due to inherent mobility-induced time-
varying features, some fog nodes physically leave a candidate set
temporarily but return into the set within a finite number of time
periods, called volatile occurrence of the potential candidate fog
nodes. For the arm k ∈ K̄t\(K̄t ∩ K′) newly appearing in the
candidate set for task t, the corresponding score βk is set to be
the minimum score of the other existing available arms (Line 7).
If the arm k ∈ (K̄t ∩ K′) which has ever been connected to the
task generator becomes available again after not so long time,
the previously used score is re-utilized so that it leverages to its
own recently estimated computation capability, rather than other
arms (Line 10). Such volatile resource supply based score as-
signment allows discovered candidate arms to be fairly explored
with the highly capable existing arm or their own knowledge, and
the algorithm to adapt to the change. Regarding the adaptation
to resource demand, time-varying demand dependent offloading
decision is enabled by joint consideration of both the normalized
offloading bit-per cost and per-task cost in score, which results
in a more suitable fog node selection, i.e., with a larger input
size, more exploitation would be executed with firmed belief for
a more suitable selection (Line 14). While such adaptivity to the
dynamic resource supply and demand is treated in a modified
form of exploration as exploration bonus in selection rule for
fairness and suitability, the implicit exploration is considered to
enable reliable cost estimation in assessment rule.

2) Scalability: To cope with the heterogeneity in resource ca-
pacities and adaptivity in a dynamic environment, the proposed
algorithm is to keep high scalability taking into account i) com-
putational complexity, e.g., time complexity, ii) communication
overhead given by its implementation, i.e., how many times a
decision-maker needs to communicate with available fog nodes,
and iii) accessible information, i.e., what type of information a
decision-maker needs before making decisions. That is, the key
properties of scalability are low complexity, low communication
overhead, and reduced need for information.

Remark 1: (Low computational complexity) Calculating the
modified scores of all candidate VFNs has a complexity of
O(|K|), and updating the estimated cost and cumulative score
has a complexity of O(1). Thus, the proposed algorithm has
polynomical-time efficiency, i.e., O(|K||T |), which is lower
than O(|K||T |2) for the ant colony optimization.

Remark 2: (Low communication overhead) The proposed
algorithm allows the task generator to learn the states such as

allocated CPU frequency of each fog node, instead of obtain-
ing them from physical signal messages, which can save |Kt|
signaling messages for the state of the Kt candidate fog nodes.

Remark 3: (Low information demand) Instead of collecting
all information via local observation and full feedback from
available fog nodes, the proposed algorithm enables the task
generator to make decisions based on a fully causal information
oracle via local observation and bandit feedback.

V. LEARNING EFFICIENCY OF PROPOSED ALGORITHM

This section characterizes the performance of the online learn-
ing algorithm. Naturally, exploring an uncertain world with a
specific goal always has some regret. As a performance criterion,
the considered assessment rule employs some notion of the
learning regret which tries to capture the degree of cumulative
dissatisfaction of a task generating client in presence of dynamic
resource supply and demand.

A. Regret

Concretely, the regret of an algorithm is defined as its cu-
mulative loss minus the cumulative loss of the best strategy in
the pool, i.e., available candidate set. To address non-stationary
environment where there is no single fixed point that does
well overall, we use the regret with respect to an interval
Ti = [τi, τi+1 − 1] ⊆ T = [1, T ]/,∀i ∈ I where τi+1 − 1 is the
maximum of the rounds maintaining a network structure un-
changed, i.e., available fog nodes are identical during an interval
Ti. The significance of no-regret learning depends on the adopted
benchmark policy which the learning algorithm is measured
against.

An oracle benchmark to P in equation (3), the optimal solu-
tion to the minimization problem during each interval, t ∈ Ti is
given by k∗ ∈ argmink[l̄k[i]]/,∀i where l̄k[i] is the expectation
of ltk, E[ltk]t, for the interval i, which is unknown beforehand
in practice. Given the oracle benchmark, the learning regret
which measures how much the client regrets choosing his pulled
action-sequence over the one with the optimal policy, can be
expressed as

RT = E
[
LT
k′ − LT

k∗
]

(4)

where LT
k′ =

∑
t∈T l

t
k′ and LT

k∗ =
∑

t∈T l
t
k∗ correspond to the

sequences of cumulative losses incurred by the Algorithm 1 and
adopted oracle, respectively.

The regret upper bound of the proposed algorithm is analyzed,
desirable to stay small in mean and concentrated well around the
mean, so-called high-probability 1− ν bounds. Such targeted
properties guaranteed for each interval would be also valid for
multiple intervals. Thus without loss of generality one may focus
on an interval of the algorithm and omit the symbol index i,
e.g., Ti = T . Such probability-based measurement value can be
quantified as a concentration of measure inequality based on
the Cramer-Chernoff method. The quantities of interest here are
the variance and bias, both of which would be used as bounded
components of regret.

We show that the variance of the sum of a sequence of
random variables cannot be much higher than the sum of their
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expectations conditioned on the past, following from [43] using
a martingale sequence and a Markov’s inequality.

Lemma 1: (Variance) With probability at least 1− ν, the
following inequality

∑
k∈K(L̂

T
k − LT

k ) =
∑

k∈K
∑

t∈T (l̂
t
k −

ltk) ≤ ln(|K|/ν)/2γT and L̂T
k − LT

k =
∑

t∈T (l̂
t
k − ltk) ≤

ln(|K|/ν)/2γT for any fixed k.
Proof: i) Define λt =

∑
k∈K αtl

t
k and λ̃t =

∑
k∈K αt l̃

t
k

where l̃tk =
ltk

pt
k+γt

. Letγt be a fixed non-increasing sequence and

αt be non-negativeF t−1 measurable random variables. Accord-
ing to [43], if αt ≤ 2γt for all t, one gets E[Zt|F t−1] ≤ Zt−1

where Zt = exp(
∑t

τ=1(λ̃
τ − λτ )) is super-martingale relative

to F t−1 and Z0 = 1. ii) With Markov’s inequality, one leads
to P[

∑
t∈T

∑
k∈K αt(l̃

t
k − ltk) > ε] ≤ e−ε = ν for any ε > 0,

where v is the probability that the bound is not satisfied. With the
respective complement (guaranteed) probability 1− v and ban-
dit feedback, one gets

∑
t∈T

∑
k∈K αt(l̂

t
k − ltk) ≤ ln(|K|/ν)

and similarly,
∑

t∈T αt(l̂
t
k − ltk) ≤ ln(|K|/ν) for any fixed

k. Thus, we obtain
∑

k∈K
∑

t∈T γt(l̂
t
k − ltk) ≤ ln(|K|/ν)/2

and
∑

k∈K
∑

t∈T (l̂
t
k − ltk) ≤

ln(|K|/ν)
2γT

, and also
∑

t∈T γt(l̂
t
k −

ltk) ≤ log(|K|/ν)/2 and
∑

t∈T (l̂
t
k − ltk) ≤

ln(|K|/ν)
2γT

for any
fixed k. �

Unlike a typical unbiased estimator, the cost estimator with
implicit exploration parameter in the assessment rule incurs the
bias which is the difference between the realized cost and the
biased estimator’s expected cost.

Lemma 2: (Bias) With probability at least 1− ν, the
bound on the bias is LT

k′ − L̃T =
∑

k∈K
∑

t∈T γt l̂
t
k ≤∑

k∈K
∑

t∈T γtl
t
k + log(|K|/ν)/2.

Proof: One gets the following:
∑

t∈T (l
t
k′ − Ek∈K[l̂

t
k]) =∑

t∈T (l
t
k′ −

∑
k∈K p

t
k l̂

t
k) =

∑
t∈T (l

t
k′ −

∑
k∈K l

t
k1{k=k′} +∑

k∈K 1{k=k′}
γtl

t
k

pt
k+γt

) =
∑

k∈K
∑

t∈T γt l̂
t
k ≤∑

k∈K
∑

t∈T γtl
t
k + log(|K|/ν)/2 from Lemma 1. �

Remark 4: The parameter γt serves to decrease the variance,
but to increase the bias for a learning rate, ηt, resulting in a
variance-bias trade-off.

Remark 5: The parameters, ηt and γt, selected irrespective of
ν would entail the proposed algorithm with a high-probability
bound for any confidence level ν.

Rearranging the variance and bias components above, the
regret with respect to arm k∗ is bounded as follows:

Proposition 1: The cumulative regret in (3) is determined
by the inequalities given in Lemma 1 and Lemma 2 for each
k∗, and is upper-bounded by log |K|

ηT
+ ( 1

2γT
+ 1) log(|K|/ν) +∑

t∈T (γt +
ηt

2 )|K| if ηt ≤ 2γt.
Proof: The learning regret in (3) can be decomposed

into the sub-parts: RT = RT
bias +RT

exp3 +RT
var = (LT

k′ −
L̃T ) + (L̃T − L̂T

k∗) + (L̂T
k∗ − LT

k∗) = LT
k′ − LT

k∗ where RT
var =

L̂T
k∗ − LT

k∗ from Lemma 1, RT
bias = LT

k′ − L̃T from Lemma

2, and RT
exp3 = L̃T − L̂T

k∗ ≤
log |K|
ηT

+
∑

k∈K
∑

t∈T
ηt l̂

t
k

2

from [35]. The upper bound of RT
exp3 is further managed

by manipulating a term of the bias,
∑

k∈K
∑

t∈T γt l̂
t
k

with a proper value of ηt, i.e., conditioned on ηt/2 ≤ γt.
To sum up, the aggregate regret is upper-bounded by

RT ≤ log |K|
ηT

+ log(|K|/ν)
2γT

+
∑

k∈K
∑

t∈T (γt +
ηt

2 )l̂
t
k ≤

log |K|
ηT

+ ( 1
2γT

+ 1) log(|K|/ν) +
∑

k∈K
∑

t∈T (γt +
ηt

2 )l
t
k ≤

log |K|
ηT

+ ( 1
2γT

+ 1) log(|K|/ν) +
∑

t∈T (γt +
ηt

2 )|K| if
ηt ≤ 2γt. �

Remark 6: The learning regret can be bounded by controlling
variance and bias.

Remark 7: The step-size, ηT and γT , vanishing rapidly may
be sub-optimal, since it may incur a higher regret.

The implicit exploration enables reliable cost estimation in as-
sessment rule, thereby obtaining a high-probability 1− ν regret
bound. However, the bound is not compatible with adaptation
to the dynamics in resource demand and supply, since an arm
is typically selected based on the assumptions that all candidate
VFNs have i) identical resource demand and ii) fair opportunity
to be assessed. Next, focusing on achieving a better bound on
regret with the same 1− ν probability, taking into account two
dynamic feeders, we show how the adaptation can be treated
in an exploration bonus in the selection rule for suitability and
fairness.

B. Dynamic Resource Demand

In the following, the dynamic resource demand-based offload-
ing decision making is studied. An arm k is selected with a
probability proportional to e−L̂

t−1
k without mixing any explicit

exploration term into the distribution, but with multiplying the
normalized input data size δt with the cumulative score corre-
sponding to the arm k. Note that the positive value of δt plays a
role in making the high selection probability greater and the low
selection probability lower, and determining the sensitivity of the
probability a given arm is chosen over the estimated cumulative
score values of alternative arms in the corresponding state. The
lower the value of δt, the less sensitive the probability of a
given arm being chosen will be to the relative differences in
the cumulative scores. On the other hand, high δt values cause
choices to become sensitive to the estimated values of the various
alternative arms.

One critical issue is that notwithstanding having estimated
all the arms correctly, Boltzmann exploration may be able to
pull sub-optimal arms prematurely or excessively. Such abrupt
decisions may cause unintended consequences, i.e., cumulative
importance-weighted loss estimates may become irreversible
afterward [44]. This is mainly due to the fact that Boltzmann
exploration does not consider the uncertainty of the empirical
cost estimates, i.e., large variance caused by unbiased bandit
estimator with arbitrary small selection probability may result
in a worse outcome. This work circumvents the issue above
by guaranteeing algorithmic robustness for which bounded
properties on estimation are used. High-probability bounds for
adversarial bandits were provided in [39] with Exp3P algorithm
and in [43] with Exp3IX, but limited to the surrogate regret with
capability-based selection strategy.

Note that for task t the probability of a dominant arm
ptm,m ∈ K which is superior to the other arms L̂t−1

m <
L̂t−1
k ∀k ∈ K, or even has a low enough score with L̂t−1

m <
1
|K|

∑
k∈K L̂t−1

k , increases in δt, ptm < ptm|δ>0 due to the fact that
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the derivative of the resulting probabilityptm in δt becomes a pos-

itive value, ∂Λm

∂δt =
∑

k∈K(L̂t−1
k −L̂t−1

m ) exp[−(1+δt)(L̂t−1
k +L̂t−1

m )]

(
∑

k∈K exp[−(1+δt)L̂t−1
k ])2 > 0.

The following proposition states that such escalation in the
resulting probability of the dominant arm allows to have distinct
but enhanced concatenation profiles, respectively, achieving a
lower regret than the case with δ = 0, equivalently δt = 0,
∀t ∈ T .

Proposition 2: When L̂s
m < 1

K−1

∑
k �=m L̂s

k, the upper
bounds on variance in Lemma 1 and bias in Lemma 2 with δ > 0
become lower than the ones with δ = 0 for all to ≤ s ∈ T (a.s.),
thereby obtaining the lower cumulative regret upper bound in
Prop. 1.

Proof: The proof follows from deriving improved concentra-
tion bound, and results in reduced upper bounds on variance and
bias in Lemmas 1 and 2 with δ > 0. In randomized selection
rule, a dominant or dominated arm is chosen. Note that the
probability of a dominant arm is significantly higher than the
one of a dominated arm. Assume that a dominant arm’s index is
m for task s, L̂s−1

m < 1
|K|

∑
k∈K L̂s−1

k and thus psm|δ=0 < psm|δ>0.
i) If the dominant arm is selected for task s ∈ T ′ =

[1, s] ⊆ T , we could obtain the following inequality
relation:

∑
k∈K

∑
t∈T ′ αt l̂

t
k >

∑
k∈K

∑
t∈T ′ αt l̂

t
k|δ>0 where

αt l̂
t
k =

αtl
t
k ·1{k=m}
pt
k+γt

, αt l̂
t
k|δ>0 =

αtl
t
k·1{k=m}

pt
k|δ>0+γt

. From Lemmas

1 and 2, we have
∑

k∈K
∑

t∈T αt(l̂
t
k − ltk) ≤ ln(|K|/ν), if

αt ≤ 2γt for all t. By rearranging the inequalities above,
we obtain

∑
k∈K

∑
t∈T ′ γt l̂

t
k =

∑
k∈K

∑
t∈T ′ γt l̂

t
k|δ>0 +

Hs
K ≤

∑
k∈K

∑
t∈T ′ γtl

t
k + log(K/ν)/2 where Hs

K =∑
k∈K

∑
t∈T ′ γt(l̂

t
k − l̂tk|δ>0). When the value of Hs

K is
positive, intuitively, the upper bounds on Rs

var, Rs
bias, and

Rs
exp3 in Prop. 1 become lower for any confidence level.
ii) Note that there is still non-negligible possibility that one of

the dominated armk ∈ K\m is selected due to the random selec-
tion strategy, even though there exist multiple dominant armsm,
L̂s−1
m < 1

K−1

∑
k �=m L̂s−1

k , and dominated arm k ∈ K\m could
get lower selection probability with δ > 0, psk|δ=0 > psk|δ>0.

Nevertheless, the estimated cost of the dominated arm l̂sk gets
higher with δ > 0 due to the lower resulting probability and
would increase its cumulative score, thereby making the section
probability lower at the next round.

To sum up, the proposed algorithm with δ > 0 achieves a
lower cumulative regret than the one with δ = 0, Rs

δ>0 ≤ Rs
δ=0,

as s becomes large enough, s ≥ to. �
A natural question is whether an arm with rather a good ser-

vice capability compared to other arms results in a lower score,
i.e., whether an arm with relatively low cumulative realized
offloading cost also is allowed to form a low score parameter
after performing a certain amount of tasks, which would be
eventually effective in reducing variance and bias, and thus
learning regret (Prop. 2). The following proposition provides
such rational selection behavior.

Proposition 3: When 1
K−1

∑
k �=m Ls

k ≥ Ls
m,

∑
t ηt →∞,

and γt > t−1, then 1
K−1

∑
k �=m L̂s

k ≥ L̂s
m for all to ≤ s ∈ T .

Proof: The proof follows from treating the two sequences,
1

K−1

∑
k �=m ζtk and ζtm where ζta = l̂ta − lta, a ∈ Kt [45], as

supermartingale difference sequences and from applying law

of large numbers for supermartingale difference sequence. We
show 1

K−1

∑
k �=m L̂s

k ≥ L̂s
m for task s ∈ T ′ = [1, s] ⊆ T by

contradiction.
Suppose the contrary, 1

K−1

∑
k �=m L̂s

k − L̂s
m < 0, and

a measure in terms of a score of the cumulative distance
between two F t-measurable random variables is expressed
as 1

K−1

∑
k �=m L̂s

k − L̂s
m =

∑
t∈T ′ ηt(

1
K−1

∑
k �=m l̂tk −

l̂tm) =
∑

t∈T ′ ηt(
1

K−1

∑
k �=m ltk − ltm) +

∑
t∈T ′ ηtζ(t) =∑

t∈T ′ ηt[
1

K−1

∑
k �=m Lsk−Lsm∑
t∈T ′ ηt

+
∑

t∈T ′ ηtζ(t)∑
t∈T ′ ηt

] where ζ(t) =
∑

k �=m ζt
k

K−1 − ζtm and ζta = l̂ta − lta, a ∈ Kt.

Now, we show
∑

t∈T ′ ηtζ(t)∑
t∈T ′ ηt

→ 0. According to the strong law
of large numbers for supermartingale difference sequences [46,
Corollary 4.2] [47, Theorem 5] [48, Theorem 2], if the
second moment of supermartingale differences is bounded,∑∞

t=1
E[|ηtζ(t)|2|Ft−1]

[
∑s

t=1 ηt]2
<∞ and

∑∞
t=1 ηt →∞, we get with

probability 1,
∑

t∈T ′ ηtζ(t)∑
t∈T ′ ηt

→ 0.

Next, we focus on an upper bound to E[|ηtζ(t)|2|F t−1].
The parameter ηt depends only on t, not
F t−1, thus E[|ηtζ(t)|2|F t−1] = η2

t · E[|ζ(t)|2|F t−1]
where E[|ζ(t)|2|F t−1] is bounded as follows:
E[|ζ(t)|2|F t−1] = E[| 1

K−1

∑
k �=m ζtk − ζtm|2|F t−1] ≤

2E[| 1
K−1

∑
k �=m ζtk|2|F t−1] + 2E[|ζtm|2|F t−1] ≤

4E[|max (ζtk)|2]≤4E[|l̂tx − ltx|2]x=argk max ζt
k
≤ 8ltx(1/γ

2
t +

1). Thus we get an upper bound as follows E[|ηtζ(t)|2|F t−1] =
η2
tE[|ζ(t)|2|F t−1] ≤ 8ltxη

2
t (

1
γ2
t
+ 1).

By using the bound, lims→∞
∑s

t=1
E[|ηtζ(t)|2|Ft−1]

[
∑t

τ=1 ητ ]2
≤

lims→∞
∑s

t=1
8ltxη

2
t(1/γ2

t+1)
[tηt]2

≤ 8 · O(
∑s

t=1
1/γ2

t+1
t2 ) <∞,

when t2γ2
t > 1. Thus, 1

K−1

∑
k �=m L̂s

k − L̂s
m is in contradiction

with the nonnegativity of 1
K−1

∑
k �=m Ls

k − Ls
m for all s ≥ to,

1
K−1

∑
k �=m Ls

k ≥ Ls
m. �

Corollary 1: The condition 1
K−1

∑
k �=m Ls

k ≥ Ls
m is suffi-

ciently satisfied with Ls
k ≥ Ls

m∀k, γt > t−1, and
∑

t ηt →∞.
Remark 8: The step-size γt vanishing faster than or equal to

t−1, γt ≤ t−1 could be sub-optimal.

C. Dynamic Resource Supply

In the following, we show that allowing a certain arm to get
some fixed extra information at the beginning of the learning
interval [49] would result in better performance than the con-
ventional approach, i.e., partial or full reset in Section III-B. Such
fine-tuned scores enable to reduce the exploration space, thereby
rapidly calibrating perception and adapting to environmental
changes. One may share the explored information among the
arms which follow the same cost distribution for reducing the ex-
ploration space, but only valid in stochastic MAB framework [9].
Considering the adversary’s non-stochastic force, when the cor-
responding arm reappears after a finite but not so many rounds,
a task requester may reuse its own previous score result, or may
use the minimum of the other arms’ scores in the immediately
previous round if no exploration progress has been made for
many rounds, βk̄ = max(min(L̂τ−1

m ), L̂τ−1
k̄

),m ∈ Kτ−1. If an
arm disappears in round τ due to its inherent mobility, a task
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requester could alleviate the unnecessary pull by ruling out the
vanishing arm in its selection process, |Kτ | < |Kτ−1|.

We compare the proposed approach for volatile resource sup-
ply case where the arm k̄ which recently joined the exploration
process for previous task τi,p appears again for the current task
τi = Ti[1] ∈ Ti, with another two cases: i) zero value of βk̄ for
the partial reset case, i.e., only L̂τi−1

k > 0, and ii) zero values

of βk̄ and L̂τi−1
k for the full reset case. The parameter βk̄ is not

iteration-varying but interval-varying, i.e., updated whenever the
candidate fog node set is changed for task τi, ∀i. Note that while
the modified score for dynamic demand affects all arms equally,
the one for dynamic supply only tunes the scores of joining
arms, which results in unfair exploration and different filtration
processes. Denoteβk̄ > 0∀ibyβ > 0. In the following, we show
that β > 0 allows to have enhanced learning performance with
a better composite of cumulative scores over arms.

Proposition 4: When
∑

k L̂s
k >

∑
k L̂s

k|β>0 where k ∈
Kτi , s ∈ Ti/,∀i, the lower variance and bias are obtained.

Proof: The proof follows from deriving improved
concentration. By considering task t ∈ Ti = [τi, s] and
arm k ∈ Kτi and modifying the term λ̃t =

∑
k ηt l̃

t
k in

Lemma 1 with λ̃t|β>0 =
∑

k ηt l̃
t
k|β>0, if ηt ≤ 2γt, one gets

E[Zt
β>0|F t−1] ≤ Zt−1

β>0 where Zt
β>0 = exp(

∑
t(λ̃t|β>0 − λt))

remains also super-martingale relative toF t−1. With the respec-
tive complement probability 1− v and bandit feedback, one
gets

∑
t

∑
k ηt(l̂

t
k − ltk) =

∑
t

∑
k ηt(l̂

t
k|β>0 − ltk) +Hs

K ≤
ln(|Ki|/ν)/2 where Hs

K =
∑

t

∑
k ηt(l̂

t
k − l̂tk|β>0). According

to Lemmas 1 and 2, when
∑

k L̂s
k >

∑
k L̂s

k|β>0, one gets the
lower variance and bias. �

The result above enables a balance of the exploration process
needed to identify the reasonable alternative in a fair manner,
which results in lower learning regret with using Prop. 1, condi-
tioned on a better formed of cumulative scores. Now, the natural
question is whether we have

∑
k∈Ki
L̂s
k >

∑
k∈Ki
L̂s
k|βi↑, s ∈

Ti, ∀i. The following proposition states that the cumulative score
of the proposed approach is better than the ones of the reset cases.

Proposition 5: When γt/ηt = φ > 0/, ∀t,
∑

k L̂s
k >∑

k L̂s
k|β>0, k ∈ Kτi , s ∈ Ti, s ≥ to, ∀i.

Proof: The proof follows from the use of the filtration asso-
ciated with stochastic process, showing that positive values of
the modified score and implicit exploration parameters would
ensure improved concentration.

Suppose the contrary,
∑

k L̂s
k ≤

∑
k L̂s

k|β>0, k ∈ Kτi where∑
k L̂s

k and
∑

k L̂s
k|β>0 are from two different filtration sets

Fs−1 andFs−1
β>0 of the measures used in estimation, respectively.

A filtration represents iteration-varying available knowledge, an
increasing sequence of sigma algebras, i.e., F1 ⊆ · · · ⊆ Fs−1

andF1
β>0 ⊆ · · · ⊆ Fs−1

β>0 whereFs−1 andFs−1
β>0 are information

available for task s. A larger information would allow to provide
a more accurate estimate. The amount of information is different
in the two filtration sets, because joining arms (partial) or all arms
(full) initiate exploration process with lack of information. Using
a modified score β > 0 plays a role in getting extra information
for task τi influencing the subsequent estimates for tasks s > τi.

From the two filtration sets F and Fβ↑, we compare∑
k L̂s

k|β>0 with
∑

k L̂s
k under the partial and full reset cases.

i) for the partial reset case, L̂τi−1
k̄

= 0 and β = 0, one may
consider a certain task offloading round, τ ′i as a self-adjoint
operator adapted to the filtration, representing the number of
additional exploration rounds for which the newly or reap-
peared arms need to experience to become comparable, but in

fact could save via β > 0 where β =
∑

t ηt l̂
t
k̄
≤

∑
t

lt
k̄

γt/ηt
, t ∈

[τi, τi + τ ′i − 1]. When γt/ηt is fixed over task rounds, γt/ηt =
φ > 0∀t, the least number of the saved explorations is positive,

τ ′i ≥ φβ
max(lt

k̄
)
> 0, with Fτ ′i ⊆ Fτ ′i

β>0.

ii) for the full reset case, L̂τi−1
k = 0 and β = 0, taking into

account the property of importance-weighted sampling, one
considers the fine-tuned scores substracting the minimum of
the existing arms’ scores, L̂τi−1

k|β>0 −min(L̂τi−1
k ), but the score

deviation among the existing arms still remains and addresses
the distinction of their offloading capabilities saving positive
explorations as in the partial reset, with Fτi−1 ⊆ Fτi−1

β>0 .
To sum up, for the both cases, the fine-tuned scores allow to

have
∑

k L̂s
k >

∑
k L̂s

k|β>0, k ∈ Kτ which contradicts. �
From the result above, the proposed approach β > 0 permits

to save up to at least a positive value of exploration rounds with
a positive implicit exploration parameter.

D. Sub-Linear Regret

A learning algorithm is said to achieve the no-regret condition
if the cumulative regret has a sub-linear growth rate with the
number of task, T , in other words, the per-round regret is
vanishing [36], i.e., negligible as T grows, RT /T → 0. Note
that the parameters, ηt and γt, of a potential fog node existing for
the multi-intervals, i ∈ I are decreasing with respect to t ∈ T ,
i.e., iteration-varying, while the candidate set might be different
for different interval, i.e., interval-varying.

Proposition 6: When ηT > 1
T and γT > 1

2/,T , the cumulative
regret has sub-linearity.

Proof: The upper bound on the per-round regret from Prop.
1 for the multi-intervals i ∈ I is,

∑
i∈I

∑
t∈Ti(γt +

ηt

2 )
|Ki|
Ti

+∑
i∈I(

1
Ti

log |Ki|
ηTi

+ 1
Ti
(

1+2γTi

2γTi
) log(|Ki|/ν))where the first term

vanishes w.r.t Ti = |Ti| and the second term also vanishes
if ηTi

≤ 2γTi
, in particular ηTi

> 1
Ti

and γTi
> 1

2|Ti| , ∀i ∈ I.
Consequently, the overall cumulative regret has sub-linearity,
lim supT→∞RT /T ≤ 0 if the one for individual interval has
sub-linearity. �

Proposition 7: The per-round regret incurred by the proposed
algorithm vanishes faster than those on the undynamic case.

Proof: Note that when the individual sub-parts in Prop. 1 have
sub-linearity respectively, then it is sufficiently satisfied that the
considered RT has sub-linearity, and furthermore stronger sub-
linearity is allowed by considering the dynamic resource demand
and supply in the proposed algorithm as discussed in Sec. IV-B
and IV-C which make the upper bounds of the individual sub-
parts in Prop. 1 lower, meaning (lower and) faster vanishing
regret. �
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Fig. 2. A VFC simulation scenario with 1 client and 7 volatile VFNs.

Remark 9: The conditions on the algorithm’s step-size, ηT
and γT , allow to avoid a sub-optimal exploration-exploitation
balance.

Corollary 2: If the learning rate is the candidate set and

task round dependent in a form of ηt =
√

log |Ki|
|Ki|·t [35], the

algorithm’s sub-linearity properties are in effect after at least
� |Ki|
log |Ki| � rounds.
Proof: With a decreasing but candidate set dependent sched-

ule, ηt =
√

log |Ki|
|Ki|·t > t−1, the number of the candidate fog nodes

needs to be larger than |Ki| > e−W−1(t) whereW(·) is Lambert
function for t. Likewise, once the available set |Ki| is updated,
the iterative procedures should be larger than the minimum task
rounds τi,o to ensure the sub-linearity of the proposed algorithm,

τi > τi,o where τi,o = |Ki|
log |Ki| . Note that τi,o is increasing in

|Ki| > e due to τi,o
∂|Ki| =

log(|Ki|)−1
log2(|Ki|)

and the lower bound on τi,o

is e for |Ki| = e, i.e., τi,o ≈ 2.9 for |Ki| = 2 or τi,o ≈ 2.7 for
|Ki| = 3. �

VI. NUMERICAL ILLUSTRATION

This section conducts numerical studies to assess the average
per-bit cost (bit-cost) and regret of the proposed algorithm.

A. Performance Evaluation

1) Evaluation Setting: Consider one vehicle (client) of inter-
est, requesting the computational resource from candidate edge
computational resource providing vehicles (VFC nodes). The
distance between the client and each candidate VFC node is
assumed to follow a uniform distribution, d ∼ U [0, dr]where dr
is the communication range equal to 400 m. The transmission
power of the client is 24 dBm, the large-scale fading gain follows
the 3GPP pathloss model [50], Ao = 128.1 + 37.6 log10(d),
the small-scale fading gain follows Rayleigh distribution with
unit variance, channel bandwidth is W = 10 MHz, and noise
power isNo = −174 dBm/Hz. Note that the interference effects
on the co-channel and adjacent channel are assumed to be
ignored according to the orthogonal channel allocation [31] and
experimental result [32]. Also, one assumes that the service
discovery solution which finds neighboring VFCs within the
client’s communication range allows to select fog nodes in the
same moving direction as candidates [9]. Thus, the small relative
speed makes the Doppler shift insignificant and fading gains
remain unchanged during the uplink transmission for each task
offloading request.

Consider 7 volatile VFNs (see Fig. 2) with maximum CPU fre-
quency, Fk ∈ {6, 4, 5, 4, 1.5, 2, 4}GHz that appear or disappear
as candidate fog nodes of one task generating vehicle (client) for
a finite number of tasks in 3 epochs, within each epoch consisting
of 1000 tasks and keeping the same fog node set. In the first
epoch, there are 5 candidate VFNs, Kt = {1, 2, 3, 4, 5}, ∀t ∈
[1, 1000]. At the beginning of the second epoch, a less powerful
VFN 5 disappears and VFNs 6 and 7 with higher computing
capability appear, Kt = {1, 2, 3, 4, 6, 7}, ∀t ∈ [1001, 2000]. At
the beginning of the third epoch, VFNs 4 disappear, while VFN
5 re-appears,Kt = {1, 2, 3, 5, 6, 7}, ∀t ∈ [2001, 3000]. For each
VFN, the allocated CPU frequency to the task client is a fraction
of the maximum CPU frequency which is distributed from 20%
to 50%, but arbitrarily constrained. To address such a non-
stochastic environment, adversarial perturbation is considered
in a similar manner as in [51], where the realized cost function
is affected by the oblivious attack, specifically an arbitrary
fraction of allowable CPU frequency range. The total tasks
are splitted into phases with different lengths, each of which
is with different means for different arms. The computation
intensity is set to w = 1000 Cycles/bit. To meet the client’s
diverse demand, the request service type can be changed with
different task size arbitrarily. Varying service types could be
considered at regular intervals. For simplicity, a periodic interval
for changing service types is aligned with an epoch. The task
size, δ Mbits, is either fixed or randomly distributed according to
either uniform or truncated normal distribution on a predefined
interval δ ∈ [0.2, 1].

2) Evaluation Result: The proposed algorithm is compared
with its counterparts, implicit exploration-based algorithms with
bandit feedback and full-feedback. The performance results
of learning algorithms in terms of the learning regret and the
average per-bit cost when ξ = 1 in equation (1), per-bit latency,
are depicted in Fig. 3, showing that the proposed algorithm out-
performs other implicit exploration-based algorithms where an
arm is selected based on the scores i) fully reset with zero values
of βi and L̂

Ti[1]
k (full-reset), and ii) partially reset with zero value

of βi (partial-reset). Two kinds of adaptivity including dynamic
resource demand and supply are considered, and notably the
joint consideration of these two aspects could achieve a better
exploration-exploitation trade-off since they allow to adapt to
the dynamic task offloading environment without exploring the
sub-optimal actions, thereby reducing the regret by 65% and
40% from that of two conventional Exp3IX based variants,
respectively, and being much closer the full information set-
ting [35] where the complete cost vector is revealed after every
round (full feedback) in Fig. 3(a).

Also, the proposed algorithm offers the sub-linearity of the
regular regret performance, i.e., the regret grows sub-linearly
with respect to the number of tasks, intuitively indicating that the
task generating client’s learning algorithm allows to asymptoti-
cally converge to the VFC node with optimal performance. Note
that in the first epoch, the algorithm with dynamic supply and
demand is equivalent to the one with only dynamic demand, and
the one with only dynamic supply is equivalent to the Exp3IX.
Besides, in the optimal genie-aided policy, the client always
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Fig. 3. Impact of dynamic resource demand (δ > 0) and supply (β > 0)
dependent fog node selection policy on the average per-bit performance (in
multi-epochs): (a) regret and (b) bit-cost.

connects to the VFC node with minimum cost. As shown in
Fig. 3(b), during each epoch, the average per-bit cost of the
proposed algorithm converges faster than other ones, except for
the full-feedback case.

a) Impact of β: Specifically, implicit exploration-based al-
gorithms taking into account dynamic resource supply could
achieve lower learning regret compared to vanilla Exp3IX al-
gorithms with initializing the learning history of all candidates,
L̂k = 0, ∀k or a new one whenever a candidate fog node set
is updated. When a client discovers a newly appeared VFC
candidate, its weight is set to the lowest one of the other candi-
dates. For example, VFC 6 and 7 nodes appearing at τ = 1001
are initialized with the score lastly updated by a rather more
capable fog node, min(L̂τ−1

k ). If a VFC leaves a candidate set
temporarily but returns into the set in a finite number of tasks, the
MIX-AALTO utilizes the information on the lastly updated score
the rejoining VFC node had before or the other fog nodes have.
For example, VFC 5 node reappearing at τ = 2001 may launch
its score value with the one at τp = 1000 or min(L̂τ−1

k ) depend-
ing on the circumstance. Such dynamic resource supply-based
policy ensures that a newly discovered or re-discovered VFC is
likely to be explored such that the proposed algorithm allows to
avoid unfair selection opportunities and thus adapt quickly to the
change in a volatile environment. This indicates that dynamic
resource availability-based policy draws better adaptivity to the
dynamic and adversarial environments, and thus reduces loss of
performance through learning.

Fig. 4. Average per-bit cost performance w.r.t the number of VFNs.

Fig. 4 shows the impact of the number of VFNs, |K̄t|, ap-
peared in the candidate set, k ∈ Kt = Kt ∪ K̄t for task, t ∈
[1001, 2000]whereKt = {1, 2, 3, 4} are the existing VFNs from
the first epoch t ∈ [1, 1000], and K̄t is the appearing VFNs
whose distances to the client and CPU frequencies randomly
selected from U and Fk. As the density of the candidate VFNs
becomes higher, more exploration would be performed, requir-
ing more rounds to make the unit offloading cost converged
and resulting in a higher regret. This observation would give an
implication to the design of the discovery process protocol. For
instance, limiting the maximum allowable number of the can-
didate VFNs would be beneficial when the service requirement
is strict or the network topology has a high degree of volatility.
One may adjust the maximum number of candidate VFNs prop-
erly [18]. The proposed algorithms outperform the other two
exploration reset cases; modifying cumulative scores only for
the appearing VFNs (partial-reset) and for all VFNs (full-reset).
Compared to the partial-reset case, the better the performance
gain of the proposed dynamic supply based algorithm (β > 0)
is achieved, the larger the minimum gap to the existing arms’
scores is obtained after the task τ − 1, min(L̂τ−1

m ),m ∈ Kτ

where τ = 1001. This is because the proposed dynamic supply
approach would allow to reduce the exploration rounds the
appearing arms may require to experience. Compared to the
full-reset case, on the other hand, the effect of the minimum gap
to the existing VFNs’ cumulative scores on the performance
gain is minimal, since the score differences among the existing
VFNs are only effective in distinct filtration set. Such residual
difference would influence the estimation performance. On the
other hand, a high density of the appearing VFNs may alleviate
the effect of such score deviations among the existing VFNs,
since an importance weighted mechanism assigns a probability
proportional to the number of the candidate VFNs as well as the
cumulative scores.

b) Impact of δ: For the dynamic resource demand, the pro-
posed algorithm considers two major exploration perturbations:
one is implicit exploration for guaranteeing low-variance in
assessment rule and another is Boltzman exploration for drawing
suitability-based selection. Fig. 5(a) demonstrates the robust-
ness of the proposed algorithm as compared to Exp3 and its
superior performance as compared to other algorithms choosing
arms based on current knowledge with a probability 1− ε such
as ε-Greedy when ε = 0.1, upper confidence bound such as
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Fig. 5. (a) Regret performance comparison among UCB1 [52], ε-Greedy,
Exp3, Exp3P and Exp3IX, when base parameters are set as in [35, Theorems
3.1 and 3.3] and (b) impact of dynamic resource demand dependent selection
policy on the learning regret performance. And differences between these two
kinds of cases, when δ > 0 vs δ = 0, in terms of (c) variance and (d) bias.

UCB1, and guaranteeing high probability bounds such as Exp3P
and Exp3IX. This clearly shows that a fine-grained implicit
exploration approach could achieve higher and more robust
performance, lower empirical mean and standard deviation of
the regret than others.

Fig. 5(b) shows the effect of suitability-based selection policy
on the learning regret. In general, when a positive value of the
normalized input data size, δ > 0, is considered in a selection
rule, a client’s learning performance can be improved. This
means that considering a score associated with both normalized
per-task cost and per-bit cost, would make a more suitable
candidate and thus ensure a better trade-off between exploitation
and exploration. On the other hand, when δ = 0, there is no
exploration for the suitability, but only for the capability of
candidate VFC nodes. Since such a capability-based learning
approach may fail to address appropriately the upcoming varia-
tions of computational demand, the learning regret for the per-bit
cost is explicitly worse than those of δ > 0. This can be captured
in the learning regret with per-bit latency cost function, i.e., when
ξ = 1 in equation (1).

The effect of different input data size8 on the learning regret
is also evaluated with three fixed and one uniformly distributed
sizes ranged between 0.2 and 1 Mbits. The proposed algorithm
brings better performance gain by making exploitation more
for a large δ and less for a small δ. The gain becomes larger
as the input data size increases. The per-bit learning regret is
reduced by around 15%, 30%, and 45% from that of 0.3 Mbits,
0.6 Mbits, and 0.9 Mbits, respectively, only considering the
capability-based selection policy. This observation reveals the
vital role of the proposed algorithm in coping with dynamic

8While task workload is determined by the task size and computation intensity,
the bit cost is only dependent on the computation intensity.

Fig. 6. Impact of cost function weights on the average per-bit performance:
(a) Per-bit cost w.r.t ξ and (b) Per-bit cost w.r.t T .

resource demand, which is enabled by variance and bias re-
duction techniques in Section IV-B and IV-C. Corresponding
diminishing effects of variance and bias can be captured in
Fig. 5(c),(d). Apparently, when a user with a task of large size
selects a VFC with weak service capability, it yields poorer
learning performance than the case with a task of small size.
On the other hand, selecting a low-capable VFC for a small
input data size does not yield enormous delay. With varying
input uniformly distributed over the same range with the fixed
one, one may yield a similar result with the fixed one using the
mean value of 0.6.

c) Impact of ξ: Fig. 6(a) shows the impact of weighting
parameter ξ on the per-bit latency cost, Dt

k/q
t, and the per-bit

energy consumption cost, Et
k/q

t, of the proposed algorithm,
vanilla Exp3IX algorithm and full-feedback case withT = 3000
tasks. It is noted that the proposed algorithm yields the per-bit
cost values, latency and energy, each of which dwells between
the individual per-bit cost values from Exp3IX and full feed-
back algorithm, in all ξ regions. It is also observed that the
individual per-bit cost of the proposed algorithm and that of the
oracle fluidly move with respect to the weight parameter, ξ, i.e.,
smooth improvement or degradation. Increasing the weighting
parameter makes the latency performance more dominated over
another, and thus the per-bit latency performance is improved
while the energy consumption performance gets less interesting.
Such behavior can be captured in two different per-bit costs,
latency and energy, in Fig. 6(b), when ξ = 0, 0.5, 1, respectively.
To sum up, the effectiveness and robustness of the proposed
algorithm are verified under the synthetic scenario, by showing
its outperformance compared to other benchmarks in terms of
the learning regret and the average per-bit cost, taking into
account the dynamics of resource availability and demand in
an adversarial environment.

B. Performance Evaluation Under Realistic Scenario

1) Evaluation Setting: In this subsection, the applicability
of the proposed task offloading algorithm is further explored by
using the Luxembourg SUMO Traffic scenario (LuST) [53]. The
Lust scenario simulates the real traffic in the city of Luxembourg
using SUMO, where arterial and residential roads link down-
town and metropolitan areas with highways on the outskirts that
surround the city. To better evaluate the resource supply volatility
awareness of the proposed algorithm, we choose vehicle traffics
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Fig. 7. Average per-bit performance comparison with ε = 0.1, under a high-
way scenario for different vehicle densities: (a) peak and (b) off-peak when
ξ = 1, and (c) peak and (d) off-peak when ξ = 0.

on a highway road, e.g., consisting of multiple edges, IDs
31622#5 ∼ 31622#10, involved with multiple entrances and
exits, as available VFNs. A task requester is assumed to have a
full route on the highway, i.e., departing from edge ID 31622#1
every minute, and its candidate VFN set is volatile due to the
facts: i) the VFNs may join or leave the highway, and ii) the
vehicles move in the same direction at relatively fast but different
speeds. The data of vehicle coordinate and velocity are used for
simulation in MATLAB. The maximum CPU frequency of each
VFN is randomly distributed in [1, 5] GHz. The rest parameters
follow the previous setting described for the synthetic scenario.

2) Evaluation Result: Fig. 7 depicts the performance results
of the proposed algorithm in terms of the average per-bit cost
for different VFN densities. To consider different volumes of
available VFNs, the scenario is running in two time windows,
i) the morning rush hour peak period, 08 : 00∼08 : 05 and ii)
the off-peak period around lunchtime, 13 : 00∼13 : 05 as in
Fig. 7(a), (b), respectively [14], [53]. The proposed task offload-
ing algorithm always outperforms the other learning algorithms,
since it can better adapt to the adversarial and dynamic environ-
ment better. To be specific, compared with the UCB and volatile
Exp3IX algorithms, the proposed algorithm can reduce the
average per-bit cost by about 23% and 10% (partial-reset) in peak
time, see Fig. 7(a), and by about 30% and 20% (partial-reset) in
off-peak time, see Fig. 7(b), when T = 300. The average per-bit
cost decreases more at the expense of convergence rate for a high
density of VFNs. The reason is that a large set of vehicles can
extend the exploration space and increases the probabilities of
finding good solutions, i.e., the average per-bit cost in peak time
is more reduced than the one in off-peak. However, the larger
exploration space tends to converge slower. Similar phenomena
are also observed in per-bit energy cost in Fig. 7(c), (d).

VII. CONCLUSION

This work is to propose adaptive learning-based decentral-
ized task offloading algorithm where each client can make the
decision on fog node selection independently. The proposed
online learning algorithm allows to provide the foundation for
scalable and low-complexity offloading decision-making in an
adversarial environment. In particular, two bottlenecks in the
VFC-induced heterogeneous and dynamic environment, volatile
candidate fog node set and task size, are addressed. We prove
that the input-size dependent selection rule allows to choose a
suitable fog node selection without exploring the sub-optimal
actions, and also an appropriate score patching rule allows to
quickly adapt to the evolving circumstance, thereby achieving
better exploitation exploration balance. While this work focuses
on self-interested regret-optimal, system-level perspective can
be further considered, desirable to know whether the dynamical
behaviors of distributed players promise a certain level of opti-
mality in terms of social welfare under information limited case,
i.e., unknown game.
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