
5332 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 6, JUNE 2021

Client-Based Intelligence for Resource Efficient
Vehicular Big Data Transfer in Future 6G Networks

Benjamin Sliwa , Student Member, IEEE, Rick Adam , and Christian Wietfeld , Senior Member, IEEE

Abstract—Vehicular big data is anticipated to become the “new
oil” of the automotive industry which fuels the development of novel
crowdsensing-enabled services. However, the tremendous amount
of transmitted vehicular sensor data represents a massive challenge
for the cellular network. A promising method for achieving relief
which allows to utilize the existing network resources in a more
efficient way is the utilization of intelligence on the end-edge-cloud
devices. Through machine learning-based identification and ex-
ploitation of highly resource efficient data transmission opportu-
nities, the client devices are able to participate in overall network
resource optimization process. In this work, we present a novel
client-based opportunistic data transmission method for delay-
tolerant applications which is based on a hybrid machine learning
approach: Supervised learning is applied to forecast the currently
achievable data rate which serves as the metric for the reinforce-
ment learning-based data transfer scheduling process. In addition,
unsupervised learning is applied to uncover geospatially-dependent
uncertainties within the prediction model. In a comprehensive real
world evaluation in the public cellular networks of three German
Mobile Network Operator (MNO), we show that the average data
rate can be improved by up to 223% while simultaneously reducing
the amount of occupied network resources by up to 89%. As a side-
effect of preferring more robust network conditions for the data
transfer, the transmission-related power consumption is reduced
by up to 73%. The price to pay is an increased Age of Information
(AoI) of the sensor data.

Index Terms—Context awareness, intelligent vehicles, machine
learning.

I. INTRODUCTION

THE various sensing and communication capabilities of
modern vehicles have brought up vehicular crowdsens-

ing [1], [2] as a novel method for acquiring various kinds of
measurement data. Hereby, the mobility behavior of the vehi-
cles is exploited to dynamically cover large areas with sensing
capabilities. It is expected that the vehicle-as-a-sensor approach
will catalyze the development of data-driven applications such
as distributed creation of High Definition (HD) environmental
maps, traffic monitoring, predictive maintenance, road rough-
ness detection, and distributed weather sensing [3].
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Fig. 1. Overview about applications, challenges, and enabling methods for
vehicular big data in cellular communication networks.

As pointed out by [4], a high amount of these target applica-
tions — in particular, mapping services — can be characterized
as delay-tolerant. Hereby, the applications do not require imme-
diate data delivery but specify soft deadlines within which the re-
ceived information is considered meaningful. In their empirical
analysis, the authors of [5] analyzed the properties of 32 existing
crowdsensing systems from which 23 were found to be compat-
ible with store-and-forward data delivery mechanisms. As an
example, the Automotive Edge Computing Consortium (AECC)
has analyzed the requirements for distributed construction of
HD environmental maps for automated driving in a recent white
paper [6]. For permanent and transient static objects (e.g., road
network, surrounding buildings, road work), an update interval
in the range of multiple hours is proposed. Even for reporting
dynamic obstacles such as other traffic participants, periodic
data transfer with an interval of 15 s is considered sufficient.

The rise of vehicular big data will confront the cellular
network with tremendous amounts of resource requirements
for vehicular massive Machine-type Communication (mMTC).
Since the provision of additional spectrum resources through
densification of the network infrastructure is highly cost-intense,
it would be preferable to utilize the existing resources in a more
efficient way through application of machine learning-enabled
network intelligence. An overview about the corresponding ap-
plications, challenges, and solution approaches for vehicular big
data transfer in cellular networks, which is further described in
the following paragraphs, is shown in Fig. 1. Within the scope of
this work, we apply a pragmatic approach which utilizes existing
methods from the machine learning domain. However, it is re-
marked that these enabling methods are themselves subject to ac-
tive developments in their corresponding research communities.
Therefore, it can be expected that future advancements within
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Fig. 2. Example for the dynamics of the vehicular radio channel. For optimiz-
ing the achievable resource efficiency, client-based intelligence is used to exploit
connectivity hotspots and avoid transmissions during connectivity valleys.

the neighboring fields can be utilized for further improving the
resource efficiency of vehicular big data transfer.

While the current deployments and research efforts for the
emerging 5G networks focus on network-side intelligence (e.g.,
the Network Data Analytics Function (NWDAF) allows ma-
chine learning-based load analysis of network slices [7]), re-
searchers agree that pervasive intelligence will be one of the key
drivers for future 6G networks which are expected to be deployed
around 2030 [8], [9]. As a consequence, this will catalyze the
development of non-cellular-centric networking mechanisms
such as end-edge-cloud orchestrated intelligence [10] where
locally applied machine learning mechanisms allow the client
devices to participate in network functions and contribute to the
overall network optimization.

An important observation which motivates our contribution
is that regular fixed-interval data transmission schemes expe-
rience a large variance of the network quality (see Fig. 2). In
order to avoid packet errors and retransmission, the mobile
User Equipment (UE) dynamically adjust the Modulation and
Coding Scheme (MCS) to achieve a better robustness in chal-
lenging channel situations. However, since lower MCS reduce
the transmission efficiency and increase the occupation time of
the Physical Resource Block (PRB), this method results in a
wastage of network resources and has a negative impact on the
intra-cell coexistence.

In this work, we exploit the delay-tolerant nature of many ve-
hicular crowdsensing applications as well as the mobility of the
vehicles for improving the cellular resource efficiency. Client-
based intelligence is applied in order to autonomously schedule
the data transfer with respect to the anticipated transmission
efficiency. Our proposed method brings together and extends
the results of previous work for reinforcement learning-enabled
data transfer in vehicular scenarios [11], [12].

The contributions provided by this paper are summarized as
follows:
� Presentation of Black Spot-aware Contextual Bandit (BS-

CB) as a novel hybrid machine learning approach for
opportunistic data transfer for mobile and vehicular net-
works.

� Comprehensive real world performance analysis and com-
parison to existing data transfer methods.

� Proof-of-concept evaluation for compensating concept
drift situations of the data rate prediction through online
learning.

� The raw results and the developed measurement software
are provided in an open source way.1

The remainder of the paper is structured as follows. After
discussing the related work in Section II and giving an overview
about the different evolution stages of the novel method in Sec-
tion III, we present the reinforcement learning-based solution
approach in Section IV. Afterwards, the methodological setup
is introduced in Section V and the achieved results are presented
and discussed in Section VI. Based on the resulting insights,
we derive recommendations for future 6G networks which are
summarized in Section VII.

II. RELATED WORK

Machine learning has received tremendous attention within
the wireless research community due to its inherent capability
of implicitly considering hidden interdepencies between mea-
surable indicators which are too complex to model analytically.
Different summary papers [13]–[16] provide comprehensive in-
formation about using machine learning methods for optimizing
wireless networks. Three major machine learning disciplines are
distinguished:
� Supervised learning allows to learn a model fML on fea-

tures X with labeled data Y such that f : X→ Y. After
the training phase, the model can be utilized to make
predictions ỹ on novel unlabeled datax such that ỹ = f(x).
For this purpose, popular model classes are (deep) Artificial
Neural Network (ANN) [17], Classification and Regres-
sion Tree (CART)-based methods such as Random Forest
(RF) [18], and Bayesian models such as Gaussian Process
Regression (GPR) [19].

� Unsupervised learning is applied to cluster measurements
based on patterns in non-labeled data sets. A popular
method for this category is the k-means [20] algorithm.

� Reinforcement learning [21], [22] teaches an agent to au-
tonomously perform favorable actions in a defined environ-
ment by learning from the observed rewards of previously
taken actions. Q-Learning [23] represents the foundation
for most more complex methods such as deep reinforce-
ment learning.

Within commercial deployments of emerging 5G networks,
the implementation of machine learning-based intelligence
mainly focuses on the network infrastructure side. NWDAF [7],
[24] is a novel machine learning-enabled network function
which is used by the MNO to determine and predict the network
load. Different use-cases that could exploit this information —
e.g., traffic routing, mobility management, load balancing, and
handover optimization — are motivated in [25]. Among others,
the white paper of [9] envisions pervasive machine learning
as one of the fundamental enabling methods for future 6G
networks which are expected to be deployed around 2030. As a
consequence of the trend of bringing intelligence closer towards

1https://github.com/BenSliwa/rawData_opportunistic_data_transfer
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the client devices, resource-aware machine learning has become
an emerging research topic. A comprehensive summary about
resource aspects for edge-based intelligence is provided by Park
et al. in [26].

The recent advancements in machine learning-based data
analysis have also led to the rise of the end-to-end modeling
paradigm for wireless communication systems [27] and have cat-
alyzed the development of novel data-driven performance eval-
uation methods. Data-driven Network Simulation (DDNS) [28],
[29] allows to analyze the performance of wireless communica-
tion systems by replaying empirically acquired context traces.
The end-to-end behavior of the observed target Key Performance
Indicator (KPI) is then derived by a combination of deterministic
and probabilistic machine learning models which mimics the
statistical derivations of the real world measurements. In com-
parison to conventional system-level network simulation [30],
this method is able to achieve a better modeling accuracy of radio
propagation effects in concrete real world evaluation scenarios
and achieves a massively higher computational efficiency. An-
other advantage is a reduction of the simulation setup complexity
since the end-to-end analysis approach solely relies on the ac-
quired data and does not require to parameterize communicating
entities.

Anticipatory mobile networking [31] is a novel wireless
communications paradigm which aims to optimize decision pro-
cesses in communication systems through explicit consideration
of context information. Since mobile and vehicular networks
are inherently impacted by the interdependency of mobility
and radio channel dynamics [32], machine learning-enabled
anticipatory networking is a promising approach for system
optimization in this domain. As an example, Dalgkitsis et al. [33]
utilize mobility prediction jointly with deep learning for improv-
ing the service orchestration process in 5G vehicular networks.

Non-cellular-centric networking [34] integrates the network
clients as part of the network fabric and allows them to contribute
explicitly or implicitly to network management functions. This
approach allows to exploit the capability of the clients to sense
their environments for opportunistically scheduling data trans-
missions for delay-tolerant applications [35] in a context-aware
manner. In [36], Shi et al. point out that network congestion has
a large short-term variance and that traffic peaks can be compen-
sated by delaying transmissions. Therefore, the authors propose
the Collaborative Application-Aware Scheduling of Last Mile
Cellular Traffic (CoAST) system which applies a collaborative
infrastructure-assisted optimization approach based on dynamic
pricing. Hereby, the announced traffic demands of the UE are
used by a central entity which computes and broadcasts the
projected data transfer prices for a given future time window.
This information is then used by the UE to schedule their
transmissions with respect to the trade-off between price and
additional delay. Peek-n-sneak [37] and Client-side Adaptive
Scheduler That minimizes Load and Energy (CASTLE) [38] are
distributed transmission scheduling approaches which rely on a
threshold decision for performing or delaying the data transfer.
Both approaches use different network quality indicators (Ref-
erence Signal Received Power (RSRP), Reference Signal Re-
ceived Quality (RSRQ), and Signal-to-interference-plus-noise

Ratio (SINR)) for predicting the current network load based on
a Radial Basis Function (RBF) Support Vector Machine (SVM).

Data rate prediction can serve as a metric for anticipatory
decision making such as opportunistic data transfer [39] and
dynamic Radio Access Technology (RAT) selection. The predic-
tions can either be performed actively or passively. Active pre-
diction methods apply time series analysis – e.g., based on Long
Short-term Memory (LSTM) methods as considered in [40], [41]
– and monitor the behavior of ongoing data transmissions. Since
the need to continuously transmit data is opposed to the consid-
ered opportunistic medium access strategy, this work focuses on
passive prediction approaches which have been investigated by
different authors. The key insights are summarized as follows:
� Radio channel indicators (e.g., defined according to 3GPP

TS 36.213 [42]) are highly correlated to the observed data
rate and can serve as meaningful information for predicting
the latter [43]–[45].

� Due to the curse of dimensionality [46], complex models
such as ANN-based deep learning approaches require a
significantly higher amount of training data than simpler
methods such as CART. As typical data sets in the wire-
less communication domain are comparably small [9],
less complex methods often achieve a higher prediction
accuracy [29], [47].

� For the derivation of generalizable prediction models, it is
important to integrate application-layer knowledge about
the payload size of the data packet to be transmitted [48].
This way, the prediction is able to implicitly account for the
interdependency between transmission duration and chan-
nel coherence time as well as payload-overhead-ratio and
protocol-specific aspects such as the slow start mechanism
of the Transmission Control Protocol (TCP).

� A low data aggregation granularity should be preferred:
Few models with large data sets (e.g., a single prediction
model per MNO) achieve a better average prediction per-
formance than a large amount of highly-specific models
(e.g., dedicated prediction models for each evolved Node
B (eNB)) [48], [49].

� Although temporal effects have a significant impact on
the network load, the time of day is negligible if load-
dependent network quality indicators such as RSRQ are
considered in the data set [48], [50].

In addition to these purely client-based approaches, the au-
thors of [51] have analyzed a possible implementation for co-
operative data rate prediction in future 6G networks where the
network infrastructure actively announces network load infor-
mation to the mobile clients. In an initial feasibility study, it is
shown that the cooperative approach is able to reduce the Root
Mean Squared Error (RMSE) by 25% in uplink and 30% in
downlink direction

III. TOWARDS REINFORCEMENT LEARNING-ENABLED

OPPORTUNISTIC DATA TRANSFER

Different opportunistic data transfer methods have build the
foundation for the proposed BS-CBmethod. The different evo-
lution stages are shown in Fig. 3.
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Fig. 3. Continuity of context-aware approaches for opportunistic data transmissions in vehicular networks.

Periodic data transfer represents the regular approach for
transmitting Machine-type Communication (MTC) data. The
medium access is based on a fixed timer interval Δt which
transmits the data regardless of the radio channel conditions.

Channel-aware Transmission (CAT) [52] is a probabilistic
opportunistic data transfers method which schedules the medium
access based on measurements of the SINR. Data is buffered
locally until a transmission decision is made for the whole buffer.
The transmission probability pTX(t) is computed as

pTX(t) =

⎧⎪⎪⎨
⎪⎪⎩

0 Δt < Δtmin

1 Δt > Δtmax(
Φ(t)−Φmin

Φmax−Φmin

)α

else

(1)

with Φ being the transmission metric – the SINR(t) measure-
ment – with a defined value range {Φmin,Φmax}. Δt represents
the time since the last transmission has been performed. Δtmin

is used to guarantee a minimum packet size and Δtmax ensures
that the AoI does not exceed the requirements of the target
application. The exponent α allows to control the preference
of high metric values within the data transfer process.

Machine Learning CAT (ML-CAT) [39], [53] is a ma-
chine learning-based extension to Channel-aware Transmission
(CAT). Due to the short-term fluctuations of the SINR, the trans-
mission decision is performed based on data rate predictions
which are obtained from an RF model (see Section IV-A). While
the actual transmission is still performed based on Eq. 1, the
considered metric Φ corresponds to the predicted data rate S̃(t).

Reinforcement Learning CAT (RL-CAT) [11] is a first rein-
forcement learning-based variant of the Machine Learning CAT
(ML-CAT) method which replaces the probabilistic medium
access with a Q-learning approach aiming to maximize the data
rate of the individual sensor data transmissions. The predicted
data rate and the elapsed buffering time form the context tuple
ct = (S̃(t),Δt) are used to lookup up the action — IDLE or TX
— with the highest Q-value from a Q-table. The latter is trained
as

Q(ct, a) = (1− α) ·Q(ct, a) + α
[
ra + λ ·max

a
Q(ct+1, a)

]
(2)

whereas α corresponds to the learning rate, ra is the reward
of the action a, λ represents the discount factor, and ct+1 is
an estimation for the Q-value after a has been executed. In
classical Q-Learning, it is assumed that the decision making of
the agent causes a sequential improvement of its state within the
environment and ultimately leads to reaching an “optimal” target
state. However, as further discussed Section IV, in the considered
opportunistic data transfer use case, the agent-related impact
on the state of the environment is negligible due to the domi-
nance of external influences such as the channel and network
load dynamics: Even if the agent was capable of performing
hypothetical “optimal” actions, its state — represented by the
context tuple ct — would be still determined by the impact of
the non-controllable influence factors. Therefore λ is set to 0
which results in a simplified Q-Learning variant

Q(ct, a) = (1− α) ·Q(ct, a) + α · ra. (3)

that implements a myoptic approach focusing on optimizing the
immediate reward of the taken actions.

IV. REINFORCEMENT LEARNING-BASED OPPORTUNISTIC DATA

TRANSFER WITH BS-CB

In this section, we present the novel BS-CBmethod. Accord-
ing to the classification scheme for edge intelligence provided
by [54], the proposed data transfer method represents a level
3: on-device inference edge intelligence implementation where
the model is trained in the cloud/offline and inference is run
completely locally. A schematic overview about the interaction
between the different logical entities is shown in Fig. 4.
� The actual opportunistic data transfer is modeled as a re-

inforcement learning agent which senses its environment,
performs actions and observes the resulting rewards.

� Hereby, the environment is represented by the real world
cellular network. Classical reinforcement learning assumes
that the actions taken by the agent change the state of the en-
vironment. However, in the considered vehicular scenarios,
the properties of the environment are highly time-variant
due to the dynamically changing radio channel conditions
mainly related to the mobility behavior of the mobile UE.
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Fig. 4. Interaction between the different logical entities within a reinforcement
learning setup for opportunistic data transfer.

Fig. 5. Overall system architecture model of the proposed BS-CB method.

In addition, other users of the cellular network consume
network resources which leads to the conclusion that the
state of the environment mainly depends on the external
influences.

� The sensing of the environment is performed through the
hardware platform which observes context indicators. In
order to reduce the dimensionality of the reinforcement
learning problem, data rate prediction is applied.

The overall system model of the novel BS-CBis shown in
Fig. 5. BS-CBimplements a hybrid approach which brings to-
gether all major machine learning disciplines. Supervised learn-
ing is applied to predict the achievable data rate based on mea-
sured context indicators. Unsupervised learning is then utilized
to detect geospatially-dependent uncertainties of the prediction
model. Finally, the reinforcement learning-based autonomous
data transfer uses the acquired information for optimizing the
resource efficiency of vehicular data transmissions. In the fol-
lowing paragraphs, the three main components of the proposed
methods are introduced in further details.

A. Supervised Learning: Data Rate Prediction

The overall feature setx is composed of nine different features
from multiple context domains:
� Network context xnet: RSRP, RSRQ, SINR, Channel Qual-

ity Indicator (CQI), Timing Advance (TA)

Fig. 6. Resulting data rate prediction performance for different regression
models on the MNO A data set. ANN: Artificial Neural Network, M5: M5
Regression Tree, RF: Random Forest, SVM: Support Vector Machine.

� Mobility context xmob: Velocity of the vehicle, cell id of the
connected eNB

� Application context xapp: Payload size of the data packet
to be transmitted

The data rate is then predicted based on a regression model
fML as S̃(t) = fML(x). As a preprocessing step, we compare the
prediction performance of different machine learning models
whereas the parameterization of each model has been optimized
based on grid search:
� ANN [17] with two hidden layers with 10 neurons per

hidden layers and sigmoid activation function, momentum
α = 0.001, learning rate η = 0.1, and 500 training epochs.

� CART methods M5 Regression Tree (M5) and RF [18]
with 100 random trees and maximum depth 15.

� SVM with RBF kernel and Sequential Minimal Optimiza-
tion (SMO) training.

The resulting RMSE of the data rate prediction models on the
MNO A data set of [48] is shown Fig. 6. In both evaluations, the
lowest prediction error is achieved by the RF model. In uplink
direction, different context indicators have specific regions of ap-
plication: As discussed in [48], RSRQ is an important indicator
for the data rate in cell edge regions and SINR has a higher impact
on the latter in the center of the cell — both can be distinguished
through considering the RSRP. These interval-wise scope re-
gions match well with the condition-based model architecture of
the RF model. However, in downlink transmission direction, the
differences between the considered prediction models are less
significant. This observation can be explained through consider-
ation of the findings of [31]: In downlink direction, the resulting
data rate is mostly related to the cell load which is partially
represented by the RSRQ. The presence of this dominant feature
results in a less complex learning task. Since the RSRQ is only
an implicit indicator for the current network load, the resulting
RMSE is relatively high.

Due to these observations, we apply the RF model for per-
forming the context-based data rate predictions in the remainder
of this paper.

B. Unsupervised Learning: Black Spot Clustering

An important observation of previous work [11] is that the
resulting data rate prediction accuracy in vehicular scenarios has
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Fig. 7. Steps of the black spot clustering process.

a geospatial dependency: Large outliers often occur cluster-wise
due to local effects such as eNB handovers, cell switches, and
environment-dependent sporadic link loss. Although the knowl-
edge about these mechanisms does not explicitly allow us to
compensate the undesired effects, it can be exploited within the
opportunistic data transmission processes as a measurement for
the uncertainty of the prediction model: Transmissions should
be avoided if the prediction model is currently in an unreliable
state and does not allow to make a precise statement about the
achievable end-to-end performance. We call these areas black
spots based on the usage of the term in traffic satefy where it
refers to regions with a significantly increased probability for
collisions of vehicles.

The proposed black spot-aware networking approach is di-
vided into the unsupervised learning-based offline data analysis
and the online application. The offline data analysis consists of
multiple steps which are visualized in Fig. 7.

1) Geo-clustering: Unsupervised learning based on k-
means [20] is applied in order to cluster the transmission
locations into a total amount of Nc clusters.

2) Black spot detection: For each cluster c, the RMSE (see
Section V) of the data rate prediction results is computed
and compared to a threshold value RMSEmax. All clusters
that exceed the given upper limit are labeled as black spot
clusters.

3) Ellipse fitting: All detected black spot clusters are fitted
to rotated ellipses in order to allow their later online
consideration within the opportunistic data transmission
process. Hereby, the length a of the ellipse is calculated
based on the dominant intra-cluster distance vector.

The impact of considering information about black spot re-
gions within the prediction model is shown in Fig. 8. While
Fig. 8(a) shows the resulting prediction performance of the over-
all data set which consists of black spot and non-black regions,
the separation of the prediction model allows to improve the
prediction accuracy for the non-black spot regions as shown in
Fig. 8(b). In the following, we will use this variant for predicting
the data rate as the metric of the opportunistic data transmission
process.

For the online application, the vehicle’s position P is com-
pared against all black spot ellipses with corresponding ellipse
centroid Pi based on an intersection test for α-rotated ellipses.
The vehicle is within the considered elliptic region if the follow-
ing condition is fulfilled:

(c · v.x+ s · v.y)2

a2
+

(s · v.x− c · v.y)2

b2
≤ 1 (4)

with v = P−Pi, c = cosα, s = sinα, and α being the ellipse
rotation. An overview about the detected black spot regions for
MNO A in uplink direction is shown in Fig. 9.

C. Reinforcement Learning: Contextual Bandit-Based Data
Transfer

The actual opportunistic data transfer is modeled as a Lin-
ear Upper Confidence Bound (LinUCB) [55] contextual bandit
whereas the arms of the bandit correspond to the possible
actions:
� aIDLE leads to a local buffering of the newly acquired data

as the current network quality is not considered appropriate
for allowing resource efficient data transfer. It is assumed
that due the mobility behavior of the vehicle, the mobile UE
will encounter a more suitable transmission opportunity in
the future.

� aTX causes the transmission of the whole buffered data.
The context-aware arm selection process is performed based

on a sequence of matrix-vector multiplications as

a = arg maxa∈A

⎛
⎜⎝ θ̂Ta c︸︷︷︸

Estimated reward

+α
√

cTA−1
a c︸ ︷︷ ︸

UCB

⎞
⎟⎠ . (5)

Hereby, the estimated reward is derived by ridge regression
whereas θ̂a represents the regression coefficients of arm a
which are updated during the reinforcement learning process and
c = (S̃(t),Δt) is the d-dimensional context tuple consisting of
the predicted data rate S̃(t) and the current buffering time Δt.

Aa is computed as Aa = DT
aDa + Ia with Ia being a d-

dimensional identity matrix and Da being the m× d matrix
which contains the m previously observed context tuples. The
constant exploration parameter α controls the greediness of the
algorithm and is computed as

α = 1 +

√
ln(2/δ))

2
(6)

based on the only system parameter δ. The smaller the value of
α, the more greedy the algorithm behaves, meaning that it will
more likely exploit actions that currently seem to be optimal.

After each performed action, the regression coefficients are
updated based on the observed reward ra as

θ̂a ← A−1
a ba (7)

with

ba ← ba + ra · c (8)

Hereby, ba is initialized as a d-dimensional zero vector. The
reward functions are computed action-specific, for theTX action,
the reward is derived as:

rTX(S,Δt) =
ω · (S̃ − S∗)

Smax
+

Δt · (1− ω)

Δtmax
(9)

whereas the trade-off factorw controls the fundamental trade-off
between data rate optimization and AoI optimization. S∗ repre-
sents a target data rate which should be approached and Smax
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Fig. 8. The overall prediction model is separated into a more precise model for non-black spot regions and a less precise model for black spot regions. The
gray area shows the behavior of a 0.95-confidence area derived by applying a GPR model on the results of the prediction model. (a) Overall prediction model.
(b) Non-black spot prediction model. (c) Only black spot prediction model.

Fig. 9. Resulting black spot regions along the evaluation track for MNO A in
uplink direction (Map: OpenStreetMap contributors, CC BY-SA).

is the empirically observed maximum data rate of the network.
Δt is an application-specific deadline for the tolerable AoI.

The reward of the IDLE action is computed as:

rIDLE(Δt) =

{
Ω Δt ≥ Δtmax

0 else
(10)

whereas Ω is chosen as a negative number which ensures that
the estimated reward of the TX action is superior to the reward
of the IDLE action if Δt exceeds the AoI deadline Δtmax. As a
result, the data is transferred immediately regardless of the radio
channel conditions.

After the contextual bandit has made a transmission decision,
the information about the black spot regions is leveraged: If the
vehicle is currently within a black spot region, the data transfer
is postponed since the prediction model cannot be trusted. As
a result of this approach, there exists a trade-off between the
achievable improvement of the data rate prediction accuracy and
a reduction of the usable percentage of the track for performing
data transmissions. Fig. 10 shows the resulting R2 and RMSE

Fig. 10. Trade-off between performance improvement of the data rate predic-
tion and tolerable reduction of the transmission opportunities (MNO A uplink).

TABLE I
DEFAULT PARAMETERS OF THE EVALUATION SETUP

values with respect to the tolerable percentage of track elimina-
tion — the total spread of the black spot regions over the overall
track length — for the MNO A uplink data set of [48]. It can be
seen that the reduction of transmission opportunities allows to
significantly improve the performance of the prediction model.
Where the curves convergence, the model only considers highly
reliable connectivity hotspots appropriate for the data transfer.
In the following, we allow a maximum track reduction of 20 %.

V. METHODOLOGY

In this section, an overview about the research methods, tools,
and performance metrics is provided. A summary about relevant
parameters of the novel transmission scheme is given in Tab. I
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Fig. 11. Network model of the real world performance evaluation.

A. Real World Data Acquisition

For the empirical performance comparison, five test drives
are performed in the real world for each of the transmission
schemes. Fig. 11 shows the network model of the evaluation.
A virtual sensor application generates 50 kB of sensor data
per second. Data transmissions are performed from a moving
vehicle through the public Long Term Evolution (LTE) networks
of three German MNO in uplink and downlink direction via TCP.
The evaluations are carried out along a 25 km long evaluation
track (Fig. 9) which contains highway and suburban regions with
varying building densities and speed limitations. In total, 8563
transmissions – 13.61 GB of transmitted data – are performed.
The passive measurement of the context indicators as well as the
active data transmission are performed on an Android-based
UE (Galaxy S5 Neo, Model SM-G903F) based on a novel
application. The latter is provided in an open source way.2

B. Performance Indicators

Within the real world performance comparison in Section VI,
multiple KPI are considered which are obtained as follows.

End-to-end data rate: The evaluation of the achieved data
rate is performed at the application level and represents the
transmission efficiency of the considered transmission schemes.
The actual measurements are performed at a cloud server.

AoI: Due to the local buffering process implied by the op-
portunistic data transfer approach, each transmitted data packet
consists of multiple sensor packets. In order to analyze the
freshness of the received sensor information, the generation time
of the oldest sensor packet within the received overall data is
considered.

Network resources: For estimating the number of PRB of
performed transmissions in a postprocessing step, we revert the
procedure described in [56]. Hereby, the CQI measurements are
utilized to determine the MCS and Transport Block Size (TBS)
indices from the 3GPP TS 36.213 lookup tables. Based on this
information and the measured data rate, the number of PRB is
inferred.

Power consumption: The resulting power consumption of a
mobile UE is mainly determined by the applied transmission
power PTX which controls the stage of the power amplifiers.
Unfortunately, Android-based UE do not expose this informa-
tion to the user space. However, the analysis in [57] has shown
that PTX can be inferred from radio signal measurements since
it is highly correlated to distance-dependent indicators such
as RSRP. Therefore, we apply the proposed machine learning-
based prediction toolchain of [57] to estimatePTX and determine

2Source code available at https://github.com/BenSliwa/MTCApp

the transmission-related power consumption based on labora-
tory measurements of the device-specific power consumption
behavior. Additional details about the applied procedure are
presented in [39]. We remark that the power consumption is
not a major limiting factor for vehicular crowdsensing. Yet, the
usage of battery-powered robotic vehicles such as Unmanned
Aerial Vehicle (UAV) for data acquisition in future Intelligent
Transportation System (ITS) is highly being discussed. In addi-
tion, the proposed approach might also be applied in intelligent
container systems in smart logistics scenarios.

C. Data-Driven Network Simulation

It is obvious that the inherently huge effort in performing
real world test drives makes this method inappropriate for car-
rying out large scale parameter studies. Therefore, we exploit
the computational efficiency of data-driven analysis methods
and implement a DDNS setup according to [28] for the initial
parameter tuning phase.

In contrast to classical network simulation methods which
simulate the behavior of actual communicating entities and
their corresponding protocol stacks, DDNS relies on replaying
previously acquired empirical context traces of the targeted de-
ployment scenario. Hereby, the vehicle is virtually moved on its
trajectory and the corresponding context information is lookup
up from the measurements. For this purpose, we utilize the
available open data set of [48]. The simulation of the end-to-end
behavior of the transmission schemes is then performed by a
combination of machine learning models:
� Based on the available a priori data set, a deterministic data

rate prediction model — equal to the RF method described
in Section IV-A — is learned and utilized by the agent to op-
portunistically schedule the data transmissions. However,
due to its deterministic nature, identical feature sets will
always result in the same prediction results. Contrastingly,
in the real world, the predictions will most likely differ
from the ground truth measurements due to imperfections
of the prediction model.

� For representing this aspect within the simulation process,
a probabilistic derivation model is utilized. Through
applying GPR on the results of the RF model (for a visual
representation of the different models, see Fig. 8), a sta-
tistical description of the derivations between predictions
and measurements is derived. Furthermore, the Bayesian
nature of this model class allows to draw sample values
from the learned confidence interval. Within the DDNS
simulation, each deterministic prediction S̃(t) is converted
to a sampled virtual ground truth value Ŝ(S̃(t))which rep-
resents the actual resulting data rate of the corresponding
data transmission. Further details about this method are
presented in [28].

D. Data Analysis

For training the prediction models, we utilize the Lightweight
Machine Learning for IoT Systems (LIMITS) framework [58]
which allows to automate low-level machine analysis in Waikato

https://github.com/BenSliwa/MTCApp
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Environment for Knowledge Analysis (WEKA) [59] and pro-
vides automated export of C/C++ code of the trained models.
In order to generate the GPR models for the DDNS setup and
for performing the k-means black spot clustering, the Statistics
and Machine Learning Toolbox of MATLAB is applied.

For analyzing the performance of the machine learning meth-
ods, multiple statistical metrics are applied. The coefficient of
determination R2 is a statistical metric for the goodness of fit of
the resulting regression model. It is calculated as

R2 = 1−
∑N

i=1 (ỹi − yi)
2∑N

i=1 (ȳ − yi)
2 (11)

with N as the number of measurements, ỹi being the current
prediction, yi being the current measurement, and ȳ being the
mean value of the measurements.

In addition, we consider Mean Absolute Error (MAE) and
RMSE which are calculated as

MAE =

∑N
i=1 |ỹi − yi|

N
, RMSE =

√∑N
i=1 (ỹi − yi)

2

N
.

VI. RESULTS

In this section, the results for the DDNS-based optimization
phase as well as for the real world performance analysis are pre-
sented and discussed. Within the latter, the novel BS-CBmethod
is compared to the existing transmission schemes discussed in
Section III.

A. DDNS-Based Parameter Optimization

As discussed in Section IV, opportunistic data transfer is
subject to a fundamental trade-off between data rate and AoI
optimization: In order to improve the end-to-end data rate, the
transmission schemes will rather prefer larger packets which are
then transmitted within connectivity hotspots. As a result of the
local buffering, the AoI is increased. For the further analysis of
this effect, two efficiency indicators are defined:
� The data rate efficiency Es = S̄/S∗ is used to analyze

how good the average data rate S̄ approaches the target
data rate S∗.

� The AoI efficiency EAoI = 1− Δ̄t/Δtmax represents a
measure for the margin between the average AoI and
the application-specific deadline Δtmax of the age of the
sensor data.

The fundamental trade-off between data rate optimization and
AoI optimization which is controlled via the trade-off factor
w is shown in Fig. 12. It can be seen that the resulting data
rate can be improved by transmitting larger data packets based
on a larger value of w. However, this is achieved through a
higher buffering time of the acquired sensor data packets which
increases the AoI of the data packets. In the following, we
focus on data rate optimization and apply w = 0.9 within all
considered evaluations.

Although the reinforcement learning mechanisms can theoret-
ically be learned online in the field, we apply an offline training
approach based on DDNS in order to ensure that the real world
evaluations are performed with a converged system. Hereby, we

Fig. 12. Trade-off between data rate and AoI optimization for MNO A in uplink
direction.

Fig. 13. Convergence behavior of the reinforcement learning-enabled trans-
mission schemes. Each epoch corresponds to a virtual test drive evaluation in
the DDNS.

replay previously acquired empirical context traces — which
are referred to as epochs — and apply the novel reinforcement
learning-based transmission schemes. The resulting data rate
behavior is shown in Fig. 13. As references, we consider the
Q-learning-based RL-CAT and a deep reinforcement learning
variant of the latter which applies an ANN configuration ac-
cording to Section IV-A for the data rate prediction. It can
be seen that the contextual bandit-based method achieves the
highest absolute data rate and reaches a converged system state
early after 200 epochs. The remaining error floor is caused
by the imperfections of the data rate prediction model. For
RL-CAT, both variants achieve a similar performance level —
about 2.5 MBit/s less than BS-CB— of the converged methods.
However, it can be seen that the deep reinforcement learning
variant achieves a faster convergence behavior than the simple
Q-learning approach.

B. Real Wold Performance Comparison

The configured and converged transmission schemes are now
applied in a real world evaluation and compared to existing
transmission approaches.

The resulting data rate of the different transmission schemes is
shown in Fig. 14 for uplink and downlink direction. A clear trend
of continuous improvement over the different evolution stages
can be observed: Although already the SINR-based CAT method
is able to achieve significant improvements in comparison to the
periodic data transfer approach, the introduction of the machine
learning-based data rate prediction metric by ML-CAT leads to
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Fig. 14. Comparison of the resulting real world data rate in uplink and downlink direction for the considered transmission schemes and MNO. (a) Uplink.
(b) Downlink.

Fig. 15. Comparison of the resulting real world resource efficiency in uplink and downlink direction for the considered transmission schemes and MNO.
(a) Uplink. (b) Downlink.

a significant boost which is the result of a more reliable way of
accessing the channel behavior. Finally, it can be seen that the
reinforcement learning-based decision making outperforms the
previously considered heuristic approaches. Hereby, data rate
improvements up to 195% in uplink and up to 223% in downlink
direction are achieved by the proposed BS-CBmethod. In the
downlink, the differences between the opportunistic transmis-
sion approaches are less distinct since the downlink performance
is more determined by the network congestion than the radio
channel conditions [31].

A comparison of the resulting network ressource efficiency
(represented by the amount of PRB per transmitted MB) is
shown in Fig. 15. It can be seen that all opportunistic data
transfer approaches are able to massively reduce — by 84% to
89% — the amount of occupied network resources for all MNO
in both transmission directions. One of the main reasons for
this behavior is the explicit exploitation of connectivity hotspot
situations. Here, the robust channel conditions allow to apply
higher MCS for the actual data transfer. Again, it can be seen
that the more advanced evolution stages of the CAT approach
allow to identify these favorable transmission opportunities in a
more reliable way. As a conclusion, the apparently selfish goal
of data rate optimization contributes to improving the intra-cell
coexistence: Since the limited PRB are only occupied for small
amounts of time, they are freed early and are available for being
allocated by other cell users.

Fig. 16. Transmission-related real world uplink power consumption of the
mobile UE.

The resulting uplink power consumption of the mobile UE
is shown in Fig. 16. Since the opportunistic data transmission
schemes aim to exploit connectivity hotspots, they implictly
increase the average RSRP at the transmission time which is
highly correlated to the applied transmission power. As dis-
cussed in [57], the latter is the major impact factor for the
uplink power consumption since it controls the state of the
different power amplifiers of the UE. Therefore, the RSRP
optimization leads to a massive improvement of the observed
power consumption. Here, BS-CBis able to reduce the latter
between −53% and −73%. For MNO B, it can be observed
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Fig. 17. Comparison of the resulting real world AoI of the sensor data packets. (a) Uplink. (b) Downlink.

that the general level of the uplink power consumption is much
higher than for the other MNO. However, this phenomenon is
caused by network planning-related aspects of the operator: In
the considered evaluation scenario, the average distance to the
eNB is much higher than for the other MNO. As a consequence
of the resulting RSRP reduction — the average RSRP for MNO B
is−97.64 dBm,−89.61 dBm for MNO A, and−88.03 dBm for
MNO C — the mobile UE applies a higher transmission power
to compensate the path loss effects.

Although the considered opportunistic data transfer ap-
proaches are able to achieve massive improvements in data rate,
network resource efficiency, and uplink power consumption, the
price to pay is a significant increase in the AoI of the sensor data
packets. Fig. 17 shows a comparison of the resulting AoI values
for the different transmission schemes, MNO, and transmission
directions. The plots show that this effect is more distinct for the
machine learning approaches which detect favorable transmis-
sion opportunities more reliably through considering the radio
channel quality, protocol-related aspects and partially also the
network load. In contrast to that, the highly dynamic behavior of
the SINR (see Fig. 2) leads to a higher transmission probability
for the regular CAT method which results in a comparably low
AoI. However, based on the parameter Δtmax, the tolerable AoI
can be configured with respect to the application requirements.
The impact of different values of Δtmax on the resulting BS-
CBdata rate and the AoI of sensor data is shown in Fig. 18. For
small values of Δtmax, a quasi-linear dependency to the latter
can be observed. In this phase, the behavior of the transmission
scheme is dominated by protocol effects such as TCP slow
start. However, a saturation of the data rate improvement is
reached at Δtmax = 30 s. Afterwards, the actual opportunistic
behavior starts which exploits the vehicle’s mobility behavior
for postponing data transmissions to more robust radio channel
conditions where a better resource efficiency can be achieved.

As a summary, Fig. 19 shows a spider plot which compares
the mean results of all considered performance indicators for
the different opportunistic data transfer methods in the network
of MNO A. The axis orientation have been chosen such that
a larger footprint corresponds to a better performance. It can
be seen that all non-periodic approaches focus on optimizing
the network and client domain at the expense of the application
domain. Although the proposed BS-CBachieves a slightly better
overall performance than RL-CAT, the major differences can be

Fig. 18. Impact on the application-specific deadline Δtmax on the resulting
data rate and AoI.

Fig. 19. Summary: Comparison of the average behavior of different perfor-
mance indicators for the opportunistic data transfer methods in the cellular
network of MNO A. The axis orientations are chosen such that a large footprint
represents a better performance.
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observed between different categories and less between actual
transmission schemes: The highest gains are achieved by the
hybrid machine learning approaches that utilize data rate pre-
diction and reinforcement learning-based autonomous decision
making.

C. Online Learning for Self Adaptation to Concept Drift

The results of the real world performance evaluation have
shown that the client-based machine learning-enabled transmis-
sion schemes are able to achieve significant improvements in
comparison to existing approaches. However, changes in the
network (e.g., new resource schedulers in the network infras-
tructure) might lead to a concept drift [60] situation where the
interplay of the considered features experiences a significant
change. Although the application of reinforcement learning al-
lows to further optimize the autonomous decision making during
the live evaluations, the data rate prediction model is trained in
a static way and might experience a significant reduction of the
prediction accuracy. While it is possible to periodically re-train
the prediction model, a better approach is the application of
online learning in order to enable self adaption to the changed
environment conditions. With respect to the edge intelligence
classification scheme of [54], the integration of online learning
would migrate the transmission scheme to level 6: all on-device
where training and inferencing are run completely locally.

Since it is not possible for us to cause concept drift in the
public cellular network, we virtually create a situation where
the network behavior spontaneously changes significantly. For
this purpose, we pre-train a prediction model on the uplink data
set of one MNO and analyze its online adaption to the data
set of a different operator. Although online learning variants of
RF exist — e.g., Mondrian Forests [61] — we apply an ANN
model for this purpose since this model class inherently supports
incremental learning. For the proof-of-concept experiment, a
data split is applied: 80% of the MNO-specific data set D is
used as the training set Dtrain and the remaining data forms the
test setDtest. Initially, the ANN is pre-trained on the training data
of MNO A, and then incrementally updated with the training data
of MNO B. For both operators, the RMSE on the corresponding
test sets is analyzed.

The ANN is set up according to Section IV-A. For the incre-
mental learning, a minibatch of 32 elements is applied. Hereby,
the measurements are buffered locally until the buffer size is
equal to 32. Afterwards, the weights of the ANN are updated
and the buffer is cleared. The resulting RMSE on the test sets
of both network operators is shown in Fig. 20. Four different
characteristic phases can be identified:

1) Pre-trained model: As the prediction model is initially
optimized for being applied in the network of MNO A,
the prediction accuracy for MNO A is significantly higher
than for MNO B. Still, a certain level of predictability is
achieved based on the MNO-independent aspects within
the feature set.

2) Concept drift: After the first batches of MNO B measure-
ments arrive, the prediction model experiences a concept
drift: Since the weights of the ANN are neither optimized

Fig. 20. Self adaption of the data rate prediction model to concept drift: An
ANN model is pre-trained on the uplink data of MNO A and then incrementally
updated with measurements of MNO B.

for MNO A nor for MNO B, both models suffer from a per-
formance decrease. Hereby, also the MNO-independent
features are affected from the changed model weights.
This aspect is more dominant for MNO B for which only
a small amount of measurements has been observed.

3) Self adaptation: After seven batch iterations, the ANN
weights start to become optimized for the network of
MNO B, which results in a steady RMSE improvement
for the following iterations.

4) Convergence: After around 23 batch iterations, the pre-
diction model reaches a converged state where the RMSE
stays at a nearly constant level. In comparison to the
pre-trained phase, it can be seen that the RMSE values
of the two MNO have been switched and that the model
has successfully adopted itself for MNO B.

The considered evaluation shows that online learning allows
the data rate prediction model to autonomously adapt to changed
network conditions which have a significant impact on the
interplay of the features of the prediction model. Within the
considered evaluation, even the on-device training time — on
average 0.4511 ms per 32-element batch — can be considered
negligible. However, the considered ANN model does not reach
the accuracy level of the statically trained RF predictor (see
Fig. 6). Therefore, future extensions should consider the appli-
cation of more advanced methods for online learning.

D. Black Spot Statistics and Multi-MNO Transmission
Approach

Although the previous discussion has shown that the black
spot-aware data transfer approach is able to improve the data
rate prediction accuracy as well as the resulting data rate of
the BS-CBmethod, it’s usage introduces an additional buffering
delay since transmissions are avoided within black spot regions.
A possible solution approach for compensating these undesired
effects might be the usage of a multi-MNO approach which
exploits complementary network infrastructure deployments.
Fig. 21(a) shows a schematic visualization of black spot compen-
sation through application of a multi-MNO approach. If a vehicle
encounters a black spot region within its primary network, it
dynamically changes the network for performing the sensor data
transmissions.

The Empirical Cumulative Distribution Function (ECDF) of
the times and distances vehicles spend in black spot regions



5344 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 70, NO. 6, JUNE 2021

Fig. 21. Compensation of black spot regions through multi-MNO network selection: General solution approach and impact on black spot statistics.

are shown in Fig. 21(b) and Fig. 21(c). There are no significant
variations between the considered MNO. In around 50% of the
cases, the black spot regions cover less than 100 m which results
in a minor addition to the buffering delay. The usage of a multi-
MNO approach leads to massive reductions of both undesired
effects. In fact, it is also almost able to compensate the black
spot-related effects completely.

VII. RECOMMENDATIONS FOR FUTURE 6G NETWORKS

Based on the achieved insights, we summarize the our rec-
ommendations for using client-based intelligence in future 6G
networks as:
� Non-cellular-centric networking approaches such as end-

edge-cloud orchestrated intelligence allow to exploit the
computation and sensing capabilities of the network clients
for participating in the overall network optimization. This
potential should be recognized by the MNO and actively
supported.

� Data rate prediction allows to make more precise state-
ments about the channel quality than considering raw net-
work quality indicators. Yet, purely client-based prediction
methods only have limited insight into the current load of
the network. As cooperative data rate prediction [51] is
able to significantly reduce the end-to-end prediction error,
this approach should be explicitly supported by the network
infrastructure through actively sharing knowledge about
the network load (e.g., obtained from the NWDAF [7])
using dedicated control channel broadcasts.

� Although machine learning has demonstrated its poten-
tial in various applications related to wireless network
optimization, the sizes of most existing data sets are far
away from being comparable to the massive data sets used
in computer vision by industry giants. Therefore, effort
should be taken to acquire data and build up massive open
data sets, especially as additional data often leads to larger
performance gains than model tuning [49]. A promising
initial attempt for sharing data and models is the machine
learning marketplace proposed in draft recommendation
Y.ML-IMT2020-MP of the International Telecommunica-
tion Union (ITU).

VIII. CONCLUSION

In this paper, we proposed BS-CBas a novel method for
resource-efficient opportunistic data transmission of vehicu-
lar sensor data. BS-CBimplements a hybrid machine learning
approach which relies on supervised learning for data rate
prediction, unsupervised learning for identifying geospatially-
dependent uncertainties of the prediction model, and reinforce-
ment learning for autonomously scheduling data transmissions
with respect to the anticipated resource efficiency. Within a
real world performance evaluation campaign, it was shown that
BS-CBis able to achieve massive improvements in compari-
son to conventional periodic data transmission methods and
significantly outperforms existing probabilistic approaches. In
future work, we want to analyze more complex online learning
approaches such as Mondrian Forest for the data rate prediction.
In addition, our research work will focus on further improving
the achievable prediction accuracy, e.g., through application of
cooperative approaches.
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