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Abstract—In unmanned aerial vehicle (UAV) applications, the
UAV’s limited energy supply and storage have triggered the de-
velopment of intelligent energy-conserving scheduling solutions.
In this paper, we investigate energy minimization for UAV-aided
communication networks by jointly optimizing data-transmission
scheduling and UAV hovering time. The formulated problem is
combinatorial and non-convex with bilinear constraints. To tackle
the problem, firstly, we provide an optimal algorithm (OPT) and a
golden section search heuristic algorithm (GSS-HEU). Both solu-
tions are served as offline performance benchmarks which might
not be suitable for online operations. Towards this end, from a
deep reinforcement learning (DRL) perspective, we propose an
actor-critic-based deep stochastic online scheduling (AC-DSOS) al-
gorithm and develop a set of approaches to confine the action space.
Compared to conventional RL/DRL, the novelty of AC-DSOS lies
in handling two major issues, i.e., exponentially-increased action
space and infeasible actions. Numerical results show that AC-DSOS
is able to provide feasible solutions, and save around 25-30% energy
compared to two conventional deep AC-DRL algorithms. Com-
pared to the developed GSS-HEU, AC-DSOS consumes around
10% higher energy but reduces the computational time from
second-level to millisecond-level.

Index Terms—UAV, deep reinforcement learning, user
scheduling, hovering time allocation, energy optimization,
actor-critic.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) have attracted much
attention to high-speed data transmission in dynamic,

distributed, or plug-and-play scenarios, e.g., disaster rescue, live

Manuscript received June 22, 2020; revised January 20, 2021; accepted April
6, 2021. Date of publication April 27, 2021; date of current version June
9, 2021. This work was supported in part by the ERC project AGNOSTIC
under Grant 742648, in part by the FNR CORE projects ROSETTA under
Grant C17/IS/11632107, ProCAST under Grant C17/IS/11691338, in part by
the 5G-Sky under Grant C19/IS/13713801, in part by the FNR bilateral project
LARGOS (12173206), and in part by by the Jiangsu Natural Science Foundation
under Grant SBK2018040630. A part of this paper was presented at IEEE
EuCNC, Jun. 2020 [21]. The review of this article was coordinated by Prof.
Rose Qingyang Hu. (Corresponding author: Lei Lei.)

Yaxiong Yuan, Lei Lei, Thang X. Vu, Symeon Chatzinotas, and
Björn Ottersten are with the Interdisciplinary Centre for Security, Re-
liability and Trust, Luxembourg University, L-1855 Kirchberg, Lux-
embourg (e-mail: yaxiong.yuan@uni.lu; lei.lei@uni.lu; thang.vu@uni.lu;
symeon.chatzinotas@uni.lu; bjorn.ottersten@uni.lu).

Sumei Sun is with the Institute for Infocomm Research, Agency for Science,
Technology, and Research, Singapore 138632, Singapore (e-mail: sunsm@i2r.a-
star.edu.sg).

Digital Object Identifier 10.1109/TVT.2021.3075860

concert, or sports events [1]. However, UAVs’ limited endurance,
energy supply, and storage become critical issues for their ap-
plications, which motivates the study of energy efficiency in
UAV-aided communication networks. The UAV’s energy con-
sumption comes from two aspects, propulsion energy for flying
and hovering, and communication energy for data transmission.
The flying energy mainly depends on the UAV’s velocity and
trajectory [1]. The hovering energy is, in general, proportional
to the hovering time. Compared to the propulsion energy, the
communication energy consumption is not a negligible part,
e.g., considerable communication energy can be consumed in
the scenarios with high traffic requests from a large number of
users. Thus joint energy optimization for both parts is necessary
and has attracted considerable attention in the literature [2]–[9].

The authors in [2], [3] maximized the energy efficiency, refer-
ring to the ratio between transmitted data and propulsion energy.
In [4], the authors introduced a complete UAV energy model
and proposed a user-timeslot scheduling method to minimize
the sum of the propulsion energy and communication energy.
Based on the energy model in [4], the authors formulated an
energy minimization problem with latency constraints by tra-
jectory design in [5]. The above works in [2]–[5] adopted a time
division multiple access (TDMA) mode, where the UAV serves
one user per timeslot. Besides TDMA, space division multi-
ple access (SDMA) enables simultaneous data transmission to
multiple users, such that the hovering time and hovering energy
can be reduced. In [6], the authors designed an SDMA-based
beamforming scheme to minimize the total transmit power for
multi-antenna UAVs. In [7], an energy efficiency maximization
problem was investigated in an SDMA-based multi-antenna
UAV network via optimizing the flying velocity and power
allocation. However, serving multiple users simultaneously may
lead to strong inter-user interference and may require more
communication energy to fulfill users’ demands. In [8], [9],
two non-convex combinatorial optimization problems based on
SDMA were studied. The authors in [8] proposed an alternative
optimization algorithm based on the block coordinate descent
method to optimize frequency, transmit power, and UAVs trajec-
tory. In [9], the non-convex problem becomes convex by fixing
a sensing-time variable. Then, a single-variable search method
was adopted to optimize.

Deterministic optimization algorithms, e.g., [2]–[9], might
not be suitable for fast decision making in a dynamic
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wireless environment. To address this issue, deep learning-based
solutions have been investigated in the literature. The authors
in [10] relied on a deep neural network (DNN) to efficiently
predict the resource allocation scheme for mobile edge networks.
In [11], a deep learning-based auction algorithm was proposed
to determine a dynamic battery charging scheduling for UAV-
aided systems. Supervised learning, such as DNN, requires large
amounts of training data, which is a non-trivial task in an offline
manner [12]. Another category is reinforcement learning (RL).
In [13], Q-learning was applied to solve an unconstrained UAVs
trajectory design problem to avoid collisions. However, updating
the Q-table results in unaffordable computing time/resources.
To improve efficiency, deep reinforcement learning (DRL) was
developed with the following advantages. Firstly, DRL provides
timely solutions, adapted to environment variations. Secondly,
DRL integrates DNN to make decisions and improve solution
quality. Thirdly, DNN requires an offline data generating and
training phase, whereas DRL is less needed for prior knowledge
and is able to train by exploring unknown environments and
exploiting received feedbacks in an online manner. In [14], the
authors applied a deep Q network (DQN) to design an energy-
efficient flying trajectory scheme for UAV-aided networks. In
general, DQN is used to deal with a relatively small and discrete
action space, where the action space refers to the set of all
possible decisions [15]. The authors in [16] designed a different
deep Q-learning architecture with a high dimensional action
space, but it needs to evaluate all of the actions before making a
decision, which is time-consuming.

Deep actor-critic is an emerging DRL method with fast con-
vergent properties and the capability to deal with a large action
space [17]. In [18], an actor-critic-based DRL (AC-DRL) algo-
rithm was proposed to reduce the UAV’s energy consumption
and enhance the UAV’s coverage of ground users via optimiz-
ing UAV’s flying direction and distance. In [19], the authors
employed deep actor-critic to design a learning algorithm for
UAV-aided systems, considering energy efficiency and users’
fairness. Note that the AC-DRL in [18], [19] was developed
for unconstrained problems. However, most of the problems in
UAV systems are constrained and with discrete variables. The
conventional AC-DRL algorithms have limitations on tackling
constrained combinatorial optimization problems, which may
result in slow convergent, infeasible, and degraded solutions.
The authors in [20], [21] developed AC-DRL algorithms for
a combinatorial optimization problem in a UAV-aided system,
where the performance is limited when the problem scale grows.
In [22], [23], two AC-DRL algorithms based on deep determin-
istic policy gradient (DDPG) were developed to optimize UAV
trajectory and resource allocation. The adopted reward function
can satisfy simple constraints but might not be applicable for
complicated combinatorial problems.

In this study, we minimize the UAV’s communication and
propulsion energy in a downlink UAV-aided communication
system. The improvement of solution development lies in three
aspects. Firstly, compared to offline optimization approaches,
we provide online learning and timely energy-saving solutions
based on DRL. Secondly, unlike the conventional DRL or
AC-DRL methods, the proposed solution is suited to tackle
constrained combinatorial optimization. Thirdly, compared to

our previous work [21], we augment the algorithms by devel-
oping new theoretical results and tailored approaches to address
two challenging issues in guaranteeing feasibility and control-
ling exponentially-increased action space. The major contribu-
tions are summarized as follows:
� We formulate an energy minimization problem for an

SDMA-enabled UAV communication system, where user-
timeslot allocation and UAV’s hovering time assignment
are the coupled optimization tasks. The formulated prob-
lem is combinatorial and non-convex with bilinear con-
straints.

� We provide a relax-and-approximate method to approach
the optimum. That is, the bilinear terms are addressed by
McCormick envelopes relaxation, then the remaining inte-
ger linear programming problem is solved by the branch-
and-bound (B&B) algorithm.

� We characterize the interplay among communication en-
ergy, hovering time, and hovering energy. Based on the
derived analytical results, we develop a golden section
search-based heuristic (GSS-HEU) algorithm for bench-
marking general instances with lower complexity than the
optimal solution.

� We propose an actor-critic-based deep stochastic online
scheduling (AC-DSOS) algorithm for UAV energy savings,
where the original problem is transformed into a Markov
decision process (MDP). AC-DSOS is computationally
light and solves the problem in an online manner, against
offline high-complexity optimal/sub-optimal algorithms.
Unlike conventional DRL, we develop a set of tailored
approaches in AC-DSOS, e.g., stochastic policy quantifi-
cation, action space reduction, and feasibility-guaranteed
reward function design, to overcome DRL’s limitations
in addressing combinatorial optimization problems with
multiple constraints and large action space.

� Simulations demonstrate that the proposed AC-DSOS en-
ables a feasible, fast-converging, and dynamically adaptive
solution. The designed approaches are effective in reduc-
ing action space and guaranteeing feasibility. AC-DSOS
achieves promising energy-saving performance compared
with two recent AC-DRL methods and three heuristic
algorithms.

The rest of the paper is organized as follows. Section II pro-
vides the system model and Section III formulates the considered
optimization problem. In Section IV, we analyze the relationship
between the energy consumption and hovering time, and propose
a heuristic algorithm. In Section V, we reformulate the problem
as an MDP and develop an AC-DSOS algorithm. Numerical
results are presented and analyzed in Section VI. Finally, we
draw the conclusions in Section VII.

The codes for generating the results are online available at
the link: https:// github.com/ ArthuretYuan .

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We consider a downlink UAV-aided communication system.
A UAV serves as an aerial base station (BS) to deliver data
to ground users, e.g., for the scenarios if terrestrial BSs are

https://github.com/ArthuretYuan
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Fig. 1. An illustrative UAV-aided network.

Fig. 2. An illustration of the frame-timeslot structure.

unavailable or overloaded by high traffic demand from numerous
users. We assume that the UAV is equipped with L antennas and
each ground user has a single antenna [7]. The UAV is fully
loaded with data and energy at a dock station before the task
starts. The service area is divided into N clusters considering
the UAV’s limited coverage area. This setup can be used in many
practical scenarios such as emergency rescue and temporary
communication [24], [25]. We denote N = {1, . . ., n, . . ., N}
as the set of clusters and N+ = N ∪ {N + 1} as the extended
set, where the (N + 1)-th cluster denotes the dock station. The
UAV flies through all the clusters successively according to a
pre-optimized trajectory, and transmits data to the users when
hovering at a given point, e.g., above the cluster’s center. Let
Kn and Kn denote the number and set of the users in the n-th
cluster. The demands of user k ∈ Kn are denoted by qk,n (in
bits). When all the demands in a cluster are satisfied, the UAV
leaves the current cluster and visits the next one. After serving
all the clusters, the UAV flies back to the dock station. The
process of the UAV from leaving to returning the dock station
is defined as a round or a task. Fig. 1 illustrates an example of
the considered system.

The data stored in the UAV typically have a certain life
span [26]. Thus, we consider the transmitted data are delay-
sensitive, and all data delivery must be completed within Tmax

(in frames), where the time domain is divided by frames in set
T = {1, . . ., t, . . ., Tmax}. One frame consists of I timeslots,
and the duration of a timeslot is Φ. With SDMA, the UAV
can simultaneously transmit data to more than one user in
each timeslot. The frame-timeslot structure is shown in Fig. 2,
where the shaded blocks indicate that the users are scheduled.
We define the scheduled users at a timeslot as a user group.
The union of the possible groups in cluster n is denoted by
Gn = {1, . . ., g, . . ., Gn}. The maximum number of candidate

groups in cluster n is Gn = 2Kn − 1 [27], which increases
exponentially withKn. The number and set of the users of group
g in cluster n are denoted by Kg,n and Kg,n, respectively.

The channel vector from the UAV antennas to ground user
k ∈ Kn is denoted as hk,n ∈ C1×L, which can be expressed
by αk,n10−ξk,n/10, where αk,n ∈ C1×L is the multipath Rician
fading vector and ξk,n is the free-space propagation loss between
the UAV and ground user k ∈ Kn. The model comprises a deter-
ministic LoS component and a random multi-path component.
The former predicts the propagation loss of a signal encounters
air-to-ground scenarios, and the latter captures the effects of
reflection, scattering, and diffraction by the ground obstacles.
The model is suited and widely adopted for UAV applications in
urban/suburban scenarios, e.g., [7], [13], [20], [24], [28], [29].
We collect all the channel vectors of the users in Kg,n to form
a matrix Hg,n ∈ CKg,n×L. Within a user group, we apply a
linear minimum mean square error (MMSE) precoding scheme
due to its high efficiency and low computational complexity in
mitigating intra-group interference. The precoding vector for
user k ∈ Kg,n is calculated by:

wk,g,n =
√
pk,g,n

h̃k,g,n

‖h̃k,g,n‖
, (1)

where pk,g,n is the transmit power for user k in group g, h̃k,g,n

is the k-th column in HH
g,n(σ

2I+Hg,nH
H
g,n)

−1, and σ2 is
the noise power. Note that transmit power pk,g,n is fixed as
parameters in this work by following practical UAV applications,
e.g., constant transmit power can be selected from 0.1 W to 10
W [30]. The signal-to-interference-plus-noise ratio (SINR) for
the user k ∈ Kg,n is given by:

Γk,g,n =
β
(kk)
g,n pk,g,n∑

j∈Kg,n\{k} β
(kj)
g,n pj,g,n + σ2

,

k ∈ Kg,n, g ∈ Gn, (2)

where β
(kk)
g,n = |hk,nh̃k,g,n|2 and β

(kj)
g,n = |hk,nh̃j,g,n|2 are the

effective channel gains.
We assume the channel state information (CSI) updates over

frames, and the channel states keep static within a transmission
frame. Based on the adopted path-loss and Rician-fading model,
we further model the time-varying channel as the first state
Markov channel (FSMC) to capture the time-correlation char-
acteristics and allow mathematically tractable analysis. Given
the Rician probability density function and the corresponding
auto-correlation function, we can discretize the channel into
several intervals and derive the transition probabilities. Thus,
knowing the initial channel state (sampling by Rician distri-
bution), the following channel states can be forecasted by the
transition probabilities [31]. By FSMC modeling, the channel
quality in the near future can be forecast based on the knowledge
of previous channel conditions. Moreover, FSMC is efficient
in quick simulations and system performance evaluations [32],
[33]. Since CSI varies over frames, we use Γk,g,n,t, β

(kk)
g,n,t

and β
(kj)
g,n,t to track SINR and channel coefficients on the t-th

frame. We quantify each coefficient β(kk)
g,n,t and β

(kj)
g,n,t to multiple

Markov states and obtain a transition probability such that the
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variations of β(kk)
g,n,t and β

(kj)
g,n,t follow a Markov process between

frames [34]. If group g ∈ Gn is scheduled at timeslot i on
frame t, the amount of data transmitted to user k ∈ Kg,n and
the consumed communication energy of group g ∈ Gn can be
expressed by:

dk,g,n,t = ΦB log2 (1 + Γk,g,n,t) ,

k ∈ Kg,n, g ∈ Gn, t ∈ T , (3)

and

eg,n,t = Φ
∑

k∈Kg,n

pk,g,n, g ∈ Gn, t ∈ T , (4)

where B is the system bandwidth. Note that within a frame,
we assume a user’s channel condition is identical across all the
timeslots, thus index i is omitted in dk,g,n,t and eg,n,t.

B. UAV’s Energy Model

We employ a UAV energy model proposed in [4]. The flying
power is formulated as a function f (U) of flying velocity U :

f (U) = P0

(
1 +

3 U 2

U 2
tip

)
+ P1

(√
1 +

U 4

4U 4
ind

− U 2

2U 2
ind

) 1
2

+
1
2
ρ1ρ2U

3, (5)

where
� P0: the blade profile power in hovering status;
� P1: the induced power in hovering status;
� Utip: the tip speed of the rotor blade;
� Uind: the mean rotor induced velocity;
� ρ1: the parameter related to the fuselage drag ratio, rotor

solidity, and the rotor disc area;
� ρ2: the air density.
When UAV approaches the hovering point of each cluster, it

will fly around the point with a certain velocityU = Uhov , which
is more energy-efficient than U = 0 [5]. Thus, the hovering
power PH is f(U = Uhov). The flying energy with constant
velocity U and traveling distance S is expressed as:

f (U) · S/U

= SP0

(
1
U

+
3 U

U 2
tip

)
+ SP1

(√
1
U 4

+
1

4U 4
ind

− 1
2U 2

ind

) 1
2

+
S

2
ρ1ρ2U

2. (6)

Hovering energy and communication energy need to be jointly
optimized since they are coupled by hovering time, whereas the
optimization of flying energy is independent. By applying graph-
based numerical methods [35], the minimum flying energy E∗

F

along with the optimal flying speed U ∗
F

can be obtained by:

E∗
F
= f (U ∗

F
) · S/U ∗

F
, (7)

where U ∗
F
= argminU≥0

f (U)
U .

The main notations are summarized in Table I.

TABLE I
SUMMARY OF SYMBOLS AND NOTATIONS

III. PROBLEM FORMULATION

We denote binary variables λi,g,n,t ∈ {0, 1} as the scheduling
indicator, where λi,g,n,t = 1 indicates that user group g ∈ Gn is
assigned to timeslot i on frame t and λi,g,n,t = 0 otherwise.
Another class of binary variables νn,t ∈ {0, 1} indicates that
the UAV is hovering above cluster n on frame t (νn,t = 1),
and νn,t = 0 otherwise. The UAV energy consumption consists
of flying energy E

F
, hovering energy E

H
, and communication

energy E
C

. Since the minimal flying energy E∗
F

can be inde-
pendently obtained by Eq. (7) without loss of optimality, the
objective focuses on joint optimization of E

C
and E

H
, which

are expressed by:

E
C
=

Tmax∑
t=1

N∑
n=1

Gn∑
g=1

I∑
i=1

νn,tλi,g,n,teg,n,t, (8)

E
H
=

Tmax∑
t=1

N∑
n=1

ΦIPHνn,t. (9)

Note that the UAV is battery-limited in practice. We focus on the
instances that the minimum consumed energy in (10a) is within
the UAV’s battery storage, otherwise, the task is infeasible. The
optimization problem is formulated as:

P1 : min
λi,g,n,t,

νn,t

E
C
+ E

H
(10a)

s.t.

Tmax∑
t=1

Gn∑
g=1

I∑
i=1

νn,tλi,g,n,tdk,g,n,t ≥ q
k,n

, ∀k ∈ Kn, n ∈ N ,

(10b)

ν
n,t

≤ ν
n,t+1 + ν

n+1,t+1 , ∀n ∈ N , t ∈ T , (10c)

Gn∑
g=1

I∑
i=1

λi,g,n,t = I · ν
n,t

, ∀n ∈ N+, t ∈ T , (10d)
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Gn∑
g=1

λi,g,n,t ≤ 1, ∀i ∈ I, n ∈ N+, t ∈ T , (10e)

N+1∑
n=1

νn,t = 1, ∀t ∈ T , (10f)

λi,g,n,t ∈ {0, 1}, ∀i ∈ I, g ∈ Gn, n ∈ N+, t ∈ T , (10g)

νn,t ∈ {0, 1}, ∀n ∈ N+, t ∈ T . (10h)

Constraints (10b) guarantee that all the users’ requests have to
be satisfied within Tmax. Constraints (10c) define that the UAV
follows a successive and forward manner in visiting clusters. For
example, if the UAV is hovering above clustern on frame t, in the
next frame t+ 1, the UAV either chooses to stay at the current
cluster n or move to the next cluster n+ 1. The option of flying
back to previously visited clusters, e.g., n− 1, is thus excluded.
Note that the UAV takes off from the first cluster, i.e., ν1,1 = 1.
Constraints (10d) represent that all the timeslots on frame t are
assigned to a user group when νn,t = 1, otherwise, no users are
scheduled in any timeslot. Constraints (10e) and (10f) indicate
that no more than one group can be scheduled at a timeslot and
only one cluster can be served within a frame. Constraints (10g)
and (10h) confine variables λi,g,n,t and νn,t to binary.

Note that P1 is a combinatorial optimization problem with
a non-convex bilinear objective and constraints. The optimum
can be approached by a well-established relax-and-approximate
method. That is, the non-convex bilinear terms are relaxed and
bounded by McCormick envelopes [36], where each variable
(λi,g,n,t and νn,t) is bounded by an upper and a lower bound.
The relaxation problem becomes an integer linear programming
(ILP) problem which can be optimally solved by B&B. Overall,
the optimum of P1 can be approached by ultimately tightening
the bounds, e.g., increase the number of breakpoints in the en-
velopes, but this results in exponentially increasing complexity
which is unaffordable in practice [37]. Thus, we adopt the above
relax-and-approximate method to provide an optimal solution
for benchmarking small-medium cases. For general cases, we
propose a heuristic algorithm in the next section.

IV. HEURISTIC APPROACH

We decompose the joint optimization to two sub-problems,
i.e., user-timeslot and hovering time allocation, corresponding
to optimization of λi,g,t,n and νn,t, respectively. We then solve
one sub-problem when the other is fixed.

A. User-Timeslot Scheduling

The bilinear items are resolved with the fixedνn,t. The number
of frames at each cluster is determined by:

tn =

Tmax∑
t=1

νn,t, ∀n ∈ N , (11)

and ΦItn is the hovering duration. The user-timeslot schedul-
ing can be carried out independently in each cluster, and the
resulting problem for the n-th cluster is formulated in P2(n)
with a given tn. We denote E

H,n
and E

C,n
as the hovering and

communication energy for the n-th cluster:

E
H,n

= ΦIP
H
tn, (12)

E
C,n

=

τn+tn∑
t=τn+1

Gn∑
g=1

I∑
i=1

λi,g,n,teg,n,t, (13)

where τn refers to the number of elapsed frames before the UAV
arriving cluster n, which can be calculated by:

τn =

Tmax∑
t=1

n−1∑
n′=1

νn,′t. (14)

The sub-problem P2(n) is formulated as:

P2(n) : min
λi,g,n,t

E
C,n

+ E
H,n

(15a)

s.t.

τn+tn∑
t=τn+1

Gn∑
g=1

I∑
i=1

λi,g,n,tdk,g,n,t ≥ qk,n, ∀k ∈ Kn, (15b)

Gn∑
g=1

I∑
i=1

λi,g,n,t = I, ∀t ∈ {τn + 1, . . ., τn + tn}, (15c)

Gn∑
g=1

λi,g,n,t ≤ 1, ∀i ∈ I, t ∈ T , (15d)

λi,g,n,t ∈ {0, 1}, ∀i ∈ I, g ∈ Gn, t ∈ T . (15e)

P2(n) is a multi-choice multi-dimensional knapsack prob-
lem (MMKP), which can be solved by a guided local search
(GLS)-based heuristic algorithm with high-quality sub-optimal
solutions and pseudo-polynomial-time complexity [38].

B. Hovering Time Allocation

To optimize hovering time efficiently, we first investigate
the connection between the objective energy and tn. From
Eq. (12) and Eq. (13), E

H,n
increases linearly with tn while

E
C,n

is determined by both tn and λi,g,n,t. Next, we show the
relationship between the optimumE

C,n
and tn. For clustern, we

denote E∗
C,n

(tn) as the communication energy with the optimal
scheduling decision λ∗

i,g,n,t at a given hovering time tn.
Lemma 1: E∗

C,n
(tn) is a non-increasing function of tn,

E∗
C,n

(t̂) ≥ E∗
C,n

(t̂+Δt), t̂ > 0,Δt > 0. (16)

Proof: We denote the optimal user scheduling forP2(n)|tn=t̂

as λ∗
i,g,n,t. If tn increases from t̂ to t̂+Δt, λ∗

i,g,n,t is still feasible
for P2(n)|tn=t̂+Δt such that

E∗
C,n

(t̂) =

τn+t̂∑
t=τn+1

Gn∑
g=1

I∑
i=1

λ∗
i,g,n,teg,n,t

= E ′
C,n

(t̂+Δt) =

τn+t̂+Δt∑
t=τn+1

Gn∑
g=1

I∑
i=1

λ∗
i,g,n,teg,n,t.

(17)
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Fig. 3. Energy curves for three possible cases.

λ∗
i,g,n,t might not be necessarily optimal for tn = t̂+Δt. There

exists an optimal scheduling resulting in lower communication
energy, i.e.,

E∗
C,n

(t̂+Δt) ≤ E′
C,n

(t̂+Δt) = E∗
C,n

(t̂). (18)

Thus the conclusion. �
From Lemma 1, we can observe that E∗

C,n
(tn) is an non-

increasing function of tn, i.e.,
dE∗

C,n
(tn)

dtn
≤ 0. For E

H,n
(tn), we

can derive that
dE

H,n
(tn)

dtn
= ΦIPH based on Eq. (12). Thus,

the extreme point of E∗
C,n

(tn) + E
H,n

(tn) can be obtained at

tn = t† when

dE∗
C,n

(tn)

dtn
|tn=t† = −ΦIP

H
. (19)

Since the existence and the number of extreme points are unde-
termined. There are three possible cases, i.e., unimodal, multi-
modal, and monotonic, for E∗

C,n
(tn) + E

H,n
(tn), as illustrated

in Fig. 3. In case 1, the curve is a unimodal function with only

one extreme point. In case 2, the fluctuation of
dE∗

C,n
(tn)

dtn
leads

to multiple extreme points such that the curve is a multimodal

function. In case 3, Eq. (19) cannot hold, e.g.,
dE∗

C,n
(tn)

dtn
is

consistently lager than −ΦIP
H

, so the curve is monotonously
increasing with no extreme point.

Observing the possible cases, we employ an efficient golden
section search (GSS) to find the extreme points [39]. In GSS, we
limit the hovering time tn ≤ t̄n to ensure that the total service
duration does not exceed Tmax, where t̄n is a maximal time lim-
itation for cluster n. Intuitively, the clusters with more demands
need more transmission frames. We assume t̄n is proportional
to the users’ demands:

t̄n = Tmax

∑Kn

k=1 qk,n∑N
n=1

∑Kn

k=1 qk,n
. (20)

C. Algorithm Summary

We summarize the proposed GSS-HEU in Alg. 1. We denote
Bn,t as the set of channel states of cluster n on frame t, which

Algorithm 1: GSS-HEU Algorithm
Inputs:
Users’ demands: q1,1 , . . ., qK1,1 , . . ., q1,N , . . ., q

KN,N
;

Channel states: B1,1 , . . .,B1,Tmax , . . .,BN,1 , . . .,BN,Tmax ;
Search range’s upper bound: t̄1 , . . ., t̄N .
Outputs:
Heuristic solution: λ∗

1,1,1,1 , . . ., λ∗
I,Gn,N,Tmax , t

∗
1 , . . ., t∗N

1: for n = 1; n ≤ N ; n++ do
2: x1 = 0; y1 = t̄n;
3: u1 = �y1 − 0.618(y1 − x1)�;
4: v1 = �x1 + 0.618(y1 − x1)�;
5: for m = 1; |ym − xm| > 1; m++ do
6: Solve P2(n)|tn=um

and P2(n)|tn=vm
;

7: Obtain the corresponding user scheduling schemes
λi,g,n,t|tn=um

and λi,g,n,t|tn=vm
;

8: Obtain the objective energy (E
C,n

+ E
H,n

)|tn=um

and (E
C,n

+ E
H,n

)|tn=vm
;

9: if (E
C,n

+ E
H,n

)|tn=um
< (E

C,n
+ E

H,n
)|tn=vm

then
10: xm+1 = xm; ym+1 = vm; vm+1 = um;
um+1 = �ym+1 − 0.618(ym+1 − xm+1)�;

11: else
12: xm+1 = um; ym+1 = ym; um+1 = vm;
vm+1 = �ym+1 − 0.618(ym+1 − xm+1)�;

13: end if
14: end for
15: t∗n = vm; λ∗

i,g,n,t = λi,g,n,t|tn=vm
.

16: end for

is expressed as:

Bn,t = {β(kj)

1,n,t
, . . ., β(kj)

Gn,n,t
| ∀k, j ∈ Kg,n}. (21)

In GSS-HEU, the initial search range of GSS [x1, y1] is set as
[0, t̄n], which is partitioned into three sections by two points u1

and v1 with the golden ratio 0.618 in lines 2-4, where ��� is an
operation to round a value up to an integer. When a hovering time
is searched in GSS, e.g., tn = um or tn = vm, the corresponding
user-timeslot allocation is obtained by solving P2(n) in line 6.
In lines 9-13, we compare the objective energy and update the
search range. The search process terminates at |ym − xm| ≤
1. The selected hovering time t∗n is vm and the corresponding
scheduling scheme λ∗

i,g,n,t is λi,g,n,t|tn=vm
.

The complexity of GSS-HEU is O(
∑N

n=1 G
2
n ×

max{Kn, It̄n} × log(2t̄n)), which is much lower than that of
the optimal method. However, both the optimal and GSS-HEU
approaches may have limitations in fast decision-making. The
computational time for both algorithms grows exponentially
with the number of users since Gn = 2Kn − 1 [12]. In addition,
both algorithms need the estimated and complete channel
states for the whole task frames, i.e., from t = 1 to Tmax. This
may result in difficulties in channel estimation. Therefore, we
reconsider P1 from the perspective of DRL to enable the UAV
to make decisions intelligently, while the developed optimal and
heuristic algorithms are used to benchmark the performance of
learning-based solutions.
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V. ACTOR-CRITIC-BASED DRL ALGORITHM

A. Overview of Actor-Cirtic-Based DRL (AC-DRL)

In DRL, an agent learns to make decisions by exploring the
unknown environments and exploiting the received feedbacks.
At each learning step1 t, the agent observes the current state
st and takes an action at based on a policy. Then, a reward rt
will be fed back to the agent. The policy will be updated step
by step according to the feedback. Actor-critic is an emerging
reinforcement learning method that separates the agent into two
parts, an actor and a critic. The actor is responsible for taking
actions following a stochastic policy π(at|st), where π(�|�)
refers to a conditional probability density function. The critic
is used to evaluate the decisions via a Q-value, which is given
by:

Qπ(st,at) = Eat∼π(at|st)[Rt|st,at], (22)

where Eat∼π(at|st)[�|�] is a conditional expectation under the
policy π(at|st), and Rt is the cumulative discounted reward
with a discount factor γ, which can be expressed as:

Rt =
∞∑

t′=t

γt′−trt′ , γ ∈ [0, 1]. (23)

However, obtaining the explicit expressions of π(at|st) and
Qπ(st,at) is difficult. DRL uses DNNs as the parameterized ap-
proximators to provide estimations forπ(at|st) andQπ(st,at).
We denote θt and ωt as the parameter vectors for the actor and
critic, and π(at|st;θt) and Qθ(st,at;ωt) as the corresponding
parameterized functions2. The goal of the agent is to minimize
the loss function of the actor −J(θt):

−J(θt) = −E[Qθ(st,at;ωt)]. (24)

Based on the fundamental results of the policy gradient theo-
rem [15], the gradient of J(θt) can be calculated by:

∇θJ(θt) = E[∇θ log π(at|st;θt)Q
θ(st,at;ωt)]. (25)

The update rule of θt can be derived based on gradient descent:

θt+1 = θt − αa · (−∇θJ(θt)), (26)

where αa is the learning rate of the actor. For the critic, the
parameter vector ωt is updated based on temporal-difference
(TD) learning [15]. In TD learning, the loss function of the critic
C

Q
(ωt) is defined as the expectation of the square of TD error

δ
Q
(ωt), i.e., E[(δ

Q
(ωt))

2]. The TD error δ
Q
(ωt) refers to the

difference between the TD target and estimated Q-value, which
is given by:

δ
Q
(ωt) = rt + γQθ(st+1,at+1;ωt)−Qθ(st,at;ωt), (27)

where rt + γQθ(st+1,at+1;ωt) is the TD target. The objective
of the critic is to minimize the loss function C

Q
(ωt) and the

update rule of ωt can be derived by gradient descent:

ωt+1 = ωt − αc∇ωCQ
(ωt), (28)

1In this paper, a learning step is equivalent to a transmission frame.
2For simplicity, Qθ(st,at;ωt) = Eat∼π(at |st;θt)[Rt|st,at].

where αc is the learning rate for the critic.
However, approximating Qπ(st,at) brings about a large

variance for the gradient ∇θJ(θt), resulting in poor conver-
gence [40]. To solve the problem, a V-value is introduced:

V π(st) = Eat∼π(at|st)[Rt|st]. (29)

ApproximatingV π(st) can reduce the variance. With the param-
eterized V-value V θ(st;ωt), the TD error and the loss function
of the critic are expressed as:

δ
V
(ωt) = rt + γV θ(st+1;ωt)− V θ(st;ωt), (30)

and

C
V
(ωt) = E[(δ

V
(ωt))

2]. (31)

In addition, δ
V
(ωt) provides an unbiased estimation of Q-

value [40]. Thus, we can rewrite ∇θJ(θt) in Eq. (25) as:

∇θJ(θt) = E [∇θ log(π(at|st;θt))Q
π(st,at)]

= E [∇θ log(π(at|st;θt))δV
(ωt)] . (32)

B. Problem Reformulation

To apply AC-DRL, we reformulate P1 to an MDP problem,
in which the UAV acts as an agent. We define the states, actions,
and rewards as follows.

1) States: The system states st consist of the channel states
for all the clusters on the current frame, i.e., B1,t, . . .,BN,t,
the undelivered demands, and the currently served cluster on
frame t. The undelivered demands bn,t is the residual data to be
delivered for cluster n on frame t:

bn,t+1 = bn,t − dπn,t, ∀n ∈ N , t ∈ T , (33)

bn,0 =

Kn∑
k=1

qk,n, ∀n ∈ N , (34)

where dπn,t is the delivered data for clustern on frame t under the
policyπ(st|at). We denote ot ∈ N+ as an indicator to represent
which cluster the UAV is serving on frame t. When the users
requests in the current cluster are completed, the UAV will move
to the next cluster on the next frame, otherwise, staying at the
current cluster. For example, we assume that the UAV is hovering
above cluster n on frame t, i.e., ot = n. For the next frame, ot+1

is obtained by:

ot+1 =

{
n, bn,t > 0,
n+ 1, bn,t = 0.

(35)

When the UAV’s duration exceeds Tmax, the UAV will fly back
to the dock station. By assembling the above three parts, the
state st is defined as:

st = [B1,t , . . .,BN,t
, b1,t . . ., bN,t

, ot]. (36)

Note that the elements ofBn,t are modeled as FSMC. In addition,
based on Eq. (33) and Eq. (35), the next state of bn,t and ot only
depend on the current state and current policy. Therefore, the
transition of the state st conforms to MDP [15].
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Fig. 4. The actor-critic framework of AC-DSOS.

2) Actions: The action of the UAV is the user-timeslot as-
signment on frame t, which is given by:

at = [a1,t , . . ., aI,t
],

a
i,t

∈ {1, . . ., g, . . ., Gn}, ∀i ∈ I, t ∈ T , (37)

where ai,t = g means the g-th group is selected at the i-th
timeslot on the t-th frame. Note that the action space Gn can be
huge since it increases exponentially with the number of users.

3) Rewards: The reward functions are commonly related to
the objective of the problem. Conventionally, the reward function
of P1 can be designed by Eq. (38) and Eq. (39), referring to [41]
and [42]:

rt = 1/eπt , (38)

rt = −eπt , (39)

where eπt is the energy consumed on frame t under the policy
π(st|at). Since both the above reward functions monotonically
decrease with eπt , the UAV updates the policy towards reducing
energy consumption.

C. The AC-DSOS Algorithm

Conventional AC-DRL algorithms may not be able to deal
with constrained discrete problems. Firstly, the combinatorial
component ofP1 limits the conventional AC-DRL in addressing
huge discrete action spaces [43]. Secondly, the increased action
space reduces the exploration efficiency in the learning process
and degrades overall energy-saving performance. Thirdly, the
conventional AC-DRL algorithms cannot guarantee the solu-
tion’s feasibility in general. This means that a high-reward action
can fail to satisfy the constraints in P1. To overcome the above
difficulties and limitations, we propose an AC-DSOS algorithm
that is tailored for constrained problems with discrete action
representation. The basic actor-critic framework is employed in
order to take the advantages of the stochastic policy and TD
learning, where the stochastic policy can be quantified to tackle

Algorithm 2 AC-DSOS Algorithm
Inputs:The current state st.
Outputs:The current action at.

1: Initialize θ1 and ω1.
2: for each learning episode do
3: Observe the initial state s1.
4: for t = 1 : Tmax do
5: Remove the groups containing the

demand-satisfied users.
6: Predicted mean μ(st;θt) and variance χ(st;θt)

by the DNN of the actor.
7: Obtain action’s distribution π(at|st;θt) based on

Gaussian distribution.
8: Randomly choose ât following π(at|st;θt).
9: Map the elements âi,t to ai,t by Eq. (40).

10: Take the after-mapped action at.
11: Obtain reward rt by Eq. (47).
12: Collect the next state st+1.
13: Approximate the value functions V θ(st;ωt) and

V θ(st+1;ωt) by the DNN of the critic.
14: Calculate TD error δ

V
(ωt) by Eq. (30).

15: Form and store a new tuple {st, st+1, rt, δV
(ωt)}.

16: Obtain θt+1 and ωt+1 by gradient descent.
17: st = st+1; θt = θt+1; ωt = ωt+1.
18: end for
19: end for

the issue of huge discrete spaces and TD learning can improve
the learning efficiency.

We illustrate the actor-critic framework of AC-DSOS in Fig. 4,
where two DNNs work as the actor and critic, respectively.
The stochastic policy π(at|st) is usually modeled as Gaussian
distribution with a mean μ(st) and a variance χ(st) [44]. Given
the current state st, the actor does not predict π(at|st;θt)
directly but obtains approximations of the mean μ(st;θt) and
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the variance χ(st;θt). An action at can be selected based on
π(at|st;θt). Then, the agent receives a reward rt after taking
the action and collects the next state st+1. For the critic, two
V-values, V θ(st;ωt) and V θ(ss+1;ωt), are estimated by DNN
with the inputs st and st+1, respectively. The TD error δ

V
(ωt)

can be calculated by Eq. (30). A tuple {st, st+1, δV
(ωt), rt}

is stored in a memory at each step t. By applying a memory
replay mechanism, the data in the memory can be used for
training the DNNs. In each training step, the actor and critic are
updated by the gradient descent over a batch of training data.
The whole training process consists of multiple episodes, each
episode including Tmax steps. Based on the above framework,
the AC-DSOS algorithm is summarized in Alg. 2.

In AC-DSOS, two DNNs are employed to estimate the
stochastic policy and V -value with the input st. The com-
plexity of AC-DSOS is dominated by the DNNs’ forward-
propagation and back-propagation process in lines 6, 13, and
16 in Algorithm 2. The size of the input is N(K2

max + 1) + 1,
where Kmax = max{K1, . . .,KN}. We assume both DNNs
have X hidden layers and the x-th layer has lx nodes. In
the forward propagation (line 6 and line 13 in Alg. 2), the
complexity of the actor DNN and critic DNN are identical,
i.e.,O((N(K2

max + 1) + 1)l1 +
∑X−1

x=1 lxlx+1 + lX), referring
to [45]. In the back propagation, (line 16 in Alg. 2), the stochastic
gradient is obtained with the complexity O(M((N(K2

max +

1) + 1)l1 +
∑X−1

x=1 lxlx+1 + lX)) to update the neural param-
eters, where M is the batch size. Overall, the complexity
of AC-DSOS is O(2Tmax(M + 1)((N(K2

max + 1) + 1)l1 +∑X−1
x=1 lxlx+1 + lX)).
The novelties of the proposed AC-DSOS compared to the

conventional AC-DRL are summarized as follows.
1) Action Mapping to Tackle the Issue of Huge Discrete Ac-

tion Space: The conventional actor-critic is used for continuous
action space. We denote ât = [â1,t, . . ., âI,t] as the original
action selected by the stochastic policy, where the element âi,t
is fractional. However, as the decision variables are integers
in P1, the action space is discrete. To deal with this issue, we
adopt an action mapping method in AC-DSOS (line 9 in Alg. 2).
Firstly, we confine âi,t to a fixed range [−κ, κ] to avoid its value
being too large/small since the domain of Gaussian distribution
is [−∞,∞]. Then, a uniform quantization method is used to
map âi,t to the discrete action space {1, . . ., Gn} by:

ai,t = �κ+ âi,t
2κ/Gn

�, (40)

where 2κ/Gn is the quantization interval. With the mapping
operation, we can support a larger Gn by reducing the interval.

2) Action Space Restriction to Improve Solution Quality:
Although AC-DSOS can tackle the issue of discrete action space
by the above mapping operation, exploring in a huge space
remains difficult. To improve the exploration efficiency and the
quality of the solution, we design a method to restrict the action
space in the learning process (line 5 in Alg. 2). Compared to
the conventional DRL method, the difference mainly lies at
the action selection. At the beginning of each frame, we first
observe which users’ demands have been satisfied. Then, we
remove the corresponding candidate groups, i.e., the groups

containing the successfully served users. In conventional DRL,
the action space keeps fixed as Gn = 2Kn − 1. This may result
in two issues: Firstly, when the action space grows exponen-
tially large, DRL/RL needs more time to search for the optimal
action, thus decreases the exploration efficiency; Secondly, the
probability of selecting undesirable low-reward actions will be
increased. This is because the original actions âi,t are selected by
a stochastic policy such that a small difference in âi,t could lead
to different actions after mapping. For example, âi,t = 0.999
and âi,t = 1.001 map to ai,t = 1 and ai,t = 2, respectively. If
ai,t = 2 is a low-reward action, a small error in âi,t could cause
a large loss in reward value. As illustrated in Fig. 4, the size
of the action space in AC-DSOS, denoted by Gt (Gt ≤ Gn), is
not fixed but gradually reduces over 1, . . ., Tmax. Before taking
an action, we remove the redundant actions with lower rewards
from the action space, such that the action space can keep concise
and with controllable size.

Lemma 2: At each learning step, V π(st) ≤ V π′
(st), where

V π(st) and V π′
(st) are the V-values under the policy with the

fixed action space and the reduced action space, respectively.
Proof: We denote A and A′ as the fixed action space and

the reduced action space, respectively. Based on bellman equa-
tion [15], V π(st) can be expressed as:

V π(st) =
∑
at∈A

π(at|st) (r(st,at) + γV π(st+1))

=
∑
at∈A

π(at|st)r(st,at)

+ γ
∑

at+1∈A
π(at+1|st+1)r(st+1,at+1)

+ γ2
∑

at+2∈A
π(at+2|st+2)r(st+2,at+2) + · · ·

(41)

A′ excludes the redundant actions from A, that is, the actions
that bring the lowest rewards, thus,

r(st,at|at ∈ A′) > r(st,at|at ∈ A \ A′). (42)

For the probability distribution of the two policies, the following
equations hold.∑

at∈A
π(at|st) =

∑
at∈A

π′(at|st) = 1. (43)

π′(at|st) = 0, at ∈ A \ A,′ (44)

π(at|st) ≥ 0, at ∈ A \ A′. (45)

Based on Eq. (42)-(45), we can derive:∑
at∈A

π(at|st)r(st,at)

=
∑
at∈A′

π(at|st)r(st,at) +
∑

at∈A\A′

π(at|st)r(st,at)

<
∑
at∈A′

π′(at|st)r(st,at) +
∑

at∈A\A′

π′(at|st)r(st,at)

=
∑
at∈A

π′(at|st)r(st,at). (46)



YUAN et al.: ENERGY MINIMIZATION IN UAV-AIDED NETWORKS: ACTOR-CRITIC LEARNING FOR CONSTRAINED SCHEDULING OPTIMIZATION 5037

Substituting Eq. (46) into Eq. (41), the inequality V π(st) <
V π′

(st) can be obtained. Thus the conclusion. �
By recalling Eq. (29), the definition of V-value is

the average accumulative discounted reward, V π(st) =
Eat∼π(at|st)[Rt|st]. Based on Lemma 2, as V π(st) ≤ V π′

(st),
the policy with the reduced action space provides a higher
average Rt than that of the fixed action space. In addition,
the reduced action space helps the agent to avoid searching for
low-reward actions, thereby reducing the computational time in
exploration, which can be verified by simulation.

3) Re-Designed Reward Function to Deal With Feasibility
Issues: Without a carefully designed mechanism, the actions
made in conventional AC-DRL may easily violate constraints,
thus fail to guarantee the solution feasibility. InP1, the major dif-
ficulty comes from constraints (10b), whereas (10c)-(10h) can be
satisfied by properly defined actions. Under the commonly-used
reward designs, e.g., Eq. (38) or Eq. (39), constraint (10b) may
not be satisfied since the criterion of the decision making is to
minimize the objective energy without considering constraints.
To solve the problem, we re-design the reward function by
incorporating constraint (10b), which is given by:

rt =

∑N
n=1 d

π
n,t

(eπt )
ε

. (47)

The rationale is that the proposed reward function is the ratio
between the delivered data and the consumed energy on frame
t, where ε is a control parameter. When ε is small, the reward
enforces the UAV to deliver more data to meet users’ demands.
However, transmitting more data results in more energy con-
sumption. To control energy growth, we can increase ε such that
the agent will reduce the energy consumption to avoid the reward
losses. Thus, by tuning an appropriate ε, the decisions made by
AC-DSOS can achieve good energy-saving performance while
satisfying users’ demands.

For practical applications, AC-DSOS is designed to overcome
the limitations brought by constrained combinatorial problems,
e.g., guarantee feasibility and control exponentially-increased
action space. Compared to conventional optimization and DRL
approaches, AC-DSOS is expected to achieve a good trade-off
between solution quality and complexity. From a theoretical
perspective, AC-DSOS is of polynomial-time complexity, which
provides a theoretical basis for its further real-time applications.
The developed Lemma 2 proves that the reduced action space
can lead to higher accumulative reward, which justifies the de-
veloped approaches and grantees the performance theoretically.

VI. NUMERICAL RESULTS

In this section, we present numerical results to evaluate the
performance of the proposed AC-DSOS algorithm and compare
it with other schemes:
� Previous AC-DRL scheme: Deep deterministic policy gra-

dient (DDPG) [46];
� Previous AC-DRL scheme: Proximal policy optimization

(PPO) [47];
� High-complexity heuristic scheme: the proposed GSS-

HEU in Alg. 1;

TABLE II
PARAMETERS IN AC-DSOS

� High-complexity heuristic scheme: the alternative opti-
mization algorithm (ALT-HEU) [8];

� Low-complexity heuristic scheme: semi-orthogonal user
scheduling-based heuristic algorithm (SUS-HEU) [48];

� Optimal scheme: optimal algorithm (OPT).
DDPG and PPO provide performance benchmarks from the

AC-DRL perspective. Both of them are based on stochastic
policy gradient with fixed action space. The structure of the
DNNs, parameter settings, and reward function, i.e., Eq. (47),
for AC-DSOS, DDPG and PPO keep the same in order to
enable a fair comparison. The proposed GSS-HEU, ALT-HEU
in [8], SUS-HEU in [48], and OPT are the benchmark schemes
from an optimization perspective. We implement ATL-HEU by
applying its core idea of the block coordinate descent method to
alternatively optimize two blocks, i.e., hovering time and user
scheduling. SUS-HEU adopts a simple user-grouping strategy
with lower complexity than GSS-HEU and ALT-HEU.

In the simulation, we first evaluate the performance of energy
consumption and computational time. After that, we justify
the developed new reward function in guaranteeing solution
feasibility by comparing several well-known reward functions.
Furthermore, we evaluate the convergence performance of AC-
DSOS with different learning rates.

A. Parameter Settings

The UAV is equipped with L = 10 antennas serving N = 3
clusters. The ground users are randomly scattered in the service
area. Each cluster contains up to K = 9 users. The users’ de-
mands qk,n are randomly selected from {1, 2, 3, 4, 5} (Mbit). We
assume the bandwidthB = 10 MHz, noise powerσ2 = 0.1 mW,
hovering power PH = 10 W, and transmit power pk,g,n = 3
W, referring to [4]. Based on FSMC, we quantize β(kk)

g,n,t and
β(kj)

g,n,t into 9 levels, {0, 0.3, 0.6, 0.9, 1.2, 1.5, 1.8, 2.1, 2.4}. The
setting of the transfer probability matrix is similar in [49].
Two fully-connected DNNs are employed as the actor and the
critic. The adopted parameters for implementing AC-DSOS are
summarized in Table II.
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Fig. 5. (a) Total energy vs. K (Tmax = 160). (b) Average computational time vs. K (Tmax = 160). (c) Total energy vs. Tmax (K = 7). (d) Communication
and hovering energy vs. Tmax (K = 7).

B. Results and Analysis

1) Trade-Off Performance Between Energy and Computa-
tional Time: Firstly, by comparing with six benchmarking al-
gorithms in Fig. 5, the proposed AC-DSOS achieves a good
trade-off between energy minimization and computational time.
Note that forK > 7, the optimal energy results are absent due to
the high complexity and the corresponding long computational
time. From Fig. 5, AC-DSOS saves around 29.94% and 24.84%
energy compared to DDPG and PPO on average. Overall, AC-
DSOS provides a sub-optimal solution, with 19.17% gap to the
optimum. GSS-HEU achieves near optimality, and consumes
less 9.8% energy than AC-DSOS in average but with paying
much higher complexity and time, e.g., see Fig. 5(b). ALT-HEU
takes more computational time but the average energy-saving
performance is 4.28% inferior to AC-DSOS as the algorithm is
sensitive to the initial point. SUS-HEU consumes the highest
energy since it schedules users based on channel conditions
without considering energy consumption. It is also shown that
the total objective energy follows a roughly linear increase in
all the algorithms. The gaps between the optimal algorithm and
other algorithms become larger as K increases. When K grows
from 5 to 7, the gap to the optimum increases from 47.7% to

65.1% for SUS-HEU, and from 31% to 44.5% for DDPG. In AC-
DSOS, since the delivery-completed users are deleted during the
learning process, the size of the action space will continuously
decrease. This improves the searching efficiency and quality, and
reduces the growth rate of the gap as K increases, from 11.1%
(K = 5) to 16.7% (K = 7).

Fig. 5(b) compares the computational time with respect to
K. The computational time is accounted as the elapsed time of
producing an optimized solution per frame. In GSS-HEU, ALT-
HEU and OPT, the computational time grows exponentially
with K, whereas the proposed AC-DSOS along with DDPG,
PPO and SUS-HEU maintain at the millisecond magnitude and
insensitive to K. In average, AC-DSOS saves 99.23%, 92.86%,
and 89.98% computational time compared to OPT, GSS-HEU,
and ALT-HEU, respectively. This is due to the fact that DRL
can provide online decisions based on the current environment
state instead of solving the optimization problem directly. PPO
consumes 14.55% more computational time than AC-DSOS
since calculating the gradient for a complex loss function con-
sumes extra time. The computational time of AC-DSOS is
slightly lower than DDPG and SUS-HEU. However, by recalling
Fig. 5(a), AC-DSOS saves 24.84%, 29.94%, and 52.51% energy
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Fig. 6. (a) Feasibility vs. learning episode. (b) Energy vs. learning episode. (c) Rewards vs. learning episode. (d) Rewards in AC-DSOS with fixed and reduced
action space.

compared with PPO, DDPG, and SUS-HEU, respectively. In ad-
dition, we can observe that the computational time of GSS-HEU
and OPT exceeds 1 s when K = 9 and K = 7, respectively,
which is impractical in the scenarios with strict delay require-
ments. For AC-DSOS, the result remains at the millisecond-
level, even if the number of users increases from 5 to 9.

Fig. 5(c) demonstrates the total energy consumption with
respect to Tmax, and Fig. 5(d) illustrates the communication en-
ergy and hovering energy separately. From Fig. 5(c), AC-DSOS
outperforms DDPG and PPO by saving 21.37% and 18.45%
total energy on average. The average gap between GSS-HEU
and the optimal solution is 8.91% smaller than that of AC-DSOS,
but, from Fig. 5(b), GSS-HEU consumes nearly 126 times
higher calculation time than AC-DSOS at Tmax = 160. The
energy-saving performance of SUS-HEU is worse than other
algorithms and its gap to the optimum reaches 59.44%. Fig. 5(c)
also shows that, as Tmax increases, the objective energy rapidly
decreases first then grows steadily. This can be explained via
Fig. 5(d). The objective energy consists of the communication
energy and hovering energy. From Fig. 5(d), the communication
energy drops rapidly when Tmax < 140, and becomes stable
after Tmax > 180. Whereas, the hovering energy increases lin-
early with Tmax for all the algorithms.

2) Feasibility and Convergence Performance: Fig. 6(a) ver-
ifies the capability of the proposed reward function in dealing
with feasibility issues, where a feasible solution is obtained only

if the ratio of delivered demand over total demand in y-axis
achieves 100%. From Fig. 6(a), the reward functions used in Eq.
(38) and Eq. (39) fail to guarantee the feasibility of the solution.
For the re-designed reward, we evaluate the performance by
setting ε to 1, 1.2, and 1.5. A small ε means that transmitting
more data can bring more rewards gain than saving energy.
When ε drops below 1.2, the feasibility issue can be solved.
Fig. 6(b) shows the objective energy with different ε. It can
be found that a smaller ε leads to more energy consumption.
Thus, an appropriate parameter ε lies at 1.2, enabling the after-
learned solution to guarantee the demands while consuming less
energy.

Fig. 6(c) demonstrates the convergence of AC-DSOS with
different actor’s learning rate αa. The x-axis is the learning
episode and the y-axis is the received accumulative reward Rm

in the m-th episode. We define that the AC-DSOS algorithm
converges if there exist R̄ and a sufficiently large integer mcon,
such that |Rm − R̄| < ε for all m > mcon, where ε is a positive
tolerance. From 6, we can observe that when the learning rate
αa = 0.001 and αa = 0.003, the curves converge around 80
episodes. As αa increases to αa = 0.005, the curve fluctuates
due to the large update step. Taking the actor as an example,
the learning rate for the critic αc has the same tendency. In
conclusion, the learning rates of the actor and critic are sensitive
to the convergence, and need to be properly selected, e.g., 0.003
for the actor.
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Fig. 7. Energy comparison in a scenario with dynamic user arrival and depar-
ture.

Fig. 6(d) compares the policy with reduced action space and
fixed action space in convergence speed and reward evolution.
AC-DSOS with reduced action space converges around 60
episodes, against 250 episodes in AC-DSOS with fixed action
space, and achieves 8.33% higher reward value than the other in
average. In addition, we can observe that, with the fixed-large
action space, the agent is likely to get stuck in local points,
which can result in more time in exploration to escape from
the points, referring to the red curve’s step-like effect at the
100-200 episodes. Overall, the policy with the reduced action
space is effective in improving learning efficiency and reward
quality.

3) Performance Comparison in Dynamic Environments: In
Fig. 7, we evaluate the capability of AC-DSOS in adapting
network dynamics. Unlike previous static scenarios, we consider
a dynamic scenario, where users request diverse amounts of data,
and their arrival/departure in each cluster are varying over time
by following the Poisson distribution. Starting from the 200-th
episode, we assume that the entry/leave event happens every 100
episodes. For example, at the 200-th episode, some new users
join the clusters and request date services. As a consequence,
more energy is consumed (see the optimal energy consumption
in OPT). In DDPG and AC-DSOS, the agents need time to learn
and train to adapt to the new users due to the lack of their
prior/historical knowledge. Both algorithms, therefore, undergo
an adjusting period to converge to adapt to the environment
change.

From the results, AC-DSOS demonstrates two advantages
compared to DDPG. Firstly, AC-DSOS converges faster than
DDPG. AC-DSOS is able to converge within 60 episodes such
that it is more timely and adaptive to handle the periodically-
changed network. Such improved computational efficiency
and convergence are benefited by the developed action-space-
reduction and policy-quantification approaches. In contrast,
DDPG leads to a worse case. That is, the algorithm has not been
converged to react to the first environment change but the second
has arrived. As a result, DDPG is not able to converge. Secondly,
compared to the performance in static cases, e.g., Fig. 5(a), the
average gap in energy consumption between AC-DSOS and OPT

remains stable, within 20%, whereas the performance of DDPG
fluctuates dramatically.

VII. CONCLUSION

In this paper, we have investigated an energy minimization
problem for UAV-aided communication systems from the per-
spective of AC-DRL. The formulated problem is combinatorial
and non-convex. We provided an optimal method and proposed
a GSS-based heuristic algorithm to solve the problem and serve
as benchmarks. To make the solutions adaptive to online op-
erations, we propose an AC-DSOS algorithm. Different from
previous AC-DRL methods, the proposed AC-DSOS is able to
deal with the huge discrete action space and guarantee feasi-
bility. Numerical results have shown that AC-DSOS provides
a good trade-off between energy efficiency and computational
efficiency. Furthermore, the re-designed reward function is ef-
fective to deal with the feasibility issue.

As a future extension, the proposed AC-DSOS can be further
extended to adapt multi-UAV/multi-agent scenarios in two pos-
sible ways, i.e., distributed AC-DSOS and hybrid centralized-
distributed AC-DSOS. For the former, a decentralized AC-
DSOS is applied to each UAV/agent individually in a distributed
multi-UAV system. Each agent learns its own value function
network and strategy network without considering the mutual
influence of other agents. For the latter, AC-DSOS is extended
to enable centralized training and decentralized execution, where
AC-DSOS is to use the global Q-value for each agent to update
the local policy.
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