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Abstract—Both Device-to-device (D2D) and full-duplex (FD)
have been widely recognized as spectrum efficient techniques in
the fifth-generation (5G) networks. By combining them, the FD-
D2D aided underlaying networks (FN) has exhibited considerable
technical advantages in terms of both spectral efficiency (SE) and
energy efficiency (EE). Considering the fact that the performance
of FN may be severely affected by users’ workload, the workload-
driven FN (WFN) must be investigated. In this paper, a deep
learning based transmit power allocation (TPA) method is pro-
posed for automatically determining the optimal transmit powers
of co-spectrum cellular users (CUs) and D2D users (DUs) relying
on a deep neural network. Unlike the conventional transmit-power-
control schemes, in which complex optimization problems must
be addressed in an iterative manner (it usually requires a relative
longer computational time), the proposed scheme enables each DU
to determine its transmit power with a relatively shorter time.
Furthermore, an improved iterative subspace-pursuit algorithm, as
the performance benchmark, is formulated for WFN. In addition,
to reflect the influence imposed by the workload, the penalty-based
statistical sum-date-rate (PSS) can be employed as the performance
metric of WFN. Numerical results show that the proposed scheme is
capable of achieving a PSS comparable with that of the traditional
iterative-based algorithms even under heavy-workload scenarios,
but the computational complexity of the former can be significantly
reduced.

Index Terms—Deep neuron network, device-to-device, full-
duplex, underlaying cellular networks, activated probability.

I. INTRODUCTION

W ITH the rapid development as well as the increasing
commercialization progress of the fifth-generation (5G)

communication technology, new services (such as video on
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demand) are emerging quickly, resulting in an explosive increase
in network’s workload. This trend poses serious challenges to the
utilization of network resources and the improvement of network
throughput [1]–[5]. Furthermore, under the conventional base
station (BS)-centric cellular network architecture, the BS may
often operate at an overloaded state (especially in a rush hour),
thus resulting in a severe load imbalance over the network [6].

The Device-to-device (D2D) technology, which allows the
close-by devices to communicate directly without relying on the
involvement of BSs, has been regarded as one of the critical tech-
niques for the 5G systems to provide an unprecedented quality
of service (QoS) to the customers [7], [8]. Several advantages,
including a significantly improved throughput [9], an increased
spectral efficiency [10], [11], an extended radio coverage [12],
a reduced power consumption in mobile devices [13], [14],
and an efficaciously relieved traffic budget at the BS [15], etc,
have been exhibited in D2D technology. In addition to D2D
technology, the full-duplex (FD) is also regarded as one of the
core technologies of 5G systems. Since the FD devices are
allowed to concurrently transmit and receive signal over a single
spectrum, the spectral efficiency (SE) of the cellular networks
(CN) can be doubled as compared to the traditional half-duplex
(HD) technology [16]–[18]. On this basis, if we can combine
both FD and D2D (that is, to form a new technology called
FD-D2D) and give full play to their advantages, the SE of CN
will inevitably be further improved.

Although FD-D2D technique is capable of tremendously
improving the SE, it also imposes extra interference on CN
due to the increased density of users, which may share the
same set of radio resources in the FD-D2D aided underlaying
networks (FN). Therefore, it is crucial to perform transmit power
allocation (TPA) in FD-D2D devices. Once an improper TPA is
implemented, it is very likely to cause an interference strong
enough to run out of control, resulting in a fall back of the
performance of CN [19], [20].

A. Motivation

Although TPA for D2D-aided underlaying networks (DN) has
received a wide attention by both academia and industry, its
implementation in FN is still to be investigated. In particular,
the following challenges must be addressed:

1) The impact of workload: Whether to activate a user or
not depends on the user’s workload. When the traffic load
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of users becomes heavier, the wireless spectrum must be
shared among users in order to improve its utilization.
However, this kind of spectrum sharing will inevitably lead
to an excessive traffic load on an individual spectrum. The
high workload will definitely cause a strong interference
among co-spectrum users, (very likely) causing a trans-
mission failure. Therefore, FN faces enormous challenges
in terms of interference suppression/mitigation [21].

2) The impact of severe self-interference (SI): The SI be-
tween the transmit and receive antennas of each FD device
may significantly drown out the signal of interest that was
transmitted by a remote transmitter [22]. Although most of
the SI power can be sufficiently suppressed by employing
an appropriate SI cancellation (SIC) technique (please
refer to [16] for details), the residual SI (RSI) power may
still be high enough to erode the FD gains.

3) The impact of complicated mutual-interference (MI): On
the one hand, in scenarios that DTs reuse the spectrum
allocated to the traditional cellular users (CUs), the latter’s
performance will be seriously degraded. On the other
hand, interference between DUs will also lead to a de-
crease in DU performance. In traditional HD-mode, only
one pair of DUs can communicate at a time (other DUs
remain silent), which can minimize interference between
DUs. Unlike HD-mode, more serious MI happens among
FD-mode DUs. Therefore, FD-D2D must cope with more
complicated interference environments.

Generally speaking, TPA plays a vital role in suppressing
interference between users in FN. If an improper TPA tech-
nology is employed, it will cause a serious erosion in FD-D2D
performance. However, several important challenges, such as the
impact of workload, the severe SI as well as the MI of FD-mode
DUs, etc, must be solved when designing TPA algorithms for
FN.

B. The Existing Work

Given that TPA plays a vital role in D2D communication [23],
it has received a wide attention in both academia and indus-
try [24], [25]. In the existed researches, there are mainly two
categories for TPA, i.e., the iterative and deep learning algo-
rithms.

1) The Iterative Algorithms: Most of the existing TPA stud-
ies were focused on solving the cost function, for which a
sub-optimal solution relying on iterative algorithms is usually
adopted for optimizing the transmission power, whenever the op-
timal solution in a closed-form cannot be pushed out. It has been
demonstrated that a satisfactory performance can be obtained
in most of iterative schemes. However, sufficient iterations are
required in these algorithms, causing a relatively higher com-
putational cost. Therefore, the iterative schemes may prevent
the real-time operations that are essential in real systems. For
instance, the iterative water-filling algorithm (IWA) proposed
in [26] was based on the concept of competitive optimality,
which involves singular value decomposition (SVD) at each
iteration that requires a high computational cost. Furthermore,
in [27], the interference pricing algorithms (IPA) were proposed,

in which the IPA iterations also require the SVD process and
consume excessive computational resources. Moreover, semi-
definite relaxation based scheme [28] lifts the original vector-
based optimization problems into matrix-based problems, fol-
lowed by solving one or more semi-definite programs that re-
quire high computational complexities. In particular, a typical
subspace pursuit algorithm named weighted minimum mean
squared error (WMMSE) was proposed in [29], which requires
complex operations such as matrix inversion and bisection in
each iteration. In addition, in some recent proposed iterative
algorithms [30]–[33], the computational time still does not meet
the real-time demand of practical systems.

Based on the existed studies, the computationally demanding
nature of these algorithms imposes a big challenge on real-time
implementation, because algorithms for a lot of applications
(such as wireless transceiver design) are typically executed in a
time frame of milliseconds. As the number of users increases,
the scenario becomes severer, because more iterations are re-
quired [25]. To address the this issue, deep learning based power
control scheme was proposed and attracted a wide attention.

2) Deep Learning Based Algorithms: Deep learning technol-
ogy, which is based on deep neural network (DNN), has gained
in popularity over the last decade due to its superior performance
over the conventional techniques [34]–[40]. It is possible for us
to solve complex non-linear problems in an efficient manner by
using a back-propagation (BP) algorithm [41], in which a trained
DNN model can be employed for reducing the computational
time required in practical systems [37].

By employing deep learning technology, the performance
of power control can be substantially improved. For instance,
in [41], [42], a dense net-based transmit power control was
proposed, in which the output of WMMSE based transmit power
control strategy was regenerated for relieving the computational
complexity of the WMMSE-based schemes. However, given that
the main goal in this case was the regeneration of a WMMSE-
based scheme, the DNN-based scheme cannot outperform the
WMMSE-based scheme in terms of the achievable capacity.
In [43], the weighted sum rate (WSR) of DUs can be maximized
by employing DNN. Furthermore, in [44], the deep learning
based ensemble power control network was proposed, in which
several DNN models were combined together to achieve better
performance. However, More computational resources than the
basic deep learning algorithms are required in [44]. In addi-
tion, unlike the existing algorithms, a distributed power alloca-
tion method employing deep learning technique was proposed
for D2D-aided underlaying long-term evolution (LTE) sys-
tems [45], which relied on the iterative-based prediction process.

Despite all this, there are still many deficiencies in the ex-
iting deep learning based-power-control schemes. Firstly, in
the existing heterogeneous systems comprising both DUs and
CUs, the interference and channel gain among users were not
properly analyzed. Secondly, without employing FD technology,
the impact of RSI power on the system’s performance was
definitely ignored. Finally and most importantly, the impact of
workload on the network’s performance was not considered. In
fact, the intensity of workload determines how frequently the
user can be activated.
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In this paper, a new transmit-power-control scheme employ-
ing deep learning technique is proposed for the workload-driven
FN (WFN). The innovations and contributions of this paper are
summarized as follows.

C. The Proposed Technological Approaches

To improve the performance gain (i.e., sum data rate) of the
WFN, an appropriate power allocation technique may constitute
a major concern, because a poorly controlled transmit power
in CUs/DUs will definitely generate a strong interference that
severely erodes the SE of the system. When we design power
control algorithms, the following three aspects must be given
special attention.

1) Excessively strong transmit power in a device will impose
a strong interference on its co-spectrum devices, which
consequently induces a performance loss in the WFN.

2) Generally speaking, a heavier workload on a licensed
spectrum (it may be shared by several CUs and DUs) will
lead to a stronger interference among these co-spectrum
users. On this basis, the designed algorithm will inevitably
obtain a higher performance gain by considering the state
of each user (i.e., active or not).

3) When designing power control algorithms, special atten-
tion must be paid to the SI induced by activated FD-DUs.
Basically, In the case of navigation, the higher the trans-
mission power, the severer the RSI.

In summary, the transmit power of each user in the WFN must
be well controlled according to both its current workload and the
interference imposed on it.

D. Main Contributions

In this paper, a deep learning based TPA scheme is proposed,
which is constructed following the deep neural network (DNN)
by taking the impact of users’ workload into account. Without
loss of generality, a set of users (i.e., comprisingNc CUs andNd

D2D pairs) are allowed to share the same spectrum according to
a non-homogeneous Poisson Point Processes (PPP) model. The
main contributions of this paper are summarized in the following
aspects:

1) A new system model is proposed for WFN by introducing
the concept “penalty,” which reflects the distortion caused
by unsuccessful data transmissions. More importantly, we
have fully considered the impact of users’ workload on
their activated probability (AP) in the proposed model.

2) According to the theory of subspace-pursuit (SP)
based WMMSE algorithm, a workload-driven improved-
iterative subspace-pursuit algorithm (WIS), which can be
used as the performance benchmark, is proposed.

3) A deep TPA strategy for WFN, relying on DNN, is elab-
orated on in the proposed model, in which the transmit
power for maximizing the penalty-based statistical sum-
data-rate (PSS) of the WFN is derived by implementing
the proposed deep learning scheme. Numerical results
show that the performance of the proposed scheme is very
closed to WIS, significantly outperforming the existing
TPA schemes such as the conventional equal transmit

TABLE I
LIST OF SYMBOLS

power (ETP) scheme and randomly transmit power (RTP)
scheme in terms of the PSS.

The remainder of this paper is organized as follows. In
Section II, the system model for the proposed WFN is described.
The received SINRs for both CUs and DUs are analyzed in
Section III, respectively. After that, the PSS of the WFN is
evaluated in Section IV. Furthermore, the formulation of WIS is
described in Section V, followed by giving out the optimization
problem as well as detailed explanation on the proposed DNN-
based TPA scheme in Section VI. In addition, numerical results
are provided in Section VII. Finally, Section VIII concludes this
paper.

Notation: P represents the probability of an event, and P de-
notes the transmit or receive power of a user. Meanwhile, R and
I stand for the data rate and the MI, respectively. Furthermore, E
is used to denote the expectation operation. In addition, the bold
symbols are used to denote the matrix and/or vectors. Finally,
�•� represents a round-down function. A list of symbols that
employed in this paper is given by Table I.

II. SYSTEM MODEL

Following the concept of AP, which is used for characterizing
the activation probability of a user, the WFN can be modelled.
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A. Activated Probability

To analysis the performance of WFN under variant traffic
densities, some hypotheses should be made firstly. Following the
Poisson distribution, the probability that a user (either a CU or
a DU) generates τ consecutive packets (i.e., source data) during
a given period can be expressed:

P [τ ] =
Gτe−G

τ !
(1)

where G denotes the average traffic density. Therefore, the
probability of “no traffic is generated” can be denoted by e−G.
In practice, if a user has data to transmission, it should not
switch to “inactivation” state until the pending data is completely
transmitted. In this sense, AP can be used to characterize a
user’s workload. The probabilities that a CU (the u-th CU, for
example) and a DU (the x-th DU, for example) are activated can
thus be expressed as Pcu = 1 − e−Gcu and Pdx

= 1 − e−Gdx ,
respectively, where Gcu and Gdx

denote the traffic densities of
the u-th CU and the x-th DU, respectively.

B. System Model for FD-D2D-Aided Underlaying CN

According to the existing standards such as ProSe [46], the
pre-allocated uplink licensed spectrum for the CNs is also al-
lowed to be reused by the D2D links in the FN. Therefore,
interference happens in the uplink, which will be focused by
this paper.

In this reuse-spectrum scenario, devices such as the BSs, Nc

CUs and Nd D2D pairs are assumed to be randomly distributed
within a given area according to non-homogeneous PPP models
Φb, Φc and Φd, respectively, enabling a maximum CU-to-BS
distance of R. Meanwhile, the maximum distance between D2D
pairs is assumed to beRd. Without loss of generality, the network
is assumed to be capable of offering services to a group of users
(comprising both CUs and DUs) simultaneously. In particular,
if a given DU is marked as dx ∈ Φd, its peer would be marked
as dm(x), in which case both m[m(x)] = x and max(‖ dx −
dm(x) ‖) = Rd can be satisfied.

Denote by Pi2j the signal power received at user j that was
transmitted by user i, we get

Pi2j = Pigi2jD
−α
i2j = Pihi2j (2)

where Pi represents the transmit power of user i, while gi2j �
exp(1) denotes the (exponentially distributed) channel fading
coefficient between the transmitter i and the receiver j. Further-
more, Di2j stands for the distance between transmitter i and
receiver j. In addition, hij instead of gi2jD−α

i2j is used to denote
the channel gain.

In particular, the average power of thermal noise is assumed
to be σ2, and the average RSI power of the x-th DU can be given
by IRSI

dx
= Pdx

/μ, where μ denotes the SIC coefficient.1 Fur-
thermore, α is used to express the standard path-loss exponent
subjecting to a constraint α > 2. In addition, each wireless link

1We assume that the SI has been suppressed by using an appropriate SIC tech-
nique, in which a higher SIC coefficient corresponds to a higher SI cancellation
capability.

Fig. 1. The transmission scenarios.

is assumed to be independent and identically distributed (i.i.d.)
random variable that follows the above-mentioned model.

C. Penalty Based Data Rate of a Typical Link

If the received SINR of a typical link reaches its pre-
determined threshold ε, we consider this transmission as suc-
cessful, which reflects the quality of this link in the current
transmission. Otherwise, if an unsuccessful transmission occurs,
the transmission shall not stop retransmission until the current
data is received successfully by the receiver.

To express the link gain or distortion caused by Successful-
or-Unsuccessful-Transmit (SUT), a penalty coefficient (PC)
is introduced in the received SINR expression to represent
the performance loss caused by the unsuccessful transmission.
Therefore, the received SINR of a randomly chosen user (either
a CU or a DU, marked as ◦) with PC can be represented:

SINR†
◦ =

{
SINR◦ for SINR◦ ≥ ε or SINR◦ = 0

− �◦ for 0 < SINR◦ < ε
(3)

where the positive real number �◦ denotes the proposed PC of
this user. Based on the above-equation, the penalty-based data-
rate (PD) of a user (marked as ◦) can be derived:

R†
◦ = log2(1 + SINR†

◦) (4)

Basically, whenever an unsuccessful transmit occurs, the re-
transmission operation inevitably squeezing the spectrum re-
sources that the subsequent data should obtain, resulting in a
decrease in sum data rate. In other words, the sum data rate of
WFN depends not only on the received SINR of the link, but also
on the probability of successful transmission of an individual
packet. In the following, we will use PD to reflect the severity
of performance degradation caused by each user’s unsuccessful
transmission.

III. RECEIVED SINR AT CELLULAR/D2D LINKS IN

WORKLOAD DRIVEN NETWORKS

Within each time slot, the D2D links (DLs) would have
an opportunity to be activated (as requested), provided that a
tolerable performance must be guaranteed at the co-spectrum
cellular links (CLs). Basically, we have two choices2 for the
activation of each data-interaction link, as shown in Fig. 1:

2We assume that the CUs have the same amount of traffic as the D2D pairs.
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1) The co-spectrum CLs and DLs are allowed to be activated
simultaneously in a given time slot;

2) The co-spectrum CLs and DLs are not allowed to be
activated simultaneously in any time slot. Whenever the
CLs are activated, their co-spectrum DLs must remain
silence, and vice versa. However, if the users applying to
be activated fall into the same category (either all-CLs or
all-DLs), they are definitely allowed to be activated simul-
taneously, because the simultaneous activation will cause
no cross-interference between CLs and their co-spectrum
DLs in this case.

In practical scenarios, considering that all users are randomly
distributed within the cell by following Poisson distribution in
their traffic density (as shown in (1)), each user is allowed to
be independently activated according to the respective service-
arrival time.

A. Co-Spectrum CLs and DLs are Allowed to be Activated
Simultaneously

For a given activated CL or DL, it suffers an interference
from the other DLs/CLs. The received SINR (i.e., associated
with signal received by the BS (from the u-th CU) or the x-th
DU) can be expressed:

SINR�
cu

=
Pcu2b

Icc + Idc + σ2
(5)

and

SINR�
dx

=
Pdm(x)2dx

Icd + Idd + σ2 + IRSI
dx

(6)

respectively, where the expected inter-CU-interference can be
given by Icc =

∑
cv∈Φc/cu

PcvPcv2b, with cu and cv denoting
the u-th and v-th CU within Φc, respectively. Furthermore, Pcv

is used to denote the AP of the v-th CU that embodies the
amount of this CU’s workload. We must emphasize that the
inter-CU-interference Icc, a statistical variable, can be used to
reflect the influence intensity that caused by the workload of
each user. In other words, the heavier the workload, the higher
the AP of a CU, implying that the high-AP CU can contribute
more to the inter-CU-interference. Following this statistical in-
terference expression, the interference imposed on the CUs by its
co-spectrum DUs can be denoted by Idc =

∑
dy∈Φd

Pdy
Pdy2b,

where Pdy
represents the AP of the y-th DU. Furthermore,

we use Icd =
∑

cv∈Φc
PcvPcv2d to represent the interference

imposed on the DUs by their co-spectrum CUs. In addition,
Idd =

∑
dy∈Φd/{dx,dm(x)} Pdy

Pdy2dx
is used to represent the

interference among the activating DUs. Finally, the average RSI
power of the x-th DU can be expressed as IRSI

dx
= Pdx

/μ. In the
following, we will use the SIC coefficient μ instead of IRSI

i to
denote the RSI power of i-th user.

B. Co-Spectrum CLs and DLs are Not Allowed to be Activated
Simultaneously

In this case, there exists no cross-interference between CUs
and DUs. In the sequel, the received SINR conceived by the BS

(from the u-th CU) or the x-th DU can be expressed:

SINR�
cu

=
Pcu2b

Icc + σ2
(7)

and

SINR�
dx

=
Pdm(x)2dx

Idd + σ2 + IRSI
dx

(8)

respectively.

IV. PENALTY BASED SUM DATE RATE OF D2D-AIDED

UNDERLAYING NETWORK

A. Workload Driven Received Statistical SINR

To simplify the system model, by combining (5) - (8), the
received SINR of the i-th user can be rewritten as

SINRi =
Pm(i)hm(i)2i∑

j 	=i,m(i) PjPjhj2i + σ2 + θiPiPi

μ

(9)

If user i is a CU, both i = m(i) and hm(i)2i = hi2b can be
satisfied; otherwise, {i,m(i)} denotes a typical D2D pair and
satisfies m[m(i)] = i. Furthermore, θi is a validation coefficient
of i-th user, which is set to be 0 for CUs and 1 for DUs. In
addition, P◦ denotes the AP of user ◦. Obviously, (9) covers both
scenarios shown in Section III. Similar to (3), the penalty-based
received statistical SINR of user i (denoted as SINR†

i) can be
derived.

B. Penalty Based Statistical Sum Date Rate of WFN

Based on the received SINR at CLs/DLs as well as the PD of
a user shown in (4), the penalty-based statistical sum-data-rate
(PSS) in the WFN can be given:

R† = W
∑
i

PiR†
i = W

∑
i

Pilog2(1 + SINR†
i) (10)

where Pi denotes the AP of the i-th user, and W represents the
bandwidth. It should be emphasized that we have introduced Pi

as the weighted coefficient of the i-th user’s PSS to reflect the
influence imposed on the statistical performance of the whole
networks by the workload. By combining (3) and (9) - (10),
we can explain the role of the PC: when the received SINR at
a CL (or a DL) reaches the threshold ε, the current transmis-
sion contributes positively to the sum data rate; otherwise, a
retransmission on an unsuccessfully transmitted packet will be
triggered, causing a negative contribution to the sum data rate.

Obviously, we can use the indicator PSS to reflect the impact
of workload on the performance of WFN: on the one hand, a user
with a heavier workload can contribute more to the sum data rate;
on the other hand, a user with a heavier workload will definitely
impose a stronger interference on its neighbors (particularly
on its co-spectrum users), thus eroding the performance of the
WFN.

C. Optimization Function for Power Control

In this part, our goal is to maximum the PSS of each user
by optimizing the transmit power under consideration of its
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workload. In order to achieve the above objectives, the following
optimization problem must be solved:

max
{P1···PN}

W
∑

i∈{Φc,Φd}
Pilog2(1 + SINR†

i)

s.t. 0 ≤ Pi ≤ Pi−max

(11)

where Pi−max denotes the maximum transmit power of the i-th
user.

It should be emphasized that the optimal problem shown in
(11) is an NP-hard non-convex optimization, which is hard to
address, if not impossible [41]. To address this issue, both the
sub-optimal iterative algorithm and the DNN model are often
adopted for solving the non-convex optimization problems.

V. IMPROVED SUBSPACE PURSUIT FOR WFN

To obtain a good solution to the optimization problem shown
in (11), a series of iterative algorithms such as SP are often devel-
oped. The SP algorithms can be expressed as st+1 = f t(st;x),
where both t and (t+ 1) denote the iterative counters, x is the
problem data, and f t represents a kind of mapping functions to
transform the data x and the previous iterative result st to the
new iterative result st+1.

A typical SP algorithm is WMMSE, which converts the sum
rate maximization problem into a higher dimensional space for
solving the well-know MMSE-SINR equality [42]. However, it
is usually employed in the HD-D2D network by ignoring the
impact of the SI. In the following, we introduce an improved
WMMSE-based iterative SP algorithm for the WFN.

Similar to [42], the optimal problem shown in (11) is equiva-
lent to the following workload driven mean squared error (MSE)
minimization problem:

min
{wi,ui,Pi}

N∑
i=1

Pi (wiei − log2(wi))

s.t. 0 ≤ Pi ≤ Pi−max

(12)

where the optimization variables ei andwi are both real numbers.
Furthermore, the variable ei can be defined:

ei =
(

1 − ui

√
Pm(i)hm(i)2i

)2
+ u2

i

(
σ2 +

θPiPi

μ

)

+
∑

j 	=i,m(i)

(ui

√
PjPjhj2i)

2
(13)

The proof of the equivalence between (11) and (12) is elaborated
on in Appendix A. Based on the iterative equation-solving
process, the sub-optimal values of both ui andwi can be derived.
After that, the sub-optimal transmit power of the i-th user can
be formulated:

P sub-opt
i =

(
Pium(i)

√
hm(i)2i

Pm(i)wiu2
i
θi
μ +

∑
j 	=i,m(i) Pm(j)wju2

jPihi2j

)2

(14)
The proof of (14) is shown in Appendix B. Clearly, while solving
the optimization problem (12), the block-coordinate descent
method should be employed, in which one set of variables are

TABLE II
EQUATION-SOLVING PROCESS OF WIS

optimized in each time by keeping the rest to be fixed [47].
Furthermore, according to (14), it should be noticed that the
optimization of transmit power is determined by both ui and wi,
which can be trended to the globally optimal solution by using an
iterative process. Therefore, the detailed equation-solving pro-
cess of this workload-driven improved-iterative SP-algorithm
(WIS) is shown in Table II.

VI. DEEP LEARNING BASED TRANSMIT POWER ALLOCATION

UNDER SINR CONSTRAINTS

In this section, we propose a new TPA scheme based on
DNN structure by giving out a detailed explanation on the
structure of the DNN model that can be employed for solving
the optimization problem formulated in (11). Furthermore, the
detailed procedure of the proposed scheme is also presented.

A. Structure of DNN

In the proposed scheme, the optimized transmit power that
formulated in (11) can be attained relying on the DNN model,
as illustrated in Fig. 2. Basically, the DNN model comprises
three layers, i.e., the input layer, the hidden layer and the output
layer. In the following, we will introduce these layers one by
one.

1) The Input Layer: The input layer is formed by the channel
gain matrix H , which can be further sub-divided into four parts:
� The channel gain vector between CUs and BS, which has
Nc elements;

� The channel gain vector between DUs and BS, which
contains 2Nd elements;

� The channel gain matrix between CUs and DUs, which
comprises 2NcNd elements;
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Fig. 2. The DNN structure for optimizing the power allocation.

� The channel gain matrix among DUs, whose elements
satisfy hi2j = hj2i for i, j ∈ [1, 2Nd]. There are totally
4N 2

d elements in this matrix.
By normalizing the channel gain:

ĥi2j =
log(hi2j)− E [log(hi2j)]√

E
[
(log(hi2j)− E [log(hi2j)])

2
] (15)

where ĥi2j denotes the normalized channel gain ofhi2j in matrix
H , for which the normalized channel gain matrix Ĥ can be
reshaped into a one-dimensional vector with a length ofNinput =
Nc + 2Nd(1 +Nc + 2Nd). After that, the normalized channel
gain matrix will be led into the hidden layers.

2) The Hidden Layer: The hidden layer of the proposed DNN
model comprisesNHL sub-blocks that are connected serially. We
must emphasize that each sub-block comprises a fully connected
(FC) layer3 with drop-out and an active layer. In the FC layer,
the vector multiplication of the weights is performed, together
with the addition of biases. Without loss of generality, the
number of neurons for the k-th sub-block is set to be Fk in this
paper. Furthermore, a more popular method of setting up Fk

is to make all sub-blocks have an identical number of neurons,
which is equal to an integer times of Ninput (called fixed-big-net
(FBN). It can be calculated as Fk = n1Ninput). Meanwhile, we
propose a method called dynamic-decreasing-net (DDN), in
which the number of sub-blocks in the hidden layer can be
derived as NHL = �log2(n2Ninput)− log2(Noutput)− 1�, while
the number of neurons in each sub-block can be formulated
as Fk = Ninput/2k with k = 1, . . . , NHL. In addition, by letting
Ok, V k, and bk denote the inputs vector, weights matrix, and
biases vector of the FC layer in the k-th sub-block, respectively,
the output of the k-th FC layer becomes

Õk = OkV k + bk. (16)

Note that every hidden neurons of the FC layer has a connec-
tion with the hidden neurons of the previous and the next layers,

3Although we have considered a simple FC layer in this article, more com-
plicated layer such as convolution layer is also applicable.

in which manner the FC layer has an ability to mix all input data
to extract meaningful features that can be used to determine
the transmit power of this user. Meanwhile, several randomly
chosen drop-out neurons are adopted in the FC layer to prevent
the proposed DNN from over-fitting. The number of drop-out
neurons is controlled by the parameter D, which represents the
ratio of drop-out-neurons-number to FC-layer-neurons-number.

The output of the k-th FC layer then feeds into an active
layer, resulting in non-linearity for a special area of the DNN,
where the rectified Sigmoid (RSigmoid) function can be adopted
as the active function. In particular, denoting by Õk the input of
the k-th RSigmoid layer, the output of RSigmoid layer can be
expressed:

Ok+1 =

⎧⎪⎪⎨
⎪⎪⎩
Õk for Õk > 5

2S(Õk)− 1 for Õk ∈ [0, 5]

0.25Õk for Õk < 0

(17)

where Ok+1 represents the input of the (k+1)-th FC layer, and
S(x) = 1/(1 + e−x) is the Sigmoid function. It should be noted
that RSigmoid has been used as an activation function, which can
mitigate the appearance of vanishing gradient in a BP algorithm.

3) The Output Layer: The last sub-block of hidden layer is
also categorized as the output layer, whose output feeds into the
limited rectified linear unit (LReLU). Therefore, the final output
of LReLU is the vector of transmit power that comprises Nouput

elements, as denoted by a vector P that can be formulated:

P = min [ReLU(ONHL),Pmax] (18)

wherePmax denotes the vector of maximum transmit power. The
rectified linear unit (ReLU) function is defined as ReLU(x) =
max(0, x).

B. Cost Function Design

In this part, we describe the way of designing the cost function
of the proposed optimization problem, which makes it possible
to maximize the PSS of a cell under certain constraints. To pro-
pose a practical mechanism, we should apply the following two
constraints to the cost function: i) transmit power constraints,
ii) received SINR constraints, in which the former has already
been constrained by (18). In the following, we will mainly focus
on the latter.

The most typical cost function in deep learning of regression
problem is the MSE function, which is an average of square of
difference between the predictions and the pre-defined values.
To reduce the differences, it usually intends to give benefit or
penalty to update DNN. In other words, the cost function can
be customized if it can define an appropriate benefit or penalty
based on the system’s purpose. Therefore, we employ the PSS
to act as the cost function for the proposed scheme, as shown in
(10). Although the PSS of the actual system is a very complex
function, it does not constitute a big trouble to the development of
deep learning algorithms. Furthermore, in the proposed scheme,
the SINR constraints are also employed in defining the cost
function.
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In this paper, we adopt the Lagrange function to express the
SINR constraints in the cost function. Typically, the Lagrange
function can be used to minimize or maximize the cost function
(or target value) under certain constraints [48]. Firstly, the SINR
constraints, which will be denoted by Γ in the following, are
given out:

Γ =

N∑
i=1

W log2

[
1 +

ReLU (ε− SINRi)

ε

]
(19)

where the ReLU function is employed. If the received SINR of
both CLs and DLs can reach the threshold (ε),Γwould approach
0. Therefore, only penalty will be delivered if the received
SINR of CL or DL is below the constraint. Other than that, the
remaining part is designed for re-scaling. If the difference scales
between the objective functions (which are PSS in the proposed
scheme), and meanwhile the constraints are relatively higher
than required, it would be difficult to design the appropriate TPA
scheme. Thus, both the objective function and constraints should
be designed based on similar scales that have similar forms. Note
that the data rate without quantitative unit can be formed by
log2(1 + SINR). Therefore, the constraints are also designed
in terms of data rate log2(1 + ratio), in which no quantitative
unit is observed in the ratio. Since the proposed design can
appropriately re-scale the SINR constraints, it is shown to work
effectively in Section VII.

Finally, the cost function of the proposed method can be
described as:

L = −
N∑
i=1

ηiPiRi + ηsΓ (20)

where 0 < ηi, ηs < 1 denote the weights of the sum data rate for
i-th user and the SINR constraints, respectively. Meanwhile, it
can also be used to prioritize the transmission of different DUs,
i.e., the data rate of x-th DU with a higher ηx value will play a
more critical role in the transmit power control. Furthermore, ηs
can be derived to adjust the scale of the constraints for further
ensuring the optimal scheme. Generally speaking, by proposing
this cost function, the optimal problem shown in (11) can be
converted to the minimization of cost function L.

C. Training and Inference of the Proposed DNN

In order to implement the proposed scheme, the DNN model
must be trained firstly, following which the trained model can
be used to determine the transmit power of both CUs and DUs.
In the proposed DNN, samples containing channel information
that forms a matrix H must be collected. Since information of
both the transmitters/receivers’ locations and the channel fading
coefficients are variant from sample to sample, the optimal
transmit power should be channel dependent. Accordingly, the
DNN can be trained in arbitrary channel conditions such that a
general strategy of transmit power control can be designed. It
is worth noting that in our proposed scheme, only the channel
sample information is needed without assigning the optimal
transmit power to each channel sample, because the optimal

transmit power can be obtained automatically through algorithm
training and learning.

A sufficient number of channel samples under various condi-
tions is essentially required for both preventing over-fitting of
the training and achieving a high performance (as shown later in
the performance evaluation). Furthermore, the collected channel
gain should be converted to decibel format and then normalized
to have zero mean and unit variance. This preprocessing of data
is essential for a proper training, because the characteristics
of both path loss and multipath fading imply that the channel
gain for different samples may vary significantly, thus adversely
affecting the training quality of the DNN.

To implement the proposed scheme, the DNN can be trained
by using the stochastic gradient descent (SGD) algorithm [49],
in which the weights and biases of the DNN (i.e., in the k-th FC
layer, V k and bk) can be updated as:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
V l

k = V l−1
k − γ

∂L

∂V l−1
k

blk = bl−1
k − γ

∂L

∂bl−1
k

(21)

respectively, where γ is the learning rate of the SGD, and V l
k

and blk denote the values of V k and bk in the l-th iteration of
k-th layer, respectively. In (21), the partial derivative can be
formulated by addressing the following iterative equations:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂L

∂V l−1
k

= �LOl−1
k

F∏
i=k+1

V l−1
i Ol−1

i × (1 −Ol−1
i )

∂L

∂bl−1
k

= �L
F∏

i=k+1

Ol−1
i × (1 −Ol−1

i )

(22)

respectively, where �L represents the gradient of the loss func-
tion L. Furthermore, the i-th element of �L, as denoted by �Li,
can be expressed:

�Li = −
N∑
j=1

ηjPj
∂Rj

∂P̂i

+ ηs
∂Γ

∂P̂i

(23)

where ∂Rj/∂P̂i can be accessed:

∂Rj

∂P̂i

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

− ηm(i)Pm(i)Pm(i)hm(i)2iθi

(1 + SINRi)H2
i μ ln 2

for i = j

ηiPihm(i)2i

(1 + SINRm(i))Hm(i) ln 2
for i = m(j)

ηm(j)Pm(j)Pm(j)hm(j)2j

(1 + SINRj)H2
j ln 2

Pihi2j for i 	={j,m(j)}
(24)

where Hi =
∑

j 	={i,m(i)} PjPjhj2i + σ2 + θiPiPi

μ . Further-
more, similar to the treatment of this partial function, we can
also derive the partial derivative of Γ by substituting (22)-(24)
into (21), in which manner both the updated V and b can be
given out.

Based on the above operations, the sufficiently trained DNN
can be used for performing transmit power control. To determine
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the transmit power, the channel gain has to be converted to
decibel format and normalized first. After that, it should be fed
into the DNN model, which outputs the normalized transmit
power. In general, the training process of DNN may take a
relatively longer time. Despite of it, the above costs are worth it,
because the already-trained DNN infers the transmit power with
a negligible computational cost, thus enabling a cost-efficient
real-time operation in the proposed scheme.

VII. NUMERIC ANALYSIS

In this section, the performance of the proposed TPA scheme
will be evaluated numerically. In particular, the impact of work-
load on PSS will be investigated to reveal the affordable traffic
volume in FN. Meanwhile, the influence of a variety of critical
parameters, including the RSI (μ), the SINR threshold (ε), the
PC (�) and the number of D2D pairs in a given cell (Nd) will be
taken into account.

A. Simulation Setup

We choose a BS-centric environment with radius R = 300 m
as the simulation scenarios, within which both CUs and DUs
are randomly distributed according to the non-homogeneous
PPP models. The licensed uplink band that was supposed to be
exclusively allocated to a CU is now allowed to be reused by Nd

D2D pairs. Without loss of generality, each link is assumed to
be an i.i.d. Rayleigh fading channel, with the path-loss exponent
α be 3.8 (i.e., corresponding to a typical urban environment).
Furthermore, the maximally tolerable distance between D2D
pairs is assumed to be 50 m, in which case all the DUs within
this experimental area are assumed to have the same amount
of workload. Moreover, the value of PC for all users is set to
be 0.2, and the SIC coefficient μ is set to be 60 dB4. Under
the above-mentioned premise, the noise power spectrum density
(PSD) is set to be −175 dB/Hz with W = 1 MHz. Meanwhile,
a moderate value of the SINR threshold ε = 5 dB is adopted. In
addition, the learning rate of proposed DNN is set to be 0.0001
and the decay rate is assumed to be 0.9. Finally, the number of
channel samples denoted by Ns for training and test number in
each round is set to be 5000.

In the following, two DNN structures (i.e., FBN and DDN)
with variant number of hidden layers and nodes for FC are
considered, where n1 = 1 and NHL = 3 for FBN, while n2 = 1
for DDN. For a fair comparison, the WIS scheme, the equal-
transmit-power (ETP)5 scheme and random-transmit-power
(RTP)6 are also employed as performance benchmarks.

In short, the detailed parameter settings of the proposed sim-
ulations are elaborated on in Table III. Unless stated otherwise,
we will always use the above parameter settings in subsequent
sections.

4Actually, this is not a demanding and difficult goal, as explained in [16]
5The transmit powers of the CU and DUs are assumed to be Pc−max and

Pd−max, respectively.
6The transmit powers of the CU and DUs are randomly generated between

zero and the maximum power.

TABLE III
SIMULATION PARAMETERS OF THE PROPOSED ANALYSIS

Fig. 3. The cumulative distribution function that describes the PSS achieved
by different algorithms.

B. The Performance of Proposed Power Allocation Scheme

In this subsection, we assume that the AP of CU and DUs
are Pc = 0.5 and Pd = Pc/2, respectively, in which case both
the CU and D2D pairs have the same amount of workload. The
cumulative distribution function that describes the PSS achieved
by different algorithms is depicted in Fig. 3. It is observed that
the PSS performance of the proposed DNN based TPA scheme is
very closed to that of the WIS, both significantly outperforming
the other two baselines. Furthermore, comparing with FBN-
DNN, the DDN-DNN can attain almost the same performance,
thus confirming the benefit by implementing DDN-DNN.

C. The Influence Imposed by Workload in WFN

The impact of workload on PSS is plotted in Fig. 4. Without
employing a proper TPA scheme, the PSS trend of both the ETP
and RTP schemes are described as follows: it firstly increases,
then creeps down after passing beyond the break points. We may
explain it as follows: the traffic of both CU and DUs are far from
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Fig. 4. The PSS-curves derived by different algorithms as function of the
workload.

saturation when the number of AP is small, thus making PSS
increase rapidly at first. However, the increasing number of AP
will cause a severer cross-interference among them, thus eroding
the PSS obviously.

On the contrary, by employing a proper TPA scheme in both
the proposed scheme and WIS, the PSS will increase along with
the increasing of AP. Furthermore, performances of both FBN-
DNN and DDN-DNN are very closed to that of the WIS, while
DDN-DNN slightly outperforms both WIS and FBN-DNN in
high-AP-density scenarios.

When AP is very small (i.e., less than 0.01), it should be
emphasized that the proposed DNN based TPA scheme out-
performs neither ETP nor RTP. Therefore, optimizing TPA is
meaningless in terms of PSS improvement in the presence of a
relatively lower traffic in the WFN, because each user can set
the maximum transmission power without causing interference
between users. Otherwise, when the traffic tends to be saturated,
the implementation of un-optimized ETP and RTP schemes will
cause a much severer interference.

D. The Influence Imposed by Some Critical
Parameters in WFN

In this section, we assume Pc = 0.5 and Pd = Pc/2 for CUs
and DUs, respectively, in which case both the CU and D2D pairs
have the same amount of workload. As shown in Fig. 5 – Fig. 8,
the performance of the proposed DNN based TPA scheme can
be formulated as a function of a variety of parameters, including
the number of D2D pairs in a given cell (Nd), the RSI (μ), the
SINR threshold (ε) and the PC (�), etc.

In Fig. 5, the PSS-curves as functions of the number of D2D
pairs (Nd) are described. As Nd increases, the PSS curves of
both the ETP and RTP schemes will decrease rapidly due to
the impact of the raising MI. However, by using a proper TPA
scheme such as the proposed DNN and WIS, the PSS curves
will increase at first, followed by a gentler tend. Evidently,

Fig. 5. The PSS-curves derived by different algorithms as function of the
number of D2D pairs Nd.

Fig. 6. The PSS-curves derived by different algorithms as function of RSI.

Fig. 7. The PSS-curves derived by different algorithms as function of the SINR
threshold ε.
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Fig. 8. The PSS-curves derived by different algorithms as function of penalty
coefficent.

the performance of WFN can not be continuously enhanced by
simply increasing the D2D pairs. Based on the simulation set-up,
the optimal user number is found to be 4, which already leads
to a saturated performance. It should be noticed that a slightly
performance pacing down occurs for the WIS in the high D2D
pair’ number scenario, while the PSS of proposed DNN based
TPA scheme remains stable. The reason for this observation is
that the WIS algorithm ignores the impact of SUT in the iterative
process, as considered in the proposed algorithm according to
(20), thus imposing extra benefits. Furthermore, the proposed
DNN significantly outperforms the other two baselines in the
high user-number scenario (i.e., Nd > 5), thus confirming the
benefit of proposed algorithm. In addition, it is shown that the
PSS of DDN-DNN is almost identical to that of BFN-DNN.
Therefore, it would be sufficient to employ the DDN-DNN
model for optimizing the transmit power.

Note that the average RSI power of DUs can be expressed
as IRSI = Pd/μ, where μ denotes the SIC coefficient. In the
following, we will use the μ instead of IRSI to denote the RSI
power. In Fig. 6, the PSS-curves derived in variant algorithms
as functions of μ are plotted. The PSS of all algorithms are
shown to increase as the the SIC capability increases at first,
followed by tending to be stable, implying that an unlimited
RSI power cancellation process is not necessary. Furthermore,
it is still observed that the PSS performance of both proposed
DNN and WIS with a proper TPA scheme can be significantly
enhanced compare to the other two benchmarks. In addition, the
proposed scheme is shown to slightly outperform WIS, which
validates the benefit of proposed DNN.

In Fig. 7, the PSS-curves derived by different algorithms as
functions of the SINR threshold (ε) are plotted. The PSS of all
algorithms are shown to reduce as the threshold increases. How-
ever, the proposed DNN based TPA is still shown to be stabler
than the WIS, enabling the specially designed cost function in
(20) to bring about considerable benefits.

In Fig. 8, the PSS-curves of variant algorithms as the function
of PC (�) are figured out. The PSS of all algorithms are shown
to decline as PC increases, implying that PC can reflect the
severity of performance loss when the unsuccessful transmission

Fig. 9. The computation time curves of FBN-DNN, DDN-DNN and WIS.

occurs. Furthermore, the proposed DNN based TPA shows a
stable performance, while the WIS declines rapidly, confirming
the benefits earned by employing the proposed cost function in
(20).

E. The Computation Time

In Fig. 9, the time required for calculating the transmit power,
depending on the number of the D2D pairs sharing the pre-
allocated spectrum with a CU, is described. The computational
cost of both the ETP and RTP schemes are absent, because
the transmit power calculation is unnecessary in both schemes,
corresponding to almost zero cost in terms of computational
time. When Nd=10 and Ns=5000, DNN training takes more
than 10min (although the above information is absent in this
article, the above data can still be obtained through our previ-
ously simulation). Even so, considering the fact that the training
process can be performed in advance, the training overhead will
not cause any obstacle to the real-time operation of the proposed
scheme.

Simulation results show that the implementing time of all
three algorithms will approximately increase exponentially as
the number of users increases. However, the operational time of
both FBN-DNN and DDN-DNN is much less than that of the
WIS, fully validating the priority of the proposed DNN based
TPA over the iterative algorithm. In addition, the DDN-DNN
cost obviously less computational time than FBN-DNN (while
achieving the almost same PSS performance), which confirms
the performance advantage of the proposed neuron generating
scheme.

VIII. CONCLUSION

In this paper, the performance gains brought about by im-
plementing a deep learning based TPA scheme in WFN were
analyzed. The closed-form expressions for the PSS, as the
performance metric, were firstly given out by involving the
impact of workload. At the same time, we also introduced a new
concept of “penalty” (corresponding to the PC) to characterize
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“performance loss caused by retransmission of data that has been
transmitted but not successfully received (that is, the received
SINR does not reach the minimum threshold)”. Furthermore,
based on the features of WFN, an improved iterative subspace
pursuit algorithm for WFN was proposed as the performance
benchmark. After that, a TPA scheme was proposed for per-
forming FNs based on deep learning, in which the optimal
transmit power (i.e., for maximizing the PSS) can be learned in
arbitrary channel conditions by employing the DNN structure.
Numerical results showed that the PSS of WFN with extremely
workload density can be significantly enhanced by employing
proper TPA schemes. Meanwhile, the research results showed
that the performance proposed TPA scheme was very closed
to the iterative algorithm by costing much less computational
time. In addition, it was shown that the eroded PSS of WFN
by a variety of critical parameters, including the number of
D2D pairs, the RSI, the SINR threshold and the PC, etc, can be
tremendously relieved by applying the proposed TPA scheme.

APPENDIX A

Based on (13), a sub-optimal solution of ui can be derived by
calculating the partial derivation of ei:

ui =

√Pihm(i)2i

Pm(i)hm(i)2i +
∑

j 	=i,m(i) PjPjhj2i + σ2 + θPiPi

μ

(25)
By substituting (25) into (13), we can formulated the sub-

optimal solution of ei:

ei =

∑
j 	=i,m(i) PjPjhj2i + σ2 + θPiPi

μ

Pm(i)hm(i)2i +
∑

j 	=i,m(i) PjPjhj2i + σ2 + θPiPi

μ

(26)
By setting wi = e−1

i , the wi can be formulated:

wi =
1

1 − ui

√Pm(i)hm(i)2i

= 1 + SINRi

(27)

Furthermore, by plugging both (25) and (27) into (12), a
equivalence of problem (12) can be expressed:

min
{Pi}Ni=1

N∑
i=1

Pi [1 − log2(1 + SINRi)]

s.t. 0 ≤ Pi ≤ Pi−max i = 1, . . . , N

(28)

which is obviously equivalent to (11).

APPENDIX B

According to (11), the cost function for the optimization is
L =

∑N
i=1 Pilog2(1 + SINRi). The partial derivative of L with

respect to
√Pi can be formulated:

∂L

∂
√Pi

=
2Pi

√Pm(i)hm(i)2i

wm(i)Hm(i) ln 2
− 2Pm(i)Pm(i)hm(i)2iθi

√Pi

wiH2
i μ ln 2

− 2
ln 2

∑
j 	={i,m(i)}

Pm(j)Pm(j)hm(j)2j

wjH2
j

Pi

√
Pihi2j

(29)

whereHi =
∑

j 	={i,m(i)} PjPjhj2i + σ2 + θPiPi

μ . By substitut-
ing both (25) and (27) into (29), and setting the partial derivative
to zero, the sub-optimal transmitting power shown in (14) can
be derived.
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