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Active Adaptive Battery Aging Management
for Electric Vehicles

Matteo Corno and Gabriele Pozzato

Abstract—The battery pack accounts for a large share of an elec-
tric vehicle cost. In this context, making sure that the battery pack
life matches the lifetime of the vehicle is critical. The present work
proposes a battery aging management framework which is capable
of controlling the battery capacity degradation while guaranteeing
acceptable vehicle performance in terms of driving range, recharge
time, and drivability. The strategy acts on the maximum battery
current, and on the depth of discharge. The formalization of the
battery management issue leads to a multi-objective, multi-input
optimization problem for which we propose an online solution. The
algorithm, given the current battery residual capacity and a pre-
diction of the driver’s behavior, iteratively selects the best control
variables over a suitable control discretization step. We show that
the best aging strategy depends on the driving style. The strategy
is thus made adaptive by including a self-learnt, Markov-chain-
based driving style model in the optimization routine. Extensive
simulations demonstrate the advantages of the proposed strategy
against a trivial strategy and an offline benchmark policy over a
life of 200 000 (km).

Index Terms—Battery aging management, electric vehicle,
optimization.

ACRONYMS

BMS Battery Management System
EV Electric Vehicle
HEV Hybrid Electric Vehicle
MPC Model Predictive Control
PSO Particle Swarm Optimization

I. INTRODUCTION

IN THE last years, challenges associated with vehicle pow-
ertrain modeling, optimization, and control have gained in-

creasing interest. As a matter of fact, tight vehicular emission
regulations have led car manufactures to develop new, green,
mobility solutions. In this scenario, EV’s are considered an
effective solution for everyday urban mobility because of the
absence of local emissions [1], the low price of electrical energy,
and their good performance. The diffusion of EV’s is limited
by their cost, which is still higher than that of their internal

Manuscript received January 18, 2019; revised May 20, 2019 and August
1, 2019; accepted August 26, 2019. Date of publication November 13, 2019;
date of current version January 15, 2020. This work was supported by the
Online Accurate Battery State Estimation via Electrochemical Modelling, MIUR
SIR project RBSI14STHV. The review of this article was coordinated by Prof.
Matthias Preindl. (Corresponding author: Matteo Corno.)

The authors are with the Dipartimento di Elettronica, Informazione e
Bioingegneria, Politecnico di Milano, 20133 Milano, Italy (e-mail: matteo.
corno@polimi.it; gabriele.pozzato@polimi.it).

Digital Object Identifier 10.1109/TVT.2019.2940033

combustion engine counterpart. The cost of the battery pack
and its possible replacement during the lifetime of the vehicle
are large factors in the EV’s economy. Matching the lifetime
of the battery with that of the vehicle is thus an imperative for
the success of EV’s. To solve this issue, models and operational
strategies must be developed to understand, monitor, and control
the phenomenon of battery aging.

Li-ion batteries are the principal choice for transportation
applications thanks to their high energy and power density [2].
These energy storage devices, as all other batteries, are subject
to aging, which leads to capacity loss [3]. Battery aging is
generally divided into two principal causes: calendar aging
and cycle aging. Calendar aging is the irreversible capacity
degradation caused by the battery storage conditions. Calendar
aging rate highly varies according to storage temperatures [4]
and to the State of Charge (SoC). High temperatures lead to
secondary reactions such as corrosion, which brings to capacity
fade [5]. Conversely, low temperatures lead to battery chemistry
alterations [6]. Moreover, according to [3], for an equal storage
temperature highSoC values lead to higher battery degradation.
On the other hand, cycle aging is related to the battery utilization.
Since battery cycle aging is caused by complex electrochemical
phenomena, studies are typically empirical [7]–[10]. Battery
cells are tested under different operating conditions in order to
derive semi-empirical models, which relate the battery capacity
loss to stress factors such as temperature, SoC, and current.
Concerning Li-ion batteries, Depth of Discharge (DoD), tem-
perature, and C-rate are the principal stress factors affecting
cycle aging [2], [3], [11]. For instance, charging and discharg-
ing batteries at high DoD, high temperatures, and high C-rate
accelerate the aging process, as well as having unbalanced cells
in a battery pack.

Even though battery aging is a well known issue, controlling
the battery degradation over time still remains an open point.
Most of the works in this sense have been in the context of
Hybrid Electric Vehicles (HEV’s) [12]–[14]. In this context,
aging is one of the aspects, along with overall efficiency, that
the power split logic needs to account for. For example, in [13]
and [14] the power split between the available movers, i.e., the
internal combustion engine and the battery, is obtained minimiz-
ing a performance index accounting for battery aging. Moreover,
in [15]–[17] a least costly energy management is proposed. In
this scenario, an euro equivalent cost is associated to the battery
capacity degradation. The presence of multiple power sources
simplifies HEV’s aging management: the degree of freedom
given by the power split allows one to avoid conditions that are
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critical for the battery without impacting the driver experience.
In other words, HEV’s can manage the battery degradation
without affecting the driving dynamics or trip planning. Con-
versely, EV’s, having only one mover, cannot influence the
battery degradation without affecting the driving experience.
The battery degradation problem is made more difficult by the
more intimate link with the driver. For this reason, the literature
is scarcer. Most approaches for EV’s either use static maps for
current, voltage and temperature as in [18], [19], or focus on cell
balancing [20].

This work proposes a closed-loop battery aging management
strategy for EV’s that is integrated with the vehicles dynamics
itself. Assuming the availability of an estimate of the residual
battery capacity [21]–[23], two control actions are selected in
order to actively modify the battery aging behavior: the DoD
and the maximum cell current Icellmax . Focusing only on battery
aging, the main goal would be minimizing the battery capacity
degradation. However, the solution of such an optimization prob-
lem would negatively affect the vehicle’s usability. Minimizing
only aging would lead to extremely low DoD and Icellmax values
and, consequently, to poor vehicle performance in terms of
accelerations, driving range, and recharge time. For this reason,
the control objective is reformulated as managing the battery
capacity degradation, while accounting for the vehicle driving
range, for the fulfillment of the driver’s desired speed profile,
and for the vehicle recharge time.

We first introduce a control-oriented EV model that provides
a tool to quantify the aforementioned trade-off between limiting
the battery capacity degradation and guaranteeing an acceptable
vehicle driving performance. The model enables the computa-
tion of an offline optimization strategy. The offline strategy is
interesting in terms of studying the trade-off and providing a
benchmark; however, it is not a practical solution as it requires
the knowledge of the driving cycle and long computation time.
To overcome this limitation, we introduce an online optimization
framework for battery aging management. The framework is
based on a receding horizon optimization that incorporates a
model of the driving cycle. Given the current battery capacity
state and a prediction of the future driver’s behavior, the online
approach is capable of modifying the control variables with
a given control discretization step, by minimizing a suitable
reformulation of the objective function. In our framework, a
Markov chain models the driver’s behavior. The advantage of
using a Markov chain is two-fold: on one side, it accurately
describes the driving style with a low computational burden; on
the other side, it is amenable to be sided by a learning algorithm.
We exploit these features developing an active adaptive battery
aging management systems that adapts to the way of driving of
the driver.

This work extends a previous contribution [24] in two direc-
tions:
� We apply the receding horizon approach, whereas the

previous work considered only the online optimization;
� We show how a Markov chain model of the driving cycle

can be incorporated in the optimization and what is its
effect.

TABLE I
REFERENCE CAR PARAMETERS

Fig. 1. Electric vehicle modeling.

The paper is organized as follows. Section II introduces the
electric vehicle model focusing on the battery aging modeling
and the recharging strategy. Section III describes the driver’s be-
havior model and its learning mechanism. Section IV introduces
the offline and online battery aging management strategies.
Sections V and VI analyze the results and draw the final conclu-
sions.

II. MODELING

The model aims to quantify the battery aging for different
driving conditions. The reference model is a compact car as the
one modeled in [25]. Table I summarizes the main parameters
used in the simulation. The model, as depicted in Fig. 1, has
three main components: the vehicle longitudinal dynamics, the
powertrain model and the battery pack with its thermal and aging
dynamics.

A. Electric Vehicle Modeling

Mainly two approaches exist for powertrain modeling [26].
In the backward facing approach, the powertrain states are
computed starting from the vehicle velocity profile, which is
an input. Conversely, the forward facing approach follows the
more natural powertrain causality using the throttle position
as an input. In this work, the model is based on a mixed
forward-backward facing approach, as highlighted by Fig. 1.
The forward portion models the driver’s response to a desired
reference speed and the longitudinal dynamics of the vehicle.
The backward facing part, starting from the power requested for
the vehicle motion, computes the power drawn from or provided
to the battery. This mixed modeling allows for the modeling of
the driving performance losses that the battery aging algorithm
will necessarily introduce. Starting from the forward facing
portion, the driver’s action on the accelerator pedal, in order
to follow a desired speed, is modeled with a simple proportional
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regulator [24]. Thus, traction torque requests (T req
m ) are com-

puted based on the difference between the reference, which is
the driver’s desired longitudinal velocity, and the actual vehicle
speed:

T req
m = kpε = kp(vref − v) (1)

with kp the proportional gain. The motor current is computed as
follows:

ireqm =
T req
m

km
(2)

where km is the electric motor torque constant. The requested
motor current is then saturated to Imax,1 which is computed from
the output of the aging management strategy Icellmax according to:

Imax = f(Icellmax , ωm, η̄m) =
Icellmax Vbnp

ωmkm
η̄m, (3)

where η̄m is the electric motor efficiency, Vb the battery pack
voltage, np the number of cells in parallel configuration, andωm

the motor rotational speed. The control variable Icellmax generally
limits the battery cell current at the cost of limiting the vehicle
acceleration and of increasing the battery recharge time. In
Fig. 1, the relationship between Icellmax and Imax is expressed by
f(·). Starting from the current provided by the motor isatmot,
the actual vehicle speed is computed according to the vehicle
longitudinal dynamics:

Mv̇ = isatm

kmrt
Rw

− 1
2
ρav

2CxA− Fr (4)

with M and v the vehicle mass and speed, rt the gear ratio,
Rw the wheel radius, Fr the rolling resistance, Cx the drag
coefficient, ρa the air density, and A the vehicle cross sectional
area. Therefore, the power provided by the traction motor for
the motion is modeled as follows:

Pm =
kmisatm v

Rwrt
= kmisatm ωm = T sat

m ωm (5)

with T sat
m the motor torque. In the backward facing portion,

the electric machine is modeled as an efficiency map which
computes the battery power:

Pb =

{
Pm

ηm(Pm) , if Pm ≥ 0 (motor)

Pmηm(Pm), if Pm < 0 (generator)
(6)

with ηm the motor efficiency. Thus, the cell power request is
given by Pcell = Pb/ncell with ncell = ns × np the total num-
ber of cells of the battery pack andns,np respectively the number
of cells in series and parallel configuration. In this work, an
A123 cylindrical LiFePO4 cell with a nominal voltage of 3.3 (V)
and characterized by a nominal capacity Qnom = 2.5 (Ah) is
considered. A series/parallel configuration with ns = 110 and
np = 26 is chosen, leading to a total number of cells equal to
2860.

Charging management. During the vehicle lifetime, the
battery is recharged multiple times, with the charging events
generally function of the State of Charge and the geographical

1The capital letter I denotes quantities expressed in C-rate rather than Ampere.

Fig. 2. Charging event. Once the allowed battery DoD is exploited, the
vehicle is decelerated from v̂ref to 0 (km/h). Then, the vehicle is recharged
and accelerated again to a speed v̂ref , i.e., the desired vehicle speed before the
charging event.

position of the charging stations. In this work, fast charging
stations are assumed to be always available along the trip.
Therefore, as soon as the battery reaches the limit State of
Charge, the vehicle is decelerated from the current desired speed
v̂ref to 0 (km/h) and then recharged at a power limited by the
maximum cell current Icellmax . Once the charge is completed, the
vehicle is accelerated again to v̂ref . Rather than reasoning in
terms ofSoC, the aging strategy employs theDoD as the control
variable. We define the DoD to be symmetric with respect to a
SoC of 50%. For instance, a DoD of 70% (Fig. 2) denotes a
battery SoC varying between 15% and 85%. Note that, on the
optimization scales of thousands of kilometers, neglecting the
exact position of the charging points is reasonable.

B. Battery Cell Modeling

As pointed out in the introduction, modeling aging phenom-
ena is a complex task, most contributions rely on semi-empirical
models. In our framework, we follow the same path in order
to design a control-oriented model. The model leverages some
simplifying assumptions:

1) We assume the presence of a BMS guaranteeing the bal-
ancing of all the cells in the battery back;

2) We describe an average model that neglects cell polariza-
tion;

3) Even though temperature is accounted for in the model,
we assume the BMS to be equipped with an energy man-
agement system.
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Fig. 3. Battery SoC penalizing factor. The aging increases exponentially for
SoC values lower than 20% and higher than 80%.

Under these assumptions, the battery pack is modeled as a
single large cell with its electrical equivalent circuit: a voltage
source voc and a resistance Rcell accounting for Joule losses.
The battery open circuit voltage is function of the SoC, while
its resistance is generally depending on aging and temperature.
Thus, the cell current is given by:

icell =
voc −

√
v2
oc − 4RcellPcell

2Rcell
. (7)

The cell SoC dynamics [26] takes the following expression:

˙SoC = − icell
Q

(8)

with Q the cell capacity, decreasing with aging. As already
shown in [24], the battery aging model is derived from [9] and
extended from the HEV’s scenario to the EV’s one. Therefore,
the rate of capacity loss with respect to the processed Ah is
described as follows:{

dQ
dAh = − z

100αSoC exp
(

−Ea+η|Icell|
Rg(273.15+T )

)
Ahz−1

Ȧh = 1
3600 |Icell|Qnom

(9)

with the second equation modeling theAh throughput as the total
current processed by the cell. The parameters Ea and Rg are the
activation energy, equal to 31.5 (kJ/mol), and the universal gas
constant. η and z are identified from experimental data. αSoC

is a penalizing factor that accelerate the aging for low and high
SoC [10], [27]:

αSoC = d(1 + c eb(SoCmin−SoC))(1 + c eb(SoC−SoCmax)) (10)

with SoCmin, SoCmax, b, c, and d empirically determined shap-
ing parameters (Fig. 3). The main stress factors affecting the
cell aging behavior are: its SoC, its temperature T , and the
C-rate Icell, i.e., the operating current normalized with respect
to the nominal cell capacity Qnom. Battery aging leads also
to an increment of the internal resistance. Thus, the following
linear relationship between a resistance increment ΔRcell and a
capacity decrement ΔQ is introduced:

ΔRcell = −kresΔQ (11)

with kres derived from the experimental data of [28]. Eventually,
recalling that the temperature dependency of the cell internal

Fig. 4. Battery cooling circuit.

resistance is expressed by [29]:

R1
cell = Rcell,0e

(
T1

T−T2

)
(12)

with Rcell,0 the nominal cell resistance and T1, T2 identified
parameters, the following is obtained:

Rcell = R1
cell +ΔRcell. (13)

It should be noted that the proposed model is empirical in
nature and thus subject to variation depending on the actual
characteristic of the cell in use. The framework, while needing
an aging model, does not exploit any specific features of the
proposed model.

Thermal management. Temperature is one of the stress fac-
tors increasing battery aging. For this reason, a common practice
in automotive companies is to introduce a battery cooling system
in order to control the temperature to a desired value T . Here,
we consider an air-cooled battery pack. Fig. 4 depicts the high
level architecture. Given ṁfl the mass flow rate of the air forced
by the fan into the cooling system evaporator, the heat exchange
is given by:

Q̇ev = ṁflCp,fl(Ti − To,1) (14)

where Cp,fl is the specific heat capacity of air, Ti and To,1 the
air temperature at the evaporator input and output respectively.
Thus, the cooled air is forced into the battery pack, leading to
the following energy balance:

−Q̇b = ṁflCp,fl(To,1 − To,2) (15)

where Q̇b is the heat exchange between battery and air, and To,2

the air temperature after the battery pack. Under the assumption
of a uniform temperature distribution T and modeling the heat
generated by the battery pack asRbi

2
b, Q̇b is rewritten as follows:

Q̇b = Rbi
2
b +

Troom − T

Rconv
(16)

with Troom the room temperature, Rb the total battery pack
resistance, ib the battery pack current, and Rconv the thermal
resistance between the battery and the surroundings. Assuming
no other heat exchange takes place and that Ti = To,2, the
following equality holds true:

Q̇b = Q̇ev. (17)

Therefore, the per-cell electric power absorbed by the cooling
circuit, i.e., by the compressor, to control the battery temperature
at T is given by:

Pcool =
1

ncell COP
Q̇ev (18)
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Fig. 5. Comparison of the output of the model against publicly available
battery degradation data.

where COP is the coefficient of performance of the cooling
system [30]. Eventually, the total power requested to each cell
is increased by Pcool, leading to the following equation:

P tot
cell = Pcell + Pcool. (19)

For further details on battery thermal modeling, the reader is
referred to [31], [32].

C. Model Analysis and Validation

Before setting the formal optimization problem; it is interest-
ing to get a qualitative understanding of the effect of the stress
factors on aging.

The proposed EV modeling is validated over 200 thousand
kilometers. The simulation is performed considering the driver’s
desired speed to be modeled as an Artemis Rural [33] driving
cycle concatenated several times; this driving cycle is a good
compromise between urban and highway driving conditions.
In this scenario, no active battery aging management is imple-
mented on board and Icellmax = 2.5 (C-rate) and DoD = 70%.
This is a reasonable choice because a DoD of 70% allows for
a satisfactory driving range, while limiting battery aging. Fig. 5
compares the simulated aging against publicly available real life
use [34]. In figure, the cell capacity degradation is normalized
with respect to the nominal capacity Qnom. The comparison
shows that the open-loop model correctly captures the aging
dynamics of real life vehicles. It is worth to mention that the
comparison must be regarded as a reasonableness check instead
of a rigorous validation. Indeed, due to the lack of battery aging
experimental data for the vehicle under investigation, Tesla
Model S [34] data are used for the comparative analysis.

The second phase of the analysis studies the effect of the
chosen control variables. Fig. 6 plots the aging dynamics for
Icellmax = 2.5 (C-rate) and three DoD values (60, 70, and 80%).
These simulations confirm the expected non-linear dependency
on the DoD. Fig. 7 simulates the effect of changing Icellmax . In this
particular example, the effect of Icellmax on the aging is more linear

Fig. 6. Effect of theDoD on the cell capacity. The maximum current is limited
to 2.5 (C-rate) and the DoD is varying between 60% and 80%.

Fig. 7. Effect of the current limitation Icellmax on the cell capacity. The DoD is
fixed at 70% and the Icellmax is varying between 1 (C-rate) and 5 (C-rate).

for a given driving cycle. On the other hand, the effect of Icellmax
are more dependent on the driving cycle. The more the desired
speed profile is demanding from an acceleration perspective, the
more impact Icellmax shows.

III. DRIVER’S BEHAVIOR LEARNING

The battery aging model shows that the cell current is one
of the stress factors to be reckoned with. The cell current
heavily depends on the instantaneous driver’s torque request.
The driving style has an impact on the aging dynamics. This
section proposed a model to describe the driver’s behavior and
a learning mechanism that allows the model to adapt to changes
in the driving style. Similarly to [35], [36], the driver actions
are modeled by means of a Markov chain stochastic process
with states W = {w1,w2, . . . ,ws} ⊆ R2, where s denotes the
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number of states. Each state wm, for all m ∈ {1, . . . , s}, is de-
fined as a couple (vm, am) with the scalar quantities vm and am
respectively speed and acceleration. Thus, the driver’s behavior
is parametrized as transitions from a (velocity, acceleration) pair
to another. All the probabilities of transitioning, in one time step,
from any state to any other state are summarized in the transition
probability matrix T ∈ Rs×s:

Tmn = P (w(j + 1) = wn|w(j) = wm) = λmn (20)

for all n,m ∈ {1, . . . , s}.
The transition matrix can be learnt offline or online as new

transitions are recorded. It is thus possible to learn the driver’s
model (i.e., the driver’s desired speed) through an online adap-
tation of (20). Assuming at a time instant j + 1 the past and
present states to be wm and wn respectively, the probability
update is computed as follows [35]:

Δλmn(j + 1) = λ̄

s∑
n=1

δmn(j + 1), for all m ∈ {1, . . . , s}

(21)
where λ̄ ∈ {0, 1} is the probability update magnitude and
δmn(j) = 1 only when the transition from m to n is active,
otherwise δmn(j) = 0. Since transition probabilities going out
from each node wm must sum up to one, the following update
rule is introduced:

Tmn(j + 1) = (1 −Δλmn(j))Tmn(j) + δmn(j)Δλmn(j + 1)
(22)

for all n,m ∈ {1, . . . , s}. The initial guess for T may be ran-
domly chosen or computed from existing driving cycles, as
in [37]. With the proposed approach, at each time instant, the
transition probability matrix is updated according to the current
and past driver’s desired speeds and accelerations. Indeed, as-
suming the driver’s action on the gas pedal to be modeled as in
(1), the desired reference speed can be computed from the torque
request T req

m and the actual longitudinal speed v as follows:

vref =
T req
m

kp
+ v. (23)

Backward Euler differentiation is employed to compute the
associated acceleration aref . Therefore, the pair (vref , aref )
defines a state of the Markov chain stochastic process, which
can be used to update the transition probabilities. Fig. 8 shows a
portion of the transition probability matrix obtained considering
the driver’s desired speed to be modeled as an Artemis Rural
driving cycle.

Once a transition probability is known, the desired speed
profile can be randomly generated as a realization of the Markov
chain. Fig. 9 compares the speed and acceleration distributions
of the Artemis Rural driving cycle and of a driving cycle gen-
erated from the transition probability matrix of Fig. 8, over a
traveled distance of 500 (km). From figure, one concludes that
the Artemis Rural driving cycle and the generated profile are
equivalent in terms of speed and acceleration distributions but
will be different in terms of time domain behavior.

Fig. 8. Portion of the transition probability matrix obtained assuming the
driver’s desired speed to be modeled as an Artemis Rural driving cycle.

Fig. 9. Velocity and acceleration distributions for the Artemis Rural driving
cycle and of the driving cycle generated from the transition probability matrix
of Fig. 8 are shown.

IV. BATTERY AGING MANAGEMENT

This section develops two battery aging management ap-
proaches: an offline approach that relies on the perfect knowl-
edge of future driving cycle, and an implementable approach.
Both optimization algorithms modulate the DoD and the max-
imum current Icellmax in the attempt of minimizing the capacity
degradation while guaranteeing acceptable driving performance
in terms of range, charging time, and fulfillment of a desired
speed profile.

The performance index J quantifies the above considerations
and translates a multi-objective optimization problem into a
single objective one:

minimize
u

αlJlife + αsJspeed + αcJcharge − αrJrange

subject to
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

˙SoC = − icell
Q

dQ
dAh = − z

100αSoC exp
(

−Ea+η|Icell|
Rg(273.15+T )

)
Ahz−1

Ȧh = 1
3600 |Icell|Qnom

v̇ = 1
M

(
isatm

kmrt
Rw

− 1
2ρav

2CxA− Fr

)
ireqm = kp(vref − v)/km

Imax = f(Icellmax , ωm, η̄m)

isatm =

⎧⎪⎨
⎪⎩
ireqm , |ireqm | ≤ ImaxQnom

ImaxQnom, ireqm > ImaxQnom

−ImaxQnom, ireqm < −ImaxQnom

Pcell = Pb(i
sat
m , ωm)/ncell

icell =
voc −

√
v2
oc − 4RcellPcell

2Rcell

Icell = icell/Qnom

1 −DoD

2
≤ SoC ≤ 1 − 1 −DoD

2
(24)

with u = [DoD, Icellmax ]
T the vector of the control variables and

Pb(i
sat
m , ωm)denoting that the battery power is computed relying

on (5) and (6). According to Section II-A, when theSoC reaches
the lower bound the vehicle stops and the battery is recharged.
The minus before the last cost component denotes that only
Jrange must be maximized.
J accounts for several objectives. The first term penalizes the

capacity degradation over the traveled kilometers N :

Jlife =
Q(0)−Q(N )

N (25)

with Q(0) = Qnom the nominal capacity.
Jspeed is accounting for the error between the driver’s desired

speed vref and the actual vehicle speed v:

Jspeed =

√
1

t(N )

∫ t(N )

0
(vref (τ)− v(τ))2 dτ (26)

with t(N ) the time horizon, i.e., the time to travel N kilometers.
The terms Jcharge and Jrange respectively take into account

the charging time and the driving range:

Jcharge =

√
1

E(N )

∑E(N )

i=1
tc(i)2

Jrange =

√
1

E(N )

∑E(N )

i=1
dr(i)2 (27)

where E(N ) is the total number of charging events over N , tc
the charging time for each event expressed in minutes, and dr
the traveled distance between two charging events expressed in
kilometers.

In J the weights αl, αs, αc, and αr play the important role
of balancing out different objectives. Their choice is non-trivial
and is discussed next. Changing the DoD has generally a great
impact on the vehicle range, Jrange, and on the charging time,

Jcharge, but in practice no effect on Jspeed as long as the battery
is operated in the linear region of the open circuit voltage curve.
It will become clear later that the control algorithm avoids oper-
ating the battery outside this region to prevent excessive aging.
Moreover, the bigger the DoD, the higher the range and the
charging time. Conversely, a variation of Icellmax has a negligible
impact on the range and affects only the vehicle charging time,
limiting the charging current, and Jspeed.

A. Offline Optimization

Given the presence of nonlinearities, the complex modeling
structure, the mixing of fast (vehicle motion and SoC) and slow
(battery aging) dynamics and the dependency on the driving
cycle, solving (24) is not trivial. To better understand the features
of the problem, first we solve the full knowledge optimization
problem. A Particle Swarm Optimization (PSO) [38] approach
computes the control actions DoD and Icellmax . PSO easily deals
with nonlinearities in the objective function and in the con-
straints, proving to be a good candidate algorithm to solve the
battery aging management issue.

The optimization problem is posed on a total traveled distance
N of 200 thousand kilometers, with a control discretization step
Nu of 10 thousand kilometers. Both the DoD and the Icellmax
are discretized into N/Nu = 20 consecutive elements, whose
values are selected relying on the PSO algorithm. Given the slow
dynamics of the battery aging, the selection of Nu is reasonable
and it ensures the PSO algorithm to converge in an acceptable
time, i.e., two weeks, with a particle swarm size p#,1 = 200.
The optimization procedure is ended when the best objective
function value is not changing for 30 consecutive iterations.

Equation (24) merges different objectives in a single cost
function. The parameters of that equation represent the trade-off
coefficients. In order to better assess and quantify the trade-off,
optimizations for a varying coefficient are performed over 200
thousand kilometers considering the Artemis Rural driving cy-
cle. In these optimizations, the coefficient αl varies between
5 × 107 and 9 × 108 (km/Ah) while the weights for Jspeed,
Jcharge, and Jrange are equal to:

αs = 100 (s/m), αc = 1 (1/min), αr = 1 (1/km). (28)

The weights (28) are chosen to make the magnitude of the asso-
ciated cost components comparable. Moreover, for the problem
at hand, varying only αl is reasonable because, while managing
the battery life, the major concern is monitoring its capacity
degradation over time. Thus, Fig. 10 represents the optimization
results in terms of components of the cost function. Increasing
αl allows one to focus more on the battery aging minimization
instead of on guaranteeing satisfactory driving performances.
Therefore, in terms of control actions, this leads to lower DoD
values, which reduce the driving range, and to a lower Icellmax ,
which increases both the charging time and the error between the
driver’s desired speed and the actual vehicle velocity. Eventually,
for a reasonable trade-off, a value of αl = 2.7 × 108 (km/Ah),
in correspondence of the Pareto fronts elbows, is chosen.
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Fig. 10. Pareto front analysis for αl varying between 5 × 107 and 9 ×
108 (km/Ah). Weights for Jspeed, Jcharge, and Jrange are constant over
the analysis. Black edge colored circles highlight the solution for αl = 2.7 ×
108 (km/Ah).

Fig. 11. Online optimization. At k, the objective function is minimized over
a prediction horizon Np assuming a control discretization step Nu. Only
the control input computed from k to k + 1 is applied, before rerunning the
optimization at k + 1.

B. Online Optimization

The offline optimization is carried out under the assumption of
complete knowledge of the driver’s behavior along the traveled
distanceN . This makes the result not applicable in practice, here
we introduce the online optimization technique. As summarized
by Fig. 11, the idea is to introduce a Model Predictive Control
(MPC) like procedure based on PSO. First, a prediction horizon
Np and a control discretization step Nu are selected, on a
distance base, satisfying the following inequality: Nu ≤ Np.
Therefore, at each optimization step k, with k the MPC index,
the kp = Np/Nu future control variables are selected simulating
the model over a prediction horizon Np while minimizing the

following reformulation of the cost function (24):

Jk = αl
Q(k)−Q(k + kp)

Np

+ αs

√
1

t(k + kp)− t(k)

∫ t(k+kp)

t(k)

(vref (τ)− v(τ))2 dτ

+ αc

√
1

E(k + kp)− E(k)
∑E(k+kp)

i=E(k)
tc(i)2

− αr

√
1

E(k + kp)− E(k)
∑E(k+kp)

i=E(k)
dr(i)2 (29)

where t(k + kp)− t(k) is the time to travel Np kilometers and
E(k + kp)− E(k) the number of charging events between k
and k + kp. The minimization of (29) is still obtained rely-
ing on PSO. Therefore, only the first pair of control inputs
[DoD(k), Icellmax (k)]

T is applied from k to k + 1 (i.e., over a
traveled distance Nu). The system state at k, provided as input
for the prediction, takes the following form:

[Q(k), SoC(k), Ah(k)]T (30)

where Q(k), SoC(k), and Ah(k) are respectively the residual
capacity, the battery SoC, and the Ah processed till k. Note that
this yields a closed-loop term. Eventually, the next optimization
step is performed at k + 1.

Since for each optimization step a prediction over Np is
needed, an estimate of the future driver’s behavior, in terms
of desired speed, is necessary. We consider two cases. The
Online approach assumes the Artemis Rural driving cycle to
be a description of the average driver’s behavior. In this case,
the prediction over Np is the repetition of the aforementioned
driving cycle; the driving cycle is applied regardless of the actual
driving style. The Online MC approach on the other hand tries
to consider the current drive style. It relies on the Markov chain
model. It uses the online learnt transition matrix to generate the
desired speed profile over Np. This second approach thus adapts
to changes in the driving style. Fig. 12 summarizes the online
optimization architecture.

As already mentioned, at each step k, the strategies solve an
optimization over Np. A careful selection of prediction horizon
and control discretization step is fundamental to solve the op-
timization problem in a reasonable time, without affecting the
found strategy. In the following, we use Np = 6000 (km) and
Nu = 2000 (km) together with a particle swarm size p#,2 = 60.
The next section better illustrates the validity of the choice.

V. RESULTS

To guarantee repeatability and fairness of comparison, the
validation uses two deterministic driving styles: (a) the Artemis
Rural driving cycle and (b) the Highway Fuel Economy Test,
both illustrated in Fig. 13. Note that the Highway Fuel Economy
Test is scaled in order to reach a maximum speed of 120 (km/h),
a realistic speed limit in the European Union. The two driving
cycles have complementary characteristics, the Artemis Rural
has a lower average speed but a higher maximum acceleration
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Fig. 12. Online optimization architecture. The first approach assumes the Artemis Rural driving cycle to be a good description of the driver’s model. Thus, the
Markov chain branch (dashed line) is deactivated. Conversely, the second approach relies on Markov chains to first learn the driver’s behavior and then to generate
the desired speed profile over the prediction horizon Np. The online optimization is triggered each control discretization step Nu.

Fig. 13. Artemis Rural (a) and the Highway Fuel Economy Test (b) driving
cycles.

than the Highway Fuel Economy Test; the Artemis Rural cap-
tures a more dynamic driving style, comprising both urban, and
highway driving.

Figures 14 and 15 show the results for the Artemis Rural
and the Highway Fuel Economy Test driving cycles in the time
domain for different strategies. Table II summarizes the value

Fig. 14. Artemis Rural optimization results. The offline solution is compared
to the Online and to the Online MC outcomes. To ease reader’s comprehension,
the final values for the battery capacity Q, obtained with the different policies,
are highlighted.

of the cost functions. The table also computes the cost function
for the open-loop case with no active battery degradation man-
agement strategy, see Appendix A. The comparison considers a
horizon N of 200 thousand kilometers, over which the driver’s
behavior is assumed to be fixed (i.e., either scenario (a) or (b),
exclusively). From these results, one can draw the following
conclusions for the Artemis Rural driving cycle:
� As expected, the offline benchmark, computed under the

assumption of complete knowledge of the driver’s behav-
ior, achieves the best results for J . However, the offline
policy leads to a slightly increased aging if compared to
the Online MC solution. This is reasonable because the
offline benchmark is the best trade-off between the different
objectives and not the optimal solution from just an aging
standpoint;
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Fig. 15. Highway Fuel Economy Test optimization results. The offline solution
is compared to the Online and to the Online MC outcomes. To ease reader’s
comprehension, the final values for the battery capacity Q, obtained with the
different policies, are highlighted.

TABLE II
OPTIMIZATION RESULTS. ONLINE AND OFFLINE SOLUTIONS ARE COMPARED TO

AN OPEN-LOOP STRATEGY CHARACTERIZED BY DoD = 70% AND

IcellMAX = 2.5 (C-RATE)

∗NA: Not Applicable.

� For the Artemis Rural driving cycle, both the Online and
the Online MC strategies lead to results close to the offline
benchmark. As a matter of fact, the Online solution is com-
puted assuming the future driver’s behavior to be modeled
as an Artemis Rural driving cycle, which is the truth for
this first study. The learning mechanism in this context
does not bring any advantage. If anything, it actually leads
to slightly worse performances. The loss of performance is
due to the non perfect description of the driving cycle that
the Markov chains achieves;

� The open-loop strategy leads to the worst results, with a
lower residual battery capacity Q and a higher value for
the objective function J .

On the other hand, the Highway Fuel Economy Test outlines
different features:

� The open-loop approach is the worst also for this driving
cycle;

� The Online strategy, which wrongly operates under the
assumption of an Artemis Rural driving cycle, yields unsat-
isfactory results. This underlines the impact that the driving
cycle has on the aging dynamics and consequently on the
optimal strategy;

� The Online MC strategy introduces visible benefits. The
learning mechanism allows for an adaptation to the driver’s
behavior, leading to results close to the offline benchmark.
As a matter of fact, provided the residual battery capacity
of the offline solution to be 92.199%, the Online, the
Online MC, and the open-loop strategies lead respectively
to: 92.020%, 92.217%, and 91.926%;

� Fig. 15 shows that the Online strategy employs higherDoD
and Icellmax than the offline and the Online MC solutions.

Both the Online and the open-loop strategies show high
sensitivity with respect to the driver’s behavior. Conversely,
the Online MC is robust to modifications of the driving style.
The Online MC approach leads to results close to the offline
benchmark with an average optimization step time of 25 (min)
for scenario (a), a reasonable computational time for the low
dynamics under investigation and over a control discretization
step Nu = 2000 (km). Indeed, 25 (min) corresponds to an av-
erage traveled distance of 24 (km), which is negligible for aging
monitoring purposes.2 Furthermore, the average computational
time decreases with the increment of the driving cycle average
speed. This is reasonable because, at each PSO optimization
step, the model is simulated over Np for p#,2 different configu-
rations of the control variables DoD and Icellmax . Thus, the higher
the average velocity the quicker the simulation. The complexity
introduced by the Markov-chain-based learning mechanism,
in terms of computational time increment with respect to the
Online strategy, is acceptable. Eventually, it must be noted that,
while the proposed online strategies are demanding in terms of
computational power, there is not hard real time constraints that
would force a local computation. As a matter of fact, given the
slow dynamics of battery aging, and the rising trend in intercon-
nected vehicles, the optimal battery management strategy can be
computed relying on cloud services without any computational
power limitation.

Table II, while showing that the proposed approach is capable
of improving the cost function and reducing battery aging, also
shows that the absolute gain with respect to the open-loop strat-
egy is not very large. Extrapolating the results to a battery end of
life equivalent to 80% the gain in terms of vehicle life extension
is 18,000 (km). In interpreting these results, one should consider
two important points:
� The open-loop strategy (as shown in Appendix) is itself the

result of an optimization. If a DoD of 75% is used instead
of the optimal one, the gain in terms of kilometers grows
to 48,000 (km);

2Solutions of offline and online optimizations were computed on a Intel Core
i7-7700HQ processor with 16.0 (GB) of RAM.
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� The proposed strategy is also adaptive. This means that the
Markov chain is capable of adapting to modifications of
the driver’s behavior, thus increasing robustness.

VI. CONCLUSION

The paper proposes a strategy for battery aging management
for EV’s. Battery aging management in electric vehicles is
particularly complex because it entails a modification of the
vehicle performance.

The first part of the paper introduces the main features and
specifics of the problem. A mixed forward/backward electric
vehicle model defines the main stress factors affecting battery
aging and with them the control variables. Subsequently, these
results inform the definition of a cost function that quantifies
battery aging along with the loss of performance. The opti-
mization problem is first solved offline relying on PSO. Then,
we propose two online aging management strategies. Both em-
ploy a receding horizon approach, in the first case the horizon is
computed assuming a constant driving cycle, whereas the second
case uses a self-learning Markov chain parametrization of the
driving cycle. This allows for an adaptation.

The paper shows that active aging management can extend
the life of the EV. Relying on a Markov chain description of
the driving style, the main advantage of the proposed online
approach is its capability to adapt to modifications of the driver’s
behavior. Thus, the use of the proposed active aging management
would reduce the maintenance cost of EV’s reduce the risk of
possible replacements of the battery pack during the vehicle
lifetime. Future works will extend the proposed framework
focusing on scenarios characterized by model uncertainties and
nonlinear fading.

APPENDIX A

The open-loop strategy is obtained testing feasible
(DoD, Icellmax ) combinations, such that DoD ∈ {20, 100}% and
Icellmax ∈ {1, 5} (C-rate). Each control inputs couple is assumed
to be constant over a horizon of 200 thousand kilometers. There-
fore, for each couple, the performance index (24) is computed
and Fig. 16 is obtained. The control variables associated with
the minimum value for the cost function J are chosen as the
open-loop benchmark for Section V. Assuming the Artemis
Rural driving cycle to be a good average description of the
driver’s desired speed, DoD = 70% and Icellmax = 2.5 (C-rate)
lead to the minimum open-loop value of the objective function.
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