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Deep Reinforcement Learning Based Resource
Allocation for V2V Communications

Hao Ye

Abstract—In this paper, we develop a novel decentralized re-
source allocation mechanism for vehicle-to-vehicle (V2V) commu-
nications based on deep reinforcement learning, which can be
applied to both unicast and broadcast scenarios. According to
the decentralized resource allocation mechanism, an autonomous
“agent,” a V2V link or a vehicle, makes its decisions to find the op-
timal sub-band and power level for transmission without requiring
or having to wait for global information. Since the proposed method
is decentralized, it incurs only limited transmission overhead. From
the simulation results, each agent can effectively learn to satisfy the
stringent latency constraints on V2V links while minimizing the in-
terference to vehicle-to-infrastructure communications.

Index Terms—Deep Reinforcement Learning, V2V Communi-
cation, Resource Allocation.

I. INTRODUCTION

EHICLE-TO-VEHICLE (V2V) communications [1]-[3]

have been developed as a key technology in enhancing
the transportation and road safety by supporting cooperation
among vehicles in close proximity. Due to the safety impera-
tive, the quality-of-service (QoS) requirements for V2V com-
munications are very stringent with ultra low latency and high
reliability [4]. Since proximity based device-to-device (D2D)
communications provide direct local message dissemination
with substantially decreased latency and energy consumption,
the Third Generation Partnership (3GPP) supports V2V services
based on D2D communications [5] to satisfy the QoS require-
ment of V2V applications.

In order to manage the mutual interference between the
D2D links and the cellular links, effective resource allocation
mechanisms are needed. In [6], a three-step approach has been
proposed, where the transmission power is controlled and the
spectrum is allocated to maximize the system throughput with
constraints on minimum signal-to-interference-plus-noise ratio
(SINR) for both the cellular and the D2D links. In V2V com-
munication networks, new challenges are brought about by high
mobility vehicles. As high mobility causes rapidly changing
wireless channels, traditional methods on resource management
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for D2D communications with a full channel state informa-
tion (CSI) assumption can no longer be applied in the V2V
networks.

Resource allocation schemes have been proposed to address
the new challenges in D2D-based V2V communications. The
majority of them are conducted in a centralized manner, where
the resource management for V2V communications is per-
formed in a central controller. In order to make better decisions,
each vehicle has to report the local information, including lo-
cal channel state and interference information, to the central
controller. With the collected information from vehicles, the
resource management is often formulated as optimization prob-
lems, where the constraints on the QoS requirement of V2V
links are addressed in the optimization constraints. Neverthe-
less, the optimization problems are usually NP-hard, and the
optimal solutions are often difficult to find. As alternative solu-
tions, the problems are often divided into several steps so that
local optimal and sub-optimal solutions can be found for each
step. In [7], the reliability and latency requirements of V2V com-
munications have been converted into optimization constraints,
which are computable with only large-scale fading information
and a heuristic approach has been proposed to solve the opti-
mization problem. In [8], a resource allocation scheme has been
developed only based on the slowly varying large-scale fading
information of the channel and the sum V2I ergodic capacity is
optimized with V2V reliability guaranteed.

Since the information of vehicles should be reported to the
central controller for solving the resource allocation optimiza-
tion problem, the transmission overhead is large and grows dra-
matically with the size of the network, which prevents these
methods from scaling to large networks. Therefore, in this pa-
per, we focus on decentralized resource allocation approaches,
where there are no central controllers collecting the information
of the network. In addition, the distributed resource manage-
ment approaches will be more autonomous and robust, since
they can still operate well when the supporting infrastructure is
disrupted or become unavailable. Recently, some decentralized
resource allocation mechanisms for V2V communications have
been developed. A distributed approach has been proposed in
[15] for spectrum allocation for V2V communications by uti-
lizing the position information of each vehicle. The V2V links
are first grouped into clusters according to the positions and
load similarity. The resource blocks (RBs) are then assigned
to each cluster and within each cluster, the assignments are im-
proved by iteratively swapping the spectrum assignments of two
V2V links. In [11], a distributed algorithm has been designed to
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optimize outage probabilities for V2V communications based
on bipartite matching.

The above methods have been proposed for unicast commu-
nications in vehicular networks. However, in some applications
in V2V communications, there is no specific destination for
the exchanged messages. In fact, the region of interest for each
message includes the surrounding vehicles, which are the tar-
geted destinations. Instead of using a unicast scheme to share the
safety information, it is more appropriate to employ a broadcast-
ing scheme. However, blindly broadcasting messages can cause
the broadcast storm problem, resulting in package collision. In
order to alleviate the problem, broadcast protocols based on sta-
tistical or topological information have been investigated in [9],
[10]. In [10], several forwarding node selection algorithms have
been proposed based on the distance to the nearest sender, of
which the p-persistence provides the best performance and is
going to be used as a part of our evaluations.

In the previous works, the QoS of V2V links only includes
the reliability of SINR and the latency constraints for V2V links
has not been considered thoroughly since it is hard to formulate
the latency constraints directly into the optimization problems.
To address these problems, we use deep reinforcement learning
to handle the resource allocation in unicast and the broadcasting
vehicular communications. Recently, deep learning has made
great stride in speech recognition [17], image recognition [16],
and wireless communications [18]. With deep learning tech-
niques, reinforcement learning has shown impressive improve-
ment in many applications, such as playing videos games [14]
and playing Go game [19]. It has also been applied in resource
allocation in various areas. In [20], a deep reinforcement learn-
ing framework has been developed for scheduling to satisfy
different resource requirements. In [21], a deep reinforcement
learning based approach has been proposed for resource alloca-
tion in the cloud radio access network (RAN) to save power and
meet the user demands. In [22], the resource allocation problem
in vehicular clouds is solved by reinforcement learning, where
the resources can be dynamically provisioned to maximize long-
term rewards for the network and avoid myopic decision making.
A new deep reinforcement learning based approach has been
proposed in [23] to deal with the highly complex joint resource
optimization problem in the virtualized vehicular networks.

We exploit deep reinforcement learning to find the mapping
between the local observations, including local CSI and interfer-
ence levels, and the resource allocation and scheduling solution
in this paper. In the unicast scenario, each V2V link is consid-
ered as an agent and the spectrum and transmission power are
selected based on the observations of instantaneous channel con-
ditions and exchanged information shared from the neighbors at
each time slot. Apart from the unicast case, deep reinforcement
learning based resource allocation framework can also be ex-
tended to the broadcast scenario. In this scenario, each vehicle
is considered as an agent and the spectrum and messages are
selected according to the learned policy. In order to address the
problems encountered in the V2V communication system, the
observation, the action, and the reward functions are designed
delicately for the unicast and the broadcast scenarios, respec-
tively. In general, the agents will automatically balance between
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minimizing the interference of the V2V links to the vehicle-to-
infrastructure (V2I) links and meeting the requirements for the
stringent latency constraints imposed on the V2V link.

Part of this work has been published in [12] and [13] for
unicast and broadcast, respectively. In this article, we provide a
unified framework for both the unicast and the broadcast cases.
In addition, more experimental results and discussions are pro-
vided to better understand the deep reinforcement learning based
resource management scheme. Our main contributions are listed
in the followings.

® A decentralized resource allocation mechanism based on

deep reinforcement learning has been proposed for the first
time to address the latency constraints on the V2V links.

e To solve the V2V resource allocation problems, the ac-

tion space, the state space, and the reward function have
been delicately designed for the unicast and the broadcast
scenarios.

® Based on our simulation results, deep reinforcement learn-

ing based resource allocation can effectively learn to share
the channel with V2I and other V2V links under both
scenarios.

The rest of the paper is organized as follows. In Section II,
the system model for unicast communications is introduced. In
Section I1I, the reinforcement learning based resource allocation
framework for unicast V2V communications is presented in
detail. In Section IV, the framework is extended to the broadcast
scenario, where the message receivers are all vehicles within a
fixed area. In Section V, the simulation results are presented and
the conclusions are drawn in Section VI.

II. SYSTEM MODEL FOR UNICAST COMMUNICATION

In this section, the system model and resource management
problem of unicast communications are presented. As shown
in Fig. 1, the vehicular network includes M cellular users
(CUEs) denoted by M = {1,2,..., M} and K pairs of V2V
users (VUEs) denoted by /IC = {1, 2, ..., K'}. The CUEs demand
V21 links to support high capacity communication with the base
station (BS) while the VUEs need V2V links to share infor-
mation for traffic safety management. To improve the spectrum
utilization efficiency, we assume that the orthogonally allocated
uplink spectrum for V2I links is shared by the V2V links since
the interference at the BS is more controllable and the uplink
resources are less intensively used.

The SINR of the m!" CUE can be expressed as

,_Yc [m} — Pm hm — (1)
o+ Zkelc Pk [m]P,f hi,

where P¢ and P! denote the transmission powers of the m'"
CUE and the k' VUE, respectively, o2 is the noise power, A,
is the power gain of the channel corresponding to the m‘" CUE,
hy, is the interference power gain of the k' VUE, and py,[m] is
the spectrum allocation indicator with py, [m] = 1if the k' VUE
reuses the spectrum of the m'" CUE and pj;,[m] = 0 otherwise.

Hence the capacity of the m'" CUE is

C[m] = W -log(1 +~°[m]), 2)
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Fig. 1.  Anillustrative structure of unicast vehicular communication networks.

where W is the bandwidth.
Similarly, the SINR of the k' VUE can be expressed as

L 3

Uk:
/Y[] o2+ G, + Gy’

where

Ge= > pelm) PG i, )

meM

is the interference power of the V2I link sharing the same RB
and

Ga=Y D> pelmlpwm]PLgh . 5)

meM k'eKk£k'

is the overall interference power from all V2V links sharing
the same RB, g, is the power gain of the k" VUE, Gie,m 18
the interference power gain of the m'" CUE, and g}, , is the
interference power gain of the &/ VUE. The capacity of the
k" VUE can be expressed as

CUIK] = W - log(1 + 4" [k]). ©6)

Due to the essential role of V2V communications in vehi-
cle security protection, there are stringent latency and reliabil-
ity requirements for V2V links while the data rate is not of
great importance. The latency and reliability requirements for
V2V links are converted into the outage probabilities [7], [8]
in system design and considerations. With deep reinforcement
learning, these constraints are formulated as the reward function
directly, in which a negative reward is given when the constraints
are violated. In contrast to V2V communications of safety in-
formation, the latency requirement on the conventional cellular
traffic is less stringent and traditional resource allocation prac-
tices based on maximizing the throughput under certain fairness
consideration remain appropriate. Therefore, the V2I sum rate
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will remain a factor in the reward function for maximization in
our method, as we can see in Section II1.

Since the BS has no information on the V2V links, the re-
source allocation procedures of the V2I network should be in-
dependent of the resource management of the V2V links. Given
resource allocation of V2I links, the objective of the proposed
resource management scheme is to ensure satisfying the latency
constraints for V2V links while minimizing the interference of
the V2V links to the V2I links. In the decentralized resource
management scenario, the V2V links will select the RB and
transmission power based on the local observations.

The first type of observation that relates to resource allocation
is the channel and the interference information. We assume the
number of sub-channels is equal to the number of V2I links,
M. The instantaneous channel information of the correspond-
ing V2V link, G;[m], for m € M, is the power gain of sub-
channel m. The channel information of the V2I link, H;[m],
for m € M, characterizes the power gain of each sub-channel
from the transmitter to the BS. The received interference signal
strength in the previous time slot, I;_;[m], for m € M, rep-
resents the received interference strength in each sub-channel.
Local observations also include information shared by the neigh-
bors, such as the channel indices selected by the neighbors in
the previous time slot, N;_;[m], for m € M, where each item
represents the number of times the sub-channel has been used
by the neighbors. In addition, information about the condition
of the transmitted messages should also be involved, such as
the remaining load for transmission, L,, i.e., the proportion of
bits remaining to transmit, and the time left before violating the
latency constraint, U;. This set of local information, including
H;[m], I _1[m], N;_i[m], form € M, L, and Uy, will be used
in the broadcast scenario as we will see in Section I1I. The obser-
vations are closely related to the optimal selection of power and
the spectrum for transmission. Nevertheless, the relationship
between the observations and the optimal resource allocation
solution is often implicit and hard to establish analytically for
network optimization. Deep reinforcement learning can find the
relationship and accomplish optimization.

III. DEEP REINFORCEMENT LEARNING FOR UNICAST
RESOURCE ALLOCATION

In this section, the deep reinforcement learning based re-
source management for unicast V2V communications is intro-
duced. The formulations of key parts in the reinforcement learn-
ing are shown and the deep Q-network based proposed solution
is presented in detail.

A. Reinforcement Learning

As shown in Fig. 2, the framework of reinforcement learning
consists of agents and environment interacting with each other.
In this scenario, each V2V link is considered as an agent and
everything beyond the particular V2V link is regarded as the
environment, which presents a collective rather than atomized
condition related to the resource allocation. Since the behavior
of other V2V links cannot be controlled in the decentralized
setting, the action of each agent (individual V2V links) is thus
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Fig. 2. Deep reinforcement learning for V2V communications.

based on the collective manifested environmental conditions
such as spectrum, transmission power, etc.

As in Fig. 2, at each time ¢, the V2V link, as the agent,
observes a state, s¢, from the state space, S, and accordingly
takes an action, a;, from the action space, A, selecting sub-band
and transmission power based on the policy, . The decision
policy, 7, can be determined by the state-action function, also
called Q-function, Q(s¢,a;), which can be approximated by
deep learning. Based on the actions taken by the agents, the en-
vironment transits to a new state, sy 1, and each agent receives
a reward, r;, from the environment. In our case, the reward is
determined by the capacities of the V2I and V2V links and the
latency constraints of the corresponding V2V link.

As we have discussed in Section II, the state of the en-
vironment observable to by each V2V link consists of sev-
eral parts: the instantaneous channel information of the cor-
responding V2V link, G¢ = (G[1], ..., G;[M]), the previous
interference power to the link, Ity = (I;_[1], ..., ;1 [M]),
the channel information of the V2I link, e.g., from the V2V
transmitter to the BS, Hy = (H;[1],..., H;[M]), the selected
of sub-channel of neighbors in the previous time slot, Ny_; =
(N¢-1[1], ..., Ny—1[M]), the remaining load of the VUE to trans-
mit, L; , and the remaining time to meet the latency constraints
U;. Even though the state consists heterogeneous data, it will be
shown later that with deep neural networks, useful information
can be extracted from the heterogeneous data for learning the
optimal policy. In summary, the state can be expressed as

st = {It—1, Hy, Ny 1, G, Uy, Ly }.

At each time, the agent takes an action a; € A, which consists
of selecting a sub-channel and a power level for transmission,
based on the current state, sy € S, by following a policy .
The transmission power is discretized into three levels, thus the
dimension of the action space is 3 X Nrp when there are Npp
resource blocks in all.

The objective of V2V resource allocation is as follows. An
agent (i.e. a V2V link) selects the frequency band and trans-
mission power level that incur only small interference to all
V2I links as well as other V2V links while preserving enough
resources to meet the requirement of the latency constraints.
Therefore, the reward function that guides the learning should
be consistent with the objective. In our framework, the reward
function consists of three parts, namely, the capacity of the V2I
links, the capacity of the V2V links, and the latency condition.
The sum capacities of the V2I and the V2V links are used to

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 68, NO. 4, APRIL 2019

measure the interference to the V2I and other V2V links, re-
spectively. The latency condition is represented as a penalty. In
particular, the reward function is expressed as,

re=he B Cml+ag Y CUlk] = A (To—Ty), (D)
meM kek

where Tj is the maximum tolerable latency and A, A4, and A,
are weights of the three parts. The quantity (7p — Uy ) is the time
used for transmission; the penalty increases as the time used for
transmission grows. In order to obtain good performance in the
long-term, both the immediate rewards and the future rewards
should be taken into consideration. Therefore, the main objec-
tive of reinforcement learning is to find a policy to maximize
the expected cumulative discounted rewards,

R =E|Y B"riwnl, ®)

n=0

where 3 € [0, 1] is the discount factor.

The state transition and reward are stochastic and modelled
as a Markov decision process (MDP), where the state transition
probabilities and rewards depend only on the state of the envi-
ronment and the action taken by the agent. The transition from s
to s¢41 with reward r; when action a, is taken can be character-
ized by the conditional transition probability, p(s¢t1,7¢|St, at)-
It should be noted that the agent can control its own actions
and has no prior knowledge on the transition probability ma-
trix P = {p(s¢+1, r¢|St, ar )}, which is only determined by the
environment. In our problem, the transition on the channels,
the interference, and the remaining messages to transmit are
generated by the simulator of the wireless environment.

B. Deep Q-Learning

The agent takes actions based on a policy, 7, which is a map-
ping from the state space, S, to the action space, .4, expressed
as:sy €S — a; € A. As indicated before, the action space
spans over two dimensions, the power level and the spectrum
subband, and an action, a; € A, corresponds to a selection of
the power level and the spectrum for V2V links.

The Q-learning algorithms can be used to get an optimal
policy to maximize the long-term expected accumulated dis-
counted rewards, G [24]. The Q-value for a given state-action
pair (s, a;), Q(st, at), of policy 7 is defined as the expected
accumulated discounted rewards when taking an action a; € A
and following policy 7 thereafter. Hence the Q-value can be
used to measure the quality of certain action in a given state.
Once Q-values, Q(st, at), are given, an improved policy can be
easily constructed by taking the action, given by

a; = argmax Q(st,a). )

That is, the action to be taken is the one that maximizes the
Q-value.

The optimal policy with Q-values Q* can be found without
any knowledge of the system dynamics based on the following
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Fig. 3.  Structure of deep Q-networks.

update equation,

Qnew (st,at) = Qora(se, ar) + afriy
+ 5?&8 Qora(s,ar) — Qoa(se, ar)], (10)

where o denotes the learning rate [25]. The second term on the
right of the equation is the temporal difference error for updating
the Q-value, which will be zero for the optimal Q-value Q*.

It has been shown in [25] that in the MDP, the Q-values will
converge with probability 1 to the optimal @Q* if each action
in the action space is executed under each state for an infinite
number of times on an infinite run and the learning rate «
decays appropriately. The optimal policy, 7*, can be found once
the optimal Q-value, Q™ , is determined.

In the resource allocation scenario, once the optimal policy
is found through training, it can be employed to select spectrum
band and transmission power level for V2V links to maximize
overall capacity and ensure the latency constraints of V2V links.

The classic Q-learning method can be used to find the optimal
policy when the state-action space is small, where a look-up ta-
ble can be maintained for updating the Q-value of each item in
the state-action space. However, the classic Q-learning cannot
be applied if the state-action space becomes huge, just as in the
resource management for the V2V communications. The rea-
son is that a large number of states will be visited infrequently
and corresponding Q-value will be updated rarely, leading to
a much longer time for the Q-function to converge. To rem-
edy this problem, deep Q-network improves the Q-learning by
combining the deep neural networks (DNN) with Q-learning.
As shown in Fig. 3, the Q-function is approximated by a DNN
with weights {0} as a Q-network [24]. Once {6} is determined,
Q-values, Q(s, a;), will be the outputs of the DNN in Fig. 3.
DNN can address sophisticate mappings between the channel
information and the desired output based on a large amount of
training data, which will be used to determine Q-values.

The Q-network updates its weights, 8, at each iteration to
minimize the following loss function derived from the same
Q-network with old weights on a data set D,

Loss(0) = Z (y — Q(st, ar,0))°,

(s¢,a,)€D

(1)
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where

y =7 + max Qoid(st,a,0), (12)

where 7y is the corresponding reward.

C. Training and Testing Algorithms

Like most machine learning algorithms, there are two stages
in our proposed method, i.e., the training and the test stage. Both
the training and test data are generated from the interactions of
an environment simulator and the agents. Each training sample
used for optimizing the deep Q-network includes sg, s¢+1, at,
and r;. The environment simulator includes VUEs and CUEs
and their channels, where positions of the vehicles are generated
randomly and the CSI of V2V and V21 links is generated accord-
ing to the positions of the vehicles. With the selected spectrum
and power of V2V links, the simulator can provide sy and
r; to the agents. In the training stage, the deep Q-learning with
experience replay is employed [24], where the training data is
generated and stored in a storage named memory. As shown
in Algorithm 1, in each iteration, a mini-batch data is sampled
from the memory and is utilized to renew the weights of the deep
Q-network. In this way, the temporal correlation of generated
data can be suppressed. The policy used in each V2V link for
selecting spectrum and power is random at the beginning and
gradually improved with the updated Q-networks. As shown in
Algorithm 2, in the test stage, the actions in V2V links are cho-
sen with the maximum Q-value given by the trained Q-networks,
based on which the evaluation is obtained.

As the action is selected independently based on the local in-
formation, the agent will have no knowledge of actions selected
by other V2V links if the actions are updated simultaneously.
As a consequence, the states observed by each V2V link can-
not fully characterize the environment. In order to mitigate this
issue, the agents are set to update their actions asynchronously,
where only one or a small subset of V2V links will update their
actions at each time slot. In this way, the environmental changes
caused by actions from other agents will be observable. In fact,
the co-ordinations are introduced by allowing the agents sharing
their actions with their neighbors and taking turns to make deci-
sions [28]. Co-ordinations can bring improvement by selecting
the actions jointly instead of independently. In the distributed
resource allocation problem, the V2V links may run into col-
lisions if different agents make their decisions independently
and happen to select the same RB. However, when the agent
has information about the neighbors’ actions in its observation,
it can automatically find out that using the same RB tends to
result in low rewards, therefore avoid this selection in order to
get more rewards.

IV. RESOURCE ALLOCATION FOR BROADCAST SYSTEM

In this section, the resource allocation scheme based on
deep reinforcement learning is extended to the broadcast V2V
communication scenario. We first introduce the broadcast sys-
tem model. Then the key elements in reinforcement learning



3168

Algorithm 1: Training Stage Procedure of Unicast.

1: procedure TRAIN
2: Input: Q-network structure, environment simulator
3:  Output: Q-network
4: start:
Randomly initialize the policy 7.
Initialize the model.
Start environment simulator and generate vehicles,
VUEs, and CUEs.
5: loop:
Iteratively select the V2V link in the system.
For each V2V link, select the spectrum and power
for transmission based on policy 7.
Environment simulator generates states and rewards
based on the action of agents.
Collect and save the data item {state, reward,
action, post-state } into memory.
Sample a mini-batch of data from the memory.
Train the deep Q-network using the mini-batch
data.
Update the policy 7: chose the action with
maximum Q-value.
6: end loop
7: return: Return the deep Q-network

Algorithm 2: Test Stage Procedure of Unicast.

1: procedure TESTING
2: Input: Q-network, environment simulator
3:  Qutput: Evaluation results
4: start:
Load the Q-network model.
Start environment simulator and generate vehicles,
VUEs, and CUEs.
5: loop:
Iteratively select a V2V link in the system.
For each V2V link, select the action by choosing the
action with the largest Q-value.
Update the environment simulator based on the
actions selected.
Update the evaluation results, i.e., the average of
V2I capacity and the probability of successful VUEs.
6: end loop
7: return: Evaluation results

framework are formulated for the broadcast system and algo-
rithms to train the deep Q-networks are shown.

A. Broadcast System

Fig. 4 shows a broadcast V2V communication system, where
the vehicle network consists Mp = {1,2,..., M} CUEs de-
manding V2I links. At the same time, g = {1,2,..., K5}
VUEs are broadcasting the messages, where each message has
one transmitter and a group of receivers in the surrounding area.
Similar to the unicast case, the uplink spectrum for the V2I
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An illustrative structure of broadcast vehicular communication

links is reused by the V2V links as uplink resources are less
intensively used and interference at the BS is more controllable.

In order to improve the reliability of broadcast, each vehicle
will rebroadcast the messages that have been received. However,
as mentioned in Section I, the broadcast storm problem occurs
when the density of the vehicles is large and there are excessive
redundant rebroadcast messages existing in the networks. To
address this problem, vehicles need to select a proper subset of
the received messages to rebroadcast so that more receivers can
get the messages within the latency constraint while bringing
little redundant broadcast to the networks.

The interference to the V2I links comes from the background
noise and the signals from the VUEs that share the same sub-
band. Thus the capacity of V2I link can be expressed as

P°h,,
o2+ Y exc, P [MIPY hy’

c

¥ [m] =

13)

where P¢ and P" are the transmission powers of the CUE
and the VUE, respectively, o? is the noise power, h,, is the
power gain of the channel corresponding to the m'" CUE, hy,
is the interference power gain of the k' VUE, and py, [m] is the
spectrum allocation indicator with p;[m] = 1 if the k' VUE
reuses the spectrum of the m'" CUE and pj,[m] = 0 otherwise.
Hence the capacity of the m'" CUE can be expressed as
Clm] =W -log(1 +~°[m)), (14)
where W is the bandwidth.
Similarly, for the j'" receiver of the k' VUE, the SINR is

chk,j
o2+ G, + Gy’

v

Vg = 5)
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with
Ge = Z P kP Gk (16)
meMp
and
Ga= D > pelmlpe[mP g, (A7)

meMp k'eKpk#k'

where g;. ; is the power gain of the 4" receiver of the k' VUE,
J,m 1s the interference power gain of the m!" CUE, and gg,ﬁ k.
is the interference power gain of the &*" VUE. The capacity for
the j'" receiver of the k' VUE can be expressed as

Clk,j] = W -log(1 +~"[k, j]). (18)

In the decentralized settings, each vehicle will determine
which messages to broadcast and select which sub-channel to
make better use of the spectrum. These decisions are based on
some local observations and should be independent of the V2I
links. Therefore, after resource allocation procedure of the V2I
communications, the main goal of the proposed autonomous
scheme is to ensure that the latency constraints for the VUEs can
be met while the interference of the VUEs to the CUEs should
be minimized. The spectrum selection and message scheduling
should be managed according to the local observations.

In addition to the local information used in the unicast case,
some information is useful and unique in the broadcast sce-
nario, including the number of times that the message has been
received by the vehicle, O;, and the minimum distance to the ve-
hicles that have broadcast the message, D;. O; can be obtained
by maintaining a counter for each message received by vehicle,
where the counter will increase one when the message has been
received again. If the message has been received from different
vehicles, D; is the minimum distance to the message senders. In
general, the probability of rebroadcasting a message decreases
if the message has been heard many times by the vehicle or the
vehicle is near to another vehicle that had broadcast the message
before.

B. Reinforcement Learning for Broadcast

Under the broadcast scenario, each vehicle is considered as an
agent in our system. At each time ¢, the vehicle observes a state,
s¢, and accordingly takes an action, a;, selecting sub-band and
messages based on the policy, 7. Following the action, the state
of the environment transfers to a new state sy, 1 and the agent
receives a reward, 7, determined by the capacities of the V2I
and V2V links and the latency constraints of the corresponding
V2V message.

Similar to the unicast case, the state observed by each ve-
hicle for each received message consists of several parts: the
instantaneous channel interference power to the link on each
subband, I;—y = (I;_[1],..., [;_1[M]), the channel informa-
tion of the V2I link on each subband, e.g., from the V2V
transmitter to the BS, Hy = (H;[1], ..., H;[M]), the selection
of sub-channel of neighbors in the previous time slot, Ny_1 =
(Ny_1[1], ..., Ny_1[M]), and the remaining time to meet the la-
tency constraints, U, . Different from the unicast case, we have to
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include the number of times that the message have been received
by the vehicle, O; and the minimum distance to the vehicles that
have broadcast the message, Dy, in the state representation, In
summary, the state can be expressed as

St = {It—17 Ht7Nt—l; Ut7 Ota Dt}

At each time ¢, the agent takes an action at a; € A, which
includes determining the massages for broadcasting and the
sub-channel for transmission. For each message, the dimension
of action space is the Npp + 1, where Nip is the number
of resource blocks. If the agent takes an action from the first
Npgp actions, the message will be broadcast immediately in the
corresponding sub-channel. Otherwise, the message will not be
broadcast at this time if the agent takes the last action.

Similar to the unicast scenario, the objective of selecting chan-
nel and message for transmission is to minimize the interference
to the V2I links with the latency constraints for VUEs guaran-
teed. In order to reach this objective, the frequency band and
messages selected by each vehicle should have small interfer-
ence to all V2I links as well as other VUEs. It also needs to meet
the requirement of latency constraints. Therefore, similar to the
unicast scenario, the reward function consists of three parts, the
capacity of V2I links, the capacity of V2V links, and the latency
condition. To suppress the redundant rebroadcasting, only the
capacities of receivers that have not received the message are
taken into consideration. Therefore, no capacity of V2V links is
added, if the message to rebroadcast has already been received
by all targeted receivers. The latency condition is represented
as a penalty if the message has not been received by all the tar-
geted receivers, which increases linearly as the remaining time
U; decreases. Therefore, the reward function can be expressed
as,

e = Ae Z Clm] + rqg
meM

Z Cu[kaﬂ _AP(TO_Ut)’
kek,j¢E{k}

19)
where E{k} represents the targeted receivers that have received
the transmitted message.

In order to get the optimal policy, deep Q-network is trained
to approximate the Q-function. The training and test algorithm
for broadcasting are very similar to the unicast algorithms, as
shown in Algorithm 3 and Algorithm 4.

V. EXPERIMENTS

In this section, we present simulation results to demonstrate
the performance of the proposed method for unicast and broad-
cast vehicular communications.

A. Unicast

We consider a single cell system with the carrier frequency
of 2 GHz. We follow the simulation setup for the Manhattan
case detailed in 3GPP TR 36.885 [5], where there are 9 blocks
in all and with both line-of-sight (LOS) and non-line-of-sight
(NLOS) channels. The vehicles are dropped in the lane ran-
domly according to the spatial Poisson process and each plans
to communicate with the three nearby vehicles. Hence, the
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Algorithm 3: Training Stage Procedure of Broadcast.

1: procedure TRAINING
2: Input: Q-network structure, environment simulator
3:  Output: Q-network
4: start: Random initialize the policy 7.
Initialize the model.
Start environment simulator and generate vehicles,
VUEs, and CUEs.
5:  loop: Iteratively select a vehicle in the system.
For each vehicle, select the messages and spectrum
for transmission based on policy 7
Environment simulator generates states and rewards
based on the action of agents.
Collect and save the data item {state, reward,
action, post-state} into memory.
Sample a mini-batch of data from the memory.
Train the deep Q-network using the mini-batch
data.
Update the policy 7: chose the action with
maximum Q-value.
6: end loop
7: return: Return the deep Q-network

Algorithm 4: Test Stage Procedure of Broadcast.

1: procedure TESTING
2: Input: Q-network, environment simulator
3:  Output: Evaluation results
4: start: Load the Q-network model.
Start environment simulator and generate vehicles,
VUEs, and CUEs.
5: loop: Iteratively select a vehicle in the system.

For each vehicle, select the messages and
spectrum by choosing the action with the largest
Q-value.

Update the environment simulator based on the
actions selected.
Update the evaluation results, i.e., the average of
V2I capacity and the probability of successful VUEs.
6: end loop
7: return: Evaluation results

number of V2V links, /K, is three times of the number of vehi-
cles. Our deep Q-network is a five-layer fully connected neural
network with three hidden layers. The numbers of neurons in
the three hidden layers are 500, 250, and 120, respectively. The
activation function of Relu is used, defined as

fr(x) = max(0, z). 20)
The learning rate is 0.01 at the beginning and decreases exponen-
tially. We also utilize e-greedy policy to balance the exploration
and exploitation [24] and adaptive moment estimation method

(Adam) for training [26]. The detail parameters can be found in
Table I.
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TABLE I
SIMULATION PARAMETERS

Carrier frequency 2 GHz
Bandwidth per channel 1.5 MHz
BS antenna height 25 m
BS antenna gain 8 dBi
BS receiver noise figure 5dB
Vehicle antenna height 1.5 m
Vehicle antenna gain 3 dBi
Vehicle receiver noise figure 9 dB
Vehicle speed 36 km/h
Neighbor distance threshold 150 m
Number of lanes 3 in each direction (12 in total)
Latency constraints for V2V links T 100 ms
V2V transmit power level list in unicast [23, 10, 5] dBm
Noise power o2 -114 dBm
[AcsAg:Apl [0.1, 0.9, 1]
V2V transmit power in broadcast 23 dBm
SINR threshold in broadcast 1 dB
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Fig. 5. Mean rate versus the number of vehicles.

The proposed method is compared with other two meth-
ods. The first is a random resource allocation method. At each
time, the agent randomly chooses a sub-band for transmission.
The other method is developed in [15], where vehicles are first
grouped by the similarities and then the sub-bands are allocated
and adjusted iteratively to the V2V links in each group.

1) V2I Capacity: Fig. 5 shows the summation of V2I rate
versus the number of vehicles. From the figure, with the in-
crease of the vehicles, the number of V2V link increases as
a result, the interference to the V2I link grows, therefore the
V2I capacity drops. the proposed method has much better per-
formance to mitigate the interference of V2V links to the V2I
communications.

2) V2V Latency: Fig. 6 shows the probability that the V2V
links satisfy the latency constraint versus the number of vehi-
cles. Similarly, with the increase vehicles, the V2V links in all
increase, as a result it is more difficult to ensure every vehicle
satisfy the latency constraints. From the figure, the proposed
method has a much larger probability for the V2V links to sat-
isfy the latency constraint since it can dynamically adjust the
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power and sub-band for transmission so that the links likely
violating the latency constraint have more resources.

In order to find the reason for the superior performance of
the learning based policy, we examine the power selection be-
haviors at different time during the transmission. Fig. 7 shows
the probability for the agent to choose power levels with dif-
ferent time left for transmission. In general, the probability for
the agent to choose the maximum power is low when there is
abundant time for transmission, while the agent will select the
maximum power with a high probability to ensure satisfying the
V2V latency constraint when only a small amount of time left.
However, when only 10 ms left, the probability for choosing
the maximum power level suddenly drops to about 0.6 because
the agent learns that even with the maximum power the latency
constraints will be violated with high probability and switching
to a lower power will get more reward by reducing interference
to the V2I and other V2V links. Therefore, we can infer that the
improvement of deep reinforcement learning based approach
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comes from learning the implicit relationship between the state
and the reward function, which the benchmark methods fail to
characterize.

B. Broadcast

The simulation environment is same as the one used in uni-
cast, except that each vehicle communicates with all other ve-
hicles within certain distance. The message of the k' VUE is
considered to be successfully received by the j'” receiver if the
SINR of the receiver, 'y};’j, is above the SINR threshold. If all
the targeted receivers of the message have successfully received
the message, this V2V transmission is considered as successful.

The deep reinforcement learning based method jointly op-
timizes the scheduling and channel selection while historical
works usually treat the two problems separately. In the chan-
nel selection part, the proposed method is compared with the
channel selection method based on [15]. In the scheduling part,
the proposed method is compared with the p-persistence pro-
tocol for broadcasting, where the probability of broadcasting is
determined by the distance to the nearest sender [10].

1) V2I Capacity: Fig. 8 demonstrates the summation of V2I
rate versus the number of vehicles. From the figure, the proposed
method has better performance to mitigate the interference of
the V2V links to the V2I communications.

2) V2V Latency: Fig. 9 shows the probability that the VUESs
satisfy the latency constraint versus the number of vehicles.
From the figure, the proposed method has a larger probability
for VUEs to satisfy the latency constraint since it can effectively
select the messages and sub-band for transmission.

C. Discussion

In summary, in both unicast and broadcast scenarios, deep
reinforcement learning can find the relationship between lo-
cal observations and the solution maximizing the accumulated
reward function in a trial-and-error manner while this relation-
ship is hard for the conventional approaches to characterize. For
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instance, as shown in Fig. 7, the deep reinforcement learning can
automatically figure out how to use different power levels ac-
cording to the remaining time. But the relationship between the
remaining time and the reward function cannot be formulated
explicitly. Therefore, deep reinforcement learning allocates the
resources wisely according to the local observations and has sig-
nificant gains in the V2V successful rate and the V2I capacity
comparing to the conventional methods.

A major concern on the deep learning based methods is the
computation complexity. In our implementation, the time for
each selection is 2.4 x 10~ second, using GPU 1080 Ti. The
speed is acceptable since the constraint on the vehicles is not
very stringent. In addition, there are several prior works that
reduce the computation complexity of the deep neural networks,
such as binarizing the weights of the network [27]. How to
exploit these new technologies to reduce the complexity of the
proposed approach will be a future direction.

VI. CONCLUSION

In this paper, a decentralized resource allocation mechanism
has been proposed for the V2V communications based on deep
reinforcement learning. It can be applied to both unicast and
broadcast scenarios. Since the proposed methods are decentral-
ized, the global information is not required for each agent to
make its decisions, the transmission overhead is small. From
the simulation results, each agent can learn how to satisfy
the V2V constraints while minimizing the interference to V2I
communications.
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