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Abstract—This paper proposes a new spectrum sensing tech-
nique, referred to as autonomous compressive sensing (CS)-
augmented spectrum sensing, which can be developed to provide
more efficient spectrum opportunity identification than geoloca-
tion database methods. First, we propose an autonomous CS-based
sensing algorithm that enables the local secondary users (SUs) to
automatically choose the minimum sensing time without knowl-
edge of spectral sparsity or channel characteristics. The compres-
sive samples are collected block-by-block in time, while the spectral
is gradually reconstructed until the proposed stopping criterion is
reached. Moreover, a CS-based blind cooperating user selection
algorithm is proposed to select the cooperating SUs via indirectly
measuring the degeneration of the signal-to-noise ratio experienced
by different SUs. Numerical and real-world test results demon-
strate that the proposed algorithms achieve high detection perfor-
mance with reduced sensing time and number of cooperating SUs
in comparison with the conventional compressive spectrum sensing
algorithms.

Index Terms—Compressive sensing, cognitive radio, wideband
spectrum sensing, spectrum access framework.

I. INTRODUCTION

R EGULATORY bodies worldwide are facing that the rapid
growth of wireless communication industry is overwhelm-

ing current static spectrum supply, and thus encourages an urgent
need for improved spectrum assignment strategy to mitigate the
gap between the available spectrum and the demand [1], [2]. A
key finding of the U.S. 2012 President’s Council of Advisers on
Science and Technology (PCAST) report [3] is that advanced
spectrum sharing technologies have the potential to “transform
spectrum scarcity into abundance” based on the following two
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factors: first, it is well recognised that many licensed frequency
bands are under-utilized in practice either over time or geogra-
phy locations [4]; second, there have been some rapid advances
towards the development of dynamic spectrum access such as
cognitive radio technology [5]–[7]. To that end, the academia,
industry, and regulatory bodies are closely collaborating to pur-
sue policy and technology innovations based on the paradigm of
the shared spectrum. Recently, the 3550-3700 MHz (referred to
as 3.5 GHz band) Citizens Broadband Radio Service (CBRS),
is considered for the spectrum sharing by Federal Communica-
tions Commission (FCC) in the US. Meanwhile, UK Office of
Communications (Ofcom) has published the call for input [8]
which considers the 3.8 GHz to 4.2 GHz as the first band where
they apply the spectrum sharing framework. In order to share
the spectrum efficiently and limit the interference among users,
three-tiered spectrum access framework was introduced in the
above-mentioned shared spectrums [9], [10], where the incum-
bent users as the primary users (PUs) operate at the top tier,
while the CBRS users as the secondary users (SUs) operate at
the second or third tiers holding priority access license (PAL)
or generalized authorized access (GAA), respectively. Each tier
accepts interference from tiers above and is protected from tiers
below.

One of the vital important parts of the three-tiered spec-
trum access framework is how to identify available spectrum
bands while protecting the operation of existing users. The cur-
rent shared spectrum access systems either utilize geo-location
database to determine which portion of the spectrum is unoc-
cupied or make use of environmental sensing capability (ESC)
system to sense the presence of the incumbent users [4]. Based
on the experience of the TV white space (TVWS) database
operation [11], the existing geo-location database technology
is capable of facilitating the three-tiered access to the shared
spectrum [12]. However, some of the PUs’ spectrum usage in-
formation provided by database might be missed or out of date.
Besides, the database only protects the communication of the
PUs. Therefore, both of the PUs and the SUs may suffer from
severe interference and some spectrum opportunities are not effi-
ciently utilized [13]. ESC is a group of RF sensors and a decision
system deployed in the coastal areas, which is designed to detect
the presence of the shipborne incumbent users [14]. However,
ESC sensors are normally deployed close to the ocean, which
may be far from many metropolitan areas. Moreover, ESC sen-
sors should be deployed with a desired level of redundancy to
maintain fault tolerance to sensor outage.
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Fig. 1. The real-time spectrum occupancy recorded at QMUL
(51.523021◦ N 0.041592 ◦ W). The figure shows that the spectrum is sparsely
occupied on F = [0, 6000] MHz.

In contrast, the sufficient amount of the CBRS access points
as the SUs are widely deployed to provide secondary spectrum
access in both urban and rural areas, which could be the nearest
infrastructures to most user devices. Therefore, the Citizens
Broadband Service Device (CBSD) sensing network, which
consists of CBRS access points and CBRS users with sens-
ing capability, is an ideal solution for identifying the spectrum
opportunities [4]. Remarkably, there are two key challenges
to realize the CBSD sensing network in three-tiered spectrum
sharing framework.

Firstly, to make the best of the shared spectrum, a wide portion
of the spectrum must be sensed (up to 400 MHz in UK spec-
trum sharing framework [10]). Since the sampling rate of A/D
converters in the SUs should be higher than twice of spectrum
bandwidth due to the Nyquist-Shannon’s sampling theorem, the
A/D converters with very high sampling rate must be employed
and large amounts of spectrum data have to be processed af-
terwards, which is unrealistic to be installed in the commercial
SUs with restricted energy resources, e.g., mobile sensors and
IoT devices. To alleviate the bottleneck of high rate A/D con-
verters and the massive data processing burden after sampling,
compressive sensing (CS) [15], [16] was applied to acquire
wideband signals using the lower sampling rates than Nyquist
rates by exploiting the sparse nature of the wideband spectrum
as shown in Fig. 1. Due to the shorter propagation distance
as the result of higher central frequencies (3.5 GHz or above)
used in three-tiered spectrum access framework, most spectrum
occupancy status varies with users accessing or releasing the
spectrum randomly. Therefore, the sparsity of the wideband
signals is also varying and unknown [17]. Conventional CS the-
ory requires prior knowledge of signal sparsity to calculate the
sufficient number of compressive samples for signal reconstruc-
tion. Since the sparsity level is often unknown in practice, most
of CS approaches assume a large sparsity level and choose the
excess number of compressive samples to guarantee the qual-
ity of reconstruction. It turns out that these approaches require
more sensing time or higher sampling rates to collect compres-
sive samples, which causes larger sensing latency and therefore
loses the advantage of using CS technologies.

Secondly, to overcome the signal-to-noise ratio (SNR) de-
generation caused by multi-path fading, shadowing, and ran-
dom noise over wireless channels, cooperative spectrum sensing

(CSS) has been shown to increase the reliability of sensing by
exploiting the spatial diversity across the multiple SUs [18],
[19]. However, a large number of the SUs participating in CSS
network leads to extensive energy consumption and transmis-
sion overhead due to sensing reporting and sensing decision at
the fusion center. Therefore, only the SUs with high detection
capabilities should be selected. It is shown in [20] that the best
detection performance is usually achieved by cooperating only
with the SUs that have the highest SNR values. In general, the
SNRs experienced by the different SUs are unknown in advance,
so that it is hard to identify SUs which have the best detection
capability.

Motivated by the above challenges, the contribution of this
paper is two-fold.

1) Firstly, in order to reduce both the sensing time and data
processing burden, and provide the exact signal recon-
struction without any extra channel assumption including
prior knowledge of sparsity, we propose an autonomous
CS-based sensing algorithm that enables the local SUs
to choose the number of compressive samples automat-
ically. More specifically, instead of assuming the upper
limit of sparsity level, which would not take the full ad-
vantage of CS due to redundant samples collection, the
proposed algorithm can autonomously terminate the sam-
ples acquisition when the proposed Euclidean distance Dp

is smaller than a given threshold. The proposed algorithm
could therefore achieve the minimum sensing time under
the given sampling rate.

2) Secondly, we propose a CS-based blind cooperating user
selection algorithm over wide spectrum without any prior
knowledge of the primary signals, sensor locations. More
specifically, by observing the reconstruction error of CS
is degraded with the SNR experienced by SUs, i.e., lower
SNR leading to larger reconstruction error under given
sampling rate and sensing time, the proposed algorithm
employ the same mechanism as the proposed autonomous
CS-based sensing algorithm to indirectly compare the de-
generating of SNRs according to the approximated recon-
struction errors.

Additionally, performance analysis of the proposed au-
tonomous CS augmented spectrum sharing scheme is presented
to show its efficiency on dynamic spectrum sharing. Further-
more, the proposed algorithms are tested by the simulated sig-
nals as well as the real-world signals.

The rest of this paper is organized as follows: Section II dis-
cusses the related work on spectrum sensing. In Section III, the
preliminary system and signal model is described. Section IV
introduces the proposed autonomous CS-based sensing al-
gorithm. Section V develops the proposed blind cooperating
user selection algorithm for selecting SUs with high SNR.
Section VI analyzes and validates the proposed algorithms
over simulated and real-world TVWS signals. Conclusions are
drawn in Section VII.

II. RELATED WORK

Recently, there are some works employing CS into spectrum
sensing. In [21] and [22], novel frequency-domain cyclic prefix
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(CP) autocorrelation based compressive spectrum sensing algo-
rithms were proposed to detect PUs in the presence of noise un-
certainty and frequency selectivity. By making use of sparsity in
the spectral domain, CS was utilized to construct the autocorre-
lation of the received signal from its subband sample sequences.
In [12] and [23], hybrid frameworks are proposed to incorporate
the advantages of both geolocation database and CS-based spec-
trum sensing. However, the aforementioned works require the
prior knowledge such as instant sparsity level of the wideband
spectrum for signal reconstruction. Therefore, to eliminate the
prior knowledge of instant spectral sparsity level in CS-based
spectrum sensing. Authors in [24] proposed a sparsity order esti-
mation method to obtain the minimum sampling rate. To further
improve the sparsity order estimation performance, a dynamic
sparsity upper bound adjustment scheme was proposed in [25]
for obtaining a proper sparsity upper bound. Compared with
these algorithm, the proposed autonomous CS-based sensing
algorithm can automatically choose the number of compressive
samples without any sparsity estimation efforts.

To solving the cooperating SUs selection problem in spectrum
sharing framework, with the knowledge of the SUs’ locations,
the authors in [26] addressed the user selection problem by
selecting a set of SUs which experience uncorrelated shadow
fading. The knowledge of the distance between SUs and base
station is required by those algorithms which also need the cen-
tral coordination, i.e., the sensing results should be sent to the
fusion center for selection. In [27], without the prior knowl-
edge of the SUs’ locations, three methods for selecting the SUs
based on hard local decisions were proposed, which outper-
form the purely random selection method of SUs. Moreover, a
correlation-aware user selection scheme was proposed in [28],
which was developed by adaptively selecting the SUs based on
the evaluation of the correlation experienced by the SUs. How-
ever, the aforementioned algorithms are under the circumstance
of narrowband sensing rather than wideband one and therefore
are not suitable for wideband CSS. In [29], a hybrid double
threshold based CSS scheme was proposed, which could im-
prove the detection performance at SUs by exploiting both local
decisions and global decisions feedback from the fusion center.
Based on order statistic information of the reporting links be-
tween SUs and fusion center, a multi-selective sensing scheme
was proposed in [18]. The links with high SNRs are selected and
the number of selected links is decided centrally. Although the
two schemes could be applied in wideband CSS, the selection
process would be inefficient since the schemes introduce large
latency due to the sequential manner of sensing. Our proposed
blind user selection algorithm in this paper could capture the
whole wide spectrum at the same time based on CS but utilizes
a few compressive samples to select the SUs with high detection
capabilities.

III. SYSTEM AND SIGNAL MODELS

In this section, the preliminary system and signal models
of the proposed autonomous CS augmented spectrum sharing
scheme are presented.

Fig. 2. The proposed sensing-augmented spectrum sharing architecture.

A. System Model

In the conventional three-tiered spectrum access framework,
the responsibility of the spectrum access system (SAS) is to
manage all the incumbent and secondary operations based on
the information obtained from the incumbent database and the
incumbent detection, i.e., ESC. The incumbent database pro-
vides all the necessary spectrum usage and operational infor-
mation of the incumbent users. ESC detects the presence of
shipborne incumbent users with a group of RF sensors and the
interference from the unregistered users. As shown in Fig. 2, the
proposed scheme adopt the CBSD sensing network that consists
of the CBRS access points and the CBRS users with sensing ca-
pability to identify spectrum opportunities and the unregistered
users operating on the target spectrum. Moreover, due to the
centralized nature of SAS and the availability of the multiple
SUs, the proposed scheme can utilize the CSS scheme over the
SUs within the same secondary access network to deal with
the issues such as multi-path and shadowing, which also can
increase the spatial diversity and reduce the probability of deep
fading across all the SUs.

B. Signal Model

Sensing in the three-tiered spectrum access framework aims
to find the spectrum holes which could be used for secondary
access and identify the unwanted interference event over the
whole shared spectrum. Let x(t) be a real-valued continuous-
time signal received at the RF front end of the local SU, such
that

x(t) =
N sig∑

i=1

si(t) + n(t), (1)

where Nsig is the number of ongoing transmission signals which
span over the total band of W Hz, si(t) is the i-th signal and
n(t) refers to additive white Gaussian noise with zero mean
and variance σ2

n . In the conventional Nyquist sampling system,
we could obtain a discrete time sequence x[k] = x( k

fN
), k =

0, 1, . . . , N − 1 by using the Nyquist sampling rate fN over the
total sensing time TN . N is the number of Nyquist samples as
N = fN · T , N ∈ Z.

Based on the Nyquist sampling theory, the sampling rate fN

is required to be higher than 2W samples per second and there-
fore a lot of samples would be generated to process, which
slow down the processing speed and cause large power con-
sumption. Therefore, such Nyquist sampling rate schemes over
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wideband spectrum are likely unrealistic to be implemented in
the commercial SUs. This predicament urges us to apply CS
technologies to reduce the number of samples while remaining
the total bandwidth W unchanged.

In a CS-based spectrum sensing approach, the main task
is to reconstruct x[k] or its discrete Fourier transform (DFT)
x = {(x1, x2, . . . , xN )T )|x ∈ RN } from compressive sam-
ples. Specifically, since the wideband spectrum is practically
under-utilized, x(t) typically bears a sparse property in the fre-
quency domain such that its DFT x ∈ RN is a k-sparse vector,
i.e., |{xi : xi �= 0}| ≤ s. Therefore, the wideband spectrum
signal acquisition could be accomplished with a sub-Nyquist
sampling rate fs < 2W , resulting in fewer samples, and x[k] or
x could be reconstructed from the compressive samples [30],
which is expressed by the following analytical model:

y = Φx + ξ subject to ||x||0 ≤ s, (2)

where Φ ∈ RM ×N is the measurement matrix to collect the
compressive samples y ∈ RM from the original signal x, which
could be implemented using sub-Nyquist samplers, e.g., random
demodulator [31] and modulated wideband converter [32], in
which controllable measurement matrices have been proposed to
realize CS. M ∈ Z (with s < M < N ) refers to the dimension
of y, and || · ||0 represents the number of nonzero elements in
the vector, which is also treated as the measure of sparsity. The
compressive ratio in this compressive signal acquisition is given
by ρ = M/N < 1 and total sensing time Ts = M/fs . ξ ∈ RM

is the noise perturbation, whose magnitude is constrained by an
upper bound δ, i.e., ||ξ||2 < δ.

IV. THE PROPOSED AUTONOMOUS CS-BASED

SENSING ALGORITHM

In this section, we present an autonomous CS-based sensing
algorithm applied in local SUs of the CBSD sensing network.

A. Algorithm Description

In CS theory, the number of compressive samples M is chosen
regarding the sparsity level s of the signal in order to guaran-
tee the quality of reconstruction, e.g., M ≥ Cs log(N/s) for a
Gaussian measurement matrix, where C denotes a constant [15].
The sparsity level s of the spectrum is assumed to be known in
most of the CS-based spectrum sensing approach. These ap-
proaches intend to assume a maximum sparsity level smax to
ensure a high successful recovery rate since the sparsity level
is often unknown and fluctuates in practice. Therefore, the re-
quired number of compressive samples is larger than the nec-
essary amount, which causes unnecessary sensing latency or
higher sampling rate for collecting extra samples.

In contrast, our autonomous CS-based sensing algorithm is
adaptive to actual sparsity level, where the sensing time Ts is
divided into several time intervals and the wideband signal is
acquired block-by-block in time until the stopping criterion re-
garding reconstruction accuracy is reached. Therefore, the waste
of samples can be averted and the sensing latency or sampling
rate could be further reduced. Additionally, the remaining sens-
ing time can be utilized for data transmission.

Specifically, the proposed algorithm divides the total sensing
time Ts into P time intervals where p (p ∈ [1, P ]) refers to the
index of each time intervals. Let yp represents a vector contains
all the samples which are collected until the end of the p-th
time interval, and Mp denotes the number of elements in vec-
tor yp, where 0 < M1 < . . . < Mp . Δyp and ΔM represent a
vector contain the samples collected during the p-th time inter-
val and the number of samples collected in each time interval,
respectively, i.e., ΔM = Mp − Mp−1.

The collected samples vector yp could be utilized for signal
reconstruction by solving the l1-norm minimization problem:

arg min
xp∈RN

||xp||1 subject to ||Φpxp − yp||22 ≤ δ, (3)

where Φp denotes a Mp × N matrix and xp is the recon-
structed signal from yp. The original wideband spectrum sig-
nals tend to be compressible rather than sparse in the real-
world environment, which can be well approximated by sparse
signals, but the reconstruction errors can only be diminished
but not vanished [33]. Therefore, we utilize a proper con-
stant parameter λ ∈ R+ to balance the objective of minimizing
the reconstruction error and the solution sparsity according to
the Lagrange multiplier theorem, such that the problem (3) could
be equivalently solved by the following unconstrained optimiza-
tion problem:

arg min
xp∈RN

||Φpxp − yp||22 + λ||xp||1. (4)

In addition, the choice of λ depends on the noise level of the
original signal, e.g., the value of λ should be increased when the
noise floor is higher [34].

As the fewer measurements are usually required for the lν -
norm minimization approach compared with the l1-norm mini-
mization approach [35], we consider the approximation of the
l0-norm by the lν -norm instead of the l1-norm in (4):

arg min
xp∈RN

||Φpxp − yp||22 + λ||xp||νν . (5)

In contrast to the l1-norm, the lν -norm with 0 < ν < 1 is non-
convex. As convex optimization techniques are no longer ap-
plicable, the global minimizer is not guaranteed and general
NP-hard due to the nonconvexity of the lν -norm minimization.
To that end, iterative reweighted least square (IRLS) algorithm
was proposed to solve this problem by solving a sequence of
the approximation subproblems [36]. The solution sequence
generated by the IRLS algorithm converges to the local min-
imum as the sparsest solution which is also the actual global
lν -norm minimizer under certain assumptions such as the null
space property (NSP) on Φp [35]. However, the computational
burden of lν -norm minimization is higher than that of l1-norm
minimization. To reduce the iterations and speed up the con-
vergence of reconstruction, we adopt the adaptively regularized
iterative reweighted least square (AR-IRLS) reconstruction al-
gorithm [37] which moves the estimated solutions along an
exponential-linear path by regularizing the weights in each iter-
ation with a series of non-increasing penalty terms. Specifically,
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the iterative estimates {x(l)
p }∞l=1 of xp is given by

x(l)
p := arg min

xp∈RN

||Φpxp − yp||22 + λ||xp||2(w(l)
p )

2 ,

w(l)
p := (w(l)

p(1) , ..., w
(l)
p(N )), (6)

where ||x||2(w)
2 denotes

∑N
i=1 wix

2
i and w

(l)
p(j ) is defined as

w
(l)
p(j ) =

((
x

(l−1)
p(j )

)2
+ ε

) ν
2 −1

0 < ν < 1. (7)

After convergence, x(l−1)
p will be sufficiently close to x(l−1)

p ,

so that ||xp||2(w(l)
p )

2 =
∑N

j=1 w
(l)
p(j )x

2
p(j ) =

∑N
j=1((x

(l−1)
p(j ) )2 +

ε)
ν
2 −1 · x2

p(j ) would be close to ||xp||vv . In order to provide

stability and ensure that a zero-valued component in x(l)
p does

not strictly prohibit a nonzero estimate at the next iteration,
ε > 0 [38] is adopted to regularize the optimization problem
in (7). To simplify the illustration of the proposed algorithm, we
define a function Fν as

Fν (x,Φ,w) :=

[
1
2
||Φx − y||22 + λ

N∑

i=1

w(i)x
2
(i)

]
, (8)

Therefore, the estimate in each iteration is equal to

x(l)
p := arg min Fν (xp,Φp,w(l)), (9)

which requires solving a least squares problem that can be ex-
pressed in this matrix form:

x(l)
p = W (l)

p Φp
t
(
ΦpW (l)

p Φp
t + λI

)−1
yp, (10)

where W (l)
p is the N × N diagonal matrix with 1/w

(l)
p(i) as the i-

th diagonal element and Φt
p refers to the transpose of the sensing

matrix Φp. Once x(l)
p is obtained, we then update the weights

accordingly. Repeating the whole procedure of signal acquisi-
tion and reconstruction, a sequence of spectrum reconstruction
by increasing the number of time intervals, i.e., x1,x2, . . . ,xp,
would be obtained. We now analyze the stopping criterion of
signal acquisition.

After each signal reconstruction process, the proposed algo-
rithm decides whether the reconstruction of the original signal
is accurate enough or not. If the reconstructed signal does not
satisfy certain accuracy requirement of spectral detection, the
algorithm should require more time intervals until the accu-
racy requirement is met. However, since the original signal x
is unknown before the reconstruction in real-world, the exact
reconstruction error e = ||x − xp||22, could not be obtained to
determine how accuracy the reconstructed signal is. Therefore,
we measure the reconstruction error e indirectly and set stopping
criterion in such a practical way. As the compressive samples
vector yp could be treated as the linear projection of the original
signal x during the sampling process in (2), the Euclidean dis-
tance Dp between the sampling result obtained by applying the
same linear function, i.e., sensing matrix, to the reconstructed
signal, and the actual compressive samples should not be too far,

Algorithm 1: Autonomous CS-based Sensing Algorithm.
Require: Equally divide the total spectrum sensing time Ts

into P time intervals and set the start time interval index
p = 1. Sampling rate fs , number of samples ΔM
collected in each time interval and the reconstruction
error threshold κ.

Ensure: The reconstructed signal x∗

1: for p = 1, . . . , P do
2: Sampling the wideband signal using fs till the time

interval p + 1 so as to obtain the compressive samples
vector yp and the samples Δyp+1 collected in time
interval p + 1.

3: Reconstruct the spectral from yp by utilizing
AR-IRLS algorithm to solve the lν -norm minimization
problem

arg min
xp∈RN

||Φpxp − yp||22 + λ||xp||νν ,

which leads to a spectral reconstruction xp.
4: Calculate the proposed Euclidean distance

Dp = ||ΦΔMxp − Δyp+1||22
5: if Dp smaller than threshold κ is true
6: Terminate the signal acquisition process.
7: else
8: p = p + 1
9: end if

10: end for

otherwise we shall tell the reconstructed signal xp is quite differ-
ent from the original signal x with high probability. Specifically,
the proposed Euclidean distance Dp is defined as

Dp = ||ΦΔMxp − Δyp+1||22, (11)

and Δyp+1 is obtained by

Δyp+1 = ΦΔMx + ξ, (12)

where ΦΔM denotes a ΔM × N matrix. The Johnson-
Lindenstrauss Lemma presented in [39] asserts that a
high-dimensional space can be projected into a low-dimensional
signal, where the dimension is equal or larger than O(ζ−2logN)
so that all distances are preserved up to a multiplicative factor be-
tween 1 − ζ and 1 + ζ with 0 < ζ ≤ 1/2. Therefore, we demon-
strate the rigorous relationship between the proposed Euclidean
distance Dp and the actual reconstruction error e by proving
the point that e = ||x − xp||22 calculated in high-dimensional,
i.e., dimension of xp, could be projected into Dp calculated in
low-dimensional, i.e., dimension of Δyp+1, within the bound-
ary factor of 1 ± ζ in Theorem 1. If the proposed Euclidean
distance Dp is larger than the given threshold, the algorithm
would continue the signal acquisition, otherwise the acquisi-
tion is terminated. For a given threshold κ which is predefined
according to the reconstruction accuracy requirement, the min-
imum sensing time of the wideband signals would adapt to the
actual sparsity levels of the spectrum. The outline of the pro-
posed algorithm is summarized in Algorithm 1.
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B. Theoretical Guarantee

In Theorem 1, we prove that the actual reconstruction error
e could be estimated by the proposed Euclidean distance Dp

within the boundary factor of 1 ± ζ.
Theorem 1: Given multiplicative factor ζ ∈ (0, 1/2], γ ∈

(0, 1) and ΔM ≤ Cζ−2log(1/2γ), we have

Prob

[
Dp

(1 + ζ)
≤ e ≤ Dp

(1 − ζ)

]
≥ 1 − γ, (13)

where the parameter C depends on the concentration property
of random variables in measurement matrix ΦΔM [39]. Dp and
e are defined as before.

Proof: With the aid of Johnson-Lindenstrauss Lemma, if
the number of row r in ΦΔM is equal or larger than
Cζ−2log(1/2γ), we have

(1 − ζ)||X||22 ≤ ||ΦΔMX||22 ≤ (1 + ζ)||X||22, (14)

where ζ ∈ (0, 1/2] and γ ∈ (0, 1). Then we replace X in (14)
by x − xp and obtain

(1 − ζ)||x − xp||22 ≤ ||ΦΔM (x − xp)||22
≤ (1 + ζ)||x − xp||22. (15)

Since measurement matrix ΦΔM could be seen as a linear
projection from RN to RΔM , we can transform (15) into

(1 − ζ)||x − xp||22 ≤ ||ΦΔMxp − Δyp+1||22
≤ (1 + ζ)||x − xp||22. (16)

Finally, to obtain the observation that e = ||x − xp||22 could be
bounded and estimated by Dp = ||ΦΔMxp − Δyp+1||22, we
change the (16) to another form (17) and simplify it to (18):

1
(1 + ζ)

||ΦΔMxp − Δyp+1||22 ≤ ||x − x||22

≤ 1
(1 − ζ)

||ΦΔMxp − Δyp+1||22, (17)

Dp

(1 + ζ)
≤ e ≤ Dp

(1 − ζ)
. (18)

Therefore, when the row number ΔM in ΦΔM is equal or larger
than Cζ−2log(1/2γ), the distance between Dp and e could be
bounded up to a multiplicative factor between 1 − ζ and 1 + ζ.
Hence, we could state that the actual reconstruction error e could
be estimated by the proposed Euclidean distance Dp when ΔM
is larger than a lower bound and Dp could be utilized as the
stopping criterion of the algorithm. See Appendix for The proof
of that (17) is satisfied with probability larger than 1 − γ.

V. CS-BASED PROPOSED BLIND COOPERATING USER

SELECTION ALGORITHM

In this section, we present a CS-based blind cooperating user
selection algorithm applied in the CBSD sensing network for
selecting the SUs with high SNR in the proposed scheme with-
out the degradation of the detection performance by utilizing
fewer SUs.

Fig. 3. r-MSE vs. average SNR between the actual reconstruction error and
the estimated reconstruction error.

A. Algorithm Description

In a CBRS sensing network, not every SU could produce
informative spectrum sensing results due to the different de-
ployment scenarios of the SUs. Moreover, as the number of
cooperating SUs grows, the energy efficiency of the network
decreases [40] and the sensing performance of the network only
marginally increases once the number of cooperating SUs is
sufficiently large [41]. Therefore, it is not an optimal choice to
cooperate all SUs no matter whether they have high detection
capability or not. The optimal performance could be achieved
by selectively cooperating among SUs with high sensing per-
formance of the transmission signals [42] where the sensing
performances of SUs are fundamentally limited by the signal
transmission channels since the reconstruction accuracy would
be effected by the SNR of received signals.

As shown in Fig. 3, if the sampling rate is fixed and suf-
ficient for signal reconstruction, reconstruction performance
would be affected by the SNR of the transmission signal, which
is likely caused by the channel fading, i.e., shadowing and
multi-path. Therefore, CS could be utilized for cooperating
user selection and the proposed autonomous CS-based spec-
trum sensing scheme could perform user selection without extra
SNR estimation algorithms. The SUs with high SNR, could be
selected by utilizing the proposed Dp to approximate the un-
known reconstruction error. Specifically, the compressed sam-
ples vector y is divided into two vectors yr (yr ∈ Rr×1) and
yv (yv ∈ Rv×1) for estimating the reconstruction error. Ac-
cording to the acquisition model in (2), these two vectors can
be expressed as yr = Φrx + ξ and yv = Φvx + ξ, respec-
tively, where x ∈ RN ×1, Φr ∈ Rr×N and Φv ∈ Rv×N . Pa-
rameter r as the number of compressed measurements in yr,
is determined to ensure the successful reconstruction, and v is
set to guarantee the sufficient accuracy of reconstruction error
estimation as illustrated in Theorem 1. To select the suitable
cooperating SUs, one can compare the estimated reconstruc-
tion error e∗ with a predefined threshold which could be de-
termined according to the detection capability requirement of
SUs. Moreover, without the effort of signal reconstruction, only
the locally collected samples should be sent to the fusion center
for SUs selection under the centralized manner or be passed to
other SUs under the distributed manner of the distributed CSS
network.
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VI. EXPERIMENTAL RESULTS

As a proof of concept for the proposed scheme, we verify the
effectiveness of the proposed algorithms using both simulated
signals and real-world signals in this section.

A. Experiment Setups and Performance Measures

Consider the simulated wideband signal x(t) ∈ F =
[0, 500] MHz, whose DFT is denoted as xsim

0 which contains
up to k active channels:

x(t) =
k∑

i=1

√
EiBisinc(Bi(t − ti))ej2πfi t + n(t), (19)

where sinc(x) = sin(πx)/(πx), Ei , ti and fi represent the en-
ergy, the time offset, and the central frequency of the i-th sub-
band and n(t) denotes the noise. The i-th sub-band covers the
frequency range [fi − Bi

2 , fi + Bi

2 ]. Typically, the critical in-
fluences of a signal transmission channel consist of path loss,
small-scale fading, e.g., multi-path, and large-scale fading, e.g.,
shadowing [26]. In each CBSD sensing network, the path loss
could be approximately the same for all SUs since the max-
imum distance among SUs are assumed to be much smaller
than the distance between the PUs and the SUs. For the fading
effects, the multi-path effect exhibits a Rayleigh distribution,
which could cause random variations in the SNR at the SUs,
while the shadowing effect could be viewed as extra losses via
a series of obstacles which is notoriously hard to model accu-
rately and its statistics can vary widely with the deployment
environments [41]. Therefore, we assume the SNR is varying in
some channels for the different SUs in order to model both the
large-scale and the small-scale fading effects.

To demonstrate the effectiveness of the proposed scheme over
the wideband spectrum with the varying bandwidths and power
levels of primary signals, the bandwidths Bi of i-th primary sig-
nal is varying from 5 to 20 MHz and the corresponding central
frequency fi is randomly located in [Bi

2 ,W − Bi

2 ]. The total
sensing time is assumed as T = 10 μs, and thus the number of
samples collected by the Nyquist sampling rate could be cal-
culated as N = T · fN Y Q . Rather than using the Nyquist sam-
pling rate fN Y Q ≥ 2W = 1000 MHz, we adopt the sub-Nyquist
sampling rate fs < 2W which is depended on the maximum
sparsity level smax that can be estimated by long-term spectral
observations. In the conventional CS approaches, the number of
compressive samples M = T · fs = K0smaxlog(N/smax) [15]
should be determined by the worst case of sparsity level smax

to guarantee a very high acceptable reconstruction frequencies
over the total sensing time T since the actual sparsity level is
unknown in the real-world. In the proposed scheme, the total
sensing time T is divided into P = T · fs/ΔM time intervals,
where P ∈ Z+ . The signal acquisition process would be ter-
minated once the stopping criterion is reached. Therefore, the
actual sensing time of the proposed scheme is equal or lower
than T . The rest of sensing time could be utilized for data trans-
mission besides, the shorter sensing time would prevent the
further interference to the PUs.

Fig. 4. (a) The outdoor antenna. (b) The RFeye node. (c) The captured power
spectrum density at Queen Mary University of London [43].

The real-world signals xreal
0 are received by an RFeye node,

which is an intelligent spectrum monitoring system that can
provide real-time 24/7 monitoring of the radio spectrum [44].
As shown in Fig. 4, the RFeye node is located at Queen Mary
University of London (51.523021◦ N 0.041592◦ W), and the
antenna height is about 15 meters above ground.

To measure the reconstruction accuracy, we present the recon-
struction error ||x∗ − x0||22 by the conventional average relative
mean square error (r-MSE):

r-MSE =
||x∗ − x0||22

||x0||22
, (20)

where x∗ denotes the reconstructed signal, x0 = xsim
0 in the sim-

ulation mode and x0 = xreal
0 in the real-time mode. To quantify

the detection performance we compute the detection probability,
i.e., the fraction of occupied channels correctly being reported as
occupied. The estimated active channel set is compared against
the original signal support to compute the detection probability
under 2000 trials.

B. Results Over Simulated Signals

To prove the effectiveness of the proposed scheme and ver-
ify the theoretical results in Theorem 1, we compare the actual
reconstruction error and the proposed Euclidean distance Dp

which is referred as stopping criterion with the different num-
ber of time intervals in Fig. 5. It shows that the original signal
is successfully reconstructed and the signal acquisition could be
terminated at the time interval p = 10, rather than p = 50 (total
sensing time) by the conventional CS-based algorithms. Since
the proposed Euclidean distance Dp become very close to the
actual reconstruction error when the actual reconstruction error
becomes sufficiently small, Dp could be utilized as the stopping
criterion to terminate the signal acquisition process as presented
in Theorem 1. Moreover, Fig. 5 shows that the reconstruction
accuracy could not be significantly improved by collecting ad-
ditional samples. Therefore, the proposed scheme utilizes less
sensing time than that of conventional CS approaches with the
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Fig. 5. r-MSE vs. number of time intervals between the actual reconstruction
error and the stopping criterion Dp when sparsity level is fixed as s = 0.1N
for the proposed scheme.

Fig. 6. r-MSE vs. number of time intervals under different sparsity levels
s = 0.05N, 0.10N, 0.15N for the proposed scheme.

same sub-Nyquist sampling rate. The remaining sensing time
can be utilized for future data transmission, besides, the shorter
sensing time would prevent the further interference to the PUs.

Since the PUs and the SUs could randomly enter or leave
the shared spectrum, the sparsity levels of the received wide-
band signals in practice are unknown and fluctuant. A practical
CS-based sensing algorithm should be robust against differ-
ent signal sparsity levels. Therefore, in Fig. 6, we demonstrate
the performance of the proposed scheme under the different
sparsity levels with a fix sampling rate fs = 0.5fN Y Q . From
Fig. 6, it can be observe that the proposed scheme could suc-
cessfully reconstruct the signals and terminate the sensing pro-
cess at the time interval p = 8, 15, 20 under the sparsity levels
s = 0.05N, 0.10N, 0.15N , where the higher sparsity levels of
the signals would lead to the more time intervals needed for
guaranteeing the reconstruction accuracy. Therefore, without
the prior knowledge of the actual spectral sparsity, the proposed
scheme can autonomously adopt a proper number of time inter-
vals for signal reconstruction.

In Fig. 7, we present the comparison among the two-step
CS-based spectrum sensing scheme [24] (termed two-step CS-
based scheme), the conventional compressive spectrum sensing
scheme [45] (termed traditional CS-based scheme) and the pro-
posed scheme. We use the average sensing time in μs instead
of the number of time intervals to measure the reduction of the
sensing cost, since only the proposed scheme needs to divide
the total sensing time into multiple small time intervals. Without
loss of generality, we test different schemes with a fixed sam-
pling rate fs = 0.5fN Y Q . To illustrate the impact of adopting
different step lengths ΔM , the proposed scheme is tested with

Fig. 7. Average sensing time (μ s) vs. the sparsity level (N ) between the
proposed scheme and other CS-based spectrum sensing algorithms.

Fig. 8. Detection probability vs. the sparsity level (N ) between the proposed
algorithm with and without cooperating user selection under different sampling
rates = 200 MHz and 400 MHz.

both the large step length and with the small step length, which
adopts ΔM = 500 and ΔM = 50, respectively. It is shown in
Fig. 7 that the performance of the proposed scheme is influenced
by the step length ΔM . If the ΔM is too large, the proposed
scheme will lose its advantage and be worse than the two-step
CS-based scheme. To understand this, we consider an extreme
setting: the total number of time intervals is set to 1 and thus the
step length become ΔM = M = T · fs , where the proposed
scheme is degraded to the conventional compressive spectrum
sensing scheme which could not work with unknown sparsity
levels efficiently. Therefore, ΔM should not be too large in or-
der to keep the effectiveness of the proposed scheme. However,
if ΔM is too small, it will require many steps, e.g., maximum
250 time intervals are required if ΔM = 20 in this simulation,
although it is more likely to reach the minimum sensing time.
Therefore, there is a trade-off need to be balanced between
computational complexity and the effectiveness of the proposed
scheme.

To illustrate the functionality of the proposed CS-based blind
cooperating user selection algorithm, we show the detection
probability against the sparsity level between the proposed
scheme with and without cooperating user selection under dif-
ferent sampling rates (200 MHz and 400 MHz) in Fig. 8. In the
proposed scheme, we select half of the SUs to perform CSS for
demonstration purpose. The maximum number of the cooperat-
ing SUs could be set according to the capacity in the practical
network environment. It is shown that the detection probability
of the proposed scheme with user selection is always higher than
or equal to that of the proposed scheme without user selection.
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Fig. 9. r-MSE vs. the sensing time (μs) over different real-world spectrum
signals.

Therefore, there is no degeneration of the detection probabil-
ity when cooperating with fewer SUs. Moreover, the detection
probability is improved when sparsity level of the wideband
spectrum is high, i.e., higher occupancy ratio, under different
sampling rates. That is because the proposed cooperating user
selection scheme could take out the SUs with bad detection
results, e.g., malicious users, which could affect the overall de-
tection performance.

C. Analysis on Real-World Signals

To analyze the performance of the proposed scheme with
real-world signals over the different spectrums, e.g., TVWS
spectrum and 3.5 GHz spectrum in the UK, we compare the
r-MSE of the proposed scheme against the two-step CS-based
spectrum sensing scheme with the same sampling rate in Fig. 9.
It is shown that the proposed scheme not only can work prop-
erly in the 3.5 GHz shared spectrum, but also can deal with the
TVWS spectrum. Particularly, as the real-world 3.5 GHz spec-
trum is much sparser than the TVWS spectrum in the UK, the
required sensing time of the 3.5 GHz spectrum is less than that
of the TVWS spectrum. The proposed method outperforms the
two-step CS in terms of sensing time under give sampling rate
since the adopted AR-IRLS reconstruction algorithm requires
fewer compressive samples to achieve the same reconstruction
accuracy compared with the basis pursuit denoising (BPDN)
reconstruction algorithm adopted in two-step CS [37]. The pro-
posed scheme is suitable for the practical measurements and
can be extended to other shared spectrums like TVWS and the
bands with the higher central frequencies.

VII. CONCLUSION

In this paper, we have proposed an autonomous CS augmented
spectrum sharing scheme to provide more efficient spectrum op-
portunities identification within the CBSD sensing network. In
order to tackle the challenges of realizing the CBSD sensing
network, firstly we proposed an autonomous CS-based sens-
ing algorithm which enables the local SUs to automatically
choose the minimum sensing time while guaranteeing the ex-
act wideband signal reconstruction. To enhance the detection
performance and use fewer SUs in each CBSD sensing net-
work, a CS-based blind cooperating user selection algorithm is
proposed to select the SUs which could produce informative
spectrum sensing results according to the detection SNR of the
transmission signals. The robust performance of the proposed

CS-based autonomous sensing scheme has also been validated
over both simulated signals and real-world signals recorded by
the RFeye node at QMUL. Numerical analysis and experimen-
tal results have shown that the proposed scheme could not only
adaptively select an appropriate number of time intervals with-
out the estimation of sparsity level but also offer exact signal
reconstruction for varying bandwidth of channels and power
levels under different unknown sparsity levels. In comparison
with conventional compressive spectrum sensing schemes and
two-step CS-based spectrum sensing schemes, it is shown that
the proposed scheme can achieve the better detection perfor-
mance as well as the shorter sensing time and fewer number of
cooperating SUs. Additionally, the remaining sensing time can
be utilized for data transmission and avoiding the further inter-
ference to the ongoing primary transmissions. These benefits
enable the proposed scheme to be implementable for spectrum
sharing, especially over the 3.5 GHz spectrum and the higher
frequencies. Moreover, we shall extend the proposed scheme
with advanced detector such as frequency domain autocorrela-
tion [22] and maximum - minimum energy detection sensing
algorithm [46] to further enhance the ability against the noise
uncertainty and frequency selective channel in future work.

APPENDIX

PROOF OF THEOREM 1

Let X ∈ Rn be an arbitrary fixed unit vector, i.e., ||X||22 = 1
for simplicity, and the linear projection X → Y is defined by

Y(i) =
n∑

j=1

A(ij )X(j ) , i = 1, 2, . . . , r, (21)

where A(ij ) are independent random variables with E[A(ij ) ] = 0
and Var[A(ij ) ] = 1, which has an uniform sub-Gaussian tail.
Since Y could be seen as a linear combination of the A(i)
which is the i-th row of A, Y(i) has an uniform sub-Gaussian
tail as well. Therefore, according to [39, Proposition 3.2], we
could define a random variable as

Z =
1√
r
(Y 2

(1) + · · · + Y 2
(r) − r), (22)

where Z has a sub-Gaussian tail up to
√

r. Therefore, ||Y ||22 − 1
is distributed as Z/

√
r and we can get

Prob[||Y ||2 ≥ 1 + ζ] = Prob[||Y ||22 ≥ 1 + ζ2 + 2ζ]

≤ Prob[||Y ||22 ≥ 1 + 2ζ]

= Prob[Z ≥ 2ζ
√

r]. (23)

As ζ ∈ (0, 1/2], by utilizing the Chernoff-type inequality, we
have

Prob[Z ≥ 2ζ
√

r] ≤ exp−a(2ζ
√

r)2
= exp−4aζ 2C ζ−2log(2/γ ) ≤ γ

2
(24)

for C ≥ 1/2a. Applying the same principle and the similar cal-
culation as above, Prob[||Y ||2 ≤ 1 − ζ] ≤ γ/2 could be demon-
strated as well. Therefore, we can get the conclusion that

Prob
[
(1 − ζ)||X||22 ≤ ||AX||22 ≤ (1 + ζ)||X||22

] ≥ 1 − γ.
(25)
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Then we replace X in (25) by x − xp to obtain (26). As A
refer to the linear projection X → Y , we could get (27) and its
another form (28), shown below:

Prob
[
(1 − ζ)||x − xp||22 ≤ ||ΦΔM (x − xp)||22

≤ (1 + ζ)||x − xp||22
] ≥ 1 − γ, (26)

Prob
[
(1 − ζ)||x − xp||22 ≤ ||ΦΔMxp − Δyp+1||22

≤ (1 + ζ)||x − xp||22
] ≥ 1 − γ, (27)

Prob

[
1

(1 + ζ)
||ΦΔMxp − Δyp+1||22 ≤ ||x − x∗||22

≤ 1
(1 − ζ)

||ΦΔMxp − Δyp+1||22
]
≥ 1 − γ.

(28)

Finally, we shall simplify (28) to the result

Prob

[
Dp

(1 + ζ)
≤ e ≤ Dp

(1 − ζ)

]
≥ 1 − γ. (29)
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