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Abstract—Wideband spectrum sensing is regarded as one of the
key functional blocks in cognitive radio systems, where compres-
sive sensing (CS) has become one of the promising techniques to
deal with the Nyquist sampling rate bottleneck. Theoretical anal-
yses and simulations have shown that CS could achieve both high
detection and low false alarm probabilities in wideband spectrum
sensing. However, the implementation of CS over real-world sig-
nals and real-time processing poses significant challenges due to
the high computational burden and reconstruction errors against
noise. In this paper, we propose an efficient adaptively regularized
iterative reweighted least squares (AR-IRLS) algorithm to imple-
ment the real-time signal recovery in CS-based wideband spectrum
sensing. The proposed AR-IRLS algorithm moves the estimated so-
lutions along an exponential–linear path by regularizing weights
with a series of nonincreasing penalty terms, which significantly
speeds up the convergence of reconstruction and provides a high
fidelity guarantee to cope with spectral signals with varying band-
widths and power levels. Furthermore, a descent-based decision
threshold setting algorithm is proposed to distinguish the primary
signals from the mixture of the reconstruction errors and unknown
noises. The proposed scheme demonstrates robustness against dif-
ferent sparsity levels at low compressive ratios without degradation
of the reconstruction performance. It is tested with the real-world
signals over the TV white space after being validated with the sim-
ulated signals. Both the simulation and real-time experiments show
that the proposed scheme outperforms the conventional iterative
reweighted least squares algorithms in terms of convergence speed,
reconstruction accuracy, and compressive ratio.

Index Terms—Cognitive radio, compressive wideband spectrum
sensing, iterative reweighted least squares (IRLS), lν-norm mini-
mization, TV white space.
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I. INTRODUCTION

W ITH the rapid development of wireless communication,
the current static frequency allocation policy faces a pri-

mary challenge of spectrum scarcity, while a significant portion
of the spectrum resource remains underutilized in the tempo-
ral and spatial dimensions [1], [2]. Cognitive radio (CR) has
been considered as one of the promising solutions to tackle
the spectrum scarcity in future wireless networks, i.e., 5G and
beyond. In most locations around the world, there is certain un-
used TV band spectrum, named as TV white space (TVWS),
which could be used for a range of wireless applications, from
broadband communication, wireless offloading, to machine-to-
machine communication [3]. Unlocking the TVWS spectrum
implies significantly increasing the total amount of bandwidth
available for users, therefore alleviating the pressure on other
spectrum bands [4].

To put such unused ultra high frequency (UHF) TV spectrum
to good usages, we need fast and reliable occupancy detection of
the surrounding spectrum such that no interferences are caused
to the transmissions of primary users (PUs). Currently, there
mainly exist two approaches to obtain the spectrum occupancy
status over TVWS. One is through a geo-location database that
calculates the interference generated in wireless communica-
tion systems through theoretical propagation models and then
outputs the maximum allowable equivalent isotropic radiated
power (EIRP) for each vacant TVWS channel at a specific lo-
cation and time [5]. However, the geo-location database only
records the information of the licensed PUs. Consequently, un-
predictable dynamic changes of the wireless propagation en-
vironment could pose significant challenges to this approach.
To that end, dynamic spectrum sensing in CR is introduced to
tackle these challenges [6], [7].

Spectrum sensing is defined as the task of finding spectrum
holes over time and space domain by the secondary users (SUs)
in an unsupervised manner. Nevertheless, the wide spectrum
of TVWS challenges the traditional spectrum sensing schemes
in terms of the sampling rate, computational complexity, and
real-time processing [8]. Exploiting the sparse nature of the
underutilized wideband spectrum, sparse representation tech-
niques have shown huge potential capabilities in handling these
problems, which are directly related to compressive sensing
(CS) from the viewpoint of its origin [9], [10]. CS theory indi-
cates that if a signal has the sparse structure, i.e., the intra-signal
correlation, that signal can be reconstructed by exploiting a
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few samples, which are much less than the ones suggested by
previously used theories such as Nyquist-Shannon’s sampling
theorem. The entire process of CS consists of three parts: signal
sparse representation; measurement collection (linear encod-
ing); sparse reconstruction (nonlinear decoding). Apart from
the intra-signal correlation, signals from multiple sensors in a
network may have the high spatial correlation which represents
inter-signal correlation [11]. Recently, sparse Bayesian learning
based distributed CS algorithms are proposed in [11], [12] for
joint reconstruction of multiple signals to leverage inter-signal
correlation. These algorithms are able to achieve superior per-
formance by utilizing the networked sensing systems. In this
work, we concentrate on the real-time processing in the single
node.

To overcome the Nyquist sampling rate bottleneck and reduce
computational complexity, several new compressive sampling
methods have been proposed [13]–[18], where the sampling rate
could be reduced by exploiting some specific features of the
spectrum. In [13], a compressive spectrum sensing approach
over wide spectrum was proposed by utilizing the embedded
sparsity of the edge spectrum. In [14], [15], power spectrum
estimation over the compressive samples has been proposed by
concentrating on the autocorrelation of the compressive samples
instead of the original signal itself. In [16]–[19], sub-Nyquist
sampling approaches have been developed based on multicoset
sampling to estimate the spectrum by recovering the frequency
support of the multiband signals. Although these algorithms can
reduce the sampling requirement and computational complexity,
they depend on prior spectral assumptions such as fixed channel
bandwidth and power levels and concentrate on the partial signal
reconstruction.

In recent years, as the secondary spectrum market has been
opened for spectrum sharing, an increasing number of pro-
gramme making and special event (PMSE) users are joining
for public access, which cover a wide range of radio systems,
e.g., wireless microphones, continuous talkback systems, high-
quality audio links, remote controllers, etc [20]. As PMSE users
have varying channel bandwidths and radiated levels (up to
200 kHz and 10 mW respectively), accurate detection of the
PMSE users and other PUs with varying power levels challenges
the traditional compressive spectrum sensing algorithms [13]–
[15]. Therefore, the full reconstruction of the wideband signals
with the high fidelity guarantee is of critical importance to work
with real-world signals in achieving reliable spectrum detection.

To find the optimal solution that best matches the compres-
sive projections, the original wideband signals can be recon-
structed using certain optimization strategies based on l0-norm
minimization [21]. Since l0-norm minimization is an NP-hard
problem, l1-norm minimization is usually utilized to find an
equivalent solution based on the restricted isometry property
(RIP) [22]. To further improve the recovery performance with
less requirements on the signal sparsity and the number of com-
pressive samples, the weighted lν-norm (0 < ν < 1) minimiza-
tion is proposed to replace the l1-norm minimization, which is
nonconvex but could be solved by iteratively reweighted least
squares (IRLS) algorithm [23]. As the lν-norm minimization
provides a closer approximation to the l0-norm minimization,

the weighted lν-norm minimization is a more efficient solution
to exactly reconstruct the original signals [24]–[27]. However,
without any prior information on the original signals, conven-
tional IRLS algorithms could lead to relatively high computa-
tional complexity and need to run through many iterations to
achieve the desired signal recovery, which incurs a large latency
and is difficult to be implemented in real-time processing [24].

In addition, the performance of spectrum sensing greatly de-
pends on the detection methods over the reconstructed signal.
Energy detection is the most widely used detection method since
it is simple, to implement and does not require any prior infor-
mation about the spectral, features of primary signals [28], [29].
Most conventional energy detection algorithms adopt a fixed
or adaptive decision threshold to distinguish PU signals from
the noise [30], which is calculated via prior knowledge over
the noise power. However, it is difficult to guarantee the de-
tection and false alarm probabilities with the traditional thresh-
old setting algorithms when the noise power is unknown or
fluctuates in real-time wideband spectrum sensing. In [31], the
decision threshold setting is based on the noise power mea-
sured in the vacant channels. However, it is difficult to distin-
guish which channels contain noise only without related prior
information in practice. Moreover, the power level of noise
is likely to change after the reconstruction process [32]. Be-
sides, we notice that most of the existing compressive wideband
spectrum sensing schemes do not specify the reconstruction
errors from the compressive samples, which inevitably exists
and interferes the detection. Therefore, a practical and effec-
tive reconstruction strategy that can dynamically eliminates
the influence of CS reconstruction errors and distorted noise
floors is critical to enable accurate real-time wideband spectrum
sensing.

In this paper, an adaptively-regularized CS scheme is pro-
posed to implement the real-time wideband spectrum sensing.
The proposed AR-IRLS algorithm moves the estimated solu-
tions along an exponential-linear path by regularizing weights
with a series of nonincreasing penalty terms, which significantly
speeds up the convergence of the signal reconstruction by reduc-
ing the required iterations (up to 70%) and provides high fidelity
guarantees to cope with the varying bandwidths and power levels
over the occupied channels. Moreover, to eliminate the impact of
noise uncertainty and reconstruction errors, a practical descent-
based algorithm for decision threshold setting is proposed.
Based on our recent work on the trials over TVWS [4], [33], the
proposed scheme is further tested to support the implementation
of real-time dynamic spectrum access over the TVWS. From the
evaluation of the reconstruction performance, it is shown that
the proposed AR-IRLS algorithm is able to deal with real-world
signals in real-time wideband spectrum sensing, with improve-
ments over the convergence speed as well as sensing cost when
compared with conventional iterative lν-norm minimization
approaches.

The rest of the paper is organized as follows. In Section II, the
preliminary system model is described. Section III introduces
the proposed AR-IRLS algorithm. Section IV develops the pro-
posed descent-based algorithm for decision threshold setting.
Section V analyzes and validates the proposed algorithms over
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Fig. 1. Block diagram of CS-based wideband spectrum sensing scheme.

simulated and real-world TVWS signals for real-time process-
ing. Conclusions are drawn in Section VI.

II. PRELIMINARY SYSTEM MODEL

A typical CS-based wideband spectrum sensing scheme can
be presented as a three-step framework, as shown in Fig. 1.

1) Compressive signal acquisition: The basic idea of CR is
spectrum sharing, which allows the unlicensed users, i.e., SUs,
to communicate over licensed spectrum when the bands are
not fully utilized by PUs. The received signal x(t) at the CR
is usually assumed to be bandlimited and continuous, which
consists of Nsig uncorrelated primary signals in addition to the
noise. The primary signals are superposed in the time domain
but occupied the different region of the spectrum, such that

x(t) =
Nsig∑

i=1

si (t) + n(t), (1)

where si (t) is the i-th primary signal and n(t) refers to additive
white Gaussian noise with zero mean and variance σ 2

n . Since
the wideband spectrum is practically underutilized [34], x(t)
typically bears a sparse property in the frequency domain such
that its discrete Fourier transform x ∈ RN is a k-sparse vector,
i.e., |{xi : xi �= 0}| ≤ k. The compressive samples acquisition
at each SU can be expressed by the following analytical model:

y = �x subject to ||x||0 ≤ k, (2)

where � ∈ RM×N is the sensing matrix to generate the com-
pressive samples y ∈ RM from the original signal, M ∈ Z (with
k < M < N ) refers to the dimension of y and || · ||0 represents
the number of nonzero elements in the vector, which is also
treated as the measure of sparsity.

It turns out that the real-world sampling always leads to noise.
Thus, (2) could be modified to a revised model incorporating
the small noise perturbation as

y = �x + ξ subject to ||x||0 ≤ k, (3)

where ξ ∈ RM is the noise perturbation, whose magnitude is
constrained by an upper bound δ, i.e., ||ξ ||2 < δ. Incidentally,
the compressive ratio in this sub-Nyquist signal acquisition is
given by ρ = M/N < 1.

2) Signal reconstruction: Under certain assumptions includ-
ing the RIP on � and the signal sparsity bound [22], robust
signal reconstruction with respect to model (3) at each SU can
be achieved as

arg min
x∈RN

||x||0 subject to ||�x − y||22 ≤ δ, (4)

which aims to seek a maximally sparse representation of y, or

arg min
x∈RN

||�x − y||22 subject to ||x||0 ≤ k, (5)

which finds the possible minimum reconstruction error at a
given sparsity k. In practice, the original signals tend to be com-
pressible, rather than sparse, where a compressible signal has a
representation whose entries decay rapidly when sorted in the
decreasing order of magnitude. Although compressible signals
can be well approximated by sparse signals, the reconstruction
errors can only be diminished but not vanished [21]. Therefore,
according to the Lagrange multiplier theorem, a proper constant
parameter λ > 0 could be introduced to balance the objective
of minimizing the reconstruction error and the solution sparsity,
such that problems (4) and (5) could be equivalently solved by
solving the following unconstrained minimization problem:

arg min
x∈RN

1

2
||�x − y||22 + λ||x||0. (6)

However, problems (4), (5) and (6) are known to be NP-hard
in general, which cannot be solved efficiently. It was shown
in [35], [36] that the solution via the l1-norm minimization with
sufficient sparsity can be equivalent to the solution obtained by
the l0-norm minimization, where the l1-norm optimization prob-
lem can be solved in polynomial time. Thus, problems (4), (5)
and (6) can be efficiently and approximately solved by solving
the following problems:

arg min
x∈RN

||x||1 subject to ||�x − y||22 ≤ δ, (7)

or equivalently,

arg min
x∈RN

1

2
||�x − y||22 + λ||x||1. (8)

Since ||�x − y||22 is a convex quadratic function, (8) is shown
to be efficient under certain conditions in finding a sparse rep-
resentation to achieve a small ||�x − y||22 [37]; but it may not
be the optimal solution to problem (6) since the l1-norm op-
timization problem usually requires much more compressive
samples [24]. Therefore, this poses challenges when the signal
dimension is high, i.e., when we have wideband spectrum sig-
nals. Thus, we propose to replace the l1-norm in (8) with the
lν-norm, for 0 < ν < 1, which is possible to achieve the exact
reconstruction with substantially fewer samples [24], [26].

3) Decision making: When the recovered signal x∗ is obtained
by solving the optimization problem discussed above, energy
detection could be applied to determine the spectrum occupancy
by comparing the energy density of the recovered signal against
a predefined threshold ϕd , which for example could be set as [38]

ϕd = σ 2
n

(
1 + Q−1(Pf )√

N/2

)
, (9)

where σ 2
n is the noise variance and Pf refers to the target prob-

ability of false alarm. If the energy of the reconstructed signal
is higher than the threshold, the corresponding channel is de-
termined as occupied by PU, and SUs are forbidden to access.
Otherwise, the corresponding channel is determined as vacant,
and SUs could access to transmit unlicensed signals. It should be
noted that the detection performance would benefit from higher
CS reconstruction accuracy. Indicated by (9), the performance
of energy detection greatly depends on setting the detection
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threshold, which is mainly decided by the noise variance and
the target probability of false alarm. However, most traditional
wideband spectrum sensing schemes, which assume the noise
variance as a prior knowledge, are no longer suitable for real-
time wideband spectrum sensing where the noise variance is
unknown and likely varying. To tackle this issue, a practical
descent-based decision threshold setting algorithm for eliminat-
ing the impact of noise and reconstruction errors without the
prior knowledge of the noise floor is proposed in Section IV.

III. PROPOSED ADAPTIVELY-REGULARIZED IRLS ALGORITHM

In this section, we seek a better solution for the problem in (6)
by the lν-norm approximation. The description of the proposed
algorithm is sketched first and then we provide some theoretical
guarantees.

A. Algorithm Description

The basic idea of the proposed algorithm is to find a surro-
gate function based on the lν-norm to majorize the objective
function in (6), and then to minimize the surrogate function to
drive the objective function downward until a global optimum
is reached. In particular, we conduct the relaxation of the l0-
norm problem by utilizing the lν-norm instead of the l1-norm
in (8). In contrast to the l1-norm, the lν-norm with 0 < ν < 1
is nonconvex. As convex optimization techniques are no longer
applicable, the lν-norm makes the solution uniqueness and con-
vergence analysis more complicated. However, fewer samples
are usually required for the lν-norm approach compared with
the l1-norm approach [24]. Moreover, it was shown in [24], [39]
that the lν-norm regularization leads to better sparsity approxi-
mation performance than l1-norm. This is because lν-norm not
only enforces stronger sparsity than l1-norm, but it also better
preserves edges [40], which is capable of yielding a sparser
solution with higher fidelity than the l1-norm regularization.

Given a function f that is convex, the lν-norm regularized
problem can be presented as

arg min
x∈RN

f (x) + λ||x||νν 0 < ν < 1. (10)

As ||�x − y||22 is a convex quadratic function and therefore
a valid choice for f in (10), we can transform (6) into the
following unconstrained regularization problem:

arg min
x∈RN

1

2
||�x − y||22 + λ||x||νν 0 < ν < 1. (11)

Since problem (11) is intermediate in the sense of norm mini-
mization between problems (6) and (8), one can expect that it is
also capable of seeking out a solution to (6) under certain condi-
tions. Here, as discussed before, λ > 0 is the penalty parameter
that balances the reconstruction accuracy and the sparsity of
the minimization result. In addition, the choice of λ depends
on the noise level of the original signal, e.g., the value of λ

should be increased when the noise is larger [41]. Therefore, for
the varying wideband spectrum signal in a real-time processing
environment, the choice of λ greatly influences the behavior of
the spectrum reconstruction, such that we need to find the most

suitable value of λ for difference signals. Some approaches have
been proposed for determining λ. However, these approaches are
based on some extra algorithms [42], [43], which leads to in-
creased computational complexity. In our work, we optimize λ

along with the signal reconstruction process and λ is defined as
a function of the target signal such that the problem in (11) can
be transformed into the following form:

arg min
x∈RN

{F(x) = 1

2
||�x − y||22 + λ(x)||x||νν} 0 < ν < 1,

(12)
where λ(x) projects the signal x as a positive real number. In
order to retain the numerical property of the original problem,
λ(x) should be a function of the smoothing functional, e.g., we
could set it in general as λ(x) = g(F(x)), where g(·) is a mono-
tonically increasing function. Moreover, the objective function
in each iteration should preserve its convexity and exhibits only
a global minimizer regardless of the value of λ(x). Therefore, we
utilize the linear function of the form: F(x) = �λ(x) [44], where
� is the coefficient representing the slope of the line and also
controls convexity. It is straightforward to show that this linear
form could keep the numerical property of the original problem
unchanged. Therefore, from (12), λ(x) can be expressed as

λ(x) =
1
2 ||�x − y||22
� − ||x||νν

0 < ν < 1 (13)

However, it is general computationally hard and not guaranteed
to obtain its global minimum due to the nonconvexity of the
lν-norm. An alternative approach is to solve a sequence of the
approximation subproblems, named as IRLS [23], [24], [26].
It is shown in [24] that under certain assumptions such as the
null space property (NSP) on �, the solution sequence gener-
ated by the IRLS algorithm converges to the local minimum as
the sparsest solution that is also the actual global lν-norm min-
imizer. Therefore, this IRLS method could be utilized to solve
the unconstrained lν-norm minimization problem in (12).

In particular, each iteration of the IRLS algorithm corresponds
to a weighted least squares subproblem that can be efficiently
solved by standard convex optimization methods. Let the weight
w ∈ RN be a vector with each element being a positive number,
i.e., wi > 0 for all i = 1, 2, ..., N . The corresponding weighted
inner product and weighted l2-norm, are defined as

〈a, b〉w :=
N∑

i=1

wi ai bi

||a||2(w)
2 := 〈a, a〉w.

(14)

Without knowing apriori the spectral support of the original
signal, the procedure for selecting weights is iterative in nature.
A typical approach updates the weights at each iteration by
using the solution of the weighted least squares problem from
the previous iteration, i.e., w(l) := |x(l−1)|−1 [23]. Specifically,
the IRLS algorithm generates a sequence {x(l)}∞l=1 which are the
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iterative estimates of x and given by

x(l) := arg min
x∈J (x)

1

2
||�x − y||22 + λ(x(l−1))||x||2(w(l))

2 ,

w(l) := (w(l)
1 , ..., w

(l)
N ),

(15)

where w
(l)
j := |x (l−1)

j |−1, and the setJ (x) = {x
∣∣ ||�x − y||22 ≤

δ} represents the set of feasible points to (4). Therefore, the
weighted least squares problem in each iteration of the IRLS
algorithm works over a closed convex set J (x), and can be
efficiently solved using standard convex optimization methods.

However, if one of the elements x (l)
j vanishes at some iteration

l, i.e., x (l)
j → 0, the corresponding weight component w

(l+1)
j →

∞, which leads to x (l+1)
j = 0 at the next iteration as well and

persists in all sequential iterations, resulting in certain loss of
information. As such, a small fixed regularizer ε > 0 [26] could
be adopted to regularize the optimization problem in order to
provide stability and ensure that a zero-valued component in x(l)

does not strictly prohibit a nonzero estimate at the next iteration,
as shown below:

w
(l)
i =

((
x (l−1)

i

)2
+ ε

) ν
2 −1

0 < ν < 1. (16)

Following the arguments in [27], the lν-norm (0 < ν < 1)
could closely approximate the l0-norm by setting a small enough
ε, where a large fixed ε leads to inaccurate results. Unfortunately,
as ε → 0, the regularizing functionality of ε becomes weak.
That would cause the loss of certain information during the
optimization as we discussed before. Thus, fixing ε relatively
small or high would not be an optimal choice. A scheme where
ε is dynamically decreased in each step is suggested in [23],
which is based on the knowledge over anticipated accuracy for
arbitrary signal recovery. Although this approach provides the
lν-norm with a better l0-norm approximation, ε would get to zero
and some of the weights would be infinite since the reconstructed
signals in some iterations could be sparser than the original
signal. Therefore, it does not offer theoretical guarantees and
would lead to some wrong local solutions.

To speed up the convergence and prevent getting trapped into
the wrong local solutions, we propose to start with a relatively
large regularizer which is given as 
ε for w(0), and then quickly
update the weights at each iteration by exponentially decreasing

ε in the first few iterations, as a smaller regularizer allows the
optimization process go deeper to achieve higher reconstruc-
tion accuracy [45]. We then let 
ε descend slowly in order to
prevent 
ε → 0 while keeping 
ε sufficiently small. Finally
the decrement of 
ε tends to be 0 when the iterations move
towards the end. As the result of regularizing weights by the
proposed algorithm, the estimated solutions is moved along an
exponential-linear path. Even early iterations may get inaccu-
rate reconstruction results, the primary elements in signal would
be likely identified as nonzero values, such that their influences
are diminished to provide chances for the algorithm to locate the
remaining small but nonzero signal elements in later iterations.

Algorithm 1: Adaptively-regularized iterative reweighted
least squares.

Require: samples vector y ∈ RN , sensing matrix
� ∈ RM×N , 
(0)

ε = 1, w(0) = 1, . . . , 1.
Ensure: Practical solution x∗
1: for l = 0, 1, · · · , lmax do
2: Constrained weighted least square minimization:

x(l) := arg min �ν(x(l−1),w(l),
(l)
ε )

3: Weights update: w(l+1) = O(x(l),
(l)
ε )

4: Penalty parameter update:

λ(x(l)) =
1
2 ||�x(l) − y||22

� − ∑N
i=1 w

(l+1)
i (x (l)

i )2

5: Regularizer update:
6: if ||�x(l)|| ≤ εν

100


(l+1)
ε =

(
1 + e−2l

h(x(l))s+1

)
h(x(l))s+1

7: else
8: 
(l+1)

ε = 
(l)
ε

9: end for
10: return x∗ = x(l+1);

To illustrate how the proposed algorithm works, a generaliz-
ing function �ν is defined as

�ν(x,w,
ε) :=
[

1

2
||�x − y||22 + λ(x)

N∑

i=1

wi x
2
i

]
, (17)

where x ∈ RN , w ∈ RN
+ , and 
ε ∈ R+. We initialize the param-

eters by setting w0 = 1, . . . , 1 and 
(0)
ε = 1. Therefore, (15) is

equal to

x(l) := arg min �ν(x(l−1),w(l),
(l)
ε ), (18)

which requires solving a weighted least squares problem that
can be expressed in the matrix form:

x(l) = W (l)�t
(
�W (l)�t + λ(x(l−1)) ∗ I

)−1
y, (19)

where W (l) is the N × N diagonal matrix with 1/w
(l)
i as the i-th

diagonal element and �t refers to the transpose of the sensing
matrix �. Once x(l) is obtained, we then update the parameters
as

w
(l+1)
j := O(x(l),
(l)

ε ) =
(

(x (l)
j )2 + 
(l)

ε

) ν
2 −1

,

j = 1, ..., N ,


(l+1)
ε :=

{(
1 + e−2l

h(x(l+1))k+1

)
h(x(l))k+1, if ||�x(l)|| ≤ εν

100


(l)
ε , otherwise,

(20)

where h(x)i is the i-th largest element of the set {|x| j , j =
1, ..., N }, k refers to the sparsity of the signal, and �x(l) =
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x(l) − x(l−1). From (17), we have

λ(x) := �ν(x,w,
ε) − 1
2 ||�x − y||22∑N

i=1 wi x2
i

. (21)

We then substitute �ν(x,w,
ε) = � · λ(x) into (21), and obtain

λ(x) =
1
2 ||�x − y||22

� − ∑N
i=1 wi x2

i

. (22)

In each iteration, to guarantee that the convexity of the func-
tion �ν(x,w,
ε) is unchanged, the penalty parameter should
smaller than 1, i.e., λ(x) < 1 [46]. From the convexity per-
spective, we have � > 1/2||�x − y||22 + ||x||2(w)

2 by substitut-
ing λ(x) < 1 into (22). Since ||x||2(w)

2 could be approximated
by ||x||ν2 and ||x||ν2 � || y||ν2 according to [44] and

1

2
||�x − y||22 = ||ξ ||22 ≤ || y||22, (23)

where || y||22 = ||�x + ξ ||22, the constraint λ(x) < 1 could be
obtained by setting � ≥ 1

2 || y||22 + || y||ν2. Therefore, the value of
control parameter � is determined by the proposed algorithm
according to the samples vector y in practice.

This whole process of reconstruction terminates when it con-
verges or l reaches a specified maximum number of allowed
iterations lmax. The outline of the proposed algorithm is summa-
rized in Algorithm 1.

B. Theoretical Guarantees

Theorem 1: (Null Space Property) From [23], we shall say
that the matrix � has the ν-Null Space Property (ν-NSP) of
order S for γ > 0 if

||ηT ||νν ≤ γ ||ηT c ||νν (24)

for all sets T of cardinality not exceeding L and all η ∈ N ,
where N is the null space of � as we defined before and T c

denotes the complement of the set T . In addition, ηT is the
vector obtained from η by setting all coordinates ηi = 0 for
i �= T ⊂ {1, 2, . . . , N }.

It is stated in [24] that in order to guarantee that a k-sparse
vector x∗ is the unique lν-norm minimizer ofJ (x), it is sufficient
that � has the ν-NSP (0 < ν < 1) of order s ≤ S with γ ∈
(0, 1). Thus, we can extend this result to our weighted lν-norm
minimization in (15).

1) Convergence: Theorem 1 ensures that, under certain con-
ditions, the proposed algorithm has a unique exact solution ac-
cording to [23], as established by the following theorem.

Theorem 2: Fix y ∈ RM , define �n
ν = �ν(xn,wn,
n

ε ) and
let S be chosen such that � satisfies the ν-NSP of order K .
Then the sequence {�n

ν }∞n=1 converges to a fixed point of the
algorithm.

Proof: We first show that the sequence {�n
ν }∞n=1 decreases

monotonically over n, as we have the following monotonicity
property hold for all n ≥ 0:

�ν(xn+1,wn+1,
n+1
ε ) ≤ �ν(xn+1,wn,
n+1

ε )

≤ �ν(xn+1,wn,
n
ε ) ≤ �ν(xn,wn,
n

ε ). (25)

Here, the first inequality follows from the minimization property
that defines wn+1, the second inequality from 
n+1

ε ≤ 
n
ε , and

the last inequality from the minimization property that defines
xn+1. For a given n, xn+1 is completely determined by wn;
for n = 0, in particular, x1 is determined solely by w0, and
independent of the choice of x0 ∈ J (x). Next, we prove that the
sequence {�n

ν }∞n=1 is bounded as ||xn||νν ≤ �ν(x1,w0,
ε) := L .
First,

2
[
�n

ν (xn,wn,
n
ε ) − �n+1

ν (xn+1,wn+1,
n+1
ε )

]

≥ 2
[
�n

ν (xn,wn,
n
ε ) − �n+1

ν (xn+1,wn,
n
ε )

]

= 〈xn, xn〉wn − 〈xn+1, xn+1〉wn

= 〈xn + xn+1, xn − xn+1〉wn

= 〈xn − xn+1, xn − xn+1〉wn

=
N∑

i = 1

wn
i (xn

i − xn+1
i )ν

= L−1||xn − xn+1||νlν ; (26)

therefore, we obtain that the sequence {�n
ν }∞n=1 is bounded as

||xn||νν ≤ �ν(xn,wn,
n
ε ), and

∑∞
n=1 ||xn+1 − xn||νν ≤ 2Lν . In

particular, we have

lim
n→∞ ||xn+1 − xn||νν = 0. (27)

Thus, the convergence is proved. �
Theorem 2 ensures that, under certain conditions, the se-

quence of solutions provided by the proposed algorithm con-
verges to a fixed point as a local minima. According to [23],
such local convergence results are common for nonconvex opti-
mization problems, e.g., lν-norm minimization solving by IRLS,
and are actually global solutions as shown numerically in [26].

2) Complexity: The computational complexity reduction of
the proposed AR-IRLS algorithm comes from two parts. Firstly,
the computational complexity reduction is contributed by the
fewer number of iterations. In each iteration of the conven-
tional IRLS algorithms, the complexity of matrix multiplica-
tion �W (l)�t is O(N M2) since matrix W (l) is diagonal, and
the inverse of (�W (l)�t + λ(x(l)) ∗ I) takes O(M3). There-
fore, the complexity of solving (�W (l)�t + λ(x(l)) ∗ I)−1 is
O(N M2) due to N > M . Secondly, the computational complex-
ity reduction is contributed by the fewer compressive samples
required to guarantee the reconstruction performance. In the
proposed AR-IRLS algorithm, the minimum number of com-
pressive samples M is reduced, which leads to a large com-
putational complexity reduction as the complexity of solving
(�W (l)�t + λ(x(l)) ∗ I)−1 is O(N M2). The performance anal-
yses of the reduced iterations and compressive samples are fur-
ther shown in experimental results.

IV. PROPOSED DESCENT-BASED ALGORITHM FOR DECISION

THRESHOLD SETTING

If the original signal is noise-free and the number of samples
M is large enough, the threshold ϕd for decision making could be
set as the magnitude of the smallest element in the reconstructed
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Fig. 2. The sorted sequences of the sub-bands and their first significant change.

signals, to ensure zero miss and low false alarms. However, in
real-time processing, the reconstruction error increases as M is
reduced, and it is further mixed with the noise whose variance is
unknown and varying. Therefore, the traditional noise variance
based methods for threshold setting as in (9) are not applicable
anymore.

The rule of the proposed descent-based algorithm for ϕd set-
ting is to locate the “first significant change” in the sorted se-
quence as illustrated by Fig. 2. Specifically, this algorithm first
divides the reconstructed signal x∗ ∈ RN into L sub-bands and
therefore each sub-band contains b = N/L elements. The aver-
age value of each sub-band is used to form the sequence:

p = {pi }L
i = 1 where pi = E

⎡

⎣
b·(i+1)∑

j=(b·i+1)

x∗
j

⎤

⎦ (28)

Then we sort all elements of p in an ascending order in
term of their magnitudes, which is donated by the sequence
ps = {ps

i }L
i=1, i.e., ps

1 is the smallest element and ps
L is the

largest element in p. Then we define the increment value be-
tween two adjacent elements in ps by ∇ ps

i = (ps
i + ps

i+1)/2.
Since the original signal contains noise, which means that the
reconstructed signal contains both the reconstruction error and
noise, ϕd should be set equal to or slightly larger than the magni-
tude of the smallest element in the set of the largest τ% elements
so that the influence of the possible noise fluctuation could be
diminished, where τ should be chosen to be large enough, such
that the primary components in the signal x∗ can not be missed.

The algorithm compares ∇ ps
i with the values from ∇ ps

1 to
∇ ps

i−1. If ps
i belongs to the largest τ% part of ps and ∇ ps

i is
larger than ∇ ps

1 to ∇ ps
i−1, we locate ps

i as the “first signifi-
cant change”; otherwise we increase i until the “first significant
change” is obtained. We adopt this value as the threshold to dis-
tinguish the primary components and the combination of noise
and reconstruction errors. It should be noted that the larger the
sub-band, the simpler the algorithm becomes since less incre-
ment calculations and iterations are required. But the perfor-
mance may be degraded if L is too small. The “first significant
change” exists since in the reconstructed signal x∗, the true
nonzeros are large in magnitude and small in number, while the
noise and false ones are large in number and small in magni-
tude due to the nature of the IRLS algorithm [5]. Therefore, the
magnitudes of the true nonzeros are spread out, while those of
the noise and reconstruction errors ones are clustered.

Fig. 3. (a) The outdoor antenna. (b) The RFeye node. (c) The captured power
spectrum density at Queen Mary University of London.

V. EXPERIMENTAL RESULTS

As a proof of concept for the proposed scheme, we discuss a
series of experiments to test them using both simulated signals
and real-world signals in this section.

A. Experiment Setups and Performance Measures

To verify the recovery accuracy of the proposed AR-IRLS
algorithm that works with varying bandwidths and power levels
in the primary signals, the simulated signals xsim

0 are gener-
ated by choosing k nonzero components uniformly at random
out of N = 1024 and drawing the amplitude of each nonzero
component from a uniform distribution of U ([−1, 1]), where
the sparsity level is μ = k/N . The entries of the sensing ma-
trix � ∈ RM×N are generated by an i.i.d. Gaussian process with
zero mean and variance 1/M , where M/N is the corresponding
compressive ratio ρ.

The real-world TVWS signals xreal
0 are received by an RF-

eye node, which is an intelligent spectrum monitoring system
that can provide real-time 24/7 monitoring of the radio spec-
trum [47]. The RFeye node is located at Queen Mary University
of London (51.523021◦ N 0.041592◦ W), and the antenna height
is about 15 meters above ground, which is shown in Fig. 3. The
frequency of the received real-world TVWS signal ranges from
470 to 790 MHz and the channel bandwidth is 8 MHz in Europe.
The setting is consistent with the current bandwidth used in TV
broadcasting. Therefore, the total bandwidth of the real-world
signals is 320 MHz.

To quantify the reconstruction accuracy of the proposed algo-
rithm, we calculate the conventional relative mean square error
(r-MSE):

r-MSE = ||x∗ − x0||
||x0|| , (29)

where x0 = xsim
0 in the simulation mode and x0 = xreal

0 in the
real-time mode. We also calculate the acceptable reconstruction
frequencies, which is the fraction of successful reconstructions,
defined as the case with r-MSE ≤ 10−2. The convergence speed
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TABLE I
COMPARISON AMONG CONVENTIONAL IRLS ALGORITHMS AND THE

PROPOSED AR-IRLS ALGORITHM

Algorithm Compression
Capability

Sparsity Tolerance Computational
Complexity

Reg-IRLS high high high
Unreg-IRLS medium medium medium
IRL1 low low low
AR-IRLS high high low

Fig. 4. Acceptable reconstruction frequencies vs. compressive ratio ρ between
the proposed AR-IRLS algorithm and other conventional IRLS algorithms when
sparsity level μ = 0.05.

of the proposed AR-IRLS algorithm is also compared with the
traditional regularized IRLS [26] (termed Reg-IRLS), unregu-
larized IRLS (termed Unreg-IRLS), and the IRL1 approach [27]
(termed IRL1). The comparison among these three conventional
IRLS algorithms and the proposed algorithm is shown in Table I.
The first two algorithms and the proposed AR-IRLS algorithm
utilize the lν-norm minimization, where ν is set as 0.5, and the
last one utilizes the l1-norm minimization.

B. Results Over Simulated Signals

In this section, the acceptable reconstruction frequency per-
formance of the proposed AR-IRLS algorithm is compared with
the conventional IRLS algorithms including Reg-IRLS, Unreg-
IRLS and IRL1. The impacts of system parameters such as the
compression ratio and sparsity level are also investigated.

Fig. 4 shows the reconstruction performance against the com-
pressive ratio ρ of the proposed AR-IRLS algorithm. For eval-
uation, we compare it with the other three IRLS algorithms.
The sparsity level μ of the received signal is fixed to 0.05. It
can be seen that the reconstruction performance of the proposed
AR-IRLS algorithm is superior over that with the conventional
IRLS algorithms under the same compression ratio. Therefore,
a lower compressive ratio is enabled by the proposed AR-IRLS
algorithm to achieve the same reconstruction accuracy, which
decreases the required sampling rate in practical implementa-
tion.

As the PUs and SUs are frequently switching between the
modes of offline and online, the sparsity levels of the received
wideband signals in practice would fluctuate. A real-time wide-
band spectrum sensing scheme, therefore, should be robust
against different signal sparsity levels. To validate that the pro-

Fig. 5. Acceptable reconstruction frequencies vs. compressive ratio ρ

for the proposed AR-IRLS algorithm under different sparsity levels μ =
0.05, 0.10, 0.15, 0.20, 0.25.

Fig. 6. Acceptable reconstruction frequencies vs. sparsity level μ under dif-
ferent compressive ratios ρ = 0.2, 0.4, 0.6, 0.8 for the proposed AR-IRLS al-
gorithm.

posed algorithm can work with different sparsity levels, Fig. 5
shows the reconstruction performance of the proposed scheme,
which is improved with an increasing compressive ratio under
different sparsity levels. Under the same sparsity level μ, the
lower compressive ratio achieved by proposed sensing scheme
in comparison with that of the conventional algorithms, could
reduce the required sampling rate and lead to power savings. It is
shown in Fig. 5 that the gap between adjacent curves gets smaller
as the compressive ratio ρ increases, which matches the theo-
retical results regarding the formula ρ = M/N ≥ Ck log(N/k)
to calculate the minimum compressive ratio ρ for a Gaus-
sian measurement matrix, where C denotes a constant and
k = μ · N [22].

To show the relationship between the reconstruction perfor-
mance of the proposed algorithm and the sparsity level μ, we
plot the acceptable reconstruction frequencies against the spar-
sity level μ ranging from 0.05 to 0.60 under compressive ratios
ρ = 0.2, 0.4, 0.6, 0.8 in Fig. 6. It can be observed that the recon-
struction performance degrades as the sparsity level increases,
which indicates that more samples should be collected for signal
reconstruction to ensure that the reconstruction performance is
not degraded as μ increases. As Fig. 6 shows, although the sig-
nals with high sparsity levels require high compressive ratios,
our algorithm can recover the signal with a sparsity level μ as
high as 50%. By taking the advantage of robustness against dif-
ferent sparsity levels, our proposed scheme can deal with more
SU on/off switchings over the spectrum of interest.

Fig. 7 shows the acceptable reconstruction frequency against
the signal sparsity level μ under a compressive ratio ρ = 0.8
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Fig. 7. Acceptable reconstruction frequencies vs. sparsity level μ between
proposed AR-IRLS algorithm and other conventional IRLS algorithms when
compressive ratio ρ = 0.8.

Fig. 8. Block diagram of the compressive spectrum sensing measurement for
real-world signal on TVWS.

and the performance over a large sparsity level range could
be observed in this setting. Although IRL1 has the minimum
computational complexity, its reconstruction performance is the
worst. The proposed one has the best reconstruction perfor-
mance than the other three conventional IRLS algorithms, which
recovers the largest sparsity range under the same ρ. This en-
sures that the proposed sensing scheme could cope with highly
occupied channels.

C. Analysis on Real-world Signals

After the performance of the proposed scheme has been
validated with the simulated signals, we further test it over
real-world signals. The sparsity level of the received real-world
signal is 0.2. The block diagram of the real-world signal
measurement is shown in Fig. 8.

To analyze the reconstruction performance of the proposed
scheme with real-world signals over the compressive ratio ρ, we
compare the r-MSE of the proposed algorithm against the con-
ventional algorithms under different compressive ratios. Fig. 9
shows that the reconstruction performance gets better with a
higher compressive ratio at the receiver. More precisely, the
relative reconstruction error, obtained after all algorithms con-
verge, and averaged over enough repeats (e.g., 1000 runs), is
depicted as a function of the compressive ratio ρ in Fig. 9. As
shown in Fig. 9, we see that the proposed AR-IRLS algorithm
only requires a few iterations to reach a satisfactory degree of ac-
curacy and it outperforms the conventional algorithms. Fig. 10
indicates that as the compressive ratio ρ increases, better re-
construction performance is achieved. It is observed that the
curve of Reg-IRLS is close to that of the proposed AR-IRLS

Fig. 9. r-MSE vs. compressive ratio ρ between proposed AR-IRLS algorithm
and other conventional IRLS algorithms after 50 iterations.

Fig. 10. Acceptable reconstruction frequencies vs. compressive ratio ρ be-
tween proposed AR-IRLS algorithm and other conventional IRLS algorithms
after 50 iterations.

Fig. 11. Experimental setup for real-time processing and live compressive
spectrum sensing testbed on TVWS.

since a small regularizer ε > 0 is also added to the iteration
process different from the other two. Fig. 10 also shows that
the performance of the proposed IRLS-based spectrum sens-
ing is better than that of the conventional IRLS-based spectrum
sensing without regularization when the compression ratio is
between 46% and 53%.

D. Real-Time Processing Measurement

After the performance of the proposed scheme is verified by
both the simulated and real-world signals, it is further tested with
real-time processing to demonstrate the improvement on itera-
tion reduction. The experiment setup of real-time processing is
shown in Fig. 11, which consists of the commercial directional
UHF antenna, the RFeye node, and our real-time wideband
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TABLE II
COMPARISON OF THE CONVERGENCE SPEED AND RECONSTRUCTION

ACCURACY UNDER DIFFERENT SPARSITY LEVELS

k/N Iterations r-MSE after Convergence Iterations
Reduction

Reg-IRLS AR-IRLS Reg-IRLS AR-IRLS

0.1 40 12 7.8 · 10−3 6.1 · 10−5 70.0%
0.2 40 14 7.2 · 10−3 4.3 · 10−5 65.0%
0.3 41 17 8.7 · 10−3 8.8 · 10−5 58.6%
0.4 42 20 9.6 · 10−3 6.3 · 10−5 52.4%
0.5 44 26 1.1 · 10−2 8.6 · 10−5 41.0%

Fig. 12. r-MSE vs. Iterations between proposed AR-IRLS algorithm and other
conventional IRLS algorithms when compressive ratio ρ = 0.52.

compressive spectrum sensing testbed that is developed over
the NI LabVIEW software [48].

Table II shows the least number of iterations required by
the proposed AR-IRLS algorithm and by the conventional Reg-
IRLS algorithm to achieve a successful reconstruction, and their
r-MSEs after the convergence under different sparsity levels μ.
As seen from Table II, compared with the Reg-IRLS algorithm,
the proposed AR-IRLS algorithm achieves faster convergence
as it significantly reduces the number of required iterations for
accurate reconstruction. For instance, the least number of iter-
ations for successful reconstruction of the proposed AR-IRLS
algorithm is reduced by up to 70% when the sparsity level
μ = 0.1, and 41% when the sparsity level μ = 0.5. Further-
more, it shows that the proposed AR-IRLS algorithm achieves
higher reconstruction accuracy than that of the Reg-IRLS algo-
rithm under the same number of iterations. When the algorithms
reach convergence, the r-MSE of the proposed algorithm is of
order 10−5, smaller than that of the proposed algorithm of order
10−3. Therefore, the proposed AR-IRLS algorithm can achieve
faster recovery with higher reconstruction resolution compared
with the conventional IRLS algorithms.

Under a compression ratio of 0.64, we then compute the r-
MSE of the proposed AR-IRLS algorithm against the number
of iterations to evaluate its convergence speed and compare it
with the conventional IRLS algorithms, to illustrate its reduction
of required iterations under the same reconstruction accuracy,
which is presented in Fig. 12. As the proposed algorithm directly
converges to the actual global minimum shown in Theorem 2, it
accomplishes the convergence with a faster speed, while other
IRLS algorithms get into several wrong local solutions in the

Fig. 13. Acceptable reconstruction frequencies vs. iterations between pro-
posed AR-IRLS algorithm and conventional IRLS algorithms when compres-
sive ratio ρ = 0.52.

middle of the iteration processes. Moreover, since the proposed
algorithm can converge to the actual global minimum without
being stuck in wrong local solutions, the reconstruction accu-
racy of proposed algorithm is monotonically improving with the
number of iterations.

Fig. 13 shows that the proposed algorithm achieves a 100%
successful reconstruction frequency when the number of iter-
ations increases to 9. In contrast, the conventional IRLS algo-
rithms require at least 34 iterations to achieve the same perfor-
mance. Therefore, the number of iterations is reduced by 70% in
the proposed AR-IRLS algorithm without degrading the recon-
struction accuracy. This gained benefits can significantly speed
up the reconstruction process and reduce the computational bur-
den in comparison with the conventional IRLS algorithms.

VI. CONCLUSION

In this paper, a real-time wideband spectrum sensing scheme
with sub-Nyquist sampling was developed. To achieve fast
reconstruction from the compressive samples, an adaptively-
regularized iterative reweighted least squares (AR-IRLS) algo-
rithm has been proposed to implement the CS-based wideband
spectrum sensing with a high fidelity guarantee, which could
cope with varying bandwidths and power levels in real-world
signals. The proposed algorithm was tested over the real-world
measurements after having been validated by the simulated sig-
nals with random supports and amplitudes. Numerical results
showed that the convergence speed of the proposed reconstruc-
tion algorithm has been increased by up to 70% in comparison
with the conventional iterative reweighted least squares (IRLS)
algorithms, with 100x higher reconstruction accuracy, which
makes the proposed AR-IRLS algorithm more efficient in real-
time processing scenarios over shared spectrums such as TV
white space (TVWS). Due to the optimization-based algorithm
nature, the proposed AR-IRLS algorithm does have higher com-
putational complexity than those greedy methods, e.g., orthog-
onal matching pursuit (OMP) and matching pursuit (MP) even
though the proposed algorithm has reduced the number of iter-
ations by up to 70% in comparison with the conventional IRLS
algorithms.

Moreover, a descent-based algorithm has been proposed to
distinguish the primary signals from the mixture of reconstruc-
tion errors and unknown noises, by dynamically setting the
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threshold without any prior knowledge of the noise power. These
benefits enable the proposed algorithm to be implementable
for in real-time processing in new wireless services such as
machine-to-machine communications. Consequently, the pro-
posed algorithm would be a strong candidate to sense over a
much wider spectrum spanning the cellular and ISM bands.
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