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Decoding Delay Performance of Random Linear
Network Coding for Broadcast

Ioannis Chatzigeorgiou, Senior Member, IEEE, and Andrea Tassi, Member, IEEE

Abstract—Characterization of the delay profile of systems em-
ploying random linear network coding is important for the reli-
able provision of broadcast services. Previous studies focused on
network coding over large finite fields or developed Markov chains
to model the delay distribution but did not look at the effect of
transmission deadlines on the delay. In this paper, we consider
generations of source packets that are encoded and transmitted
over the erasure broadcast channel. The transmission of packets
associated with a generation is taken to be deadline constrained,
that is, the transmitter drops a generation and proceeds to the
next one when a predetermined deadline expires. Closed-form ex-
pressions for the average number of required packet transmissions
per generation are obtained in terms of the generation size, the
field size, the erasure probability, and the deadline choice. An up-
per bound on the average decoding delay, which is tighter than
previous bounds found in the literature, is also derived. Analysis
shows that the proposed framework can be used to fine-tune
the system parameters and ascertain that neither insufficient
nor excessive amounts of packets are sent over the broadcast
channel.

Index Terms—Broadcast, delay, multicast, network coding,
non-systematic, probability analysis, rateless coding, systematic.

I. INTRODUCTION

S INCE the inception of fountain coding for the broadcast
channel [1] and network coding for connected network

topologies [2], the fundamental idea of transmitting linear com-
binations of packets, either from a source node or intermediate
network nodes, was extensively investigated. Research demon-
strated that linear combinations do not need to conform to de-
sign rules or deterministic patterns; coding based on random
linear combinations is a capacity-achieving scheme for multi-
cast connections [3]. The so-called randomized network coding
[4], which is also referred to as random linear network coding
[5], offers clear advantages over conventional forwarding and
routing techniques. Protocols that exploit its properties have
been proposed, including Avalanche [6] for wireline networks
and MORE [7] for wireless networks. Random linear network
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coding for vehicle-assisted wireless broadcast has also been
considered. For example, data downloading via infrastructure-
to-vehicle connections, and vehicle-to-vehicle data sharing
when vehicles travel in the same direction has been explored
in [8], while data dissemination between vehicles that move in
opposite directions has been studied in [9].

In random linear network coding for broadcast, a transmitter
segments data into generations of K source packets each. For
a given generation, the transmitter broadcasts coded packets,
which are obtained by linearly combining the K source packets
of that generation over a finite field. A receiver needs to recover
K linearly independent coded packets in order to reconstruct the
K source packets of the generation using Gaussian elimination.
The average decoding delay experienced by a receiver is the
mean time required for the recovery of a generation. The average
decoding delay imposed to the system is the expected number of
time steps needed by all receivers to decode a generation [10].
The average decoding delay of the system can be computed by
observing the decoding delay at each receiver, recording the
longest delay for every generation, and averaging over a long
run of generations.

If the packet mixing operations are over a large finite field,
the randomly generated coded packets are linearly independent
with high probability. Therefore, a receiver is likely to recover
the K source packets if it collects exactly K coded packets.
Based on this assumption, the broadcast case can be modeled
as multiple independent unicast cases. This simplification facili-
tates the calculation of the average decoding delay of the system
because the joint probability of all receivers decoding the source
packets can be expressed as the product of the marginal decod-
ing probabilities of all receivers. Eryilmaz et al. [11] adopted
this approach, obtained an upper bound on the average decoding
delay at a receiver, derived expressions for the average decoding
delay of the system and proposed various scheduling strategies
when receivers send feedback to acknowledge recovery of the
source packets. Lucani et al. [12] considered the case where
each receiver regularly reports to the transmitter the number of
linearly independent coded packets that are still missing. The
average decoding delay at a receiver was computed using a
Markov chain model and was incorporated in an optimization
strategy, which minimizes the number of coded packets that
are broadcast before receivers are encouraged to send acknowl-
edgements. Heide et al. [13] also treated the broadcast case as
disjoint unicast cases and computed the average delay per trans-
mitted packet for both non-systematic and systematic network
coding.
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The effect of the field size on the average decoding delay
at a receiver was investigated by Lucani et al. [14], [15]. The
authors derived an upper bound on the decoding delay, which
was combined with that obtained in [11], and demonstrated
that binary network coding exhibits a negligibly longer de-
coding delay than non-binary network coding for an increas-
ing generation size. Nistor et al. [10] recognized that the av-
erage decoding delay of a broadcast system can be easily
computed only when specific channel conditions are met and
discussed the complexity of deriving a general expression for
the joint probability of all receivers decoding the source pack-
ets. To facilitate the analysis, the authors focused on a sys-
tem comprising one transmitter and two receivers, proposed
a Markov chain model to study the delay distribution of the
system and showed that their model reduces to a Markov
chain that is similar to that in [14] when only one receiver
is present.

In summary, the aforementioned literature on the delay per-
formance of network-coded transmission over the broadcast
channel either considered operations over large finite fields to
simplify the analysis or resorted to Markov chains to model
the delay distribution. The underlying hypothesis that previous
studies have in common is that a receiver always collects the
required number of linearly independent coded packets and re-
covers a generation of source packets. In this paper, we consider
a transmitter that abides by a deadline, after which coded packets
related to a generation are no longer broadcast. In particular, the
contributions of this paper can be summarized in the following
points:

1) The average number of packet transmissions required by
a receiver to recover a generation has been expressed in
closed form as a function of a preset deadline imposed on
packet transmissions, without using Markov chain models
as in [12], [14] and [15].

2) An upper bound on the average decoding delay at a re-
ceiver has been computed and shown to be tighter than
the bounds presented in [11] and [15].

3) The delay analysis has covered both non-systematic and
systematic random linear network coding for broadcast
transmission, and has established that the systematic
scheme incurs a shorter average decoding delay than non-
systematic transmission when the generation size and the
field size are small.

4) The proposed theoretical framework has been validated by
a series of simulation results. The impact of the generation
size, the field size and the deadline choice on the average
decoding delay has also been explored.

The remainder of the paper has been structured as follows.
Section II describes the system model. Sections III and IV
consider non-systematic and systematic network coding,
respectively, and derive expressions for the average number
of required coded packet transmissions and the average
decoding delay. Section V validates the proposed theoretical
analysis and applies it to a practical setting that is based
on the Long Term Evolution-Advanced (LTE-A) standard.
Concluding remarks and future directions are summarized in
Section VI.

II. SYSTEM MODEL

We consider a system of one transmitter broadcasting coded
packets to multiple receivers. For simplicity, a time step is set
equal to the duration of a transmitted packet, implying that K
packets can be delivered to the receivers in K time steps in
perfect channel conditions. We define as N =K + Ω the prede-
termined number of coded packet transmissions per generation,
where Ω denotes the permissible overhead, that is, the number
of additional coded packet transmissions before the deadline ex-
pires. Once K coded packets have been broadcast, each receiver
is expected to recover the K source packets in the subsequent
Ω time steps.

A source packet ui , for i = 1, . . . , K, is modeled as a se-
quence of L symbols from a finite field of size q, that is,ui ∈ FL

q .
At time step j, for j = 1, . . . , N , the transmitter generates the
coded packet xj ∈ FL

q as follows

xj =
K∑

i=1

gi,j ui

and sends it over a broadcast channel characterized by packet
erasure probability ε. The coefficients gi,j are selected uniformly
at random from Fq [4]. If n coded packets have been transmitted,
the input to the broadcast channel can be written in matrix
notation as

⎡

⎢⎣
x1
...

xn

⎤

⎥⎦ = G

⎡

⎢⎣
u1
...

uK

⎤

⎥⎦ (1)

where the coefficients gi,j are the elements of G ∈ F n×K
q ,

which is referred to as the coding matrix. Let y1, . . . ,ym denote
the m ≤ n coded packets that a receiver successfully retrieved
from the set of n transmitted packets. Furthermore, let M rep-
resent the m × K decoding matrix constructed at the receiver
from the m rows of G that are associated with the retrieved
packets. The relationship between y1, . . . ,ym and the source
packets u1, . . . ,uK is

⎡

⎢⎣
y1
...

ym

⎤

⎥⎦ = M

⎡

⎢⎣
u1
...

uK

⎤

⎥⎦ .

The receiver can recover the K source packets if and only if
the rank of M is K, which implies that M contains a K × K
invertible matrix.

The n packet transmissions, which were sufficient for the re-
covery of the K source packets of a particular generation by a
receiver, can be expressed as n = K + ω, where ω denotes the
overhead for the generation under consideration. Fig. 1 shows
an example of three receivers, which attempt to recover a gen-
eration of K = 5 source packets. Receiver 1 recovers the gen-
eration after n = 7 packet transmissions and is not required to
listen to the last two transmissions. Receiver 2 listens to all
packet transmissions, i.e., n = 9, and recovers the generation
too. Receiver 3 needs one additional packet transmission after
the deadline, which is shown as a dashed frame in Fig. 1, to re-
construct the K = 5 source packets. Given that N = 9 is a hard



7052 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 66, NO. 8, AUGUST 2017

Fig. 1. A transmitter generates N = 9 coded packets from a generation of
K = 5 source packets and broadcasts them to three receivers. The overhead
is Ω = 4 packets. Grey slots depict erased packets at the respective receiver.
Receivers 1 and 2 recover the generation after 7 and 9 packet transmissions,
respectively. Receiver 3 fails to recover the generation by the set deadline.

deadline, receiver 3 does not recover the generation and is in
outage. Taking into account that n and ω can be modeled as dis-
crete random variables that represent packet transmissions but
also elapsed time steps, the following definitions apply through-
out this paper:

Definition 1: The outage probability Pout is the probability
that a receiver will not recover a generation by the set dead-
line of N time steps, and is defined as Pout = Pr (n > N) or,
equivalently, Pout = Pr (ω > Ω).

Definition 2: The average number of packet transmissions
n̄ required by a receiver to recover a generation, provided that
the deadline has not passed, is the expected value of n for n
capped at N . It is defined as n̄ = E [n] for K ≤ n ≤ N , where
E [·] denotes the expectation operator. Similarly, the average
overhead is defined as ω̄ = E [ω] for 0 ≤ ω ≤ Ω.

Definition 3: The average decoding delay d̄ at a receiver is
the expected value of time steps (or, equivalently, the average
number of packet transmissions) required by that receiver to
recover a generation of K source packets when no deadline is
imposed. It is defined as d̄ = limΩ→∞ n̄ = K + limΩ→∞ ω̄.

Based on these definitions, we understand that if the erasure
probability ε is small and the overhead Ω is sufficiently large,
the outage probability Pout is close to zero, while n̄ ≈ d̄. As
ε increases, the value of Pout approaches 1, the value of n̄
increases and eventually settles to N , and the value of d̄ increases
without bound. The system could reach a state where a receiver
always listens to all of the N coded packet transmissions (n̄ =
N ) but fails to recover the K source packets of a generation with
high probability. In that case, the deadline should be relaxed by
increasing the value of Ω until Pout has been lowered to a desired
value.

Two implementations of network coding are considered in the
remainder of the paper, their outage behavior is studied, closed-
form expressions for n̄ are obtained, and tight bounds for d̄ are
derived.

III. NON-SYSTEMATIC NETWORK CODING

In conventional (non-systematic) random linear network cod-
ing, the m × K decoding matrix M will be a random matrix

from F m×K
q and its rank will be K with probability

P (m) =

{∏K−1
i=0

(
1 − q−m+i

)
, if m ≥ K

0, if m < K.
(2)

As mentioned in [16], P (m) also represents the Cumulative
Distribution Function (CDF) of the probability of receiving K
linearly independent coded packets, given the receipt of m coded
packets.

To compute the probability that a receiver will recover the
K source packets of a generation in N = K + Ω or fewer time
steps, the probability that a generation will be recovered in ex-
actly n = K + ω steps needs to be obtained first. Let sn

ρ denote
the following statement:

sn
ρ : The decoding matrix M has rank ρ at time step n,

the desired Probability Mass Function (PMF) of ω, denoted by
f(ω), can be expressed as the product of two terms:

f(ω) = Pr
(
sK +ω

K | sK +ω−1
K−1

)
Pr

(
sK +ω−1

K−1

)
. (3)

The first term of the product in (3) considers the case when
the receiver has already collected K − 1 linearly independent
coded packets in K + ω − 1 time steps. It corresponds to the
probability that the coded packet transmitted at time step K + ω
has been successfully delivered to the receiver with probability
(1 − ε) and is the K-th required linearly independent coded
packet with probability pK . We can thus write

Pr
(
sK +ω

K | sK +ω−1
K−1

)
= (1 − ε) pK . (4)

The second term of the product in (3) represents the prob-
ability that K − 1 linearly independent coded packets have
been recovered in the first K + ω − 1 time steps. If we de-
note by Pr (m) the probability that a random matrix over Fm×K

q

has rank r, where 0 ≤ r ≤ min(m,K), the second term in (3)
assumes the following form

Pr
(
sK +ω−1

K−1

)
=

τω∑

m=K−1

(
τω

m

)
ετω −m (1 − ε)m PK−1(m) (5)

where we set τω = K + ω − 1 for compactness of notation. A
recursive relationship that links pK in (4) and PK−1(m) in (5)
with the well-defined probability P (m) in (2) is

P (m + 1) = PK−1(m) pK + P (m). (6)

In other words, a full-rank (m + 1) × K random matrix can
be obtained from an m × K random matrix, if the m × K matrix
has rank K − 1 and a linearly independent row is appended to
it or the m × K matrix has already rank K. Note that P (K) =
PK−1(K − 1) pK for m = K − 1. Substituting (4) and (5) into
(3), and using (6), gives

f(ω) =
(

τω

K − 1

)
εω (1 − ε)K P (K)

+
τω∑

m=K

(
τω

m

)
ετω −m (1 − ε)m+1

[
P (m+1) − P (m)

]
.

(7)
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The CDF of ω, denoted by F (ω), describes the probability
that the considered receiver will recover the K source packets
of a generation in up to n = K + ω time steps and is equal to
F (ω) =

∑ω
i=0 f(i).

Remark 1: Assume that K − 1 coded packets have been col-
lected by the receiver and a (K − 1) × K decoding matrix M
has been constructed. Each time M is augmented by a row due
to the successful delivery of an additional coded packet, the
receiver computes its rank. If the rank of M is K when its di-
mensions are m × K, we can conclude that m − K + 1 rank
checks have been carried out. Regular rank checks ensure that
the K source packets will be recovered as soon as K linearly
independent coded packets are received but do not affect the
probability of the m × K decoding matrix M having rank K.
Based on this observation, the CDF of ω should be given by

F (ω)=
K +ω∑

m=K

(
K + ω

m

)
εK +ω−m (1 − ε)m P (m) (8)

and the PMF of ω could be obtained from F (ω) as follows:

f(ω) = F (ω) − F (ω − 1). (9)

Expression (9), which has been invoked in the literature,
e.g.,[17], is indeed equivalent to (7) and Appendix A describes
the steps for obtaining (9) from (7). The probability analysis
that follows rely on both (7) and (8).

Given that n = K + ω, the PMF and CDF of the overhead ω
also describe the probability distribution of the required packet
transmissions n, if K + ω is replaced by n in (7) and (8). The
probability that a receiver will fail to recover the K source pack-
ets in N = K + Ω time steps represents the outage probability
and is given by Pout = 1 − F (Ω) or equivalently

Pout = 1 −
N∑

m=K

(
N

m

)
εN −m (1 − ε)m P (m). (10)

Calculation of the average number of packet transmissions
n̄ and derivation of bounds for the average decoding delay d̄
are more involved and are described in detail in the following
proposition and corollary.

Proposition 1: If a transmitter broadcasts N = K + Ω
coded packets over a channel subjected to packet erasures with
probability ε, the average number of coded packet transmissions
that a receiver is required to listen to, so that it stands the best
chance of recovering the K source packets, is

n̄ = N −
Ω−1∑

ν=0

K +ν∑

m=K

(
K + ν

m

)
εK +ν−m (1 − ε)m P (m) (11)

where Ω represents the permissible overhead.
Proof: The average overhead ω̄ signifies the average number

of coded packet transmissions that a receiver is required to listen
to, in addition to the K original coded packet transmissions. A
receiver will be interested in the coded packet transmitted at time
step K + 1 if K linearly coded packets have not been recovered
in the previous K time steps with probability 1 − F (0). In
general, the considered receiver will be interested in the coded
packet transmitted at time step K + 1 + ν if it has failed to

collect K linearly independent coded packets in the previous
K + ν time steps with probability 1 − F (ν), for 0 ≤ ν ≤ Ω −
1. Adding up the probabilities that weight each coded packet
transmission for ν = 0, . . . ,Ω − 1 gives the average overhead,
that is

ω̄ = Ω −
Ω−1∑

ν=0

F (ν). (12)

The average number of coded packet transmissions n̄ can be
obtained from (12) if K is added to the right-hand side of (12)
and F (ν) is expanded using (8). �

Corollary 1: Consider a transmitter that employs random
linear network coding over Fq on K source packets and gen-
erates coded packets. If a potentially infinite number of coded
packets can be transmitted over a broadcast channel to multi-
ple receivers, the average decoding delay d̄ incurred by each
receiver can be bounded as follows:

K

1 − ε
≤ d̄ <

1
1 − ε

[
K +

q
(
1 − q−K

)

(q − 1)2

]
(13)

where ε is the packet erasure probability of the broadcast
channel.

Proof: The lower bound can be easily understood if we
take into account that, out of the n transmitted coded packets,
(1 − ε)n coded packets will be delivered on average to each
receiver. A receiver has a chance of recovering the generation
of K source packets only if (1 − ε)n is at least equal to K.
Derivation of the upper bound is nontrivial and a detailed proof
is provided in Appendix B. �

Remark 2: The minimum of two upper bounds on d̄ has been
proposed in [15, Lemma 2]. In particular, the authors of [15]
proved that

d̄ <
1

1 − ε
min

{
K

q

q − 1
, K + 1 +

1 − q−K +1

q − 1

}
. (14)

Given that K ≥ 2 and q ≥ 2 in random linear network coding,
we can show that the upper bound in (13) is tighter than the two
bounds in (14). Factor 1/(1 − ε) appears in all bounds and can
be omitted from this comparison. The upper bound in (13) can
thus assume the form

K +
q
(
1 − q−K

)

(q − 1)2
= K +

(
1

q − 1

)(
q

q − 1

)(
1 − q−K

)

(15)
whilst the first and second bounds in (14) can be rewritten as:

K
q

q − 1
= K +

(
1

q − 1

)
K (16)

K + 1 +
1 − q−K +1

q − 1
= K +

(
q

q − 1

)(
1 − q−K

)
(17)

respectively. The product terms on the right-hand side of (15),
(16) and (17) are all positive numbers. We also know that q/(q −
1) ≤ K and 0.75 ≤ (1 − q−K ) < 1, therefore (15) is a lower
bound of (16). On the other hand, 1/(q − 1) ≤ 1 hence (15)
bounds (17) from below too. A graphical demonstration of the
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Fig. 2. Comparison of the upper bounds (15), (16) and (17) for K = 30.

tightness of (15) is shown in Fig. 2. This concludes the proof
that (13) is a tighter bound than (14).

IV. SYSTEMATIC NETWORK CODING

In systematic network coding, the transmitter broadcasts N
packets; the first K packets are identical to the K source pack-
ets of a generation and are referred to as systematic packets,
while the remaining Ω = N − K packets are generated as in the
non-systematic case. At time step n′, the transmitter has broad-
cast n′ = K + ω′ packets, where the overhead consists of ω′

coded packets. The n′ × K coding matrix G has the following
structure

G =
[

I
C

]
(18)

where I is the K × K identity matrix and C is a random matrix
from Fω ′×K

q . If a receiver successfully collects m packets, of
which h are systematic and the remaining m − h are coded, the
m × K decoding matrix M will be constructed. The probability
that M has rank K for m ≥ K is given by

P ′(m,ω′)=

∑K

h=hm in

(
K

h

)(
ω′

m−h

)∏K−h−1

i=0

(
1−q−m+h+i

)

(
K + ω′

m

)

(19)
where hmin = max (0, m − ω′) [18], [19, Lemma 1]. For K −
h − 1 < 0, the product in the right-hand side of (19) becomes
an empty product and is equal to 1.

The probability of M having rank K is higher for systematic
network coding than for non-systematic network coding1 when
arithmetic operations are over F2 [19, Proposition 2], that is,
P ′(m,ω′) > P (m) for q = 2. This proposition is generalized
for any valid value of q in the following lemma.

Lemma 1: Consider the case where systematic network cod-
ing is used and only ω′ of the K + ω′ transmitted packets are
coded, and the case where non-systematic network coding is
employed and all of the K + ω′ transmitted packets are coded.
In both cases, the number of source packets is K and the number
of packets delivered to a receiver is m. If P ′(m,ω′) and P (m)

1This is a property of random linear network coding and cannot be generalized
to channel coding at the physical layer.

are the probabilities that the decoding matrix in each case has
full rank, then

P ′(m,ω′) > P (m) (20)

for K ≤ m ≤ K + ω′ and q ≥ 2.
Proof: Using (2), we first look at the ratio:

P (m)
∏K−h−1

i=0

(
1 − q−m+h+i

) =
K−h−1∏

i = 0

(
1 − q−m+i

)

(1 − q−m+h+i)

×
K−1∏

i=K−h

(
1 − q−m+i

)
. (21)

Both products of terms in the right-hand side of (21) generate
values that are smaller than 1, therefore

K−h−1∏

i=0

(
1 − q−m+h+i

)
> P (m) (22)

for m ≥ K and 0 < h ≤ K. Based on the Chu-Vandermonde
identity [20, p. 41] and the Vandermonde’s convolution [21, p.
29], the following relation holds

K∑

h=hm in

(
K

h

)(
ω′

m − h

)
=

(
K + ω′

m

)
(23)

where hmin = max (0, m − ω′). Using both (22) and (23), the
series below can be bounded as follows:

K∑

h=hm in

(
K

h

)(
ω′

m − h

)K−h−1∏

i=0

(
1 − q−m+h+i

)

> P (m)
K∑

h=hm in

(
K

h

)(
ω′

m − h

)

= P (m)
(

K + ω′

m

)
. (24)

Combining (24) with (19) yields the desired (20). �
The number of packet transmissions n′ and the overhead ω′

can be modeled as discrete random variables. Following the
same line of thought and reasoning as in Section III, the PMF
and CDF of ω′ assume the form

f ′(ω′) =
(

τω ′

K − 1

)
εω ′

(1 − ε)K P ′(K,ω′)

+
τω ′∑

m=K

(
τω ′

m

)
ετω ′−m (1 − ε)m+1

[
P ′(m+1, ω′) − P ′(m,ω′)

]

and

F ′(ω′) =
K +ω ′∑

m=K

(
K + ω′

m

)
εK +ω ′−m (1 − ε)m P ′(m,ω′)

respectively, where τω ′ = K + ω′ − 1. Similarly to non-
systematic network coding, the outage probability of system-
atic network coding can be computed using P ′

out = 1 − F ′(Ω),
while the average number of required packet transmissions n̄′
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Fig. 3. The upper and lower bounds, presented in (13), are compared with the
theoretical average decoding delay of non-systematic (non-sys.) and systematic
(sys.) network coding. Finite fields of size (a) q = 2 and (b) q = 4 are considered.
Results for generation sizes K ∈{20, 25, 30} are displayed.

and the average decoding delay d̄′ are obtained in the following
proposition and corollaries.

Proposition 2: For each generation, a transmitter sends K
source packets followed by Ω coded packets over a channel
subjected to packet erasures with probability ε. The average
number of packet transmissions that a receiver is required to
listen to, so that it stands the best chance of recovering the K
source packets of a generation, is

n̄′=N −
Ω−1∑

ν=0

K +ν∑

m=K

(
K + ν

m

)
εK +ν−m (1 − ε)m P ′(m, ν).

(25)
Proof: The same steps as in Proposition 1 can be followed

to first obtain ω̄′ as a function of F ′(ν), for 0 ≤ ν ≤ Ω − 1, and
then use n̄′ = K + ω̄′ to derive (25). �

Corollary 2: In a network-coded broadcast system, which
uses a given field size q, generation size K and deadline val-
ues N and Ω, a receiver is required to listen to fewer packet
transmissions, on average, when systematic network coding is
employed as opposed to non-systematic network coding.

Proof: According to Lemma 1, P ′(m,ω′) > P (m) holds.
Therefore, F ′(ω′) > F (ω) for ω′ = ω also holds, which leads
to the conclusion that n̄′ < n̄. �

Corollary 3: If systematic network coding is used to transmit
a potentially infinite number of packets over the broadcast era-
sure channel, the average decoding delay d̄′ is confined within
the same bounds as in the non-systematic case.

Proof: The proof follows from Corollary 2. Given that n̄′ <
n̄ for any value of Ω, the bounds used in (13) can also be
used to bound d̄′ = limΩ→∞ n̄′. The tightness of the bounds is
demonstrated in Fig. 3. �

Remark 3: For large values of q, the first K received pack-
ets will be linearly independent with high probability for both
non-systematic and systematic random linear network coding.
Indeed, if q→∞, we obtain P (m)=P ′(m,ω′)=1 for m≥K,
hence, the average number of packet transmissions for both

Fig. 4. Comparison of results obtained from theoretical expressions (theory)
and through simulations (sim.) for non-systematic (non-sys.) and systematic
(sys.) network coding. The generation size is set to K = 30, while finite fields
of size (a) q = 2 and (b) q = 4 are considered.

implementations of network coding will be

n̄ = n̄′ = N −
Ω−1∑

ν=0

K +ν∑

m=K

(
K + ν

m

)
εK +ν−m (1 − ε)m (26)

while the average decoding delay will be d̄ = d̄′ = K/(1 − ε).
In practice, as shown in Fig. 3 and discussed in Section V, non-
systematic and systematic random linear network coding have
similar delay performances for q ≥ 4.

V. NUMERICAL RESULTS

In Sections III and IV, exact expressions for the average
number of required packet transmissions and bounds for the
average decoding delay at a receiver were obtained for non-
systematic and systematic random linear network coding. This
section validates the proposed theoretical framework, reflects on
the delay performance of the two implementations of network
coding for broadcast transmission and extends the framework
to a particular LTE-A example case.

A. Assessment of the Proposed Framework

A comparison between theoretical values and simulation re-
sults is presented in Fig. 4. Specifically, the average number
of required packet transmissions was computed through Monte
Carlo simulations for generations of K = 30 source packets and
different values of total packet transmissions N per generation,
packet erasure probability ε and field size q. We observe that
simulation results coincide with theoretical evaluations based on
(26) for non-systematic network coding, and (25) for system-
atic network coding. The upper bound has been obtained using
(13) for both schemes. We notice that the average number of
required packet transmissions closely follows the upper bound
on the decoding delay for as long as the erasure probability ε
is low enough or the total number of transmitted packets N is
sufficiently large for a receiver to collect K linearly indepen-
dent coded packets. Otherwise, the average number of required
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Fig. 5. Average number of required packet transmissions for non-systematic
and systematic network coding, when (a) q = 2 and (b) q = 4. The generation
size K takes values in {10, . . . , 30}, the total number of transmitted packets is
N = 	1.5K
 and the erasure probability is ε = 0.1.

Fig. 6. Average overhead ω̄ as a function of the permissible overhead Ω,
which has been expressed as a fraction of the generation size K . The erasure
probability is ε = 0.1, while the generation size and the field size take values
in K ∈ {20, 60, 100} and q ∈ {2, 4, 16}, respectively.

packet transmissions deviates from the upper bound and con-
verges to the total number of packet transmissions. When n̄ (or
n̄′) is equal to N , a receiver is required to listen to all packet
transmissions but the outage probability is markedly high, as
can be inferred from Fig. 4.

Having confirmed the validity and accuracy of the derived
expressions, we shall now study them in more detail to gain
insight into the interplay between system parameters. Delay
performance curves for non-systematic and systematic network
coding, obtained from (26) and (25) respectively, are compared
in Fig. 5. The generation size K ranges from 10 to 30 source
packets. The total number of transmitted packets has been set
to N = 	1.5K
, where 	·
 denotes the integer part of a num-
ber. The reduced decoding complexity of systematic network
coding, which has been reported in [15], is complemented by a
decreased number of required packet transmissions or, equiva-
lently, a smaller delay in decoding a generation when the chosen

field size is q = 2, as shown in Fig. 5(a). As the generation size
increases, the delay performance of systematic network coding
becomes comparable to that of non-systematic network coding.
Fig. 5(b) shows that, when the finite field consists of four (or
more) elements, the delay profiles of the two schemes are nearly
identical.

For non-systematic network coding, the average overhead ω̄,
which is given in (12), for an increasing ratio Ω/K, erasure
probability ε = 0.1 and various values of K and q, is plotted in
Fig. 6. The ratio Ω/K represents the number of additional coded
packet transmissions expressed as a fraction of the considered
generation size. Let us focus on the case of a transmitter that
encodes generations of K = 60 source packets and broadcasts
60 coded packets followed by Ω additional coded packets for
each generation, where Ω ∈ {0, . . . , 30}. The line described by
equation ω̄ = Ω in Fig. 6 for K = 60 depicts the worst-case
average overhead, which occurs when the outage probability
is high and a receiver is driven to listen to all of the packet
transmissions until the deadline expires. Regardless of the size
q of the finite field, if Ω < 3, or equivalently Ω/K < 0.05,
packet erasures prevent a receiver from collecting a sufficient
number of coded packets and retrieving the source packets. On
the other hand, if D ≥ 18 or D/K ≥ 0.3, the average overhead
ω̄ stabilizes at 8.45, 7.13 and 6.74 time steps for q equal to
2, 4 and 16, respectively. Based on (40), the corresponding
upper bounds (not shown in Fig. 6) are 8.88, 7.16 and 6.74.
We conclude that if the preassigned value of Ω is increased
beyond 18 coded packets when K = 60 and ε = 0.1, the extra
coded packet transmissions will be wasteful because they will
have no impact on the average decoding delay at a receiver.
Furthermore, we observe that the cost of adopting field F2 over
F4 and F16 is the transmission of 1.32 and 1.71 extra coded
packets, on average, respectively. However, F2 has the advantage
of the least computationally expensive encoding and decoding
processes. This observation is reinforced if we consider the
range 3 ≤ Ω < 18 or 0.05 ≤ Ω/K < 0.3 in Fig. 6 and notice
that the differences in performance are markedly smaller than
those for higher values of Ω. Similar trends can also be noted
for K = 20 and K = 100 in Fig. 6.

In summary, Fig. 4 demonstrated that, for a given total number
of coded packet transmissions N , the exact expressions for the
average number of required packet transmissions n̄ can be used
to identify the erasure probability for which n̄ deviates from
the upper bound on the decoding delay d̄ and saturates. Fig. 5
established that the decoding delay can be reduced for small
generation sizes, if systematic network coding is selected over its
non-systematic counterpart when arithmetic operations are over
F2. Finally, Fig. 6 showed that, for a given erasure probability,
the theoretical framework can determine the range from which
values for the permissible overhead Ω can be drawn; outside
this range, the amount of transmitted coded packets is either
insufficient or excessive.

B. Performance Evaluation in an LTE-A System

In order to investigate the delay performance of non-
systematic and systematic random linear network coding for
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Fig. 7. Average number of TB transmissions required as a function of the
SINR at the User Equipment (UE). The generation size is K = 30, while
(a) q = 2 and (b) q = 4. The MCS with index 13 has been used (16-QAM).

broadcast services in a practical setting, we consider an LTE-A
system that consists of 19 base stations equipped with three-
sector antennas; 18 of the base stations are evenly distributed
on the circumference of three nested rings centered at the ref-
erence base station, which broadcasts a network-coded stream
of packets. The inter-site distance of the base stations is 500 m.
Our simulations are based on the physical layer parameters pre-
scribed in the 3GPP’s benchmark Case 1 [22].

The downlink phase of LTE-A relies on Orthogonal Fre-
quency Division Multiple Access (OFDMA). As such, radio
resources can be modeled as a time-frequency grid. In order to
meet the physical layer constraints of LTE-A, each Transport
Block (TB) carries one packet, either systematic or coded. Each
TB spans a variable bandwidth and lasts for 10 ms, i.e., it oc-
cupies 12 OFDM symbols. In our simulations, we set the TB
bandwidth equal to 1.62 MHz, i.e., we refer to TBs with a band-
width equal to three LTE-A resource blocks [22]. For simplicity,
the radio resource mapping imposes that only one TB can be
transmitted every 10 ms. Hence, a direct relationship between
the number of packet transmissions n or n′ and the transmission
time has been established. We employed a fixed Modulation
and Coding Scheme (MCS) for the transmission of each TB.
The adopted MCS determines the TB error probability, which
coincides with the erasure probability ε in the considered setup.
Further details on the LTE-A simulator can be found in [23,
Section V].

A user that receives the transmitted packet stream was con-
sidered. Fig. 7 shows the values of n and n′ as a function of
the user Signal-to-Interference-plus-Noise Ratio (SINR), while
Fig. 8 depicts the outage probabilities Pout and P ′

out in terms
of the user SINR. In both cases, the field size is q ∈ {2, 4} and
the index of the adopted MCS is 13 [24], i.e., 16-QAM having
a spectral efficiency of 1.9141 was used. Both figures reinforce
the observations made in Section V-A and clearly illustrate the
marginal advantage in packet transmissions that systematic net-
work coding exhibits over non-systematic network coding for
q = 2 and high SINR values. Furthermore, Fig. 8 depicts the

Fig. 8. Outage probability as a function of the SINR at the User Equipment
(UE). The generation size is set to K = 30, while (a) q = 2 and (b) q = 4. The
MCS with index 13 has been used (16-QAM).

steep decrease in outage probability as the SINR improves. This
characteristic can be attributed to the nature of the physical
layer of LTE-A, which can cause sharp changes in the TB error
probability when the SINR increases or reduces by 5 dB or less
beyond a particular value [24].

VI. CONCLUSION AND FUTURE DIRECTIONS

The use of random linear network coding for the encoding
of generations of source packets and the broadcast of coded
packets was considered. Both the non-systematic and systematic
implementations of network coding were studied and closed-
form expressions for the average number of required packet
transmissions, which is related to the incurred decoding delay
at a receiver, were derived. Whereas previous studies focused
on network coding over large fields or unconstrained packet
transmission, this work looked at deadline-constrained packet
transmission and finite fields of any size.

The proposed framework established that the field size has
a marginal impact on the average number of required packet
transmissions and the average decoding delay. Furthermore, re-
sults showed that systematic network coding can offer a small
gain in delay performance over non-systematic network coding,
in addition to the reported benefits of reduced computational
complexity. The derived expressions and bounds can also be
used to fine-tune the generation size, the field size and the max-
imum permissible number of transmitted packets, such that the
transmitter does not waste capacity and energy in an attempt to
achieve a low outage probability.

The average decoding delay at a receiver can be considered in
optimization problems that aim to minimize the energy broad-
cast by the transmitter or maximize the energy harvested by
each receiver. For example, if the transmitter broadcasts a fixed
number of coded packets per generation, a receiver could switch
to energy-harvesting mode as soon as a generation is recovered.
The derived expressions could be used to determine a deadline
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that achieves a balance between the desired outage probabil-
ity and the required harvested energy. If feedback channels are
available, coded packet transmissions could cease before the
deadline is reached. In that case, the probability that all of the
receivers will recover a generation has to be computed and used
in the calculation of the average decoding delay of the system.
The delay distribution for a system consisting of one transmitter
and two receivers was studied in [10], and special cases were
discussed in [10], [11], [13] but derivation of an exact expression
remains an open problem.

APPENDIX A
EQUIVALENT EXPRESSION OF f(ω)

Let us first define the coefficient

CK +ω−1
m =

(
K + ω − 1

m

)
(1 − ε)m εK +ω−1−m

and then regroup the terms of f(ω) in (7) as follows

f(ω) =
K +ω−1∑

m=K

[
(1 − ε)CK +ω−1

m−1 − (1 − ε)CK +ω−1
m

]
P (m)

+ (1 − ε)CK +ω−1
K +ω−1 P (K + ω).

(27)

If coefficient CK +ω−1
m is simultaneously added to and sub-

tracted from (1 − ε)CK +ω−1
m−1 − (1 − ε)CK +ω−1

m , we obtain

(1 − ε)CK +ω−1
m−1 − (1 − ε)CK +ω−1

m

= (1 − ε)CK +ω−1
m−1 + εCK +ω−1

m − CK +ω−1
m .

(28)

Using the recursive relationship of binomial coefficients, i.e.,
(

K + ω − 1
m − 1

)
+

(
K + ω − 1

m

)
=

(
K + ω

m

)

we can show that

(1 − ε)CK +ω−1
m−1 + εCK +ω−1

m = CK +ω
m . (29)

If we substitute (29) into (28) and then into (27), and also
observe that

(1 − ε)CK +ω−1
K +ω−1 = CK +ω

K +ω

we can rewrite f(ω) as

f(ω) =
K +ω∑

m=K

CK +ω
m P (m) −

K +ω−1∑

m=K

CK +ω−1
m P (m) (30)

where the first and second sums in (30) correspond to F (ω) and
F (ω − 1), respectively.

APPENDIX B
PROOF OF COROLLARY 1

Based on Definition 3, the average decoding delay is given
by d̄ = K + limΩ→∞ ω̄. Taking into account that F (ν) can
be expanded into f(0) + . . . + f(ν) for ν = 0, . . . ,Ω−1, the

average overhead ω̄ given in (12) can be written as

ω̄ = Ω −
Ω−1∑

�=0

f(�) (Ω − �)

= Ω − Ω
Ω−1∑

�=0

f(�) +
Ω−1∑

�=0

� f(�) .

(31)

For Ω → ∞, the second sum in the last line of (31) represents
the probability that the K packets will be recovered after an
infinite number of time steps have elapsed or, equivalently, an
infinite number of packet transmissions have occurred. This
probability is equal to 1 for non-zero erasure probability values.
Consequently, the first and second terms in (31) cancel each
other out and the limit of ω̄ as Ω → ∞ reduces to

lim
Ω→∞

ω̄ = lim
Ω→∞

[
Ω−1∑

�=1

� f(�)

]
. (32)

Note that the starting value of � has been set to 1 because the
first term of the sum in (32) is zero for � = 0.

Let us define Δ(ν) = P (K + ν) − P (K + ν − 1) for con-
venience, where Δ(0) = P (K). Consequently, (7) can be
rewritten as

f(�) =
�∑

r=0

(
K + � − 1

� − r

)
ε�−r (1 − ε)K +r Δ(r). (33)

If we write � as (� − r) + r and invoke (33), the sum in (32)
can be decomposed into two sums, denoted by Σ1 and Σ2, as
follows

Ω−1∑

�=1

� f(�)

=
Ω−1∑

�=1

�−1∑

r=0

(� − r)
(

K + � − 1
� − r

)
(1 − ε)K +r ε�−r Δ(r)

︸ ︷︷ ︸
Σ1

+
Ω−1∑

�=1

�∑

r=1

r

(
K + � − 1

� − r

)
(1 − ε)K +r ε�−r Δ(r)

︸ ︷︷ ︸
Σ2

.

(34)

Note that, in order to discard zero terms, the summation index
r stops at � − 1 in Σ1 and starts from 1 in Σ2.

The sum Σ1 collapses to

Σ1 =
Ω−1∑

�=1

ε (K + � − 1) f(�−1)

if we observe that components of Σ1 in (34) can be rearranged
to form f(�−1), as defined in (33). Changing the summation
index from � to j = � − 1 gives

Σ1 = εK

Ω−2∑

j=0

f(j) + ε

Ω−2∑

j=0

j f(j) . (35)
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If we return our attention to (34), we observe that the or-
der of summation in Σ2 can be interchanged and the limits
of the summation indices � and r can be updated accordingly,
resulting in

Σ2 =
Ω−1∑

r=1

r Δ(r)
Ω−1∑

�=r

(
K + � − 1

� − r

)
(1 − ε)K +r ε�−r . (36)

Careful inspection of the expression in the inner sum of (36)
reveals that it corresponds to a PMF. More specifically, let us
consider a source transmitting κ uncoded packets to a destination
in κ time steps over a point-to-point channel characterized by
erasure probability ε. The destination uses a feedback channel
to notify the source of erased packets. Subsequently, the source
dedicates δ additional time steps for packet retransmissions.
The probability that the destination will recover the κ packets
in exactly κ + δ time steps is

θ(δ, κ) =
(

κ + δ − 1
κ − 1

)
(1 − ε)κ εδ . (37)

This is because the κ-th packet will be recovered in time step
κ + δ and the remaining κ − 1 packets have been retrieved in
the previous κ + δ − 1 time steps. Invoking the PMF in (37) and
changing the summation index of the inner sum in (36) from �
to i = � − r, we write Σ2 in the following form

Σ2 =
Ω−1∑

r=1

r Δ(r)
Ω−1−r∑

i=0

θ(i, K + r) .

The inner sum of PMFs is bounded from above by 1, while
Δ(r) can be expanded to P (K + r) − P (K + r − 1) giving

Σ2 <
Ω−1∑

r=1

r
[
P (K + r) − P (K + r − 1)

]

= (Ω − 1)P (K + Ω − 1) −
Ω−2∑

r=0

P (K + r).

(38)

A lower bound on the probability P (K + r), given in (2), can
be computed as follows

K−1∏

λ=0

(
1 − q−K−r+λ

) ≥ 1 − q−r−1

(
1 − q−K

1 − q−1

)
.

Therefore, the sum in the second line of (38) can also be
bounded:

Ω−2∑

r=0

P (K + r) ≥ (Ω − 1) −
(

1 − q−K

1 − q−1

)Ω−2∑

r=0

q−r−1

= (Ω − 1) − q−1
(
1 − q−K

)(
1 − q−Ω+1

)

(1 − q−1)2 .

(39)

Recall that, according to (34), the sum
∑Ω−1

�=1 � f(�) is equal
to Σ1 + Σ2, where Σ1 was computed in (35) and an upper bound
on Σ2 can be obtained if we substitute (39) into (38). Taking the
limit of (34) as Ω → ∞, we find that the average overhead is

bounded from above by

lim
Ω→∞

ω̄ <

(
1

1 − ε

)[
εK +

q−1(1 − q−K )
(1 − q−1)2

]
. (40)

Adding K to the right-hand side of (40) gives the lower bound
on the average decoding delay d̄.
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