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Abstract—The path-loss exponent (PLE) is one of the most
crucial parameters in wireless communications to characterize the
propagation of fading channels. It is currently adopted for many
different kinds of wireless network problems such as power con-
sumption issues, modeling the communication environment, and
received signal strength (RSS)-based localization. PLE estimation
is thus of great use to assist in wireless networking. However,
a majority of methods to estimate the PLE require either some
particular information of the wireless network, which might be
unknown, or some external auxiliary devices, such as anchor nodes
or the Global Positioning System. Moreover, this external informa-
tion might sometimes be unreliable, spoofed, or difficult to obtain.
Therefore, a self-estimator for the PLE, which is able to work in-
dependently, becomes an urgent demand to robustly and securely
get a grip on the PLE for various wireless network applications.
This paper is the first to introduce two methods that can solely and
locally estimate the PLE. To start, a new linear regression model
for the PLE is presented. Based on this model, a closed-form total
least squares (TLS) method to estimate the PLE is first proposed,
in which, with no other assistance or external information, each
node can estimate the PLE merely by collecting RSSs. Second,
to suppress the estimation errors, a closed-form weighted TLS
method is further developed, having a better performance. Due
to their simplicity and independence of any auxiliary system, our
two proposed methods can be easily incorporated into any kind
of wireless communication stack. Simulation results show that
our estimators are reliable, even in harsh environments, where
the PLE is high. Many potential applications are also explicitly
illustrated in this paper, such as secure RSS-based localization,
kth nearest neighbor routing, etc. Those applications detail the
significance of self-estimation of the PLE.

Index Terms—Lognormal shadowing, path-loss exponent (PLE),
radio propagation channel, security, total least squares (TLS).

I. INTRODUCTION

IN WIRELESS communications, the received instantaneous
signal power at receivers is commonly modeled as the prod-

uct of large-scale path-loss and small-scale fading. Large-scale
path-loss fading assumes that the attenuation of the average
received power is subject to the transmitter–receiver distance
r as rγ , where γ is the path-loss exponent (PLE). Due to the
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dynamics of the communication channel, the PLE varies over
different scenarios and different locations. At the same time,
small-scale fading constitutes a rapid fluctuation around the
average of the received power and follows a stochastic process.
It is mainly due to the multipath effect and changes over
very small distances and very small time intervals. However,
it can generally be well suppressed by means of some special
receiver designs and digital signal processing. Therefore, the
PLE becomes a key parameter in characterizing the propagation
channel, which significantly determines power consumption,
quality of a transmission link, efficiency of packet delivery, etc.

It is important to accurately estimate the PLE so that the
wireless communication stack can be dynamically adapted to
the PLE changes to yield a better performance. For instance, a
path with a relatively low PLE can be chosen to route messages
to save power. The PLE is also significant for some other
applications. For instance, to calculate the location of a target
node in received signal strength (RSS)-based localization, ac-
curate PLE estimation is required, which is mostly provided
by reference nodes with known positions. However, in some
cases, the reference nodes might be broken and cannot talk
to the target node or the location information of the reference
nodes might be unreliable, or spoofed by an adversary. Then,
accurately estimating the PLE will become a difficult task.

Current methods to estimate the PLE either require some
information of the wireless network, which is unknown in most
cases, or assistance from auxiliary systems. Three algorithms
are presented in [1]: First, when network density is known, the
PLE can be estimated by observing RSSs during several time
slots and by calculating the mean interference; with regard to
the other two algorithms, by changing the receiver’s sensitivity,
the PLE can be estimated either from the corresponding virtual
outage probabilities or from the corresponding neighborhood
sizes. All three algorithms require knowledge of the network
density or the receiver settings, and even require changing
them. Other methods to estimate the PLE mostly lie in the
area of RSS-based localization. As already mentioned, using
the RSSs for localization requires an accurate estimate of the
PLE, which is tightly related with the transmitter–receiver
distance. Therefore, special reference nodes with known po-
sitions, namely, anchor nodes, are strategically predeployed
with the purpose of calibrating the PLE [2]. Considering that
the transmitter–receiver distances between anchor nodes can
be difficult or expensive to accurately measure in some envi-
ronments, the PLE can also be estimated by using received
power measurements and geometric constraints of anchor nodes
to avoid the distance calculation [3]. In the meantime, much
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effort has been put to jointly estimate the location and the
PLE [4]–[6]. Some other methods start with an initial guess
of the PLE to approximate the location, which is then used to
update the PLE estimate [7], [8]. However, all those methods
basically rely on the information from anchor nodes or other
auxiliary systems. Once such systems are attacked, unavailable,
or generate large errors, the impact on the whole system will
be unimaginable. Furthermore, the given methods are also not
feasible for many kinds of wireless networks, in which commu-
nications and information exchanges might be highly restricted.
Therefore, a new self-estimator of the PLE is urgently required,
which can solely and locally estimate the PLE without relying
on any external assistance. Such an estimator should be able
to not only serve localization techniques but act as a general
method that can be easily incorporated into any kind of wireless
network and any layer of the communication stack as well.

The rest of this paper is structured as follows. In Section II,
we present the system model considered in this paper and
discuss the problem statement. Some new parameters are intro-
duced in Section III to build a linear regression model for the
PLE. Section IV presents and discusses the derivation of our
two proposed PLE estimators. Simulation results are given and
analyzed in Section V. Many potential applications are dis-
cussed in Section VI. Section VII finally summarizes this paper.

II. SYSTEM MODEL

Here, we introduce some important system model concepts
and additionally describe the problem statement.

A. Node Distribution

Due to the unknown topology of wireless networks, partic-
ularly in wireless ad hoc networks, neighbors of a node are
ideally considered randomly deployed within the transmission
range, indicated by W . In other words, a local random region
around the considered node is assumed. Therefore, the proba-
bility of finding k nodes in a subset Ω ⊂ W is given by

P[k nodes in Ω] =
n!

k!(n− k)!

(
μ(Ω)

μ(W )

)k (
1 − μ(Ω)

μ(W )

)n−k

(1)

where P denotes probability, n is the neighborhood size in W ,
and μ(·) is the standard Lebesgue measure. If we let Ω be a
d-dimensional ball of radius r originating at the considered
node, μ(Ω) is the volume of Ω and is given by μ(Ω) = cdr

d,
where

cd =
π

d
2

Γ(1 + d/2)
(2)

with Γ(·) the gamma function. When d = 1, 2 or 3, cd = 2, π
and (4/3)π, respectively. For example, wireless vehicular net-
works can be modeled in 1-D space, a flat-Earth model requires
d = 2, and wireless unmanned aerial vehicle communications
requires d = 3. In this paper, all formulas are generalized in a
d-dimensional manner for the sake of theoretical consistency.

Fig. 1. Impact of the shadowing effect on node A. n̂ is the estimate of the
theoretical neighborhood size n by counting the reachable neighbors, i.e.,
n̂ = n+Δn. By ranking the received powers at A, the corresponding ranking
numbers î are the estimate of the ranking numbers i of the ranges, where
î = i+Δi.

B. Channel Model

The attenuation of the channel can be modeled as comprised
of large-scale fading, the shadowing effect, and small-scale
fading. Large-scale fading indicates that the empirical deter-
ministic reduction in power density of an electromagnetic wave
is exponentially associated with the distance when it propagates
through space. We assume that the transmitted power Pt is
reduced through the propagation channel over a distance r, such
that the RSS Pr is given by

Pr = C1Pt

(r0
r

)γ

(3)

where r0 � r is the reference distance related to far-field, and
C1 is a nondistance-related constant that depends on the carrier
frequency, the antenna gain, and the speed of light. Pr and Pt

are both expressed in watts.
Depending on the environment, the PLE γ ranges from 2 to 6

[9]. Obstacles, such as trees, buildings, and so forth, cause the
actual attenuation of the received power to follow a lognormal
distribution, which is also called the shadowing effect. As such,
(3) has to be changed into

ΔP = 10γ log10(r)− 10 log10(C1)− 10γ log10(r0) + χ
(4)

where ΔP = 10 log10(Pt/Pr) in decibels indicates the at-
tenuation of the signal strength, and χ follows a zero-mean
Gaussian distribution with standard deviation 2 < σ < 12. To
serve the following derivations, two severe consequences of the
shadowing effect should be mentioned.

1) The theoretical neighborhood size n is different from
the actual neighborhood size n̂ = n+Δn. As shown in
Fig. 1 for d = 2, the dashed regular circle is the theoret-
ical transmission range of node A. In fact, packets can
be successfully received under the condition that Pr >
Pthres, where Pthres is the receiver’s sensitivity. Due
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to the shadowing effect, the actual transmission range is
irregular, as indicated by the solid line.

2) Another consequence caused by the shadowing effect is
that after ranking all the received powers at node A,
the node with the îth strongest the received power Pr,̂i

corresponds to the ith nearest neighbor at distance ri,
where î = i+Δi.

When signals are being transmitted, scatterers and reflectors
create several reflected paths that reach the receiver, in addition
to the line of sight. This is called small-scale fading, which is
nondistance related. The instantaneous received signal envelope
follows the Nakagami-m distribution [10], and the distribution
of the instantaneous received power p is, hence, given by

P(p) =

(
m

E(p)

)m

pm−1e−
mp
E(p)

Γ(m)
(5)

where m is the fading parameter, and a small value of
m indicates more fading. The measured received power Pr

can be obtained by taking the average over K consecutive
time slots of the instantaneous received power pk, i.e., Pr =
(1/K)

∑K
k=1 pk, and thus, Var(Pr) = [E(pk)]

2/Km. When
K is large enough, the impact of small-scale fading can be
greatly eliminated. Additionally, a well-designed receiver is
able to suppress the multipath effect to a great degree by using
special antenna designs such as a choke ring antenna, a right-
hand circularly polarized antenna, etc. Therefore, the power
attenuation model in this paper is mostly subject to large-scale
fading and shadowing, and hence, we will rely on (4) in the rest
of this paper.

C. Problem Statement

We are now aiming at developing a new self-estimator of the
PLE. The desired properties of the proposed estimator can be
summarized as simple, pervasive, local, sole, collective, and
secure. Simple indicates that the proposed estimator should be
easy to implement and carry out. Pervasive signals that it can be
incorporated into any kind of network regardless of its design.
Therefore, the only freedom left for us is to utilize the RSS.
Some kind of networks might not have any external auxiliary
system or access to external information, and their mutual nodal
cooperations might be severely constrained. Moreover, even if
there are no such constraints, adversaries can easily tamper with
or forge the exchanged critical information. This requires that
the estimator has to run solely on a single node by collecting
the locally received signal strengths. By this means, a PLE can
be securely and locally estimated.

As is shown in (3), the PLE γ is strictly subject to the power
attenuation and the transmitter–receiver distance. Therefore,
conventional estimators in wireless localization try to obtain the
PLE by introducing anchor nodes to fix the transmitter–receiver
distance and by observing power attenuations. However, the
desired properties of the proposed estimator determine that it
is not possible to fix or to know exact transmitter–receiver
distances of some of the collected RSSs. As such, we can
define the problem as “How can we estimate the PLE γ without
knowing transmitter–receiver distances, i.e., merely from the
local RSSs?”

III. LINEAR REGRESSION MODEL FOR

THE PATH-LOSS EXPONENT

To solve the previously mentioned problem, we introduce
some new parameters. After estimating those parameters, a new
linear regression model for the PLE is presented.

A. Ranking RSSs

Let us focus on a single node and denote Pr,̂i as the îth

strongest power received at the considered node, where î = 1,
2, . . . , n̂, i.e., Pr,1 ≥ Pr,2 ≥ · · · ≥ Pr,n̂ and ri as the ith clos-
est range to the considered node, where i = 1, 2, . . . , n, i.e.,
r1 ≤ r2 ≤ · · · ≤ rn. As we mentioned earlier, î = i+Δi is
considered as an estimate of i, where Δi is called the mismatch.

From (4), we can then write

ΔPî = 10γ log10(ri)− C2 + χi (6)

where χi ∼ N (0, σ2), ΔPî = 10 log10(Pt/Pr,̂i), and C2 =
10 log10(C1) + 10γ log10(r0) is a constant. We assume that all
neighboring nodes transmit signals with the same power Pt

such that the ordered values of Pr,̂i lead to the ordered values
of ΔPî, i.e., we can assume that ΔP1 ≤ ΔP2 ≤ · · · ≤ ΔPn̂.
Admittedly, in a more realistic situation, the transmit power
Pt at each neighboring node might be different. However, our
proposed estimators can still remain feasible in such a case, and
we will come back to this issue in Section IV-D.

B. Linear Regression Model for the PLE

From (6), we notice that ΔPî is a function of Pt and C2,
which are both unknown. However, these can be canceled by
subtracting ΔPĵ from ΔPî, leading to ΔPî,ĵ = ΔPî −ΔPĵ =
10 log10(Pr,ĵ/Pr,̂i), which can further be written as

ΔPî,ĵ = 10γ log10(ri)− 10γ log10(rj) + χi,j

= 10γ log10

(
ri
rj

)
+ χi,j (7)

where χi,j ∼ N (0, 2σ2).
Now, we define Li = 10 log10(ri) as a logarithmic function

of ri, and hence, Li,j = Li − Lj = 10 log10(ri/rj). Thus, (7)
becomes

ΔPî,ĵ = γLi,j + χi,j . (8)

It is already apparent that if Li,j can be estimated, a linear re-
gression model for the PLE can be constructed from (8). Let us
denote L̂î,ĵ as the estimate of Li,j and εî,ĵ as the corresponding
estimation error. The linear regression model is then given by

ΔPî,ĵ = γ(L̂î,ĵ − εî,ĵ) + χi,j . (9)

C. Estimation of Li,j

As discussed in the problem statement, it is not possible to
directly obtain the transmitter–receiver distances if the estimat-
ing node solely and locally collects the RSSs. Therefore, the
idea of ranking the RSSs is crucial for our method.
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Fig. 2. In 2-D space when the shadowing effect does not impact the ranking,
i.e., î = i, the solid circle shows the transmit range of random node A, where
A receives 12 signal strengths from its neighbors. Its third and sixth closest
neighbors lie on the dotted circles, which have r3 and r6 as radii, respectively.
Therefore, r3 has three nodes inside, whereas r6 has six nodes inside. Pr,3 and
Pr,6 are, respectively, the third and sixth strongest received power. ΔP3,6 =

10 log10(Pr,6/Pr,3), and L̂3,6 = (10/2) log10(3/6) ≈ −1.505. Likewise,

other pairs of ΔPî,ĵ and L̂î,ĵ can be obtained.

By ranking the values of Pr,̂i, we obtain the ranking number

î, which will be further used to estimate the ranking numbers i
of the ranges, where we recall that î = i+Δi. Additionally, it
is obvious that i indicates the number of nodes within the ball of
radius ri, which can be further exemplified in Fig. 2. Therefore,
the essence of the proposed method is to use the rank numbers
of î as new measurements to estimate the values of Li,j .

Note that Li,j is a linear combination of Li and Lj . We
focus on estimating Li, and the estimate of Lj can be obtained
likewise.

Considering (1) and (2), the probability mass function of
finding i nodes within the d-ball of radius ri, which is parame-
terized by Li = 10 log10(ri), can be written as

P [i|Li] =
n!

i!(n− i)!

(
cd10

dLi
10

μ(W )

)i (
1 − cd10

dLi
10

μ(W )

)n−i

.

(10)

Based on (10), to find the maximum likelihood (ML) estimator
L̂i, we need to force the derivative of our likelihood function to
zero by

∂ ln (P[i|Li])

∂Li
= 0. (11)

Therefore, by solving (11), the ML estimator L̂i can be easily
obtained as

L̂i =
10
d

log10

(
iμ(W )

ncd

)
. (12)

Likewise, L̂j can be obtained, and the estimate of Li,j is, hence,
given by

L̂i,j =
10
d

log10

(
i

j

)
= Li,j + εi,j (13)

where εi,j is the estimation error of L̂i,j . Plugging î = i+Δi

and ĵ = j +Δj into (13), we have

L̂î,ĵ =
10
d

log10

(
î

ĵ

)
= Li,j + εî,ĵ (14)

εî,ĵ = εi,j +Δεi,j (15)

where Δεi,j = L̂î,ĵ − L̂i,j = (10/d) log10(((i + Δi)/i)(j/
(j +Δj))).

From (13) and (14), we even notice that μ(W ), n, and cd
disappear after subtraction. This makes the proposed estimators
only subject to the RSSs and the rank numbers in d-dimensional
space.

IV. PATH-LOSS EXPONENT ESTIMATION

To solve the linear regression model, the total least squares
(TLS) method helps us obtain the estimate of the PLE γ.
However, the general solution to the TLS method turns out to be
time consuming. Therefore, a closed-form solution is provided,
saving computational time tremendously. Moreover, a closed-
form weighted TLS method is further proposed to suppress the
estimation errors, yielding a better performance.

A. TLS Solution

As for the example in Fig. 2, node A computes ΔPî,ĵ and

estimates L̂î,ĵ for all pairs of nodes within its range, i.e., î, ĵ =
1, 2, 3, . . . , n̂. However, from (9), we notice that the RSSs are
corrupted by shadowing, and the values of L̂î,ĵ are measured
with errors. Therefore, the TLS method is utilized to obtain our
estimate, i.e., γ̂tls [11].

We assume that the considered node has n̂ neighbors, and all
RSSs from its neighbors are ranked. Thus, we have a sample set
of ΔPî,ĵ values whose size is N =

(
n̂
2

)
in total. We vectorize

the collected samples of ΔPî,ĵ and the corresponding values of

L̂î,ĵ , which are, respectively, represented by the N × 1 vectors

ΔP and L̂. Then, (9) can be rewritten as

ΔP = γ(L̂−E) +X (16)

where E and X are, respectively, the N × 1 vectors obtained
by stacking the estimation errors εî,ĵ on L̂î,ĵ and the shadowing
parameters χi,j . The basic idea of the TLS method is to find an
optimally corrected system of equations ΔPtls = γL̂tls with
ΔPtls := ΔP−Xtls, L̂tls := L̂−Etls, where Xtls and Etls

are, respectively, optimal perturbation vectors. Therefore, the
PLE estimate γ̂tls for γ is the solution to the optimization
problem

{γ̂tls,Xtls,Etls} := argmin
γ,X,E

‖[X E]‖2F (17)

subject to (16), where ‖ · ‖F is the Frobenius norm.
By changing (16) into[

(L̂−E) (ΔP−X)
] [

γ
−1

]
= 0 (18)

we see that this is a typical low-rank approximation problem
where the rank of the augmented matrix [L̂ ΔP] should be
optimally reduced to 1.
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Therefore, we compute the singular value decomposition
(SVD) of [L̂ ΔP], resulting in

[L̂ ΔP] = UΣVT

where V can be explicitly expressed as

V =

[
V11 V12

V21 V22

]
.

Based on the Eckart–Young theorem [12], the estimated PLE is
then given by

γ̂tls = − 1
V22

V21. (19)

B. Closed-Form TLS Estimation

The SVD-based method discussed in the previous section
provides a general solution to the TLS problem. However,
considering the complexity brought by the SVD when process-
ing a tremendous number of samples, a simplified method is
required.

Noting the linearity of (16) and the fact that the TLS method
minimizes the orthogonal residuals, we can reformulate the
TLS cost function as

Jtls =
‖ΔP− γL̂‖2

1 + γ2
. (20)

By solving

∂Jtls
∂γ

=
γ2L̂TΔP+ γ(L̂T L̂−ΔPTΔP)− L̂TΔP

(1 + γ2)2
= 0

(21)

we obtain two solutions, which are, respectively, given by

γ̂1 = η +
√

1 + η2 > 0 (22)

γ̂2 = η −
√

1 + η2 < 0 (23)

where η = (ΔPTΔP− L̂T L̂)/2L̂TΔP.
In fact, optimizing (20) can also be viewed as finding a linear

curve with slope γ through the origin, in which the values of
Pî,ĵ and the values of L̂î,ĵ are, respectively, on the y-axis and
the x-axis. See [13] for some other TLS solutions to different
modified linear regression models. Therefore, it is evident that
two perpendicular curves are obtained, i.e., γ̂1γ̂2 = −1. One of
the solutions minimizes Jtls, whereas the other maximizes it.
Considering that γ̂tls > 0, the TLS-PLE estimate is obviously
given by γ̂tls = γ̂1.

As far as computational complexity is concerned, the SVD
procedure on [L̂ ΔP] requires a complexity of approximately
8N2 to obtain U, Σ, and V [14]. If only V is required to
estimate the PLE, the SVD-based method still has a complexity
of approximately 16N . However, our closed-form solution has
only a complexity of approximately 3N .

Compared with the SVD-based solution, we also measure
the average computational time when the transmission range is
200 m. The methods are implemented in MATLAB 2012b on a
Lenovo IdeaPad Y570 Laptop (Processor 2.0 GHz Intel Core i7,
Memory 8 GB). As shown in Fig. 3, the computational time of

Fig. 3. Computational time of the traditional solution and the closed-form
solution.

the closed-form solution is greatly reduced particularly when
the sample size is increased.

C. Closed-Form Weighted TLS Estimation

From the aforementioned analyses, we can conclude that
there are three kinds of errors impacting the PLE estimate.

1) The estimation error εi,j on L̂i,j is subject to the spatial
dynamics of the node deployment. Therefore, when in-
creasing the actual density, such errors will be decreased.

2) The shadowing effect introduces a Gaussian error χi,j ,
which will decrease when the sample size is increased.

3) The last kind of error is Δεi,j , which represents the
mismatch between the ranking numbers of the received
power and the ranges. This kind of error is subject not only
to shadowing but also to the spatial dynamics of the nodes.
When the actual density is increased and the nodes get
closer to each other, the differences of the received power
become relatively small, which leads to a large impact of
shadowing on the ranking.

We propose a weighted TLS method targeting the suppres-
sion of Δεi,j . Plugging î = i+Δi and ĵ = j +Δj into Δεi,j ,
we have

Δεi,j =
10
d

log10

(
î

î−Δi

)
− 10

d
log10

(
ĵ

ĵ −Δj

)
. (24)

By using some bounds of the natural logarithm, i.e.,

1 − î−Δi

î
≤ ln

(
î

î−Δi

)
≤ î

î−Δi
− 1 (25)

where equality is obtained when Δi = 0, bounds for Δεi,j can
be computed as

10 ln(10)
d

(
2 − î−Δi

î
− ĵ

ĵ −Δj

)
≤ Δεi,j

≤ 10 ln(10)
d

(
î

î−Δi
+

ĵ −Δj

ĵ
− 2

)
. (26)
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Fig. 4. TLS weights as a function of î for n̂ = 100 and ĵ = 50.

Considering that 1 ≤ î−Δi ≤ n̂ and 1 ≤ ĵ −Δj ≤ n̂, we
can further bound Δεi,j as

10 ln(10)
d

(
2 − î− n̂

ĵ

)
≤ Δεi,j ≤

10 ln(10)
d

(
n̂

î
+ ĵ − 2

)
.

(27)

From (27), we can finally find an upper bound of Δε2i,j as

Δε2i,j ≤
100 ln(10)2

d2
max

{(
n̂

î
+ĵ−2

)2

,

(
n̂

ĵ
+ î− 2

)2
}
.

(28)

The idea is now to assign a large weight to a sample with a
small upper bound of the mismatch Δε2i,j . Therefore, based on
(28), the weights can be constructed by

ωi,j =
1

max

{(
n̂
î
+ ĵ − 2

)2

,
(

n̂
ĵ
+ î− 2

)2
} . (29)

We plot the weights when ĵ = 50 and n̂ = 100 in Fig. 4.
By stacking the values of ωi,j on the diagonal of a diagonal

matrix in the same way we stack the values of ΔPî,ĵ and the

values of L̂î,ĵ , we construct the N ×N weight matrix W, and
then, the weighted TLS cost function can be constructed by

Jwtls =
(ΔP− γL̂)TW(ΔP− γL̂)

1 + γ2
. (30)

As before, the closed-form weighted TLS-PLE (WTLS-PLE)
estimate is then easily given by

γ̂wtls = η′ +
√

1 + η′2 (31)

where η′ = (ΔPTWΔP− L̂TWL̂)/2L̂TWΔP.

D. Discussions and Future Works

Here, we discuss some remaining theoretical problems and
some possible issues related to real-life environments. Mean-
while, we cast light on our future works.

1) CRLB: The Cramér–Rao lower bound (CRLB) is very
difficult to obtain for this problem. This is due to the fact that
the estimation accuracy of the PLE is subject to the spatial
dynamics, the shadowing, and the rank number estimate. They
are all mutually related, particularly for the ranking number
estimate, which does not follow any known probability density
function (pdf). That is also why we selected a bound on the error
to construct the weights to suppress the mismatch of the ranking
numbers.

In our future work, we are looking for one-step estimation
methods that can directly utilize the RSSs without the ranking
procedure. To achieve that, a pdf of the RSS in an ad hoc
environment is required, which considers spatial dynamics and
shadowing. Based on such a pdf, a better estimator, such as the
ML estimator, and the CRLB can be introduced.

2) Different Transmit Power Values: Previously, we assume
the same transmit power Pt for all the neighboring nodes,
which might not be so realistic. However, assume now that the
transmit power values are different. We then have to particularly
estimate the transmit power Pt,̂i from the îth node to calculate
the path loss ΔPî := 10 log10(Pt,̂i/Pr,̂i) and further compute
ΔPî,ĵ := ΔPî −ΔPĵ . Otherwise, if we still compute ΔPî,ĵ :=
10 log10(Pr,ĵ/Pr,̂i), our estimators will become worse yet still
feasible. To see that, we first need to assume an unknown
average transmit power P̄t and, hence, use 10 log10(Pt,̂i) =

10 log10(P̄t) + ΔPt,̂i, where ΔPt,̂i is the deviation in decibels

of the transmit power from the îth node. Then, (9) has to be
changed into

ΔPî,ĵ = γ(L̂î,ĵ − εî,ĵ) + χi,j +ΔPt,̂i,ĵ (32)

where P̄t can still be canceled, and ΔPt,̂i,ĵ := ΔPt,̂i −ΔPt,ĵ .
Obviously, although X in (16) has to become the vector of
χi,j +ΔPt,̂i,ĵ values, our proposed estimators can still estimate
the PLE since the general form of (16) remains the same.

Hence, if we assume that ΔPt,̂i,ĵ is Gaussian distributed,
χi,j +ΔPt,̂i,ĵ is still a zero-mean Gaussian variable, which
means that the different transmit power values can equivalently
be considered as a more severe shadowing impact. Therefore,
for convenience, we still assume the same transmit power in
this paper.

3) Directional PLE Estimation: Another practical problem
is that the PLE sometimes varies over different directions while
we previously assume that the PLE is omnidirectionally the
same. To cope with this problem, we discuss and can extend
our proposed estimators with a directional PLE estimation.

As shown in Fig. 5, we assume that only the RSSs from the
nodes within the angular window φ are subject to the same
PLE. Hereby in (1), W has to become the actual transmission
range bounded by the angle φ, e.g., Wφ, whereas Ω becomes
the corresponding sector Ωφ with radius r. The volume of Ωφ

then becomes μ(Ωφ) := cd,φr
d, where for d = 1, 2, 3, we have

c1,φ := 1, c2,φ := φ/2, and c3,φ := (2π/3)(1 − cosφ). Since
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Fig. 5. Demonstration of the directional PLE estimation in R
2. A is the con-

sidered node collecting the RSSs from within the angle φ. Wφ is the actual
transmission range bounded by φ, and the shaded area Ωφ is the corresponding
sector with radius r.

the nodes are still randomly deployed within Wφ, compared
with (10), we can, hence, similarly write

P [i|Li] =
n!

i!(n− i)!

(
cd,φ10

dLi
10

μ(Wφ)

)i (
1 − cd,φ10

dLi
10

μ(Wφ)

)n−i

.

(33)

Although the estimate of Li has to be changed into

L̂i =
10
d

log10

(
iμ(Wφ)

ncd,φ

)
(34)

the estimate of Li,j , however, remains the same, i.e., L̂i,j :=

L̂i − L̂j , since μ(Wφ), n, and cd,φ will be canceled. Therefore,
the rest of the theoretical derivations remain the same, and our
estimators are still feasible.

To achieve a directional PLE estimate, we only have to
constrain the RSS sample set within a certain angular window
φ, and our proposed estimators can estimate the PLE for the
given direction. Of course, to achieve the same accuracy, the
directional PLE estimator has to collect more samples than
the omnidirectional PLE estimator. Again in this paper, for
convenience, we assume the same PLE for all directions.

V. SIMULATIONS

Here, we simulate our two proposed PLE estimators in 2-D
space, and we leave real-life experiments as future work. Two
simulations are conducted to study their performance, with
different shadowing impacts and with different actual densities.

We also compare them with the PLE estimator based on the
cardinality of the transmitting set (C-PLE) proposed in [1]. The
C-PLE requires changing the receiver’s sensitivity from Pthres1

to Pthres2 and evaluating the corresponding cardinalities n1,
n2 of the transmitting set, namely, the different theoretical
neighborhood sizes. Thus, considering shadowing, C-PLE is
given in 2-D space by

γ̂c =
2 ln

(
Pthres2

Pthres1

)
ln
(

n̂1

n̂2

) (35)

Fig. 6. Demonstration of the C-PLE estimator. Node A changes its receiver’s
sensitivity from Pthres1 to Pthres2. The solid circle and the dashed circle
are, respectively, the transmission ranges related to Pthres1 and Pthres2. The
corresponding neighborhood sizes are n̂1 = 12 and n̂2 = 6 in this figure. The
estimated PLE can be obtained from (35).

TABLE I
VALUES OF THE PARAMETERS USED IN THE SIMULATIONS

where n̂1 and n̂2 are the corresponding actual neighborhood
sizes. Fig. 6 gives an example of the C-PLE estimator. In our
simulations, we set Pthres2 = 2Pthres1.

To avoid any border effect, our simulations take place in
a very large area, where nodes are randomly deployed. The
estimated PLE is only considered for a single node somewhere
in the center of the network, rather than for every node in the
wireless network. The Monte Carlo method is used to generate
the results by repeatedly deploying nodes. The general settings
are shown in Table I.

The normalized root mean square error (RMSE) is adopted to
present the accuracy of the estimator. In this paper, the norma-

lized RMSE is defined by
√
(1/Ntrials)

∑Ntrials

i=1 [(γ̂(i)−γ)/γ]2,
where Ntrials is the number of simulation trials, γ̂(i) is the
estimate of the PLE in the ith trial, and γ is the actual PLE.

A. Impact of Shadowing

This simulation is conducted when the actual density is set as
0.005 node/m2. Three estimators are studied with an increasing
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Fig. 7. Performance of different PLE estimators with an increasing standard
deviation of shadowing.

standard deviation of shadowing and an increasing actual PLE.
Observing Fig. 7, we can conclude the following.

1) Our two proposed methods outperform the C-PLE esti-
mator. This can be easily understood from the fact that
our methods consider received power from all neighbors
rather than only using two neighborhood sizes. Moreover,
the TLS procedure helps minimize the three kinds of errors
mentioned earlier.

2) When the shadowing effect becomes more severe, the
accuracy of the three estimators decreases. For the C-PLE,
the accuracy mainly depends on the absolute deviation of
the actual neighborhood size |Δn| = |n̂− n|. The shad-
owing increases such an absolute deviation, thus leading to
worse accuracy. For our methods, the shadowing impacts
the accuracy by increasing |χi,j | and by disrupting the
matches between the rank numbers of the received power
and the ranges, i.e., by increasing |Δεi,j |.

3) Surprisingly, the performance of the estimators becomes
better in a harsher environment, i.e., when the actual PLE
is high. This is due to the fact that a high PLE causes
relatively large differences between the received powers,
which makes the shadowing effect more tolerable. It is
better explained in Fig. 8. To be specific for our methods,
when the PLE is small, the accuracy is subject to the three
kinds of errors χi,j , εi,j , and Δεi,j . However, when the
actual PLE is increased, the matches of the rank numbers
are more accurate, i.e., |Δεi,j | decreases.

4) The WTLS-PLE has a better performance than the TLS-
PLE, particularly under a small PLE. Meanwhile, the im-
provement of the WTLS-PLE is not so obvious compared
with the TLS-PLE when the PLE is high. This is under-
standable from the fact that the WTLS-PLE is particularly

Fig. 8. Length of the arrow indicates the RSS reduction ΔP , and the dashed
rectangles show the shadowing effect χ. Considering shadowing means that the
arrows can end up anywhere within the rectangles. The width of the rectangle
indicates the severity of the shadowing. Under the same transmitter–receiver
distance, the arrow with a smaller PLE is shorter and thus easier to be impacted
by the shadowing effect. Therefore, under a high PLE, the matching between
the ranking numbers of the received power and the ranges is not so easily
disrupted in the TLS-PLE and the WTLS-PLE. Likewise, the shadowing also
becomes more tolerable when estimating the theoretical neighborhood size in
the C-PLE.

Fig. 9. Performance of three considered estimators with an increasing actual
density.

targeted at suppressing Δεi,j , the improvement is, hence,
insignificant when Δεi,j is decreased, which has already
been pointed out in the previous conclusion.

B. Impact of the Actual Density

Since the estimation error εi,j of L̂i,j is related to the actual
density, we are interested in how the actual density impacts the
accuracy in this section. The transmission range is fixed at 200 m,
and a 12-dB standard deviation of the shadowing is considered.
In Fig. 9, we can see that, compared with the impact of
shadowing, the impact of the actual density is relatively small.
Additionally, when more samples are collected, the WTLS-PLE
has a larger improvement on the accuracy by suppressing Δεi,j .

VI. APPLICATIONS

The PLE plays a very significant role in many kinds of
wireless networks. Due to the difficulties in locally and solely
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Fig. 10. Attacker C reports its fake location at fake C. Both reference nodes,
such as reference A and reference B, and the target node target D can self-
estimate the PLE. Based on the self-estimated PLE and the location informa-
tion, the shaded area can be constructed as the trust region for detecting an
attacker, outside of which attacker C will be detected.

estimating the PLE, only a few techniques are able to utilize
PLE measurements in their designs. However, the proposed
PLE estimation approaches tackle such issues. Here, we detail
some applications and discuss the significance of our PLE self-
estimation schemes.

A. Secure RSS-Based Localization

Due to our PLE self-estimation schemes, either the reference
node or the target node can solely and independently estimate
the PLE. Therefore, an adversary cannot launch an attack on the
PLE estimation by spoofing. For instance, as shown in Fig. 10,
even if there is a cheating reference node maliciously reporting
its fake location, e.g., attacker C registering itself at fake C,
the PLE can still be accurately estimated. Apart from making
the RSS-based localization more robust to the spoofing attack,
this also enables every node to detect and locate the cheating
reference node.

1) Strategy for Detecting Cheating Reference Nodes: To
explicitly illustrate the strategy, we first explain each one’s role,
and the detection algorithm will be described afterward.

• Each reference node knows its own location and is skep-
tical about any reported location from the other reference
nodes.

— It periodically broadcasts its own location and self-
estimates the PLE simultaneously.

— It keeps listening to the messages broadcasted by the
other reference nodes, reading the RSSs and their cor-
responding reported locations.

— It detects the attackers according to the self-estimated
PLE, the RSSs, the reported locations, and its own
location. The detection algorithm will be discussed
later. As soon as an attacker is detected, it will announce
the detection as well as the corresponding RSS from the
attacker by broadcasting.

— In case some cheating reference nodes spoof the at-
tacker announcement, an announced attacker needs to
be further confirmed as a true attacker. To be confirmed
as a true attacker, the announced attacker has to be
announced more than T times, where T depends on
the total number of reference nodes and the detection
sensitivity. When the announced attacker is confirmed
as a true attacker, the corresponding announced RSSs
from the attacker at at least d+ 1 different reference
nodes can further be used to locate the attacker.

• Each target node only listens and is invisible to the other
nodes.

— It keeps listening to all information broadcasted by
the reference nodes. In the meantime, the PLE is
self-estimated.

— It discovers the true attackers from the message broad-
casted by the reference nodes and discards the RSSs
from the true attackers.

— Then, it can accurately and safely locate itself with the
rest of the RSSs.

2) Algorithm for Detecting Cheating Reference Nodes: To
complete the strategy, the algorithm for detecting the cheating
reference nodes is essential. For an explicit demonstration, an
example is shown in Fig. 10. Let us denote the locations of
reference A, reference B, attacker C, fake C, and target D, res-
pectively, as sA, sB , sC , sC′, and sD. To detect attacker C, we
need to test two hypotheses, which are respectively defined as

H0 : sC and sC′ are the same location (36)

H1 : sC and sC′ are different locations. (37)

The detection algorithm can be carried out with the following
procedure.

a) First, a reference RSS from the suspected reference
node needs to be calculated based on the self-estimated
PLE, the reported location, and the location itself of the
detecting node. For example, recalling the definition of
RSS, the reference RSS at reference B from attacker C
can be calculated in decibels as

P ′
r,C′B = C3 − 10γ̂B log10 (‖sC′ − sB‖) (38)

where

C3 = 10 log10(Pt) + 10 log10(C1) + 10γ̂B log10(r0)

and γ̂B is the self-estimated PLE at sB .
b) Second, the actual RSSs from the suspected reference

node are recorded over time to construct our observation
set by subtracting the reference RSS. For example, refer-
ence B records the observation at time i, which is given by

ΔP i
r,CB = P i

r,CB − P ′
r,C′B (39)

where P i
r,CB is the actual RSS in decibels at time i from

attacker C and ΔP i
r,CB ∼ N (μB , σ

2). If attacker C and
fake C have the same range, then μB = 0; otherwise,
μB 	= 0.
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Since only the range can be tested, we need two dif-
ferent hypotheses for range testing, which are given by

H′
0 : μB = 0 (40)

H′
1 : μB 	= 0. (41)

Considering the fact that attacker C and fake C might
also have the same range to a reference node, e.g., to
reference A in Fig. 10, we hence have the relations
H0 ⊂ H′

0 and H′
1 ⊂ H1. This means that if H′

1 is tested,
attacker C is certainly detected, whereas if H′

0 is tested,
we might fail to detect the attacker. However, we now
focus on testing H′

1, and the detection failure in H′
0 will

be discussed later.
c) Finally, by using the Neyman–Pearson lemma [15], H′

1

can be tested from the average observation over I time
slots. For example, the observation at reference B is given
by ρ = (

∑I
i=1 ΔP i

r,CB)/I . If we wish to test at 95% ac-
curacy, the critical region for the observation is given by

C =
{(
P 1
r,CB , P

2
r,CB , . . . , P

I
r,CB

)
:

ρ ≤ −1.96σ/
√
I, ρ ≥ 1.96σ/

√
I
}
. (42)

Equivalently, we can also use the critical region, i.e.,

C =
{(

P 1
r,CB , P

2
r,CB , . . . , P

I
r,CB

)
: ρ2 ≥ 3.84σ2/I

}
(43)

which considers the Chi-squared distribution with ρ2 as
observation.

3) Discussions:

a) The shadowing deviation σ is required for the
Neyman–Pearson test, which can be obtained by empiri-
cal training.

b) The detection failure in H′
0 can easily be noticed when

reference nodes work in a cooperative fashion according
to the detection strategy. Since every reference node
detects and announces the attackers, such a detection
failure can be somehow corrected by listening to the an-
nounced information flooding in the network. Therefore,
the detection algorithm can be improved by introducing
a new cooperative algorithm. For example, according to
the observations from multiple nodes, an attacker can
still be detected even if such a detection failure in H′

0

occurs.
c) Considering shadowing, the complement of the critical

region corresponds to a trust region of the detecting node
in space, in which the detected node will be trusted.
As shown in Fig. 10, two shaded areas, respectively,
indicate the trust regions of reference A and reference B.
Attacker C resides outside the trust region of reference B
but inside that of reference A. Therefore, attacker C will
be detected by reference B but not by reference A. The
size of the trust region depends on the severity of the
shadowing.

d) The cheating node can also jeopardize this system by
maliciously announcing a credible reference node as
an attacker. In most cases, the credible reference nodes

outnumber the attackers. Hence, the attackers can still be
smartly distinguished. However, if the attackers have the
majority, a more robust strategy might be required.

B. Energy-Efficient Routing

Since the path loss over a channel exponentially increases
with the distance, multihop communications becomes a better
option than single-hop communications to prolong the network
lifetime. Routing is hence aimed at finding an efficient path to
the destination to minimize the power consumption. It is well
known that a routing path is better to be chosen through an
area where the PLE is small. However, alternatively, here, we
consider the kth nearest neighbor routing protocol to illustrate
the significance of the PLE.

From (1), if considering the local random region W around
the considered node A as a d-dimensional ball of radius R, i.e.,
μ(W ) = cdR

d, the distribution of the distance rk to the kth
nearest neighbor is given by [16]

P(rk|k) =
d

rkB(n− k + 1, k)

(
rdk
Rd

)k (
1 − rdk

Rd

)n−k

(44)

where B(x, y) =
∫ 1

0 tx−1(1 − t)y−1dt = Γ(x)Γ(y)/Γ(x+ y)
is the beta function. To avoid the singularity issue of (3), the
received power at the kth nearest neighbor can also be given by

Pr,k = Pr,0

(
r0
rk

)γA

(45)

where Pr,0 is the received power at the reference distance r0 <
rk ∀ k, and γA is the PLE at the location of node A. Let us
denote the path loss to the kth nearest neighbor as Lk := Pr,0/
Pr,k = rγA

k /rγA

0 . We commonly assume r0 = 1 m, and thus,
Lk := rγA

k . From (44), we can obtain the expectation of Lk for
a single hop to the kth nearest neighbor, which can be given by

E(Lk) =
RγAB(k + γA/d, n− k + 1)

B(n− k + 1, k)

=
RγAΓ(n+ 1)

Γ(n+ γA/d+ 1)
Γ(k + γA/d)

Γ(k)
.

(46)

From (46), we particularly focus on ∂E(Lk)/∂k to study the
efficiency of increasing k, which is given by

∂E(Lk)

∂k
=

RγAΓ(n+1)

Γ
(
n+ γA

d + 1
) Γ (

k + γA

d

)(
ψ
(
k + γA

d

)
− ψ(k)

)
Γ(k)

(47)

where ψ(x) = Γ′(x)/Γ(x) is the polygamma function. We de-
note α = γA/d and plot the k-related part of (47), i.e., f(k) =
Γ(k + α)(ψ(k + α)− ψ(k))/Γ(k) in Fig. 11. When α < 1,
∂E(Lk)/∂k decreases with k, which means that it takes less
extra power every time k is increased. As a conclusion, a single
long-hop communication link is more energy efficient, as long
as γA < d, which is also briefly pointed out in [16].

To be more realistic, we also conduct a numerical simulation
for the kth nearest neighbor routing, in which the shadowing ef-
fect is also considered. We introduce the average path loss for a
single link, which is denoted by Lk = Lk/k. Two-dimensional
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Fig. 11. Efficiency of single-hop communications: A small value indicates a
smaller power cost by increasing k, i.e., a high power efficiency.

Fig. 12. Numerical results of the kth nearest neighbor routing in 2-D space.

space is considered with a density of 0.001 nodes/m2. As is
shown in Fig. 12, as long as the PLE is smaller than 2, the
average path loss decreases with k, and a single long-hop link
becomes energy efficient. Additionally, in the presence of log-
normal shadowing,Lk becomes larger than when there is no sha-
dowing. Such an increase also becomes larger with a large PLE.

Many other interesting results have been obtained. However,
due to space limitations, no more tautology will be presented. It
is already evident that the efficiency of the kth nearest neighbor
routing protocol highly relies on the actual PLE. Therefore, the
principles for designing such a routing protocol should involve
the PLE estimation. In a nutshell, an accurate estimate of γA is
hence necessary for designing an efficient routing protocol.

C. Other Applications

To further illustrate some applications of the proposed PLE
estimators, we need to explicitly explain how the PLE af-
fects the network operation. The PLE has a multidimensional

effect on the performance of the whole system for wireless
networking.

1) It determines the quality of the signals at the receivers and
thus impacts the physical (PHY) layer. This is because
the PLE controls not only the RSS but the interference
the nodes create for the other receivers as well. Since the
signal-to-interference-plus-noise ratio is decisive for the
channel capacity and the performance of decoding,
the PLE is essential for designing the PHY layer.

2) It determines the transmission range and thus impacts the
network (NET) layer and the media access control (MAC)
layer. The transmission range, together with the neighbor-
hood size, which is also determined by the PLE, affects
the performance of routing and the connectivity in the
NET layer. When the number of nodes within the trans-
mission range of a node increases, the contention in the
MAC layer consequently becomes more severe, and thus,
congestion of the network will occur. As a consequence,
the ability of delivering the packet will be affected.

3) It determines the energy consumption for transmission
links and thus impacts the lifetime of networking. To
guarantee the efficiency of wireless networking, the trans-
mit power should be smartly controlled to compensate
for the energy loss in the transmission links. Considering
that the battery is strictly limited in, e.g., wireless sensor
networks, the PLE is rather significant to those protocols
aiming at prolonging the network lifetime.

Based on the aforementioned reasons, some other applica-
tions can be listed.

1) Relay nodes are recently drawing much attention [17],
and the mobile relay nodes are even more flexible and
more convenient [18]. Since the PLE is one of the key
criteria for energy-efficient routing, relay nodes should be
deployed or move to the place where the PLE is relatively
small. The relay nodes can also benefit from the low-PLE
location to save the battery. Therefore, relay nodes have
to be able to estimate the PLE.

2) Energy harvesting relies on ambient sources such as
solar, wind, and kinetic activities, aiming at prolonging
the network lifetime. Particularly, among those sources,
radio-frequency signals can also be used to charge the
battery of wireless sensors [19]. Its application is also
extended to cognitive radio in [20]. The PLE directly
determines the efficiency of harvesting and the size of
the harvesting zone. The time slot for harvesting could
be adaptive according to the PLE changes. Therefore, the
PLE estimation is very significant when the surrounding
communication environment is changing or the harvest-
ing node is mobile.

3) Power control requires distributedly choosing an appro-
priate transmit power for each packet at each node. This
is because of the fact that the transmit power affects the
wireless networking in the same way as the PLE does
[21]. Since the PLE is different at different locations, an
efficient power control scheme also needs to distributedly
and locally consider the PLE. Therefore, our proposed
estimators can be integrated into power control to yield
a better performance.
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VII. CONCLUSION

Two self-estimators for the PLE have been proposed in this
paper, in which each node can solely and locally estimate
the PLE merely by collecting the RSSs. They rely neither
on external auxiliary systems nor on any information of the
wireless network. Their simplicity makes them feasible for any
kind of wireless network.

To better describe our estimators, a new linear regression
model for the PLE has been introduced. Our closed-form TLS
method can solve this linear regression model. Compared with
the SVD-based solution, our estimator tremendously saves
computational time. Moreover, a weighted TLS method is also
designed to better suppress the estimation errors.

Simulations present the accuracy of our estimators and de-
monstrate that the shadowing effect dominantly influences the
estimation error. By analyzing the performance of the estima-
tors, it is interesting to observe that the estimators work better
in harsh communication environments, where the PLE is high.

We have also discussed the significance of our PLE self-
estimators by illustrating some potential applications and have
brought the dawn to some relevant future research.
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