
3304 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 7, SEPTEMBER 2014

Joint Congestion Control and Scheduling in Wireless
Networks With Network Coding

Ronghui Hou, King-Shan Lui, Senior Member, IEEE, and Jiandong Li, Senior Member, IEEE

Abstract—This paper studies how to perform joint congestion
control and scheduling with network coding in wireless networks.
Under network coding, a node may need to buffer a sent packet
for decoding a packet to be received later. If sent packets are not
forgotten smartly, much buffer space will be taken up, leading
to dropping of new incoming packets. This unexpected packet
dropping harms the final throughput obtained, although optimal
scheduling has been used. To solve the problem, we introduce a
new node model incorporating a transmission-mode preassign-
ment procedure and a scheduling procedure. The introduced
transmission-mode preassignment avoids memorizing several sent
packets to reduce buffer overhead. We develop a new scheduling
policy based on our node model and analyze formally the stability
property of a network system using the proposed policy. We finally
evaluate the efficiency of our algorithm through simulations from
the perspectives of throughput and packet loss ratio.

Index Terms—Congestion control, cross-layer design, network
coding, scheduling, wireless interference.

I. INTRODUCTION

R ECENTLY, new techniques have been proposed to utilize
intelligently wireless interference to improve network

throughput. Network coding exploits the wireless medium
broadcast nature to improve network capacity. Generally, net-
work coding can be classified into two different categories:
intrasession and intersession. Intrasession network coding is
performed on packets from the same session, whereas interses-
sion network coding is performed on packets across different
sessions. This paper considers the COPE-style intersession
network coding. Consider a set of receivers that each wants
to receive its desired packet from a common sender. If each
receiver has all the other packets except the desired one, the
common sender can code all the packets and transmit a single
coded packet to all receivers, and each receiver can successfully
decode the desired one. Following [1] and [2], we consider
network coding without opportunistic listening, which allows

Manuscript received July 4, 2013; revised November 12, 2013; accepted
December 23, 2013. Date of publication February 10, 2014; date of current
version September 11, 2014. This work was supported in part by the Na-
tional Natural Science Foundation of China under Grant 61231008 and Grant
61101143, by the Important National Science and Technology Projects under
Grant 2013ZX03004007-003, by the Hong Kong University Small Project Fund
Under Grant 104001905, by the Fundamental Research Funds for the Central
Universities under Grant K50511010006, and by the 111 Project under Grant
B08038. The review of this paper was coordinated by Prof. N. Kato.

R. Hou and J. Li are with the State Key Laboratory of Integrated Service
Networks, Xidian University, Xi’an 710071, China.

K.-S. Lui is with the Department of Electrical and Electronic Engineering,
The University of Hong Kong, Kowloon, Hong Kong.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TVT.2014.2298404

Fig. 1. Network coding.

network coding between two flows only. Fig. 1, which is
adapted from [3, Fig. 1], shows the coding opportunity at
Node 2. There are two flows going on 〈1, 2, 3〉 and 〈3, 2, 1〉,
respectively. After Node 2 receives packets p1 and p2 from both
1 and 3, respectively, Node 2 can code the packets and transmit
the coded packet to both 1 and 3. Since Node 1 has sent p1
before, Node 1 can decode p2 from the coded packet p1 ⊕ p2.
Similarly, Node 3 can decode p1.

It is well known that an intelligent scheduling policy is very
important to improve network throughput. Scheduling in wire-
less networks is a big challenge due to wireless interference.
Many works study scheduling issues in wireless networks [4].
Network coding further complicates the issue. In addition to
determining which link should be active, each node also needs
to determine which transmission mode (traditional or coded)
should be used at the current time. For instance, assume that
the data rates of f1 and f2 in Fig. 1 are (1/4) and (3/8),
respectively. The link capacity is one unit. In this scenario, if
Node 2 wants to code all the packets of f2, packets will be
backlogged. The queue becomes overflowed, whereas the link
capacities are not fully utilized. A better way is to code f1 and
f2 at a rate of (1/4) and send the remaining packets of f2 in
a traditional manner. On the other hand, under the stochastic
traffic model, it is possible that Node 2 gets several packets of
f1 before getting one packet of f2. Node 2 should determine
whether transmitting a packet of f1 traditionally or waiting for
the future coding opportunity. An efficient scheduling policy
should utilize all the possible coding opportunities to improve
network throughput.

The scheduling policy proposed in [5] uses the queue length
at each node to determine which link should be active at the
current time slot. The problem of this scheme is that each node
needs to keep each packet sent by itself earlier until the next

0018-9545 © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted, but republication/redistribution
requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

HOU et al.: JOINT CONGESTION CONTROL AND SCHEDULING IN WIRELESS NETWORKS WITH NETWORK CODING 3305

hop transmits the packet. This is because a node does not know
whether the packet it sent previously will be used for coding
by the next hop node until the next hop node sends it out. For
instance, in Fig. 1, after Node 1 sends p1, p1 should be kept at
Node 1 until Node 2 transmits p1. Since Node 2 transmits p2
using network coding, Node 1 uses p1 to decode p2. When the
average data rates of the flows differ a lot, many packets of a
flow would be transmitted in the traditional manner. Although
these packets can be forgotten right after they are sent because
the sending node does not know it until these packets are sent
by the next hop, the sending node has to buffer all of them for a
while. The space overhead is thus increased.

In practice, some nodes may have limited storage resources.
For instance, in multihop cellular networks, each node is a
smartphone or tablet, and the storage resources are limited
[6], [7]. The future incoming packets would be dropped when
the node space allocated for packet forwarding is full, which
severely affects network throughput performance. We would
like to use an example to illustrate this phenomenon. Suppose
that the buffer size is 50 packets, which is the default value
used in ns2 [8]. Then, consider the network state that Node 1
has 30 packets to be transmitted and needs to keep another 20
sent packets used for future decoding. Since there is no more
room in the buffer, Node 1 would drop new packets coming
from the upper layer due to overflow in default [7]. However, it
is possible that only a few out of the 20 sent packets would be
transmitted by Node 2 in a coded manner. If Node 1 knows
which packet would be transmitted traditionally in advance,
the node can forget the packet immediately to accept more
new packets from the upper layer. If the packet loss happens
in the intermediate forwarding node, the bandwidth resources
consumed for the packet transmission over the previous hops
would be wasted. This hinders network throughput. With the
declining of the memory chip prices, we may say that routing
buffers can be overprovisioned. However, large routing buffer
increases queuing delay [8], [9]. Therefore, it is desirable to
forget a sent packet as soon as possible so that a large buffer is
not needed.

Motivated by this issue, this paper aims at reducing the
space overhead while providing high network throughput. We
propose the transmission-mode preassignment procedure that
tells the node which transmission mode (network coding or
traditionally) the next hop will use to transmit a packet imme-
diately after the packet arrives the next hop. The next hop can
then inform the previous hop to forget packets that are going
to be transmitted traditionally. This information can be carried
by the signaling messages. Signaling message delivery schemes
used by existing protocol [3] can be used in our mechanism.

To develop a joint scheduling-and-transmission-mode as-
signment scheme, we introduce a new node model so that we
can formulate the problem as a network utility maximization
problem. We then apply the “layering as optimization decom-
position” technique [10] to decompose the linear program-
ming optimization into several subproblems, and each layer
corresponds to a decomposable subproblem. The theoretical
decomposition motivates us to develop a practical cross-layer
optimization algorithm. In our algorithm, each source deter-
mines the instantaneous data rate injected into the network

based on the current network state; then, a feasible set of links is
selected to transmit at the current time. Both procedures adjust
to each other to optimize the network utility function.

II. RELATED WORKS

With the rising demand of bandwidth under limited available
spectrum, using an intelligent resource-allocation scheme in
wireless networks has received substantial attention. Schedul-
ing, which selects a set of links to be active without conflict,
is an important issue in allocating the bandwidth resources.
The scheduling problem is in general NP-hard [4], and several
suboptimal scheduling solutions are proposed. There have been
some works studying the cross-layer issue on congestion and
scheduling in wireless networks. The work in [11] analyzes
the effect of imperfect scheduling on congestion control in
multihop wireless networks, and it shows that the cross-layer
approach outperforms the layered approach. In [12], the joint
approach of queue-length-based scheduling and congestion
control in cellular networks is proposed, where the channel
may vary according to time or according to receivers. In [13],
a distributed scheduling algorithm and a congestion control
mechanism to achieve the approximate optimal solution are
described. Unfortunately, the authors consider the specific one-
hop interference model, which may not be applicable in a
general network. In [14], the joint problem of multipath routing
and link-level reliability in multihop wireless networks is stud-
ied. The authors develop a decentralized scheduling policy that
selects an appropriate channel code rate for each link to cope
with different degrees of data reliability among the different
links. In [15]–[19], the control in multichannel multiradio wire-
less networks is studied. In [15] and [16], mixed-integer linear
programming models for the joint of congestion control, rout-
ing, and scheduling in multichannel wireless networks are pre-
sented. However, solving the linear programming is NP-hard,
and no algorithm was proposed. The work in [17] proposes
a distributed scheduling algorithm in multichannel wireless
networks. In [18], a cross-layer optimization algorithm, which
relies on the scheduling algorithm in [17] as lower layer
solutions, is proposed. In [19], the same problem as [18] is
considered, and it presents a new tuple-based network model to
facilitate decoupling the optimization on different layers. None
of the given works consider network coding.

Some works consider the scheduling problem with network
coding with various objectives in relay-based cellular networks.
In relay-based cellular networks, a relay station forwards down-
link traffic to user and uplink traffic to a base station. Thus,
many coding opportunities may exist at the relay station. As
the transmission rate is bounded by the minimum rate among
receivers, coding too many native packets together may not be
beneficial. In [20], this tradeoff is considered, and a scheduling
algorithm to specify which packets should be coded by the
relay station is proposed. In [21], the tradeoff between reducing
packet delay and saving energy is considered. To reduce energy
consumption, a node should code as much as possible. The
transmission of a packet may have to be delayed to wait
for a coding opportunity. Therefore, in [21], an opportunis-
tic scheduling to determine whether the relay station should

3306 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 7, SEPTEMBER 2014

transmit (coded or noncoded) packet or wait at a certain time
slot is proposed. In [22], it is considered that the relay station
applies network coding to reduce the number of retransmissions
and proposes a scheduling algorithm to determine which pack-
ets the relay station should code. In [23], the power control,
channel allocation, and link scheduling problems are jointly
considered, and an opportunistic resource scheduling algorithm
is proposed. In [24], the scheduling problem for broadcast
traffic with network coding in relay-based networks is studied.
We can see that different works concern different optimization
objectives. In [23], the same objective as this paper is con-
sidered. However, in [23], the buffer overhead at a user node
is not considered, which is particularly important for cellular
networks.

Many works study scheduling with network coding in mul-
tihop wireless networks. In [2], [25], and [26], the theoretical
throughput gain obtained by network coding in wireless net-
works is analyzed, and in [27], the joint congestion control,
routing, and scheduling is formulated as a linear programming
problem, whereas no algorithm was proposed to solve the
problem. In [5], a scheduling policy with network coding is
proposed. In addition to network coding, the scheduling policy
proposed in [28] also considers the energy consumption on each
link, the packet loss probability, and the transmission rate on
each link. If we do not consider energy consumption and packet
loss probability, the proposed scheduling scheme is reduced to
the algorithm in [5]. In [2], k-tuple coding is introduced, and
2-tuple coding is the same as COPE-style coding. The schedul-
ing policy used in [2] is the same as that in [5] when con-
sidering 2-tuple coding. In [1], pairwise intersession network
coding is considered, which is different from the COPE-style
network coding model. In [29], the tradeoff between delay and
throughput with network coding in multihop wireless networks
is studied. Nevertheless, the buffer issue was not mentioned in
the above works.

III. MODEL AND ASSUMPTIONS

We consider a multihop wireless network with the set of
nodes N . Let L be the set of links, and each link l = (i, j) ∈ L
denotes that node j can successfully receive the data from
node i when there is no interference. Let F denote the set
of traffic flows. Following [11], [30], and [31], each flow is
served by a single path, and the path is predetermined. Let
s(f) and d(f) be the source and the destination of the flow
f , respectively. If f goes through intermediate node i, denote
pf (i) and sf (i) as the predecessor and successor of i on the
path carrying f , respectively. Based on the routes of the traffic
flows, we can determine all the coding opportunities at each
node. For example, given a node i carrying two flows f1 and
f2, if pf1(i) = sf2(i) and pf2(i) = sf1(i), node i can code the
packets of f1 and f2, respectively. It is possible that node i can
also code f1 with another flow f3, apart from f2. To clearly
define each coding opportunity, we introduce the definition of
coding structure. If node i can code flows f1 and f2 with the
next hops u and v, respectively, we have a coding structure
φ = {i, [u; v], [f1; f2]} at node i. φ defines a pair of native
links, i.e., {(i, u), (i, v)}, called coding link. It is possible that

Fig. 2. Coding structure.

there are multiple coding structures at node i. For instance,
in Fig. 2, there are two coding structures at node 2, φ1 =
{2, [1; 3], [f3; f1]} and φ2 = {2, [1; 3], [f3; f2]}. φ1 tells that
Node 2 can code f3 and f1 and that the next hops of f3 and f1
are Nodes 1 and 3, respectively. φ1 and φ2 specify the same
next hop information but different traffic flows. Let Φ(i) be the
set of coding structures at node i. We write f ∈ φ if it is one of
the two flows in coding structure φ.

We assume that time is divided into slots. Following [5], let
M denote the set of feasible scheduling decisions or schedules
at a certain time slot. Each element of M defines 1) the links
or coding structures that are active in the time slot, 2) the flows
that are carried on the active links and coding structures, and
3) the rates of the flows being carried. For instance, Fig. 1 shows
the feasible schedules of three time slots. Link (1, 2) carries f1
in Slot 1, link (3, 2) carries f2 in Slot 2, and coding structure
{2, [1; 3], [f2, f1]} is active in Slot 3.

We denote by rfl (M) the rate of native link l serving f
under a feasible schedule M . Denote by ri, φ(M) the rate of
coding structure φ at node i under schedule M . The link rate
depends on the specific interference model [32]. In the protocol
interference model, a transmission on link (i, j) at the negoti-
ated rate is successful if none of the nodes in the interference
range of j is transmitting. Thus, rfl (M) is either a fixed rate or
zero under the protocol interference model. If we consider the
physical layer interference model, the data link rate depends on
the signal-to-interference-plus-noise ratio at the receiver, which
is often approximated by the Shannon formula. The rate of a
link may be different under the different schedule. We denote
by R the feasible rate region. Each element in R is a rate
vector �r(M), containing all rf

(i, sf (i))
(M) and ri, φ(M), which

is yielded by a feasible schedule M . In other words, R includes
the rate vectors produced by all the possible feasible schedules
in M. To remove context ambiguity, we use �r ∈ R to denote a
feasible rate vector, which is determined by a feasible schedule.

Let λ(f) be the input rate of the flow f ∈ F , which falls
in the region of (0, Λf], and we assume that Λf is known
in advance [11], [18]. Define the utility function for flow f
as Uf (λf), which reflects the level of “satisfaction” of flow
f when its data rate is λf . Following [11], Uf (·) is assumed
to be strictly concave, nondecreasing, and twice continuously
differentiable on (0,Λf]. Our algorithm aims at maximizing
the network utility by jointly considering congestion control,
transmission-mode assignment, and scheduling.

IV. CROSS-LAYER OPTIMIZATION

Here, we first describe the existing scheduling scheme in
wireless networks with network coding [2], [5]. Since the

HOU et al.: JOINT CONGESTION CONTROL AND SCHEDULING IN WIRELESS NETWORKS WITH NETWORK CODING 3307

existing scheduling scheme does not consider the buffer is-
sue, we introduce transmission-mode assignment procedure
and propose a new node model. Afterward, the problem for-
mulation is presented. We then develop a suboptimal cross-
layer optimization algorithm. Finally, we theoretically analyze
the input rate region supported by the proposed scheduling
policy.

A. Existing Scheduling With Network Coding

A scheduling policy is defined as an algorithm that chooses
a feasible schedule M ∈ M in each time slot t [5]. We denote
by qfi (t) the number of packets of flow f in the queue of node
i at the beginning of time slot t. The scheduling policy in [5] is
as follows:

M ∗(t)

=arg max
M∈M

⎧⎨
⎩
∑
i

∑
f

(
qfi (t)−qf

sf (i)
(t)

)
rf
(i,sf (i))

(M)

⎫⎬
⎭ (1)

The stability region Λ of the network is the set of all arrival
rate vectors �λ that can be supported while ensuring that all
packet queues in the network remain finite. In [2] and [5], it
is shown that the scheduling policy shown by (1) stabilizes the
network for all arrival rate vectors inside Λ. Denote by Mcode

the set of feasible schedules that considers network coding and
Mno_code by that without network coding. We can say that
Mno_code is a subset of Mcode, and some schedules in Mcode

may not be feasible when not considering network coding (see
Fig. 1 for any two links that interfere with each other). A
feasible schedule in Mcode can contain two links (2, 1) and
(2, 3), whereas any feasible schedule in Mno_code cannot.

By using (1), a node cannot know in advance which trans-
mission mode the next hop will use to transmit a packet sent
by itself. Considering the stochastic traffic model, it is possible
that Node 2 has received several packets of f1 but no packet
of f2 in Fig. 1. Let us assume that qf12 (t) > qf11 (t) > qf23 (t).
When qf22 (t) = 0, according to (1), M ∗ = {(2, 3)} since qf12 (t)
is the largest. Node 2 will transmit traditionally the Head
of Line (HoL) packet of f1 at time t. We assume that the
transmission rate of each link in Fig. 1 is the same. When
qf22 (t) > 0, node 2 can code the packets from f1 and f2; thus,
qf12 (t)rf(2,3) + qf22 (t)rf(2,1) is the largest. In this case, the HoL
packet of f1 would be transmitted being coded with another
packet of f2. That is to say, a node does not know which
transmission model would be assigned for the buffered packets
until they are scheduled. Thus, the node should keep each
packet until the next hop completes transmitting the packet, to
assure that each coded packet would be decoded. In particular,
when the average data rates of two flows differ a lot, many
packets of a flow would be probably transmitted traditionally,
such that a large unnecessary buffer is required by network
coding. This is undesirable because the node will drop some
new data packets due to buffer overflow. Consequently, we
propose the transmission-mode preassignment procedure.

B. Node Model

To reduce the buffer size, this paper introduces the procedure
of transmission-mode preassignment. After a node receives a
packet, it decides immediately whether the packet should be
transmitted in a coded manner or traditionally. If the packet
would be transmitted traditionally, the previous hop does not
have to memorize the packet then. To achieve the above prac-
tice, we propose a node model. A node would put packets of
different statuses in different queues, indicating they are going
to be handled in different ways. That is, for each flow f that
goes through node i, i maintains the following.

1) Input queue for keeping incoming packets (denoted Xf
i).

Packets in this queue have yet to be assigned a trans-
mission mode. Packets here will be moved to one of the
output queues after the transmission mode is determined.

2) Output queue for packets to be sent out traditionally
(denoted W f

i). Packets in this queue have been deter-
mined to be transmitted in a traditionally manner and are
waiting for its turn to be sent out to the channel. i can
inform its neighbors to forget these packets.

3) Output queue for packets of each coding structure φ
where φ ∈ Φ(i) (denoted Zi, φ). The packets of flow f ∈
φ moved to this queue are to be transmitted in coded
manner. When Node i move a packet of f to Zi, φ, a
new code packet will be formed immediately if there is
a native packet of another flow f ′ ∈ φ in Zi, φ. In other
words, Zi, φ contains two kinds of packets. One is the
coded packet, and another one is the native packet of a
flow waiting to be coded together. All the packets are
waiting for their turn to be sent out to the channel.

Both output queues push traffic to physical link (i, sf (i)).
The transmission-mode assignment involves deciding to which
output queue (W f

i or Zi, φ, f ∈ φ) a packet from the input
queue (Xf

i) should be put. A wise decision should not over-
whelm any output queue while maximizing the utility. To model
the relation between the queues, we represent each queue as a
virtual node. We put a virtual link from one queue to another
one if packets can be moved in that manner. Each virtual link is
associated with a rate that tells the average ratio of the packets
being moved to each output queue.

Fig. 3 shows the model of Node 2 in Fig. 2. In the figure,
a square box is a queue, and a virtual link is represented as
a dashed arrow. Node 2 forwards three flows; therefore, it has
three input queues. The coding structure φ1 contains f1 and f3;
therefore, there are two virtual links from X1

2 to Z2, φ1
and from

X3
2 to Z2, φ1

, respectively. Similarly, φ2 contains f2 and f3, and
there are two virtual links from X2

2 to Z2, φ2
and from X3

2 to
Z2, φ2

, respectively. It is obvious that the optimal transmission-
mode assignment should move the same number of packets of
f1 and f3 to Z2, φ1

.
Note that all the packets of the source node of f are trans-

mitted traditionally; therefore, the proposed node model is not
applied at s(f). In other words, there is one output queue of
f at s(f). When the upper layer injected new packets, all the
packets are immediately moved to the output queue W f

s(f).

3308 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 7, SEPTEMBER 2014

Fig. 3. Node model.

Let γf
i, φ denote the rate on the virtual link from Xf

i to Zi, φ.

For f ∈ φ and f ′ ∈ φ, we should have γf
i, φ = γf ′

i, φ in the opti-

mal solution. Let W f
i denote the queue containing the packets

to be transmitted traditionally. The rate of the virtual link from
Xf

i to W f
i is γf

i . The rate of the traffic leaving input queue
Xf

i is thus
∑

φ∈Φ(i), f∈φ γ
f
i, φ + γf

i . To assure the stability of
the system, �γ is bounded by the rate on the physical links.
For instance, γf

i, φ should not be larger than ri, φ; otherwise,
Zi, φ would be infinitely large. Denote by Γ the feasible rate
region for �γ, which will be defined in Section VI, based on the
throughput-optimal and stability arguments.

C. Problem Formulation

Based on the proposed node model, the problem concerned
in this paper is formulated as

maximize
∑
f∈F

Uf (λf) (2)

subject to
∑

φ∈Φ(pf (i)),f∈φ
rpf (i), φ + rf

pf (i)

≤
∑

φ∈Φ(i), f∈φ
γf
i, φ + γf

i ∀ i
= s(f), ∀ f (3)

γf
i, φ ≤ ri, φ ∀ i, ∀φ ∈ Φ(i), ∀ f ∈ φ (4)

γf
i ≤ rfi ∀ i
= s(f), ∀ f (5)

λf ≤ rfs(f) ∀ f (6)

�r ∈ R (7)

�γ ∈ Γ. (8)

Our objective is to maximize the sum of the utility functions
of the data rates for all flows. Equation (3) makes sure the rate
of incoming traffic to queue Xf

i is no larger than the rate that
traffic leaves the queue; otherwise, the input queue would go to
infinity. Similarly, (4) ensures that the rate of incoming packets
of f to queue Zi, φ does not exceed the rate on coding structure
φ. Equation (5) assures that the input rate to W f

i is no larger

HOU et al.: JOINT CONGESTION CONTROL AND SCHEDULING IN WIRELESS NETWORKS WITH NETWORK CODING 3309

than its output rate. In other words, (3)–(5) guarantee that the
queues of each node would not be infinite.

L(�λ, �γ, �r, �β) =
∑
f

Uf (λf) +
∑

f, i
=s(f)

βf
i, in

×

⎛
⎝ ∑

φ∈Φ(i), f∈φ
γf
i, φ + γf

i

−
∑

φ∈Φ(pf (i)), f∈φ
rpf (i), φ − rf

pf (i)

⎞
⎠

+
∑

i, φ∈Φ(i), f∈φ
βf
i, φ,out

(
ri, φ − γf

i, φ

)

+
∑

f, i
=s(f)

βf
i,out

(
rfi − γf

i

)

+
∑
f

βf
s(f),out

(
rfs(f) − λf

)

�r ∈ R
�γ ∈ Γ. (9)

The optimal solution for (2) tells the maximum data rate
of each flow and the data rate on each link or each coding
structure, We would like to use a Lagrangian dual decomposi-
tion method to solve our problem, Corresponding to constraints
(3)–(6), we define Lagrange multipliers βf

i, in, βf
i, φ,out, β

f
i,out,

and βf
s(f),out, respectively [33]. Later, we will see that these

multipliers reflect the queue sizes. The Lagrangian is (9), and
the dual of problem (2) is

minD(�β) (10)

, where Gf (�β) is a function of λf , V1(�β) is a function of γi and
γf
i, φ, and V2(�β) is a function rfi and ri, φ, and

D(�β) = max
�λ,�γ,�r

L(�λ, �γ, �r, �β)

=
∑
f∈F

max
0<λf≤Λf

Gf (�β)

+ max
�γ∈Γ

V1(�β) + max
�r∈R

V2(�β)

Gf (�β) =Uf (λf)− βf
s(f),outλf

V1(�β) =
∑

i∈N ,φ∈Φ(i),f∈φ

(
βf
i, in − βf

i, φ,out

)
γf
i, φ

+
∑

f∈F,i∈N ,i
=s(f)

(
βf
i, in − βf

i,out

)
γf
i

V2(�β) =
∑

i,φ∈Φ(i)

⎛
⎝∑

f∈φ

(
βf
i, φ,out − βf

sf (i),in

)⎞⎠ ri, φ

+
∑
i,f

(
βf
i,out − βf

sf (i),in

)
rfi . (11)

Since the dual objective function D(�β) is convex, we use
the subgradient method to solve the dual problem [11], [33].
Generally, the subgradient method uses the iteration

�β(t+ 1) = �β(t)− D(�β)(t)

∂�β
(12)

where t is the iteration index. We thus derive the updating rules
for the Lagrange multipliers as follows:

βf
i, in(t+ 1)

=

⎡
⎣βf

i, in(t) + αf
i

⎛
⎝ ∑

φ∈Φ(pf (i)), f∈φ
rpf (i), φ(t) + rf

pf (i)
(t)

−
∑

φ∈Φ(i)

γf
i, φ(t)− γf

i (t)

⎞
⎠
⎤
⎦
+

(13)

βf
i, φ,out(t+ 1)

=
[
βf
i, φ,out(t) + αf

i, φ,out

(
γf
i, φ(t)− ri, φ(t)

)]+
(14)

βf
i,out(t+ 1)

=
[
βf
i,out(t) + αf

i,out

(
γf
i (t)− rfi (t)

)]+
(15)

βf
s(f),out(t+ 1)

=
[
βf
s(f),out(t) + αf

i,out

(
λf (t)− rfs(f)(t)

)]+
. (16)

Note that the update method for βf
s(f),out(t) is different from

βf
i,out(t), i
= s(f), as shown in (15) and (16). Equations

(17)–(19) tell how to find �λ, �r, and �γ at different t required,
as shown in the following:

λf (t) = arg max
0<λf≤Λf

Uf (λf)− βf
s(f),out(t)λf (17)

�γ(t) = argmax
�γ∈Γ

V1

(
�β(t)

)
(18)

�r(t) = argmax
�r∈R

V2

(
�β(t)

)
. (19)

αf
i , αf

i, φ,out, and αf
i,out are iterative step sizes. [•]+ =

max{•, 0}. That is, all Lagrangian multipliers must not be
negative. The process continues until �β converges. Assume that
R and Γ are convex. When the step size is set appropriately
small, �λ, �γ, and �r converge to the optimal solution [11].

The optimal solution requires the feasible rate region R to
be predetermined, which is NP-complete. Even if we have R,
calculating �γ(t) and �r(t) is still difficult. Moreover, the com-
putational overhead would be huge due to a small iterative step
size. Nevertheless, the subgradient method for the Lagrangian
dual problem has an attractive decomposition property: For
each t, (17) determines the data rate of each flow (congestion
control component), (18) assigns the transmission mode for
each received packet, and (19) provisions a scheduling policy.
This motivates us to develop a suboptimal cross-layer optimiza-
tion algorithm.

D. Cross-Layer Optimization Algorithm

We now consider t as the time slot, whereas earlier, it denotes
the iterative index. Let αf

i = 1. βf
i, in(t) then reflects the size

of input queue Xf
i at time slot t.

∑
φ∈Φ(i) γ

f
i, φ(t) + γf

i (t)

denotes the number of packets leaving Xf
i at time t, whereas∑

φ∈Φ(pf (i)), f∈φ rpf (i), φ(t) + rf
pf (i)

(t) denotes the number of

3310 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 7, SEPTEMBER 2014

packets coming at Xf
i at time t. Therefore, βf

i, in(t+ 1) cal-

culated by (13) implies the size of Xf
i at time t+ 1. Similarly,

γf
i, φ(t) denotes the number of packets of flow f arriving in Zi, φ

at time t, whereas ri, φ(t) denotes the number of coded packets
sent out at t. Therefore, βf

i, φ,out(t) implies the size of Zi, φ at

time t. For the same reason, βf
i,out(t) reflects the size of W f

i at
time slot t.

There are three categories of variables in (17)–(19): the set
of flow data rate �λ, transmission-mode assignment decision �γ,
and transmission schedule �r. In each iterative step, the optimal
solutions of these variables can be found using the Langrangian
multipliers accordingly. In other words, (17)–(19) provide
the policies for congestion control, transmission-mode assign-
ment, and scheduling based on the current backlog of each
queue.

We now proceed to describe our algorithm. At the beginning
of each time slot, some new packets may arrive in Xf

i . Each
node decides the transmission mode (traditionally or coded) for
each packet in Xf

i such that the packets in Xf
i are transported

to a certain output queue. Then, pf (i) can drop the packets that
will be transmitted traditionally by i. After the transmission-
mode assignment procedure, a certain feasible schedule is
selected and then a set of links transmit at the current time slot.
The transmission schedule at the current time slot would affect
the queue size at each node at the next time slot, and then, the
data rate injected into the network at the next time slot would
be adjusted. In the next time slot, the whole procedure will be
executed again. The procedures of flow control, transmission-
mode assignment, and transmission scheduling cooperate with
each other to improve network throughput performance. Each
time slot is divided into three phases. In the first phase, the
source node determines the amount of new packets injected into
the network. In the second phase, node i decides the transmis-
sion mode (traditional or coded) of each newly received packet.
This involves moving a packet from the input queue (Xf

i) to a
certain output queue. In the third phase, a feasible schedule is
selected to allow a set of links to transmit data packets during
the whole time slot.

When the context is clear, we use Xf
i (t) and W f

i (t) to
denote the queue sizes at time slot t. Let Zf

i, φ(t) denote the
number of packets for flow f contained in queue Zi, φ at time t.
For instance, if Zi, φ contains m coded packets and l native

packets of f at time t, Zf
i, φ(t) = m+ l, whereas Zf ′

i, φ(t) = m,

where f ′ ∈ φ. In other words, Zf
i, φ(t) is determined based on

the current status of output queue Zi, φ. As aforementioned,
we consider Langrangian multipliers in (13)–(15) as the queue
sizes. We thus rewrite (17)–(19) as follows:

λf (t)= arg max
0<λf≤Λf

Uf (λf)−αf
s(f)W

f
s(f)(t)λf (20)

�γ(t) = argmax
�γ∈Γ

⎧⎨
⎩

∑
i∈N ,φ∈Φ(i),f∈φ

(
Xf

i (t)− Zf
i, φ(t)

)
γf
i, φ

+
∑

f∈F,i∈N ,i
=s(f)

(
Xf

i (t)−W f
i (t)

)
γf
i

⎫⎬
⎭ (21)

�r(t) = argmax
�r∈R

⎧⎨
⎩

∑
i,φ∈Φ(i)

⎛
⎝∑

f∈φ

(
Zf
i, φ(t)−Xf

sf (i)
(t)

)⎞⎠ ri, φ

+
∑
i,f

(
W f

i (t)−Xf
sf (i)

(t)
)
rfi

⎫⎬
⎭ . (22)

Equations (20)–(22) describe the policies on three layers:
congestion control, transmission-mode assignment, and sched-
uling. Equation (20) specifies how to determine the data rate
injected into the network in phase 1 of time slot t. Given
Uf (λf), we can calculate an optimal λf to maximize Uf (λf)−
αf
s(f)W

f
s(f)(t)λf , In other words, (20) denotes a flow control

policy, where αf
s(f) is a factor for congestion control. Uf (λf)

is normally a monotonically increasing function of λf ; thus,
smaller αf

s(f) implies that more packets would be injected into

the network. αf
s(f) should be set according to the buffer size.

For instance, if each node in the network has a larger buffer
size, we can set smaller αf

s(f) to allow more packets injected

into the network. On the other hand, the larger αf
s(f) is suitable

for the smaller buffer size of each node. According to (21), we
should move the packet from Xf

i to the output queue containing
the least number of packets for f . In the case that Zi, φ and
W f

i contain the same number of packets for f , we prefer to
move the packet to W f

i . Equation (22) presents the scheduling
policy to determine which links should transmit concurrently
at time t. Based on our transmission-mode assignment scheme,
Zf
i, φ(t) must not be larger than W f

i (t). Under the stochastic
traffic model, it is possible that Zi, φ(t) contains all native
packets of flow f but no packet of another flow f ′. In this case,
(Zf

i, φ(t)−Xf
sf (i)

(t))ri, φ+(Zf ′

i, φ(t)−Xf ′

sf (i)
(t))ri, φ must not

be larger than (W f
i (t)−Xf

sf (i)
(t))rfi +(W f ′

i (t)−Xf ′

sf (i)
(t))rfi ,

where ri, φ = min{rfi , r
f ′

i }. This implies that our scheduling
scheme would not schedule a native packet in Zi, φ to be
transmitted. The joint solution of transmission-mode assign-
ment and the scheduling policy intentionally assign some native
packets in Zi, φ waiting to be coded in the future. Moreover,
the packets in Zi, φ must be transmitted in a coded manner; the
channel resources would be efficiently utilized. The outline of
our algorithm is shown in Algorithm 1.

Algorithm 1 Cross-layer optimization algorithm

1: for Each time slot t do
2: for each flow f going through i do
3: if i = s(f) then
4: if U(λf)− αW f

i (t) · λf ≤ 0 for any λf ∈
(0, Λf] then

5: set λf (t) = 0
6: else
7: inject new packets containing Λf amount of

data.
8: for each packet in Xf

i do
9: move the packet to the output queue with the

smallest size

HOU et al.: JOINT CONGESTION CONTROL AND SCHEDULING IN WIRELESS NETWORKS WITH NETWORK CODING 3311

10: Apply the greedy maximal scheduling (GMS)-
framework to find a feasible schedule based on (22)

As mentioned in Section III, each vector �r corresponds to a
feasible schedule. Equation (22) represents a scheduling policy.
We rewrite (22) as

M ∗(t)=arg max
M∈Co(M)

⎧⎨
⎩

∑
i, φ∈Φ(i)

⎛
⎝∑

f∈φ

(
Zf
i,φ(t)−Xf

sf (i)
(t)

)⎞⎠

×ri,φ(M) +
∑
i,f

(
W f

i (t)−Xf
sf (i)

(t)
)
rfi (M)

⎫⎬
⎭ . (23)

Finding the optimal solution of (23) is NP-hard [4]. Many
practical scheduling solutions have been proposed. One of the
most well-known suboptimal scheduling policies is the GMS
policy [4]. GMS schedules links in decreasing order of the link
weight conforming to interference constraints. According to
the policy of (23), the weight of each link should correspond
to the queue size and the rate of that link. Generally, given node
i, the weight of each coding link in φ is

ω(i, φ) =
∑
f∈φ

(
Zf
i, φ(t)−Xf

sf (i)
(t)

)
ri, φ. (24)

We define the weight of each native link (i, sf (i)) as

ωf
i =

(
W f

i (t)−Xf
sf (i)

(t)
)
rfi . (25)

Let L be the set of all the (native or coding) links with
backlogged packets, and L

′ be the set of links to transmit at
time t. At each time slot t, GMS selects the (native or coding)
link with the maximum weight and moves the link from L

to L
′. Then, GMS removes all the link interfering with the

selected links in L
′. The process continues until L is empty.

Our description assumes using the protocol interference model,
i.e., the data rate on each link does not depend on the specific
schedule. If we apply the physical-layer interference model, the
weight on each link in L should be updated after each link is
added into L

′. In [34], a distributed version for GMS, which
is called LGMS, is developed. In our cross-layer optimization
algorithm, flow control and transmission-mode assignment are
performed by each node independently. Thus, our algorithm can
be implemented in a distributed manner. In practical wireless
networks, link rate and packet loss ratio are time-varying, as
subjected to fading variations. Nevertheless, our scheduling
policy can be easily extended to account for fading (see [5] for
detailed discussion).

E. Stability Analysis

Earlier, we provide a suboptimal cross-layer optimization al-
gorithm, developed by the joint of (20), (21), and (23). Without
congestion control, the source node would accept all the packets
from upper layer. Based on the proposed node model, (21)
and (23) present the scheduling policy. The data rate region
�λ� supported by scheduling policy � means that, when the

data rate strictly falls �λ�, scheduling policy � stabilizes the
network. �λ� must not be larger than the stability region Λ. A
better scheduling policy would support a larger data rate region.
In the following, we formally show that the data rate region
supported by the proposed scheduling policy is Λ. We employ
the quadratic Lyapunov function shown in the following:

L
(
�X(t), �W (t), �Z(t)

)
=

∑
f, i
=s(f)

⎛
⎝(Xf

i (t)
)2

+
(
W f

i (t)
)2

+
∑

φ∈Φ(i)

(
Zf
i, φ(t)

)2

⎞
⎠+

∑
f

(
W f

s(f)(t)
)2

. (26)

Let λf (t) denote the amount of data for flow f injected into
the network. In the proposed policy, the queue update rules are
as follows:

Xf
i (t+ 1) =

⎡
⎣Xf

i (t)−

⎛
⎝ ∑

φ∈Φ(i)

γf
i, φ(t) + γf

i (t)

⎞
⎠
⎤
⎦
+

+
∑

φ′∈Φ(j)

rfj, φ + rfj (t), j = pf (i)

W f
i (t+ 1) =

[
W f

i (t)− rfi (t)
]+

+ γf
i (t)

Zf
i, φ(t+ 1) =

[
Zf
i, φ(t)− rfi, φ(t)

]+
+ γf

i, φ(t)

W f
s(f)(t+ 1) =

[
W f

s(f)(t)− rfs(f)(t)
]+

+ λf (t). (27)

rfi, φ(t) denotes the amount of flow f transmitted by coding
structure φ at time t, which depends on ri, φ(t) and the backlogs
in Zi, φ. Based on the transmission-mode assignment, if the
packets in Zi, φ are all native packets, φ would not be scheduled
at t. That is, if ri, φ(t) > 0, Zi, φ must contain the coded packets
from two flows. Therefore, we have

rfi, φ(t) = ri, φ(t). (28)

Xf
i (t+ 1) is calculated as two parts: the remaining packets

in Xf
i that are not transmitted at time slot t, and the amount

of packets for f arriving at i at time slot t. Let each element
in �γ be upper bounded by a positive number. For instance, we
set γf

i (t) ≤ c(i, sf (i)), where ci, sf (i) is the maximum supported
link rate between i and sf (i). Since each element in �r and �γ
is upper bounded by a positive constant, according to in [35,
Lemma 4.3] , we have the following:

(
Xf

i (t+ 1)
)2

−
(
Xf

i (t)
)2

≤ B1 + 2Xf
i (t)

⎛
⎝
⎛
⎝ ∑

φ′∈Φ(j)

rfj, φ + rfj (t)

⎞
⎠

−

⎛
⎝ ∑

φ∈Φ(i)

γf
i, φ(t) + γf

i (t)

⎞
⎠
⎞
⎠

3312 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 7, SEPTEMBER 2014

(
W f

i (t+ 1)
)2

−
(
W f

i (t)
)2

≤ B2 + 2W f
i (t)

(
γf
i (t)− rfi (t)

)

(
Zf
i, φ(t+ 1)

)2

−
(
Zf
i, φ(t)

)2

≤ B3 + 2Zf
i, φ(t)

(
γf
i, φ(t)− rfi, φ(t)

)

(
W f

s(f)(t+ 1)
)2

−
(
W f

s(f)(t)
)2

≤ B4 + 2W f
i (t)

(
λf (t)− rfs(f)(t)

)
(29)

In (29), B1, B2, B3, and B4 are constant positive numbers.
As �λ strictly falls in the stability region Λ, there exists �λ′ also
inside of Λ, such that each element in �λ′ is ε larger than the
corresponding element in �λ, where ε is a small positive number.
Denote by νfi the rate of f carried on link (i, sf (i)) and by
νfi, φ the rate of the coded data carried in the coding structure

φ at node i. We can identify νfi and νi, φ corresponding to �λ′;
therefore, we have

νfs(f) = λf + ε. (30)

According to (21) and (22), we have, respectively, the
following:

⎧⎨
⎩

∑
i, f, φ∈Φ(i)

(
Xf

i (t)− Zf
i, φ(t)

)
νi, φ

+
∑

i
=s(f), f

(
Xf

i (t)−W f
i (t)

)
νfi

⎫⎬
⎭

≤

⎧⎨
⎩

∑
i, f, φ∈Φ(i)

(
Xf

i (t)− Zf
i, φ(t)

)
γf
i, φ(t)

+
∑

i
=s(f), f

(
Xf

i (t)−W f
i (t)

)
γf
i (t)

⎫⎬
⎭ (31)

⎧⎨
⎩

∑
i,φ∈Φi

⎛
⎝∑

f∈φ

(
Zf
i, φ(t)−Xf

sf (i)
(t)

)⎞⎠ νi, φ

+
∑
i,f

(
W f

i (t)−Xf
sf (i)

(t)
)
νfi

⎫⎬
⎭

≤

⎧⎨
⎩

∑
i,φ∈Φi

⎛
⎝∑

f∈φ

(
Zf
i, φ(t)−Xf

sf (i)
(t)

)⎞⎠ ri, φ(t)

+
∑
i,f

(
W f

i (t)−Xf
sf (i)

(t)
)
rfi (t)

⎫⎬
⎭ . (32)

We then calculate (33), shown below. By (29), we have the
inequality (a), where B is a constant positive number. Based on
(28), we have equality (b). By (31) and (32), we have inequality

(c) in (33). Since Xf
d(f)(t) = 0 for any t, where d(f) is the

destination of f , we have equality (d).

L
(
�X(t+ 1), �W (t+ 1), �Z(t+ 1)

)
− L

(
�X(t), �W (t), �Z(t)

)

≤(a) B + 2
∑

f, i
=s(f)

×

⎧⎨
⎩Xf

i (t)

⎛
⎝
⎛
⎝ ∑

j=pf (i),φ′∈Φ(j)

rfj, φ + rfj (t)

⎞
⎠

−

⎛
⎝ ∑

φ∈Φ(i)

γf
i, φ(t) + γf

i (t)

⎞
⎠
⎞
⎠

+W f
i (t)

(
γf
i (t)− rfi (t)

)

+
∑

φ∈Φ(i)

Zf
i, φ(t)

(
γf
i, φ(t)− rfi, φ(t)

)
⎫⎬
⎭

+ 2
∑
f

W f
s(f)(t)

(
λf (t)− rfs(f)(t)

)

=(b) B + 2
∑
f

W f
s(t)(t)λf (t)

− 2

⎧⎨
⎩

∑
i,φ∈Φi

⎛
⎝∑

f∈φ

(
Zf
i, φ(t)−Xf

sf (i)
(t)

)⎞⎠ ri, φ(t)

+
∑
i,f

(
W f

i (t)−Xf
sf (i)

(t)
)
rfi (t)

⎫⎬
⎭

− 2

⎧⎨
⎩

∑
i, f, φ∈Φ(i)

(
Xf

i (t)− Zf
i, φ(t)

)
γf
i, φ(t)

+
∑

i
=s(f), f

(
Xf

i (t)−W f
i (t)

)
γf
i (t)

⎫⎬
⎭

≤(c) B + 2
∑
f

W f
s(t)(t)λf (t)

− 2

⎧⎨
⎩

∑
i,φ∈Φi

⎛
⎝∑

f∈φ

(
Zf
i, φ(t)−Xf

sf (i)
(t)

)⎞⎠ νi, φ

+
∑
i,f

(
W f

i (t)−Xf
sf (i)

(t)
)
νfi

⎫⎬
⎭

− 2

⎧⎨
⎩

∑
i, f, φ∈Φ(i)

(
Xf

i (t)− Zf
i, φ(t)

)
νi, φ

+
∑

i
=s(f), f

(
Xf

i (t)−W f
i (t)

)
νfi

⎫⎬
⎭

=(d) B + 2
∑
f

W f
s(t)(t)λf (t)

− 2

⎧⎨
⎩
∑
f

W f
s(f)ν

f
s(f) +

∑
f

Xf
sf (s(f))

(t)νi, φ

⎫⎬
⎭

≤ B + 2
∑
f

W f
s(t)(t)λf (t)− 2

∑
f

W f
s(f)ν

f
s(f) (33)

HOU et al.: JOINT CONGESTION CONTROL AND SCHEDULING IN WIRELESS NETWORKS WITH NETWORK CODING 3313

Δ(t)
Δ
= E

{
L
(
�X(t+ 1), �W (t+ 1), �Z(t+ 1)

)

−L
(
�X(t), �W (t), �Z(t)

) ∣∣∣L
(
�X(t), �W (t), �Z(t)

)}

≤ B + 2
∑
f

W f
s(t)(t)λf − 2

∑
f

W f
s(f)ν

f
s(f)

= B − 2
∑
f

W f
s(f)ε [based on (30)] . (34)

Finally, we calculate the Lyapunov drift as in (34). We
have shown that our policy satisfies the conditions of [35,
Lemma 4.2], and therefore, our policy stabilizes the network
for all arrival rate vectors that are strictly interior to the stability
region.

V. SIMULATION RESULTS

Here, we evaluate the performance of our proposed algo-
rithms via packet-level simulation. We compare the proposed
algorithm with the method [2], [5] presented in (1). The work
in [8] describes the disparity in the buffer size used in various
research platforms. The buffer keeps both the packets waiting
to be transmitted and the packets waiting for decoding future
coded packets. If the buffer at a node is full, the node will
drop the new incoming packet in default [7]. Another option
is to drop a sent packet to accommodate the new incoming
packet. If the sent packet dropped is needed for decoding later,
more bandwidth resources will be wasted. Therefore, dropping
new incoming packets is more appropriate. For simplicity, each
link in the network has the same transmission rate of 1 Mb/s.
In our simulation, we use the objective of maximizing network
throughput, i.e., U(λf) = λf . α in Algorithm 1 is a factor for
congestion control. We apply the commonly used 2-hop inter-
ference model [4] in our simulations. Each second is divided
into 100 time slots, and each link can transmit a packet in each
time slot. The simulation runs 500 s, and the average throughput
is counted as the amount of data received by the destinations
divided by 500 s.

We randomly deploy 80 nodes in an area of 1000 m ∗ 1000 m.
The transmission range is 200 m. We find 12 source–destination
pairs, and then deploy two flows with opposite direction on
each pair. There are a total of 24 flows in the network. For each
pair of a source and a destination, the average data rate of one
direction is twice of that of the other direction. Here, the data
rate means the amount of data injected from the upper layer,
and the amount of data getting into a routing layer depends on
the specific congestion control scheme. We conduct simulations
on two data arrival modes: Poisson and uniform. We produce
different instances for each scenario, and the results are the
average on five different instances. We first apply the default
ns-2 buffer size of 50 packets in each node. We set α = 0.1,
which implies that the source node will not inject new data
packets into the network if the buffer size is larger than 10,
which is called the congestion window size.

Fig. 4 shows the throughput and packet loss ratio with vary-
ing the average data rate of the flows. The data arrival follows
Poisson distribution. When the data rate is small, the network
can support all the injected packets; thus, the throughput with
the existing method differs only a little with the proposed

Fig. 4. Poisson arrival. (a) Average throughput. (b) Average packet loss ratio.

method, as shown in Fig. 4(a). As the average data rate in-
creases, some packets would be dropped due to buffer overflow.
Since the existing method requires a larger decoding buffer,
the throughput decreases due to packet dropping. Although
the throughput of the proposed method also reduces, the gap
between the throughputs of the two methods becomes larger as
the data rate increases. In Fig. 4(a), when the data rate changes
from 0.2 to 0.25, the throughput of our policy is slightly
reduced. We apply the same congestion control policy in the
existing scheduling mechanism. With the congestion control,
the total number of packets injected into the network is almost
the same. Thus, the throughput does not change a lot. This
implies that, when the data rate is too large, congestion control
would guarantee the stable throughput of the network. We also
observe that the stable throughput of the existing method is
much lower than that of our method. Fig. 4(b) shows the change
of packet loss ratio as the data rate varies. Note that packet
loss means that packets are dropped due to overflow. As the
data rate increases, the packet loss ratio increases, and the
packet loss ratio of the existing method grows faster than that
of our method. We observe that the packet loss ratio of our

3314 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 7, SEPTEMBER 2014

Fig. 5. Uniform arrival. (a) Average throughput. (b) Average packet loss ratio.

proposed method does not grow a lot when the data rate is
larger than 0.2, which is because the number of packets injected
into the network does not increase by using congestion control.
Fig. 5 shows the simulation results with the uniform data arrival
distribution, and the performance of our algorithm is similar as
that with the Poisson data arrival model.

In both Figs. 4 and 5, channel is assumed to be ideal, and
each packet transmission is successful. We then simulate the
Rayleigh fading channel and evaluate the performance of the
two methods. We apply the Poisson arrival model, and Fig. 6
shows the simulation results. We observe the different variation
trends for the throughput of the two algorithms in Fig. 6(a).
When the data rate is small, the network is not saturated, the
packet loss is mainly due to fading. Therefore, the throughputs
and packet loss ratios of two algorithms are almost the same.
Since some packets are lost due to fading, as compared with
the links without fading, buffer overflow occurs at a higher
data rate. In other words, a larger data rate is required to
saturate the network when considering fading. This explains
that the throughput of our algorithm with fading is lower than

Fig. 6. Rayleigh fading channel. (a) Average throughput. (b) Average packet
loss ratio.

that without fading. Moreover, the maximum throughput of
our algorithm with fading happens at a larger data rate as
compared with that without fading. On the other hand, the
network is saturated at a small data rate with the existing
method. Therefore, the throughput decreases as the data rate
increases, and the packet loss at the large data rate is mainly
due to buffer overflow. Fig. 6(b) verified that the packet loss
ratio of our algorithms grows a little bit. Since throughput of
our policy increases a little bit as data rate increases, the number
of packets being transmitted increases a little. Moreover, the
packet loss is mainly due to fading under this situation; thus, the
packet loss ratio grows slightly. Afterward, we let the successful
transmission ratio on each link randomly fall in [0.85, 0.99],
and Fig. 7 shows the simulation results. For the same reason, the
performance change is similar as that with the Rayleigh fading
channel.

Afterward, we study the performance when the links are of
different rates. We let the transmission rate of each link follow
the uniform distribution [1, 10] Mb/s. Since the transmission
rate is larger, we set the buffer size of each node to be

HOU et al.: JOINT CONGESTION CONTROL AND SCHEDULING IN WIRELESS NETWORKS WITH NETWORK CODING 3315

Fig. 7. Links with successful transmission ratio between [0.85, 0.99]. (a)
Average throughput. (b) Average packet loss ratio.

1000 packets and the congestion control window size to be
200 packets. Fig. 8 shows the simulation results. Performance
analysis in a multirate scenario is more complicated than that
in single rate. When the data rate is small, the backlog may
be smaller than the transmission rate; therefore, bandwidth
resources would not be fully utilized. On the other hand, the
larger data rate may introduce more packets dropped, which
reduces network throughput. This is why we observe that the
throughput does not have an obvious trend. Generally, our
algorithm yields higher throughput and lower packet loss ratio.

We also test the performance of our algorithm as the buffer
size and the congestion control window size change. When
the number of packets in the output buffer of the source node
is larger than the congestion window size, the source node
would not inject new packets from the upper layer. The data
rate is set to 0.25 Mb/s. We set the congestion window size
to be 20 packets, and Fig. 9 shows the simulation results with
a change of buffer size. As fewer packets would be dropped
by using a larger buffer size, the throughput increases as the
buffer size increases. When the buffer size is large enough,

Fig. 8. Multirate links. (a) Average throughput. (b) Average packet loss ratio.

there are almost no packets dropped; therefore, the throughput
of our algorithm is almost the same as that of the existing
algorithm. We observe that the throughput of our algorithm
is much larger than that of the existing algorithm at several
instances. This shows that buffer space plays a more significant
impact on the existing algorithm than our algorithm. We then
set the buffer size to be 100 packets, and Fig. 10 shows the
simulation results as congestion window size changes. When
the congestion window size is smaller, less packets would be
injected into the network, so that the network would not be
heavy loaded and less packets are dropped due to overflow.
Therefore, the throughput is higher, and packet loss ratio is
lower when the congestion window size is smaller. With the
larger congestion control window size, more packets are in-
jected into the network. The existing algorithm requires more
buffer space than our algorithm; therefore, more packets are
dropped. We thus observe that the throughput of the existing
algorithm reduces more quickly than that of our algorithm.

Generally, under the limited buffer space, the proposed al-
gorithm can effectively reduce buffer overhead introduced by

3316 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 63, NO. 7, SEPTEMBER 2014

Fig. 9. Impact of buffer size. (a) Average throughput. (b) Average packet loss
ratio.

network coding through the transmission-mode preassignment
procedure. In particular, under the heavy-loaded network, the
proposed algorithm produces higher throughput and smaller
packet loss ratio compared with the existing algorithm.

VI. CONCLUSION

This paper has studied a scheduling issue with network
coding in wireless networks. In particular, the space overhead
issue introduced by network coding has been studied since
each node normally has a finite buffer space, and packets
may be dropped due to overflow. To reduce packet loss ra-
tio and improve network throughput, this paper has proposed
a scheduling scheme comprising a transmission-mode preas-
signment procedure and a transmission scheduling procedure.
Simulation results demonstrated that space overhead introduced
by network coding significantly affects network performance,
and the proposed scheduling method outperforms the existing
method.

Fig. 10. Impact of congestion control window size. (a) Average throughput.
(b) Average packet loss ratio.

REFERENCES

[1] A. Khreishah, C.-C. Wang, and N. B. Shroff, “Cross-layer optimiza-
tion for wireless multihop networks with pairwise intersession network
coding,” IEEE J. Sel. Areas Commun., vol. 27, no. 5, pp. 606–621,
Jun. 2009.

[2] N. M. Jones, B. Shrader, and E. Modiano, “Optimal routing and schedul-
ing for a simple network coding scheme,” in Proc. IEEE INFOCOM,
Mar. 2012, pp. 352–360.

[3] S. Katti, H. Rahul, W. Hu, D. Katabi, M. Medard, and J. Crowcroft, “Xors
in the air: Practical wireless network coding,” IEEE/ACM Trans. Netw.,
vol. 16, no. 3, pp. 497–510, Jun. 2008.

[4] C. Joo and N. B. Shroff, “Local greedy approximation for scheduling
in multi-hop wireless networks,” IEEE Trans. Mobile Comput., vol. 11,
no. 3, pp. 414–426, Mar. 2012.

[5] P. Chaporkar and A. Proutiere, “Adaptive network coding and schedul-
ing for maximizing throughput in wireless networks,” in Proc. ACM
MOBICOM, Sep. 2007, pp. 135–146.

[6] B. Lorenzo and S. Glisic, “Optimal routing and traffic scheduling for
multihop cellular networks using genetic algorithm,” IEEE Trans. Mobile
Comput., vol. 12, no. 11, pp. 2274–2288, Nov. 2013.

[7] A. Krifa, C. Barakaty, and T. Spyropoulos, “Optimal buffer management
policies for delay tolerant networks,” Proc. IEEE SECON, pp. 260–268,
Jun. 2008.

[8] K. Jamshaid, B. Shihada, L. Xia, and P. Levis, “Buffer sizing in 802.11
wireless mesh networks,” Proc. IEEE MASS, pp. 272–281, 2011.

HOU et al.: JOINT CONGESTION CONTROL AND SCHEDULING IN WIRELESS NETWORKS WITH NETWORK CODING 3317

[9] T. Li, D. Leith, and D. Malone, “Buffer sizing for 802.11-based net-
works,” IEEE/ACM Trans. Netw., vol. 19, no. 1, pp. 156–169, Feb. 2011.

[10] M. Chiang, S. H. Low, A. R. Calderbank, and J. C. Doyle, “Layering as
optimization decomposition: A mathematical theory of network architec-
tures,” Proc. IEEE, vol. 95, no. 1, pp. 255–312, Jan. 2007.

[11] X. Lin and N. B. Shroff, “The impact of imperfect scheduling on cross-
layer congestion control in wireless networks,” IEEE/ACM Trans. Netw.,
vol. 14, no. 2, pp. 302–315, Apr. 2006.

[12] A. Eryilmaz and R. Srikant, “Fair resource allocation in wireless networks
using queue-length based scheduling and congestion control,” IEEE/ACM
Trans. Netw., vol. 15, no. 6, pp. 1333–1344, Dec. 2007.

[13] L. Bui, A. Eryilmaz, R. Srikant, and X. Wu, “Joint asynchronous conges-
tion control and distributed scheduling for multi-hop wireless networks,”
in Proc. IEEE INFOCOM, Apr. 2006, pp. 1–12.

[14] K. Ronasi, V. Wong, and S. Gopalakrishnan, “Distributed scheduling in
multihop wireless networks with maxmin fairness provisioning,” IEEE
Trans. Wireless Commun., vol. 11, no. 5, pp. 1753–1763, May 2012.

[15] M. Alicherry, R. Bhatia, and E. Li, “Joint channel assignment and routing
for throughput optimization in multi-radio wireless mesh networks,” in
Proc. ACM MobiCom, Aug. 2005, pp. 58–72.

[16] M. Kodialam and T. Nandagopal, “Characterizing the capacity region in
multi-radio multi-channel wireless mesh networks,” in Proc. ACM Mobi-
com, Aug. 2005, pp. 73–87.

[17] X. Lin and S. Rasool, “A distributed joint channel-assignment, scheduling
and routing algorithm for multi-channel ad hoc wireless networks,” in
Proc. IEEE INFOCOM, May 2007, pp. 1118–1126.

[18] S. Merlin, N. H. Vaidya, and M. Zorzi, “Resource allocation in multi-radio
multi-channel multi-hop wireless networks,” in Proc. IEEE INFOCOM,
Apr. 2008, pp. 610–618.

[19] H. Li, Y. Cheng, X. Tian, and X. Wang, “A generic framework for
throughput-optimal control in MR-MC wireless networks,” in Proc. IEEE
INFOCOM, Apr. 2012, pp. 145–153.

[20] H. Yomo and P. Popovski, “Opportunistic scheduling for wireless network
coding,” in Proc. IEEE ICC, Jun. 2007, pp. 5610–5615.

[21] W. Chen, K. B. Letaief, and Z. Cao, “Buffer-aware network coding for
wireless networks,” IEEE/ACM Trans. Netw., vol. 20, no. 5, pp. 1389–
1401, Oct. 2012.

[22] D. Traskov, M. Medard, P. Sadeghi, and R. Koetter, “Joint scheduling and
instantaneously decodable network coding,” in Proc. IEEE GLOBECOM,
Dec. 2009, pp. 1–6.

[23] B.-G. Kim and J.-W. Lee, “Opportunistic resource scheduling for ofdma
networks with network coding at relay stations,” IEEE Trans. Wireless
Commun., vol. 11, no. 1, pp. 210–221, Jan. 2012.

[24] Y. E. Sagduyu, R. A. Berry, and D. Guo, “Throughput and stability for
relay-assisted wireless broadcast with network coding,” IEEE J. Sel. Areas
Commun., vol. 31, no. 8, pp. 1506–1516, Aug. 2013.

[25] J. Le, C.-S. Lui, and D.-M. Chiu, “How many packets can we encode?- An
analysis of practical wireless network coding,” in Proc. IEEE INFOCOM,
Apr. 2008, pp. 1040–1048.

[26] J. Liu, D. Goeckel, and D. Towsley, “Bounds on the throughput gain of
network coding in unicast and multicast wireless networks,” IEEE J. Sel.
Areas Commun., vol. 27, no. 5, pp. 582–592, Jun. 2009.

[27] S. Sengupta, S. Rayanchu, and S. Banerjee, “Network coding-aware rout-
ing in wireless networks,” Proc. IEEE/ACM Trans. Netw., vol. 18, no. 4,
pp. 1158–1170, Aug. 2010.

[28] T. Cui, L. Chen, and T. Ho, “Energy efficient opportunistic network
coding for wireless networks,” in Proc. IEEE INFOCOM, Apr. 2008,
pp. 1022–1030.

[29] J. Zhang and P. Fan, “Optimal scheduling for network coding: Delay v.s.
efficiency,” in Proc. IEEE GLOBECOM, Dec. 2010, pp. 1–5.

[30] V. J. Venkataramanan and X. Lin, “Low-complexity scheduling algorithm
for sum-queue minimization in wireless convergecast,” in Proc. IEEE
INFOCOM, Apr. 2011, pp. 2336–2344.

[31] B. Ji, C. Joo, and N. B. Shroff, “Delay-based back-pressure scheduling
in multi-hop wireless networks,” in Proc. IEEE INFOCOM, Apr. 2011,
pp. 2579–2587.

[32] Y. Shi, Y. T. Hou, J. Liu, and S. Kompella, “Bridging the gap between
protocol and physical models for wireless networks,” IEEE Trans. Mobile
Comput., vol. 12, no. 7, pp. 1404–1406, Jul. 2013.

[33] L. Ying, S. Shakkottai, and A. Reddy, “On combining shortest-path
and back-pressure routing over multihop wireless networks,” IEEE/ACM
Trans. Netw., vol. 19, no. 3, pp. 841–854, Jun. 2011.

[34] M. Leconte, J. Ni, and R. Srikant, “Improved bounds on the throughput
efficiency of greedy maximal scheduling in wireless networks,” in Proc.
ACM MOBIHOC, 2009, pp. 165–174.

[35] L. Tassiulas, L. Georgiadis, and M. J. Neely, Resource Allocation and
Cross-Layer Control in Wireless Networks. Delft, The Netherlands:
Now, 2006.

Ronghui Hou received the B.Eng., M.Eng., and
Ph.D. degrees in communication engineering from
Northwestern Polytechnical University, Xi’an,
China, in 2002, 2005, and 2007, respectively.

From 2007 to 2009, she was a Postdoctoral Fellow
with the Department of Electrical and Electronic En-
gineering, The University of Hong Kong, Kowloon,
Hong Kong. Since December 2009, she has been
with Xidian University, Xi’an, China, where she is
currently an Associate Professor with the Depart-
ment of Telecommunication Engineering. Her re-

search interests include network quality-of-service issues, routing algorithm
design, and wireless networks.

King-Shan Lui (S’00–M’03–SM’14) received the
Ph.D. degree in computer science from the Univer-
sity of Illinois at Urbana–Champaign, Champaign,
IL, USA.

She is currently an Associate Professor with the
Department of Electrical and Electronic Engineer-
ing, The University of Hong Kong, Kowloon, Hong
Kong. Her research interests include network proto-
cols design and analysis, wireless networks, smart
grids, and quality-of-service issues.

Jiandong Li (SM’05) received the Bachelor’s, Mas-
ter’s, and Ph.D. degrees in communications and elec-
tronic systems from Xidian University, Xi’an, China,
in 1982, 1985, and 1991, respectively.

Since 1985, he has been with Xidian University
and became a Professor in 1994 and the Dean of
the School of Telecommunication Engineering in
1997. From January 2002 to January 2003, he was a
Visiting Professor with the School of Electrical and
Computer Engineering, Cornell University, Ithaca,
NY, USA. His current research interests include

wireless communications, network protocols, and algorithm design.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

