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An Unscented Kalman Filter-Informed Neural
Network for Vehicle Sideslip Angle Estimation

Alberto Bertipaglia1, Mohsen Alirezaei2, Riender Happee1 and Barys Shyrokau1

Abstract—This paper proposes a novel vehicle sideslip angle
estimator, which uses the physical knowledge from an Unscented
Kalman Filter (UKF) based on a non-linear single-track vehicle
model to enhance the estimation accuracy of a Convolutional
Neural Network (CNN). The model-based and data-driven ap-
proaches interact mutually, and both use the standard inertial
measurement unit and the tyre forces measured by load sensing
technology. CNN benefits from the UKF the capacity to leverage
the laws of physics. Concurrently, the UKF uses the CNN outputs
as sideslip angle pseudo-measurement and adaptive process noise
parameters. The back-propagation through time algorithm is
applied end-to-end to the CNN and the UKF to employ the mu-
tualistic property. Using a large-scale experimental dataset of 216
manoeuvres containing a great diversity of vehicle behaviours, we
demonstrate a significant improvement in the accuracy of the pro-
posed architecture over the current state-of-art hybrid approach
combined with model-based and data-driven techniques. In the
case that a limited dataset is provided for the training phase, the
proposed hybrid approach still guarantees estimation robustness.

Index Terms—State estimation, Sideslip angle, Physics-
informed neural network, Unscented Kalman filter, Machine
learning

I. INTRODUCTION

ACTIVE vehicle control systems rely on the sideslip
angle and yaw rate information to ensure stability and

controllability [1], [2]. Whereas low-cost gyro sensors measure
the yaw rate, the vehicle sideslip angle must be estimated.
Its direct measurement is possible via optical speed sensors
or real-time kinematic positioning-global navigation satellite
system (RTK-GNSS), but they are expensive to be installed
in passenger vehicles [3]. Hence, the development of filter
architectures is required to estimate the sideslip angle in
real-time and with the desired accuracy error below one
degree in high excitation driving conditions [4]. Sideslip angle
estimation is particularly challenging for the following aspects:

• A large diversity of vehicle manoeuvres, e.g. steady-state,
transient, low, and high excitation.
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Fig. 1. Framework overview of the CNN-UKF approach. A CNN provides
a sideslip angle pseudo-measurement and the process noise parameters to a
UKF based on a single-track vehicle model. The UKF monitors and weights
the CNN’s estimation through physical laws.

• The highly non-linear behaviour of tyres leads to a
substantial limitation due to tyre model accuracy.

• Data collection requires expensive and high calibration
sensitive instruments.

• Numerous external disturbances, e.g. bank angle, road
slope, and road friction coefficient.

Several approaches have been proposed for vehicle sideslip
angle estimation [5], [6]. They are split into three main
groups, i.e. model-based, data-driven and hybrid approaches.
The model-based approach relies on the physical knowledge of
a vehicle model for state estimation. Open-loop deterministic
models are insufficient to provide an accurate estimation, so
stochastic closed-loop observers, e.g. extended Kalman filter
(EKF), unscented Kalman filter (UKF), and particle filters
are currently applied to estimate unmeasurable states. EKF
and UKF are the industrial state-of-the-art for vehicle sideslip
angle estimation because their accuracy can be guaranteed
in a specific operating region, and their properties are easily
assessed [7]. However, they both struggle in transient and
high excitation driving conditions due to the growing non-
linearities in the vehicle model [8]. Another branch of model-
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based approaches is based on deterministic observers adapted
to deal with stochastic noise, e.g. Luenberger observer, the
sliding-mode observer and H-infinity methods. Despite their
advantage in computational complexities, their need for a
higher model fidelity makes them less utilised in industry
[9], [10]. Nevertheless, these model-based approaches require
extensive system knowledge. The data-driven approach has
higher accuracy than the model-based approach when enough
quality data are provided in the training phase [8]. Different
neural network (NN) architectures have been proposed, e.g.
feed forward neural network (FFNN) and recurrent neural net-
work (RNN). However, they all lack interpretability and gen-
eralisation capabilities. Thus, a purely data-driven approach
is hardly applicable for safety applications in the automotive
domain [7]. The third approach, named hybrid, combines
the pros of the model-based and data-driven approaches. It
improves the model-based accuracy thanks to the NN outputs
and, simultaneously, gives the data-driven approach an inter-
pretability thanks to the vehicle model. In the proposed hybrid
architectures [7], [11], [12], the model and the neural network
work in a unidirectional way. Thus, the model in the hybrid
architecture relies on the NN knowledge without backward
communication, reducing the approach’s potential.

This paper proposes a new hybrid approach for vehicle
sideslip angle estimation. Its novelty is in the mutualistic
relationship between the model-based approach, characterised
by a UKF based on a single-track model, and the data-driven
approach, represented by a Convolutional Neural Network
(CNN). The proposed approach consists of a sequential hybrid
architecture in which the CNN passes the pseudo-measurement
of the sideslip angle, the level of distrust of its estimation and
the process noise parameters of the vehicle model to the UKF,
see Fig. 1. A key aspect of the proposed hybrid approach is the
training process, which allows the development of a physics-
informed NN [13]. Considering that the non-linear vehicle
dynamics are described in a UKF, the physics-informed NN
will also be referenced as a UKF-informed NN. The training
is end-to-end, so the Back-Propagation Through Time (BPTT)
algorithm moves through the CNN, the UKF and backwards.
Thus, the CNN is constrained to respect the physical laws of
vehicle dynamics. Furthermore, it allows the CNN to estimate
variables for which a reference is unavailable, i.e. the process
noise parameters and pseudo-measurement level of distrust.
This will lead to a high estimation accuracy compared to
the state-of-the-art hybrid approaches, which always separate
the data-driven component from the model-based one during
the training [11], [12], [14]–[16]. The split proposed in the
literature makes the hybrid approach training lighter from a
memory and computational point of view. However, it does
not allow the model-based approach to understand when it can
rely on the CNN and at the same time, it does not allow the
CNN to learn the physical laws of vehicle dynamics. The per-
formance is evaluated using a large-scale, real-world experi-
mental dataset. The dataset contains a great diversity of driving
situations, recorded with a constant high friction coefficient.

The paper is organised as follows. Section II contains
a summary of the previous works and the main paper
contributions. Section III describes the CNN and UKF used

TABLE I
OVERVIEW OF THE VEHICLE SIDESLIP ANGLE ESTIMATION APPROACHES.

Approach Features & Authors

Model-based

Kalman filter based on a kinematic model [17]–[19]
Kalman filter based on IMU & GNSS [20]–[26]

EKF based on a dynamic model [27]–[33]
UKF based on a dynamic model [34]–[39]

Sliding mode observer [40]–[42]
H-infinity observer [43], [44]

Luenberger observer [45]
Hybrid - dynamic & kinematic models [3], [46]–[48]

Online gradient descent [49]
Modular estimation scheme [50], [51]

Data-driven
FFNN [52], [53]
RNN [54]–[56]

ANFIS [14]
Kernel-based LPV [57]

Hybrid

FFNN, ANFIS & UKF [15], [58], [59]
RNN (GRU) & UKF [16]
Differentiable EKF [60]

Kalman filter & FFNN [61]
Piecewise Affine & Takagy-Sugeno [62]

FFNN & Kalman in the back-propagation [63]
KalmanNet [64]

Kinematic model & RNN (GRU) [7]
Deep Ensemble Network (LSTM) & EKF [11], UKF [12]

in the proposed hybrid approach. Section IV describes how
the experiments are conducted and evaluated. Section V
reports the obtained results, and Section VI summarises the
conclusions and future research paths.

II. RELATED WORKS

A summary of the three categories, i.e. model-based, data-
driven and hybrid, is presented in Table II.

The first approach is called model-based and relies on the
laws of physics. The vehicle behaviour can be described using
the geometric constraints, i.e. kinematic model, or considering
the forces and moments acting on the vehicle, i.e. dynamic
model. The kinematic model requires only geometrical pa-
rameters and does not need extensive vehicle parametrisation
because its reliability depends mainly on sensing capabilities.
The state-of-art kinematic observer [19] is based on a linear
parameter varying system, where the states are the vehicle
velocities, and the accelerations are the inputs. This approach
leads to high accuracy in transient manoeuvres, but the model
is not observable in nearly steady-state conditions [3]. Hence
to avoid unobservability, a heuristic function is applied to lead
the lateral velocity to zero when the vehicle is moving straight
or nearly straight [19]. The downside is the amount of data
necessary to define the heuristic function. Moreover, despite
the performance improvement, it is still susceptible to inte-
gration error and sensor drifting. Thus, in recent publications
[20]–[23], the measurements from the Inertial Measurement
Unit (IMU) are coupled with those from a Global Navigation
Satellite System (GNSS) to increase the amount of information
available for the estimator. The velocities measured by the
GNSS are integrated into an estimation-prediction framework,
which estimates the sideslip angle and partially compensates
for the error induced by the low GNSS sampling rate [20].
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However, GNSS/IMU fusion kinematic approach still suffers
from the low GNSS sampling rate. Furthermore, a high-
precision GNSS is too expensive as the standard sensor in
passenger vehicles, and signal reception cannot always be
assured. Therefore, it is mainly applied to racing [24]. Thus,
a solution is to consider dynamic models to rely less on the
sensor signal quality. Dynamic models allow a more robust
noise computation of the accelerations than kinematic mod-
els [3]. However, dynamic models require a more profound
knowledge of vehicle parameters and the presence of a tyre
model, which is a critical source of uncertainty [39]. EKF and
UKF are the state-of-art estimation techniques for the model-
based approach, and the process and the observation noises are
commonly assumed to be Gaussian and uncorrelated. The EKF
uses a first-order Taylor series expansion to linearise around
the current mean and covariance. It has excellent accuracy in
nearly steady-state conditions and when the vehicle behaves
close to linearity, i.e. up to a lateral acceleration of approxi-
mately 4m/s2 [8]. When the vehicle behaves with strong non-
linearities, UKF assures a better estimation accuracy because
it linearises up to the third order of the Taylor series expansion
[8]. However, both observers suffer from the mismatches
between the physical and modelled tyre behaviour. A possible
solution is to combine the pros of dynamic and kinematic mod-
els to develop a hybrid kinematic-dynamic observer [46], [47].
This family combines the accuracy in transient manoeuvres of
the kinematic models and the better robustness to sensor noise
of the dynamic models. The kinematic and the dynamic filters
work simultaneously, and the final sideslip angle estimation is
a weighted average of the two approaches. The weights are
chosen according to the lateral acceleration signal [47]. How-
ever, the weighting coefficients’ tuning is complex, and the op-
timum solution varies according to the considered manoeuvres.
Another solution to combine dynamic and kinematic models is
the development of a modular scheme to estimate in sequential
steps tyre forces, longitudinal and lateral velocities [50]. It
consists of monitoring the wheel capacities under combined
slip at each vehicle corner to estimate the individual forces and
velocities. The approach is experimentally validated in differ-
ent road conditions, but the results do not show its performance
when the vehicle is driven at the limit of handling. Thus, the
approach applicability to evasive manoeuvres is limited.

Despite EKF and UKF being the most implemented filters
for vehicle sideslip angle estimation [10], also different kinds
of observers are proposed in the literature for their advantages
in computational complexity and theoretical guarantees
of convergence [9], e.g. sliding mode observer [40]–[42],
H-infinity [43], [44], state-dependent Riccati equations [32]
and Luenberger observer [45]. Particularly interesting is the
combination of an adaptive sliding mode observer to estimate
the lateral tyre force with an adaptive compensation algorithm
to estimate the sideslip angle [44]. Despite the improved
performance compared with EKF in an experimental scenario,
there is no comparison with UKF, which is the state-of-the-art
in extreme driving conditions. Moreover, these observers
fail to perform well in evasive manoeuvres due to increased
model mismatches, especially in tyre forces [65].

A solution to enhance the state estimation robustness to tyre

model inaccuracies of dynamic model is the introduction of
adaptive tyre models [27], [58] or new proprioceptive load-
sensing technology, e.g. intelligent bearings or smart tyres
[39], [66]. The Kalman filter can use tyre force measurements
as an additional feedback to improve the estimation and
magnify the Kalman gain, especially in the case of non-
linear vehicle behaviour. The enhanced vehicle safety and the
sensor’s cost efficiency (lower than 1000 e per vehicle) make
the innovative load-sensing technologies candidate to become
part of the standard sensor setup for passenger vehicles [39].

A data-driven approach reduces extensive requirements of
system knowledge compared to the model-based approach. A
deep NN with eight hidden layers, each having a different
number of long short-term memory (LSTM) cells, is proposed
[55]. Despite the increased training time of such a deep NN,
the authors state that a smaller network was incapable of
reaching the level of accuracy of deeper NN. The issue is that
deep NNs are prone to overfit, and their performance strongly
lacks generalisation capabilities. To overtake this issue, an NN
classification is applied to choose which available NN is most
suitable for specific road conditions [54]. Each of the three
FFNNs is built with a single hidden layer, and they are trained
with three different datasets corresponding to three different
road friction conditions, i.e. dry, wet and icy. Moreover, the
performance of data-driven approach can be enhanced by the
availability of tyre force measurements [8]. In this case, a
FFNN with two hidden layers outperforms the accuracy of
a more complex RNN architecture based on LSTM cells. A
FFNN also exceeds the performance of various model-based
approaches, even if it tends to sporadic higher maximum error.
However, the data-driven performance is highly dependent on
the amount of representative data, and the data-driven ap-
proach will lack performance as soon as the dataset contains a
lower amount of data in a particular range of the sideslip angle.

Although the data-driven approach generally has a better
estimation performance than the model-based approach, it is
impossible to guarantee robust performance over vehicle op-
erating conditions. Conversely, a model-based approach based
on a dynamic model with tyre force measurements has lower
accuracy, but its performance is consistent over the working
region [8]. Thus, a hybrid model-based and data-driven
approach is proposed. We employ two leading typologies,
model-to-NN and NN-to-model, as explained below.

The model-to-NN family aims to augment the number of
the NN’s inputs using the output of a vehicle model. This
will transfer some immeasurable physical states to a NN. A
kinematic vehicle model can compute the derivative of the
sideslip angle, which is used as extra input for the following
RNN based on a Gated Recurrent Unit (GRU) cell [7]. The
kinematic model provides the NN with a pseudo-measurement
that contains significant errors, biases and drift. However,
with the extra vehicle model information, the NN reduces
the sideslip angle’s Mean Squared Error (MSE) of the non-
informed NN by 2.7%, 5.6%, and 1.2%, respectively, for dry,
wet and snow conditions [7]. The slight improvement shows
the benefits of developing a hybrid approach and highlights the
importance of providing a more accurate pseudo-measurement.

The NN-to-model family aims to provide a sideslip angle
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pseudo-measurement to the following EKF/UKF. In this case,
the NN output is post-processed by a Kalman filter to improve
the sideslip angle estimation. One of the first approaches
combines an Adaptive Neuro-Fuzzy Inference System (AN-
FIS) [14] with a UKF to estimate sideslip angle. The model-
based component is employed as a filter to minimise the
noise of the NN output and the variance of the estimation
mean square error [15]. The ANFIS is trained using synthetic
data generated through a high-fidelity simulation environment
(CarSim). The ANFIS-UKF improves the performance of only
an ANFIS [14] by 21% on average for five manoeuvres
with high friction conditions. However, the presented figures
show a maximum value of sideslip angle of only 3 deg in
absolute value, which makes the estimation performance easier
than in extreme driving conditions. Furthermore, there is no
explanation of how the observation noise parameter related
to the pseudo-sideslip angle is tuned. This value is essential
because it defines the level of distrust the UKF can give
to the NN output. A similar approach involves integrating
an FFNN with a UKF based on a kinematic vehicle model
[59]. Contrary to the ANFIS-UKF approach, the model-
based component of the hybrid approach is responsible for
filtering the estimation noise and correcting the NN output.
This is possible thanks to a proportional feedback correction,
which improves the performance of the pseudo-sideslip angle.
Although the NN is trained using synthetic measurements,
the approach is validated using experimental data and the
presented results. Unfortunately, all the results are normalised,
so it is impossible to understand if the vehicle was driven at the
limit of handling. The presented approach improves the data-
driven approach estimation accuracy of 73.3%. However, there
needs to be an analysis of how to decide the distrust level of the
pseudo-sideslip angle. Otherwise, when the NN is uncertain
due to a lack of data, it will negatively influence the UKF’s
performance. Furthermore, the kinematic vehicle model is
highly susceptible to measurement noise and is not observable
in steady-state driving. For this reason, the FFNN is substituted
by a deep ensemble NN in more recent publications [11], [12].

Deep Ensemble (DE) of RNN, based on LSTM cells,
estimates a sideslip angle pseudo-measurement and its level
of distrust, which are then provided as extra measurements to
a UKF [11], [12]. The level of distrust is modified through
a user-defined linear function before being used by the UKF.
This further step is mandatory to scale the NN’s distrust level
to a meaningful value for the UKF. This hybrid architecture
reduces the Root Mean Squared Error (RMSE) by, on average,
8% vs the RNNs [11]. The extra tuning of the level of
distrust can easily lead the approach to overfit. Moreover, the
level of distrust is computed through the standard deviation
of the sideslip angle pseudo-measurements estimated by the
RNNs. This does not lead to a physics-informed NN, so
it is still complex to assess the properties of this hybrid
approach. The reason is that the DE-RNN is not aware of
the performance of the UKF, so the estimated level of distrust
is not scaled according to the UKF’s accuracy. Vice-versa,
a physics-informed NN learns the Kalman filter’s precision
during the training, providing the best level of distrust to
maximise the hybrid sideslip angle estimation.

This work proposes a hybrid approach employing a
mutual relationship between the model-based and data-
driven approaches for vehicle sideslip angle estimation. The
inputs and outputs of the NN are, respectively, inputs and
measurements of the UKF. The end-to-end training enforces
the mutual relationship, meaning that the back-propagation
algorithm passes through the NN, UKF and vice-versa. The
UKF benefits from the CNN when the mismatch in the UKF
process model is particularly significant, for instance, due to
the high non-linearity in the tire model or the non-modelled
phenomena. Thus, the CNN provides a vehicle sideslip angle
pseudo-measurement to the UKF, which guides it towards an
accurate estimation. At the same time, a purely model-based
approach, unable to rely on any extra information, would only
face a decrease in the estimation accuracy. On the other hand,
the CNN gains from the UKF a physics domain knowledge,
which helps CNN improve its robustness and accuracy in all
the real-life situations that were not fully described by the
data used during the training. This is particularly relevant
in emergencies that cannot be adequately represented in a
vehicle sideslip angle estimation dataset.

The main contribution of this paper is threefold1. The first
is a mutual hybrid approach in which the CNN is trained
end-to-end with the UKF, developing an innovative stochastic,
deterministic state estimation method [63] for vehicle sideslip
angle estimation. Thus, the UKF observation model has access
to CNN’s deterministic estimation of a pseudo-measurement
of the sideslip angle and its level of distrust. On the other hand,
CNN is informed by the following stochastic state estimation
filter during the training, so it learns how to estimate the level
of distrust independently without requiring extra tuning after
its training, as previously proposed in the literature [11], [12].
Hence, the proposed hybrid approach enhances the accuracy
(MSE) of the state-of-the-art model-based, data-driven, and
hybrid approach for vehicle sideslip angle estimation.

The second contribution is that the proposed hybrid
architecture considers the hetero-stochasticity of the model
dynamics [63], [67], [68]. Thus, the proposed approach
estimates the UKF process model uncertainties online thanks
to the CNN and UKF end-to-end training, which helps
improve the estimation accuracy. Moreover, it provides higher
robustness than the state-of-art, even when a limited dataset
is used for the training.

The third contribution is that the proposed hybrid archi-
tecture is a UKF-informed NN, which means that the NN
incorporates the domain knowledge described in the UKF, and
it complies with the vehicle dynamics laws of physics. Thus,
the proposed approach has a lower Maximum Error (ME) than
a state-of-art model-based [39] and data-driven [8] approach,
as well as the state-of-art hybrid approach [11].

III. UKF-INFORMED NEURAL NETWORK

This section describes the proposed hybrid approach based
on a CNN end-to-end trained with a UKF (CNN-UKF). A
comparison between the proposed mutualistic hybrid approach
and the hybrid unidirectional baseline [11] is represented in

1The code for our method will be released upon paper acceptance.
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(a)

(b)
Fig. 2. Fig. 2a shows the proposed hybrid approach architecture (CNN-
UKF). Fig. 2b shows the baseline hybrid architecture (DE-UKF) proposed
by [11]. The black arrows show the flow of information during the online
estimation, while the green arrows show the flow of information during the
back-propagation. The dashed green arrow represents a term used in the cost
function computation but not used by the optimiser to update the NN weights.

Fig. 2a and Fig. 2b, respectively. The proposed approach
develops a UKF-informed NN, where the NN is constrained to
respect the vehicle dynamics. At the same time, the baseline
(DE-UKF) corresponds to a UKF augmented by the DE
outputs. The approach’s discretisation is performed through a
zero-order hold method [50] due to its good trade-off between
simplicity and accuracy. The discretisation works at 100Hz,
the standard frequency for vehicle state estimation.

A. Data-driven Component

A straightforward CNN can cope with the complexity of
the task because the approach’s strength is inside the hybrid
architecture. It consists of an input layer, two hidden layers
and an output layer.

Seventeen measurements form the input layer (x):
longitudinal and lateral accelerations ax and ay respectively,
longitudinal velocity Vx, road wheel angle δ, yaw rate ψ̇, and
longitudinal, lateral and vertical tyre forces for each of the
four wheels, respectively Fx, Fy and Fz . Before being used,
the input measurements are normalised because each input has
a different physical meaning and order of magnitude. Thus, all
the inputs are mapped onto the interval [0, 1] to speed up and
stabilise the training process [69]. A different normalisation
method which scales the data to a mean of zero and a standard
deviation of one has been tested. Still, the mapping onto the
interval [0, 1] produced the best results after the training.

The two hidden layers consist of 200 and 100 neurons and
Rectified Linear Unit (ReLU) activation functions. The hidden
layers are 2D convolutions with kernel sizes 1×1, 0 padding,
stride equal to 1 and active bias. The CNN uses a dropout
regularisation technique equal to 0.2 and a Xavier weight
initialisation to avoid overfitting.

The output layer is formed by four neurons corresponding to
the pseudo-measurement of the sideslip angle βDD, the level

Fig. 3. Single-track vehicle model.

of distrust in the pseudo-measurement σDD, the uncertainty of
the UKF process model lateral velocity σVy and the uncertainty
of the UKF process model σψ̇ . A reference is available
only for βDD, but the other three outputs strongly affect the
estimation of the model-based component, which is used in
the training loss function; see Section III-C for further details.
Thus, all four CNN outputs are correctly trained during the
end-to-end training. σVy , σψ̇ and σDD are further processed
with a sigmoid function to constrain their values inside the
meaningful interval [0, 1]. This last step assures that the CNN
can produce uncertainties which not lead to UKF failure.

B. Model-based Component

A UKF based on a non-linear single-track model with tyre axle
forces computed by the Dugoff tyre is chosen as the model
component of this study [8], see Fig. 3. The Dugoff tyre is
adapted to only assume pure lateral slip condition, reducing
the computational complexity [8], [28], [31]. The tyre model
parameters (pt), i.e. tyre cornering stiffness, peak friction coef-
ficient and velocity reduction friction coefficient, are optimised
offline using experimental skidpad measurements [34], [36],
[39]. The implemented optimisation is a genetic algorithm
due to its efficiency with a non-linear and non-convex cost
function. The vehicle’s symmetry is exploited to merge the
left and right wheels into a single central axle, which emulates
the entire vehicle’s behaviour. This model considers only the
in-plane dynamics, so the lateral weight transfer, roll and
pitch dynamics are ignored. The static weight distribution is
considered together with the effect of steady-state longitudinal
weight transfer concerning the normal forces on the front and
rear axle. A UKF is implemented for its superior estimation
accuracy when the vehicle behaves strongly non-linearly. The
vehicle states (xs) are the Vy and the ψ̇, while the vehicle
inputs (uv) are the Vx and the δ. The stochastic process model
is responsible for predicting the next time steps of the states
according to the following equation:

ẋs (t) = f (xs (t) , uv (t) , pt) + ω (t) (1)

where f (xs (t) , uv (t) , pt) is the non-linear single track ve-
hicle model, eq. 2, and ω is the vector containing the process
noise parameters [σVy , σψ̇].

f (xs, uv, pt) =

=


V̇y = 1

m (Fyf (xs, uv, pt) cos (δ) + Fyr (xs, uv, pt))+

− Vxψ̇

ψ̈ = 1
Izz

(lfFyf (xs, uv, pt) cos (δ)− lrFyr (xs, uv, pt))

(2)
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where m (1970 kg) is the vehicle mass, Izz (3498 kgm2) is the
vehicle moment of inertia about the vertical axis, lf (1.47m)
and lr (1.41m) are, respectively, the distance of front and rear
axles from the vehicle CoG. Fyf and Fyr are, respectively,
the lateral tyre forces at the front and rear axles. The process
noise parameters, σVy and σψ̇ , are assumed Gaussian and
uncorrelated and they capture the uncertainties due to:

• The mismatch between the physical and modelled vehicle
behaviour.

• The discretisation error.
• The various operational environments in which the sen-

sors operate.
The filter performance is strongly connected with the process
noise parameters, so these are initially tuned using a two-stage
Bayesian optimisation (TSBO) [70]. During the estimation,
they are computed online by CNN. This is only possible thanks
to the mutualistic relationship between CNN and the UKF.

The observation model is responsible for comparing the
process model predictions with the available measurements,
according to the following equation.

ym (t) = g (xs (t) , uv (t) , pt) + v (t) (3)

where g (xs (t) , uv (t) , pt) is the measurement vehicle model,
eq. 4, and v is the vector containing the observation noise
parameters [σayme , σψ̇me , σFyf me , σFyrme , σDD].

g (xs, uv, pt) =

=



ayme =
1
m (Fyf (xs, uv, pt) cos (δ) + Fyr (xs, uv, pt))

ψ̇me = ψ̇

Fyf me = Fyf (xs, uv, pt)

Fyrme = Fyr (xs, uv, pt)

βDD = atan(VyVx )
(4)

where ayme, ψ̇me, Fyf me and Fyrme are the vehicle measure-
ments, and βDD is the pseudo-measurement, corresponding
to the CNN’s output. The observation noise parameters σayme
(0.033m/s2), σψ̇me (0.001 rad/s), σFyf me (26N) and σFyrme
(56N) are the uncertainties of the vehicle measurements and
they compensate for the sensor noises. They are tuned by
a statistical analysis of the vehicle sensor measurements,
which consists of computing the standard deviation of the
low-pass measured signal when the steering angle is null and
the longitudinal velocity is constant [70]. The variable σDD
is the level of distrust assigned to the pseudo-measurement
βDD provided by CNN. The level of distrust computed by the
CNN differs from a classic uncertainty measurement because
it corresponds to the uncertainty of the pseudo-measurement
scaled to match the weight of the noise parameters.

The observability analysis is performed to assess under
which conditions it is possible to infer the internal states given
the vehicle inputs and measurement. Being the mode highly
non-linear, only the local observability around an operating
point can be computed, performing a system linearisation [34].
The observation matrix is built on the Jacobian matrices of the
process and observation models, and it is full rank, equal to
two, for all the operating regions in which δ ̸= kπ, ∀k ∈ Z

and Vx ̸= 0, where Z is the integers set. The second condition
is always respected because the measurement is considered
when Vx is higher than 5m/s. The steering angle is always
inside the range |δ| ≤ π/2, so the only realistic unobservability
happens when δ = 0. However, the vehicle sideslip angle is
relevant for lateral dynamics, so it only happens when δ ̸= 0.

C. Training Phase

The UKF-informed CNN is trained in a supervised way using
a labelled dataset. The training is split into two phases: pre-
training and end-to-end learning.

1) Pre-training: IIt consists of the back-propagation al-
gorithm applied only to the CNN to speed up and stabilise
the following end-to-end training phase. The pre-training loss
function is constituted by the sum of σVy , σψ̇ MSE losses
and by the βDD, σDD Gaussian negative log-likelihood loss.
The MSE loss functions (MSEL, σVy and MSEL, σψ̇ ) are
represented as:

MSEL, σVy =
1

N

N∑
i=1

(
σ̂Vy, i − σVy, i

)2
MSEL, σψ̇ =

1

N

N∑
i=1

(
σ̂ψ̇, i − σψ̇, i

)2 (5)

where N is the mini-batch size (256), σ̂Vy (0.0007m/s) and
σ̂ψ̇ (0.002 rad/s) are the initial process model uncertainties
tuned by the TSBO for the model-based approach. These
losses steer the CNN to predict the process model uncertainties
with a meaningful order of magnitude. For σDD, the Gaussian
negative log-likelihood loss function (NLLL, βDD ) represented
in the following equation is chosen:

NLLL, βDD
(
βDD, σ

2
DD|βme

)
=

=
1

2

N∑
i=1

(
log (max (σDD i, ϵ)) +

(βme, i − βDD, i)
2

max (σDD i, ϵ)

)
(6)

where ϵ (10−6) is a constant term for stability, and βme is the
sideslip angle ground truth. Thus, this loss function adjusts
CNN’s weight to maximise the likelihood of the observed data,
performing negative log-likelihood minimisation. This process
naturally leads to the CNN learning to predict both the mean
(βDD) and the variance (σ2

DD). By predicting the variance
alongside the mean, the pre-training leads the CNN to provide
a point estimate and a measure of confidence or uncertainty
associated with each prediction. Thus, it assures a meaningful
σDD, even without its ground truth.

The sideslip angle ground truth is measured through the
Corrsys-Datron optical speed sensor installed in the vehicle’s
front bumper. The sensor reference system is moved to cor-
respond with the vehicle CoG. The measurement is filtered
using a zero-phase low-pass filter (bandwidth 5Hz) because
the training phase is sensitive to extreme outliers or noisy
references [6]. The cost function is minimised by a mini-batch
stochastic gradient descent algorithm based on a standard
ADAM optimiser with a learning rate (0.0008). The training
procedures’ user-defined parameters are optimised through a
Bayesian optimisation.
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2) End-to-end learning: The back-propagation through
time (BPTT) algorithm is applied end-to-end to the CNN and
UKF. This step creates a mutualistic relationship between the
model-based and data-driven approaches. Thus, the UKF is
treated as a computation graph unrolled through time, so the
CNN-UKF is discriminatively trained over the entire mini-
batch length and not on a single step. The procedure to
compute the loss function gradient is close to [63], but in the
proposed study, a UKF is implemented rather than a linear
Kalman filter. The first step is the computation of a loss of a
function (L (θ)) that connects the output of the UKF-CNN (β)
structure with the available ground truth (βme), given the CNN
weights (θ). The training phase minimises the loss function
error between the estimated and the measured sideslip angle,
allowing to correctly estimate β and all the variables influenc-
ing it, so σDD, σψ̇ and σVy . The loss function depends on the
CNN’s weights (θ) and is based on the following equation:

L (θ) =
1

N

N∑
i=1

(βme, i − βDD, i)
2
+

1

N

N∑
i=1

(βme, i − βi)
2

(7)
where βDD is the output of the CNN, and βme is the
sideslip angle ground truth. The first loss function part,
1
N

∑N
i=1 (βme, i − βDD, i)

2, helps the CNN to estimate the
correct pseudo-measurement βDD. The second part of the
loss function, 1

N

∑N
i=1 (βme, i − βi)

2, is affected by all four
CNN outputs and the UKF. The following step to train the
proposed UKF-CNN is the computation of the loss function’s
gradient with respect to the CNN weights (∇θL (θ)). This
is performed following the typical BPTT algorithm. Moving
backwards from the loss function, the ∇θL (θ) is computed
by a recursive computation of the loss function gradient with
respect to the vehicle states from t− 1 to t according to:

∂L

∂xs, t−1
=
∂ukf t−1

∂xs, t−1

∂L

∂ukf t−1

+
∂xs, t
∂xs, t−1

∂L

∂xs, t
(8)

where ukf t−1 represents all the functions that describe the
UKF algorithm, i.e. process model, observation model and
Kalman gain computation. The UKF process and observations
model, see eq. 2 and eq. 7 respectively, are non-linear models
with a non-differentiable point only in the tyre force model.
Thus, the Dugoff tyre model, described in eq. 9, has been
modified to be fully differentiable according to eq. 10.

µ = µ0

(
1− erVx

√
κ2 + tan (α)

2

)
λ =

µFz (1− κ)

2
√
(Cxκ)

2
+ (Cy tan (α))

2

fλ =

{
λ (2− λ) , if λ <= 1

1

Fy =
Cy tan (α) fλ

1− κ

(9)

fλ =
2

e−4λ + 1
− 1 (10)

where µ0 is the peak friction coefficient, er is the friction
reduction coefficient, Vx is the longitudinal velocity, κ and

α are the longitudinal and lateral slip, Cx is the longitudinal
slip stiffness, and Cy is the cornering stiffness. Regarding
all the UKF operations, they are differentiable and available
in the open-source machine learning platform TensorFlow or
PyTorch. The gradient computation continues applying the
chain rule to eq. 8 and moving backwards, computing the
derivative to each CNN weight as for a normal NN. This step
is performed automatically by the chosen machine learning
platform, PyTorch. The training is based on a mini-batch
stochastic gradient descent algorithm (mini-batch size of 256)
based on a standard ADAM optimiser with a learning rate
equal to 0.0008.

IV. EXPERIMENT SETUP

This section describes how the experiments have been con-
ducted and how the proposed approach has been compared to
the baseline methods.

A. Experimental Setup and Dataset

The experiments have been conducted at the Automotive
Testing Papenburg GmbH with the test platform based on a
BMW Series 545i. The test vehicle was instrumented with
the standard IMU, Kistler wheel force transducers and SKF
intelligent bearings for each wheel, a dual antenna GNSS from
Oxford Technical Solutions and a Corrsys-Datron non-contact
optical sensor to measure the sideslip angle (measurement
accuracy of ±0.2◦). The high-end optical speed sensor was
used to measure the ground truth of the vehicle sideslip angle.
The vehicle was equipped with a dSPACE 1007 AutoBox
as a real-time control platform. All the equipment was
interconnected through the Controller Area Network (CAN)
interface, and the sampling rate was set up at 100Hz. The in-
telligent bearings demonstrate a similar accuracy to the wheel
force transducer [71], the most common sensor technique in
research for tyre force measurement. Thus, the tyre forces in
the training dataset are taken from the wheel force transducers,
making the paper easier to reproduce. The dataset contains
216 manoeuvres corresponding to two hours of driving and
consists of standard vehicle dynamics manoeuvres, e.g. double
lane change, slalom, random steer, J-turn, spiral, braking in
the turn, and steady-state circular tests, together with recorded
laps at the handling track. All manoeuvres were driven on dry
asphalt with tyres inflated according to the manufacturer’s
specifications. The bank angle and the road slope were
negligible, and the friction coefficient was approximately
constant. Two different electronic stability control settings
(On, Off) were used. All the measurements were recorded at
100Hz, the standard frequency for vehicle state estimation. A
statistical outlier removal has been applied to remove extreme
outliers. However, particular attention is paid to not deleting
edge case measurements, which are the most valuable data.
Furthermore, all the manoeuvres were manually inspected
to check the outlier removal efficacy. The measurements are
considered when Vx is higher than 5m/s and are filtered
using a low-pass zero-phase filter with a cut-off frequency of
5Hz based on a finite impulse response technique [6].
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Fig. 4. Log distribution of sideslip angle and lateral acceleration. Each bin
corresponds to 1deg and 1m/s2

The log distribution of the sideslip angle and lateral ac-
celeration is represented in Fig. 4. The lateral acceleration is
almost spread equally in the range [−10, 10] m/s2. In contrast,
the sideslip angle measurements mainly distribute in the range
[−3, 3] deg. The latter is a common phenomenon because it is
challenging to perform manoeuvres with a high sideslip angle,
even when the vehicle has a very high lateral acceleration.
Especially in dry road conditions, only a professional driver
can induce a high sideslip angle.

A second dataset is selected from the same measurements.
It will be referenced as limited dataset because it only contains
measurements of when the vehicle has lateral acceleration
|ay| ≤ 7m/s2. This simulates the cost and complexity of
recording a large number of manoeuvres in which the vehicle
is driven at the extreme vehicle behaviour, but not at the
handling limits. Such a situation is common in the automotive
field because, at the handling limits, the driver can easily lose
the vehicle’s control. Thus, the limited dataset will be used to
analyse the proposed hybrid approach regarding its robustness
and generalisation capabilities.

Both datasets are split into three sub-sets: training (75%),
validation (15%) and test (10%). The test set contains the
same manoeuvres for both the full and limited datasets. It con-
sists of manoeuvres representing the entire driving behaviour,
but more focus is paid to highly non-linear situations. It
includes 23 manoeuvres: two braking in the turn, two skidpad,
five J-turn, four slalom, four lane change, two random steers,
three spiral and one lap track.

B. Key Performance Indicators

The performance of the different approaches is assessed
through four key performance indicators (KPIs), which are
commonly used in sideslip angle estimation [8], [34], [39].

• The MSE assesses the overall estimation performance.
• The non-linear MSE (MSEnl) corresponds to the MSE

computed only when |ay| ≥ 4m/s2. It measures the
estimation performance when the vehicle behaves non-
linearly.

• The absolute maximum error (ME) measures the worst
estimation performance.

• The non-linear ME (MEnl) measures the worst estimation
performance in the case of non-linear vehicle behaviour.

The non-linear KPIs analyse the hybrid approach performance
in the most critical scenarios. The MSE and MSEnl are used
to evaluate the estimation accuracy, while ME and MEnl are
used to assess temporary high errors in the estimation. The

latter is relevant to assess whether the estimation is always
coherent with the physical vehicle behaviour.

C. Baseline Methods

The proposed hybrid approach is compared with the state-
of-art model-based, data-driven and hybrid approaches. All
the considered baselines are adapted and optimised to use the
same sensor setup and dataset, ensuring an objective and fair
comparison.

The model-based approach is a UKF-based on a single-track
model with tyre force measurements, as presented in [8]. The
process noise parameters are tuned with the TSBO, and the
observation noise parameters associated with the tyre force
measurements are adapted online to enhance the observer’s
performance. The adaptability is related to the reduction of
the level of noise coupled with tyre force measurements, this
increases the Kalman gain when the vehicle behaves non-
linearly. Thus, the effect of the Kalman gain is magnified
during manoeuvres at the handling limit. Otherwise, a mag-
nified Kalman gain when the vehicle behaves linearly could
influence the vehicle states to follow the measurement sensor
noises. The adaptability is triggered with a hysteresis loop to
avoid the chattering phenomenon.

The data-driven approach is a FFNN that uses IMU and tyre
force measurements as inputs, as evaluated in [8]. A simple
FFNN reaches a better performance than a RNN when the
tyre force measurements are included in the input set because
the RNN prediction power is insufficient to compensate for
the higher numbers of parameters to be trained. The NN is
formed by two hidden layers with respectively 250 and 125
neurons each and ReLU activation functions. It uses a dropout
regularisation technique (0.2) and a Xavier initialisation to
avoid overfitting. An early stopping method with patience
equal to 20 is applied for the same reason. The MSE is the
loss function minimised by a mini-batch stochastic gradient
descent algorithm based on a standard ADAM optimiser with
a learning rate (0.001). The mini-batch size is 1024. For the
training procedures, user-defined parameters are optimised
through a Bayesian optimisation.

The hybrid approach is a deep ensemble-UKF (DE-UKF)
[11] adapted to maximise the estimation performance on a
dataset with tyre force measurements. The DE is formed
by 20 FFNNs trained independently on the same dataset.
The FFNNs different estimations are combined in a model
averaging. Hence, the final βDD is the mean of the FFNNs
estimations, and σDD is the variance of the different model
estimations. Each FFNN is trained using a Gaussian negative
log-likelihood cost function optimised through mini-batch
stochastic gradient descent based on an ADAM optimiser
with a learning rate (0.0008). The epoch’s number for each
FFNN is 30. DE relies on the stochasticity of neural network
training, which allows every FFNN to converge to a different
set of parameters. However, the estimation accuracy is low
when all models predict incorrectly, and there is no guarantee
that the σDD will be high. This especially happens when
the error is in the low sideslip angle range because the
NNs estimations tend to be closer. A high level of distrust
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suggests that the UKF does not rely on the data-driven
pseudo-measurement but trusts the estimation of the UKF
process model. Vice-versa, when the level of distrust is low,
the UKF considers the neural network estimation reliable.
σDD must be scaled before being used by the UKF because
the output of the DE does not match the weight of the other
noise parameters. Otherwise, the UKF puts too much trust in
βDD. The scaling is based on an exponential function (eq.
11) which differentiates approximately similar σDD.

σDD, sc = 10p1σp2DD (11)

where p1 (-4.2690 for the full dataset and -1.4353 for the
limited one) and p2 (0.7901 for the full dataset and 1.465
for the limited one) are two scaling parameters tuned using
a Bayesian Optimisation. The values of p1 and p2 change
according to the dataset because they strongly influence the
DE’s estimation performance. If p1 and p2 are not re-tuned
for the limited dataset, the UKF will put too much trust in
the DE, even if it lacks performance.

V. RESULTS

This section demonstrates the performance of the proposed
approach. Subsection V-A analyses how accurate the proposed
approach is with respect to the baselines when it is trained
using a full dataset. Subsection V-B shows the results of the
robustness analysis when only a limited dataset is available.
This demonstrates that the data-driven approach is highly
influenced by the amount and quality of the data. Subsection
V-C proves the approaches’ robustness to different tyre model
parameters.

A. Full Dataset Results

The CNN-UKF, the DE-UKF and the data-driven approach
have been trained using the full dataset.

The overall comparison is presented in Table II. Both hybrid
approaches perform better than the model-based and data-
driven approaches considering all four KPIs. This highlights
the importance of the hybrid architecture for vehicle sideslip
angle estimation. For instance, the model-based approach has
a higher MSE and MSEnl than the data-driven approach but
a lower average ME and MEnl. The hybrid approaches have
the same estimation accuracy (MSE and MSEnl) as the data-
driven approach without the average higher ME. The reason
is that in a hybrid approach, data-driven estimation is always
validated through the model-based approach.

It can be seen that CNN-UKF outperforms the three other
approaches for all the proposed KPIs. However, it does

TABLE II
SIDESLIP ANGLE ESTIMATION COMPARISON USING THE FULL DATASET.

Approaches MSE
[deg2]

MSEnl
[deg2]

ME
[deg]

MEnl
[deg]

Model-based 0.161 0.277 1.111 0.991
Data-driven 0.096 0.157 1.293 1.123

DE-UKF 0.087 0.157 0.981 0.822
CNN-UKF 0.086 0.118 0.979 0.776

Fig. 5. Distribution of the sideslip angle error when the vehicle |ay | >
4m/s2 for every approach in the test set. Each bin is 0.25deg wide. The x
represents the mean and the line between the vertical symbols (| − |) is the
standard deviation of the sideslip angle error.

not have the same benefits in magnitude for all of them.
The overall MSE and ME of DE-UKF and CNN-UKF are
comparable. The minor improvements for the linear vehicle
behaviour are respectively 1.15% and 0.20% in favour of the
CNN-UKF. Anyhow, if the performance is evaluated when
the vehicle behaves non-linearly, the CNN-UKF will strongly
outperform DE-UKF with an improvement of 24.84% for the
MSEnl and 5.60% for the MEnl. A possible explanation is
that the end-to-end training informs CNN about the vehicle
dynamics compensating for the lower amount of data in this
operating condition.

On the contrary, the DE during the training is not aware of
the physical vehicle behaviour, so it is subjected to a decay
in performance where the dataset has fewer samples. The DE
becomes aware of the UKF performance only while tuning the
level of distrust scaling parameters. Furthermore, the process
model noise parameters are online adapted in the CNN-UKF,
allowing the UKF to accommodate better the mismatches
between the physical and modelled vehicle behaviour.

Similar conclusions can be stated from the log distribution
of the sideslip angle error in the non-linear operating range,
see Fig. 5. The data-driven and the hybrid approaches have
a similar amount of β error samples in the range [−1.5, 1.5]
deg. In contrast, the model-based approach suffers from the
lower accuracy of the vehicle model in the non-linear operating
region. However, the data-driven approach and partially the
DE-UKF are more prone to high estimation errors (≥1.5 deg)
than the model-based and CNN-UKF. The latter outperforms
all other approaches and has the β error mean closest to zero
and the lowest standard deviation. Hence, a UKF coupled
with a data-driven approach has the same performance as
a data-driven approach in a low error range, but it reduces
the sporadic high errors of a purely data-driven approach.
Furthermore, the end-to-end training and the process noise
parameters adaption allow the CNN-UKF to maximise the
hybrid capability especially when the vehicle |ay| > 4m/s2.
Fig. 6 analyses how the estimation performance change for
different manoeuvres. The model-based approach has a weak
accuracy, especially in braking-in-the-turn, J-turn and skidpad
tests. The braking-in-the-turn involves a coupling between the
longitudinal and lateral dynamics, which is not modelled in the
used single-track vehicle model. In a J-turn manoeuvre, the ve-
hicle is driven at the limits of handling, where the mismatches
between the physical and modelled vehicle behaviour are
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Fig. 6. Sideslip angle MSEnl comparison for every group of manoeuvres.

Fig. 7. Slalom manoeuvre. Comparison of the sideslip angle estimation
between all four approaches.

higher. Whereas for skidpad tests, the explanation is that it is a
quasi steady-state manoeuvre, so the vehicle yaw acceleration
is almost null, and the difference between estimated and mea-
sured tyre forces becomes essential for the β estimation. The
tyre model is one of the most significant uncertainty sources
in the model-based approach. The data-driven approach almost
constantly behaves better than the model-based but worse than
the hybrid approaches for estimation accuracy. However, it
outperforms the DE-UKF in a spiral manoeuvre, and a possible
explanation is that the DE-UKF puts too much trust in the UKF
process model. The CNN-UKF outperforms all the other ap-
proaches in five out of seven manoeuvres. Particularly relevant
is the improvement in the slalom and spiral manoeuvres. The
slalom has the highest number of sideslip angle peaks (Fig.
7), which are the most difficult moments to estimate sideslip.
Spiral manoeuvres are particularly challenging because it has
an extra turn respect the J-turn. Fig. 7 shows the sideslip
angle estimation in a slalom manoeuvre at the handling limits.
All four approaches provide a reliable estimation, but the
CNN-UKF outperforms the other approaches when the vehicle
reaches a β peak of 10 deg at around 14 s. This is a typical
situation where a correct estimation of β is essential to help
the vehicle control system maintain vehicle stability. Thus, an
improved estimation in this condition is particularly relevant
for safety. The already mentioned high non-linearities reduce
the accuracy of the model-based approach. The data-driven
approach lacks accuracy at 15 s due to the few data in the
training set describing this vehicle’s operation point. The DE-
UKF improves the estimation performance between 5 s and
13 s combining the pros of the model-based and data-driven
approach, but it lacks performance at around 14 s. CNN-UKF
improves the estimation accuracy not only in the range of
[5, 10] s but also in the highest peak at 14 s, as can be observed
in Fig. 8.

Fig. 8a shows the β and βDD for the hybrid approaches.
CNN-UKF and DE-UKF βDDs lack accuracy between 12 s
and 15 s, but the CNN-UKF β is accurate because the UKF
is correctly weighting the UKF process model’s information
with the NN’s pseudo-measurement. Vice-versa, the UKF of
the DE-UKF puts too much trust in βDD. When the βDD
error rises, the corresponding level of distrust (Fig. 8c) also
grows. CNN-UKF and DE-UKF σDDs have the same order of
magnitude in normal driving, but the one related to CNN-UKF
rises much more than the DE-UKF. This broader range makes
the proposed approach much less confident in the NN when
its output is incorrect. This is not possible for the DE-UKF
due to its training process. The DE-UKF does not have end-to-
end training, so its σDD cannot match the weight of the other
UKF noise parameters. The DE-UKF σDD non-linear scaling
compensates only partially this issue. Fig. 8c clearly demon-
strates how the CNN-UKF distrust level range is

[
10−3, 1

]
,

while the range for the DE-UKF is only
[
10−3, 10−2

]
.

Another explanation for the better performance of the CNN-
UKF is related to the online adaptation of the process noise
parameters. The adaptive parameters allow the UKF to know
the current mismatches between the modelled and physical ve-
hicle behaviour. The process noise parameters of the DE-UKF
and model-based approach are constant, so they correspond
to a trade-off between the different driving conditions. Vice-
versa, the CNN-UKF relies on optimal tuned process noise pa-
rameters every instant. Fig. 8b and 8d show the values of σVy
and σψ̇ , respectively. As expected from the literature [72], both
increase with the growth of vehicle non-linearities. This further
proves that CNN-UKF behaves according to physical vehicle
motion. σVy has a peak at 14 s, corresponding to the last
vehicle’s right turn, where the rear inner tyre is even detached
from the ground due to the aggressiveness of the manoeuvre.
This extreme condition is created by a transient lateral load
transfer (not modelled) which strongly influences lateral tyre
force production, resulting in a significant Vy model mismatch.
Moreover, the effect of the front axle longitudinal force (Fxf )
on the lateral velocity is not modelled

(
Fxf sin(δ)

m

)
. Overall,

the constant and the adapted process noise parameter have the
same magnitude. Still, the one associated with CNN-UKF is
generally bigger (apart from 13 s to 14 s). The reason is that the
constant σVy was optimised, considering also less aggressive
manoeuvres where the vehicle model is more reliable.

The process noise parameter σψ̇ rises by two orders of
magnitude when the vehicle has a high sideslip angle. At the
same time, when β is low, the adapted σψ̇ is slightly lower than
the constant process noise parameter. A possible explanation
is that the mismatches of the modelled ψ̇ are higher than that
of Vy . The meaningful adaptability of the process parameter
noises shows the CNN-UKF has an insight into vehicle dy-
namics physics and it can online compensate for it. Similar
conclusions are obtained from the spiral manoeuvre repre-
sented in Fig. 9. Here, the CNN-UKF approach outperforms
the accuracy of all other three approaches, particularly from
5 s to 13 s. The performance of the CNN-UKF is similar to
sum of the best estimation between the data-driven approach,
from 4 s to 6 s, and the model-based approach, from 6 s to 10 s.
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(a) (b)

(c) (d)
Fig. 8. Fig: 8a shows the estimated and the pseudo-measurement of the sideslip angle. Fig: 8b shows the process noise parameter associated with the Vy .
Fig. 8c shows the level of distrust in the NN for the hybrid approaches. Fig. 8d shows the process noise parameter associated with the ψ̇.

Fig. 9. Spiral manoeuvre. Comparison of the sideslip angle estimation
between all four approaches.

The test set also contains a recording of an entire lap in a
racing circuit, where the effect of combined slip is maximal.
Fig. 10b shows the vehicle’s lateral and longitudinal accelera-
tion, and it highlights how the driver is pushing the vehicle at
the limit of handling in all the corners, see [1, 7] s, [16, 19]
s and [23, 29] s. The sideslip angle estimation performance
of the four approaches is represented in Fig. 10a. The model-
based approach has the lowest performance, especially in the
range [1, 7] s. This result is expected because the implemented
Dugoff tyre model works in pure slip conditions. A similar
conclusion is also visible in the spiral manoeuvre, Fig. 9.
The data-driven approach performs better than a model-based
approach. However, it has the maximum absolute error at 23 s
and 26 s, where the vehicle performs a cornering while brak-
ing. Both proposed hybrid approaches have higher accuracy
than the others, but the CNN-UKF has the best performance.
A possible explanation is the physic-informed NN architecture,
which allows evaluating a very accurate NN level of distrust.
Fig. 10c shows the NN level of distrust for the DE-UKF
and CNN-UKF. While the DE-UKF level of distrust is almost

(a)

(b) (c)
Fig. 10. Fig. 10a compares the sideslip angle estimation between four
approaches in a portion of a racing track. Fig. 10b shows the recorded lateral
and longitudinal acceleration of the vehicle. It highlights the combined slip
situation at which the vehicle is driven. Fig. 10c shows the level of distrust
in the NN for the hybrid approaches.

constant along the manoeuvre, the one associated with CNN-
UKF has two peaks in correspondence with the data-driven
maximum errors. This allows the CNN-UKF to avoid follow-
ing the high estimation error of the data-driven component. It
is further proof of how the CNN-UKF is a physics-informed
NN in which the UKF and NN are mutually cooperating to
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TABLE III
SIDESLIP ANGLE ESTIMATION COMPARISON USING THE LIMITED

DATASET.

Approaches MSE
[deg2]

MSEnl
[deg2]

ME
[deg]

MEnl
[deg]

Model-based 0.161 0.277 1.111 0.991
Data-driven 0.223 0.358 1.445 1.284

DE-UKF 0.157 0.270 1.103 0.983
CNN-UKF 0.156 0.269 1.099 0.975

improve the overall estimation of the hybrid approach.

B. Robustness Analysis using the Limited Dataset
A sideslip angle filter must not only be accurate, but it should
be robust to a different amount of qualitative data during the
training and tuning phase. Hence, to prove the robustness of
the proposed hybrid approach, its estimation performance is
compared with the baseline methods when they all have been
trained using the limited dataset.

The overall comparison is presented in Table III. Here, the
model-based approach shows the same performance as with
the full dataset (see Table II), because it is not influenced by
the amount of data. As expected the other approaches show a
reduced performance with the limited dataset where the MSE
is more than doubled while the ME sees a moderate increase.
Now the data-driven approach has the worst performance in
all four KPIs. The accuracy loss is higher than 30% for all
the indicators, without a particular weakness in one of the pro-
posed KPIs. An explanation is that the dataset does not have
representative data of the vehicle driven with |ay| ≥ 7m/s2,
so it must generalise much more than with a full dataset.
Significantly, the NN must reconstruct the extreme non-linear
vehicle behaviour, the most complex vehicle operating region,
without having representative data for these conditions.

The model-based and hybrid approaches’ performance is
very similar, but DE-UKF and CNN-UKF have the best KPIs.
The explanation is that hybrid approaches use the best estima-
tion accuracy of the model and the NN together. Both hybrid
approaches strongly rely on the estimation of the UKF process
model because they cannot put much trust in the data-driven
part. However, the NN still has benefits when the vehicle
behaves linearly due to the excellent amount of data in that
range. This highlights how the hybrid approaches improve the
robustness of both model-based and data-driven approaches.
The hybrid approach shows a minor improvement compared
with the model-based approach. However, the result is signifi-
cant because it highlights how the hybrid approach is as robust
as a model, even if trained with a limited training dataset. On
the contrary, a purely data-driven approach is not robust for
using a small training set resulting in poor estimation accuracy.

The CNN-UKF performs slightly better than DE-UKF in
all four KPIs. However, the CNN-UKF outperforms the DE-
UKF, mainly for the MSE and MSEnl. The main reason is the
adaptability of the process noise parameters, which cope with
the change of vehicle model mismatches in the various vehicle
operating points. However, the improvement in accuracy is not
enough to be considered significant (< 5 %).

Fig. 11. Distribution of the sideslip angle error when the vehicle |ay | >
4m/s2 for every approach in the test set. Each bin is 0.25deg wide. The x
represents the mean and the line between the vertical symbols (| − |) is the
standard deviation of the sideslip angle error. Results based on the limited
dataset, see Fig. 12 the for best results.

Fig. 12. J-turn manoeuvre. Comparison of the sideslip angle estimation
between all four approaches using the limited dataset.

Fig. 13. J-turn manoeuvre. Comparison of the estimated β and βDD between
the hybrid approaches using the limited dataset.

Fig. 11 shows the sideslip angle error log distribution in
the non-linear operating range. All the approaches which rely
on a model highly outperform the data-driven approach. The
latter have β error samples in the range [−3.8, 4] deg, while
the other approaches have β errors between [−1.8, 1.8] deg.
This proves that the data-driven approach is highly prone to
high estimation errors when trained with a limited dataset. The
performance of the model-based and hybrid approaches is very
similar. They also share an equal error distribution. The data-
driven approach slightly outperforms the other approaches in
the very low error range [−0.3, 0.6] deg. This explains why the
hybrid approaches are more accurate overall than the model-
based one, despite mainly relying on it.

Fig. 12 shows the sideslip angle estimation in a J-turn
manoeuvre at the handling limits. The model-based and hy-
brid approaches behave almost identically, and all strongly
outperform the purely data-driven approach. The only visible
differences are between [1.5, 3] s, where the CNN-UKF cap-
tures slightly better the conclusion of the peak and between
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[4, 7] s where the DE-UKF is closer to the β reference.
The major difference between DE-UKF and CNN-UKF is

visible from the comparison of the βDD, see Fig. 13. The
βDD computed by the CNN-UKF is highly outperforming
the one estimated by the DE-UKF. The explanation is that
the CNN-UKF is trained end-to-end, so the output of the
CNN has physical information that the NN uses to increase
its accuracy. The DE is trained independently, performing
similarly to the purely data-driven approach. An higher ac-
curacy of βDD implies that the following UKF can rely on
a better sideslip angle pseudo-measurement. This proves the
benefits of using a physical informed-NN. Despite this, the β
estimation of DE-UKF and CNN-UKF is similar because the
model-based approach still outperforms both βDD. Thus, both
hybrid approaches mainly rely on the UKF. Due to the high
chances of dealing with a limited dataset, the hybrid approach
is fundamental to improving vehicle sideslip angle estimation.

However, the performance of the proposed CNN-UKF
approach is still influenced by the amount and quality of data
in the training set. Thus, it still represents a limitation of the
proposed approach that must be addressed in the future. This
highlights the importance of defining standards procedure to
collect valuable and broad datasets. Regardless, the proposed
CNN-UKF allows the introduction of possible solutions for
lack of data, e.g., weakly-supervised learning during the
end-to-end training, which allows for using data recorded
without expensive sensors.

C. Robustness Analysis to Tyre Model Parameters

An essential property of vehicle sideslip angle estimators is
the robustness to vehicle parameter variations. The variation
of cornering stiffness strongly influences the sideslip angle
estimation, because it can vary from its nominal value due
to numerous factors, e.g. tyre pressure, temperature, and
wear [39]. Thus, to prove the robustness of the proposed
approach, Fig. 14 shows how the MSEnl (14b) and the MSE
(Fig. 14a) of the vehicle sideslip angle vary at the variation
of the axle cornering stiffness. In particular, the front and
rear axle cornering stiffnesses are changed by ±10% [39].
Overall, it is visible that the model-based approach is the most
sensible to the variation of the inner model, while the data-
driven approach, which does not have a physical model, is
not affected. Both hybrid approaches are less influenced by
the variation in the physical model than the purely model-
based approach. However, Fig. 14 shows that the CNN-UKF
performance is more influenced by the model mismatch than
the DE-UKF. A possible explanation is that the CNN-UKF
varies the level of distrust in the NN during the manoeuvre
according to how it learned during the training, giving more
trust to the UKF at some specific moments. When it faces a
different model mismatch than previously learned, it is more
influenced by it than the DE-UKF, which does not vary the
level of distrust to the NN, always prioritising the data-driven
side of the approach. Despite this, the CNN-UKF consistently
has a lower MSEnl than the DE-UKF, see Fig. 14b and only
when both axle cornering stiffness of the vehicle model are
increased by 10% as, on average, a higher MSE than the

(a)

(b)
Fig. 14. 14a shows how the axle cornering stiffness influences the vehicle
sideslip angle MSE of all four approaches. 14b shows how the axle cornering
stiffness influences the vehicle sideslip angle MSEnl of all four approaches.

DE-UKF. Thus, it can be concluded that hybrid approaches
are more robust to parameter uncertainties than purely model
approaches and that the DE-UKF performance is less affected
by the internal model accuracy than CNN-UKF.

VI. CONCLUSION

The paper presents a novel hybrid approach to vehicle
sideslip angle estimation, which involves utilising the physical
knowledge from a UKF based on a single-track vehicle model
to enhance the estimation accuracy of a CNN. Using a large-
scale experimental dataset of 216 manoeuvres, it has been
shown that the hybrid approach is more accurate than purely
model-based or data-driven approaches. Moreover, the CNN-
UKF is slightly reducing the MSE of the DE-UKF. However,
when the MSEnl is compared, the CNN-UKF outperforms
the DE-UKF by 25%, providing a much higher accuracy in
the most critical operating region for active vehicle control
systems. The CNN-UKF, thanks to the end-to-end training,
is forcing the CNN to comply with the vehicle physics,
reducing the ME and MEnl of all other approaches. When
a limited dataset is provided, the proposed hybrid approach
has a minor improvement in the estimation robustness over
the model-based and the DE-UKF approach for all the KPIs.
The CNN-UKF is highly outperforming the estimation of a
purely data-driven approach. Future works involve testing the
generalisation capability of the CNN-UKF utilising a dataset
with different levels of road grip, e.g. wet, snow or icy roads.
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