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Abstract— User mobility prediction can be exploited in cellular 
networks for different purposes, such as enhancing the handover 
process, proactive resource allocation, proactive load balancing, 
etc., in order to improve the network performance. While many 
works aimed for the prediction of the next cell visited by the User 
Equipment (UE), the prediction of future UE locations has 
received less attention. In fact, only a few works deal with the 
prediction of the next UE location while other few works aim to 
predict the future direction of UEs arriving at a crossroad. This 
paper presents a methodology for the prediction of the trajectory 
followed by the UEs inside the cell. First, UE trajectory patterns 
are learnt by means of an off-line clustering of historical UE 
trajectories. Then, the obtained trajectory patterns are used for 
on-line prediction of the UE trajectory inside the cell, the 
prediction of the next cell that the UE will visit and an estimation 
of the time to reach this new cell. A dataset with UE trajectories 
moving around a large real-life cellular network has been 
considered.     

Keywords— Cellular networks, UE mobility, clustering, trajectory 
prediction, next-cell prediction. 

I.  INTRODUCTION 
Fifth generation (5G) and beyond mobile networks are 

expected to support a great variety of applications and services 
with challenging requirements in terms of high data rate, high 
data volumes, reliable and low-latency communications, low 
energy consumption, high user density, high user mobility, etc. 
To deal with these challenges, the density of deployed cells will 
progressively increase. As a result, due to the smaller cell 
coverage and the user mobility, a User Equipment (UE) will be 
frequently changing their serving cells, resulting in heavy 
signalling overheads, risk of connection droppings and 
degraded Quality of Service (QoS). This situation poses great 
challenges to the network operators for the management of the 
radio resources among the different cells. In this context, the 
availability of mechanisms to determine the UE geographical 
location and to report these location measurements to the 
network [1] enable the exploitation of this information by using 
(Big) Data analytics technologies [2][3]. In this respect, the use 
of AI/ML (Artificial Intelligence/Machine Learning) 
methodologies, e.g. for the prediction of the UE mobility, can 
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enhance the network performance by taking more proactive 
actions in certain functionalities such as handover, resource 
allocation, load balancing, etc. 

 
In the last years, many works have focused on next cell 

prediction (i.e. prediction of the next cell visited by a UE) [4-
16]. However, very few solutions have been proposed for the 
prediction of the trajectory that a UE will follow inside a 
specific cell. Thus, the main contribution of this paper is to 
propose a new methodology for UE trajectory prediction based 
on two steps. In the first step, an off-line trajectory modelling is 
done for the characterization of UE trajectory patterns in a 
cellular network. As part of this modelling, a set of collected 
UE trajectories are pre-processed following an interpolation 
process. Then, the interpolated trajectories are used as input to 
a clustering process to obtain a list of prototype UE trajectories 
inside each cell and to identify the most frequent and relevant 
UE trajectories inside the cells. Several metrics are defined to 
assess the quality of the clustering process. Then, in the second 
step, the obtained trajectory model is used for the on-line 
prediction of the trajectory that a UE will follow inside a cell. 
This prediction is done by comparing the current trajectory of a 
UE with the different prototype trajectories of the cell. Based 
on this, the likelihood of the prediction is estimated. The 
proposed methodology can also predict the next cell visited by 
the UE and estimate the time to reach this new cell. Several 
metrics are defined to assess the quality of the prediction 
process in terms of the achieved accuracy.  

 
Besides the formulation of the novel methodology, the 

proposed approach considers practicality aspects in the design 
and is aligned with the 3GPP functional framework for AI-
enabled Radio Access Network (RAN) intelligence of [17], 
which constitutes another contribution of the work. 
Furthermore, it is worth highlighting that the proposed 
approach has been tested in a realistic scenario with hundreds 
of cells using the dataset of [18] that includes real-life mobility 
trajectories of more than 50 thousand vehicles moving around 
inside the city of Cologne. The methodology has been 
extensively evaluated in heterogeneous situations (cells 
covering areas in the city centre, suburban residential areas, 
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highways, etc.) with different cell shapes, cell sizes, cell 
density, different user mobility patterns, etc. 

 
The rest of the paper is organised as follows. In Section II, the 

literature related to UE mobility prediction is discussed. Section 
III presents the general network architecture and the proposed 
solution for UE trajectory prediction aligned with the 3GPP 
specifications. Section IV details the proposed clustering and 
prediction methodology. Section V describes the considered 
realistic scenario, while Section VI presents the obtained 
results. Finally, the conclusions are summarised in Section VII. 

II.  RELATED WORK 
Different research works in the literature exploit UE mobility 

predictions for different application areas in cellular networks, 
aiming to improve the performance at different levels of the 
protocol stack [4]. A large amount of papers focus on next cell 
prediction and an estimation of the remaining time at the current 
cell. These kind of predictions can be useful e.g. to assist 
handover decisions [5]-[11]. Some of these works make use of 
historical records of previously visited cells by the UEs and 
dwell time spent at each cell to determine the handover 
probability to the different neighbour cells e.g. [6]-[9]. Other 
approaches, such as [10], include multiple predictive factors 
(e.g. cell geometry, terrain characterization, description of 
roads and intersections, etc.) in order to improve the prediction 
accuracy. Other proposed methodologies include signal 
strength measurements and mobility of adjacent vehicles to 
optimise the handover process, e.g. [11][12]. Next cell 
prediction is also useful for the optimization of load balancing 
processes in cellular networks, like in [13] that predicts UE 
mobility and estimates future cell loads in a heterogeneous 
network to proactively balance the traffic among small cells and 
macrocells. Another applicability area is the optimization of 
mobile edge computing and caching [14]-[16]. As an example, 
[15] makes use of the sequence of Mobile Edge Computing 
(MEC) servers visited by the UE to design a mobility-aware 
caching approach that manages more efficiently the contents 
stored at each edge computing server relying on the prediction 
of the future MECs visited by the UE. Different mobility 
prediction techniques have been proposed in the literature in the 
context of next-cell prediction. These include Markov models 
e.g. [6][7][13]-[15], Bayesian Networks [10], Neural Networks 
[9][11][12], Support Vector Machines (SVM) [16] or clustering 
techniques [8] that collect the historical sequence of cells 
visited by each UE to identify UE mobility patterns and apply 
the obtained knowledge for next cell prediction.  

 
A more reduced number of papers have dealt with the 

prediction of future UE geographical locations. Among them, 
papers [19-22] focus on how the future UE location prediction 
can be exploited in a wireless network and evaluate its benefits 
by means of simulations using theoretical mobility models. One 
application area is proactive resource allocation, i.e. to exploit 
knowledge of future user mobility and future wireless channel 
conditions to carry out a resource allocation planning 
beforehand to improve the network performance in terms of 

throughput, energy efficiency, etc. [19]-[21]. As shown in [21], 
some benefits can be obtained by opportunistically transmitting 
more data when the UE is located in regions where the channel 
conditions are favourable. As an example, the context 
information obtained by route prediction of a UE with a 
streaming service may anticipate a coverage hole in the 
trajectory of the UE so that more resources can be allocated to 
this UE before running into the coverage hole. Then, buffered 
data can maintain the streaming service experience while the 
UE is in the coverage hole. Similarly, for a streaming UE 
located at the cell edge or in a region with poor coverage, the 
minimum amount of data may be transmitted while more 
resources may be allocated when this UE moves to the cell 
centre or to regions with more favourable propagation 
conditions. On the other hand, knowing the specific future UE 
trajectory inside the cell can also be useful for a more accurate 
prediction of the UE dwell time at the current cell and the time 
to handover to the next cell. This may be useful for improving 
the handover or load balancing processes. UE location 
prediction can also be useful for mobility management in Ultra-
Dense Networks (UDN), like [23] that proposed a proactive 
solution for the activation of gNodeBs (gNBs) to form virtual 
cells based on an estimation of the future user location.  

 
Only a few works have been proposed for the prediction of 

future UE locations. A few papers, such as [23]-[25], focus on 
the prediction of the next UE location by means of SVM or 
Neural Networks. However, the prediction of just one sample 
corresponding to the next UE location may not be enough for 
proactive resource allocation, handover or load balancing 
purposes. In turn, other works, such as [26][27], aim to 
determine the probabilities that the UE takes different 
directions when arriving at a crossroad. These techniques 
proposed in [26][27] are able to determine the street the UE will 
take when arriving at a crossroad but not the specific UE 
locations at specific future instants of time. The aim of this work 
is to fill this gap by proposing and evaluating a prediction 
methodology to determine the trajectory followed by the UE 
(i.e. the specific UE locations at specific future instants of time) 
until the UE reaches the next cell. To the best of the authors’ 
knowledge, no previous paper has focused on such 
characterization of UE trajectories inside the coverage region 
of a BS and the prediction of the trajectory that the UEs will 
follow inside the cell.  

 

III. NETWORK ARCHITECTURE 
Fig. 1 presents how the proposed mobility prediction 

approach can be deployed in the 5G system architecture. It is 
based on an initial training step in which prototype trajectory 
patterns are learnt by means of an offline clustering of historical 
UE trajectories. Then, a second inference step uses the obtained 
prototype trajectories for on-line trajectory prediction. 
According to the functional framework for an AI-enabled RAN 
defined by 3GPP in [17], the AI/ML model training function 
that is in charge of the offline clustering process is deployed in 
the OAM (Operation and Management) system. In turn, the 
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inference function in charge of the online UE trajectory 
prediction is run in the NG-RAN (New Generation Radio 
Access Network), and more specifically in the Central Unit 
(CU) of the base station, i.e. the gNB in the 5G system. The 
gNB-CU hosts the upper layers of the radio interface protocol 
stack, including the Radio Resource Control (RRC) layer in 
charge of UE mobility control. A gNB-CU is connected to one 
or multiple gNB Distributed Units (gNB-DU), each one 
supporting one or more cells. The gNB-DU hosts the lower 
layers including the Medium Access Control (MAC) layer in 
charge of the MAC scheduling. The output of the AI/ML model 
inference can be used as an input for different functionalities 
identified in [17], such as: 

- Mobility optimization (MO): UE mobility prediction is 
useful for selecting the handover target cell to assure service-
continuity during UE mobility by minimising Radio Link 
Failures and call droppings (caused by e.g. a too-late or too 
early handover or a handover to a wrong cell) and avoid 
unnecessary handovers or ping-pong effects.  

- Load balancing (LB): UE trajectory prediction is useful to 
evenly distribute the load/traffic among the different cells and 
Radio Access Technologies. 

- MAC Scheduling: UE trajectory prediction inside the cell is 
useful to execute a proactive resource allocation and 
opportunistically transmit more data when the UE is located in 
regions where the channel conditions are favourable. 

 

 
Fig. 1. 5G Network architecture. 

 
Fig. 2 presents an example of flow diagram that illustrates 

how the proposed methodology can be used to predict a future 
UE handover from a cell covered by gNB 1 to a cell covered by 
gNB 2. The first part of the flow diagram shows the model 
training phase where the prototype trajectories in each gNB are 
learnt based on collected measurements of the UEs served by 
this gNB. For this purpose, whenever a UE reaches the 
coverage area of a gNB, (e.g. gNB1 in Fig. 2), the UE begins to 
report geo-localised measurements to the network. 3GPP 
standards provide different ways to determine the geographic 
position and/or velocity of the UE based on measuring radio 
signals [1]. These positioning methods include network-
assisted GNSS (Global Navigation Satellite System) methods, 
Time Difference of Arrival (TDoA) based on 4G Long Term 
Evolution (LTE) or 5G New Radio (NR) signals, Wireless 

Local Area Network (WLAN) positioning, Bluetooth 
positioning, etc. Location measurements collected from UEs in 
RRC_connected state can be transmitted periodically to the 
network as part of the radio measurement reporting processes 
[28]. In turn, UEs in RRC_idle or RRC_inactive mode can log 
measurements and transmit them later on when the UE enters 
in RRC_connected state, e.g. using the MDT (Minimization of 
Drive Tests) feature [29]. The collected UEs location 
measurements associated to each gNB are sent to the OAM 
system. With this data, the OAM is able to build a historical list 
of UE trajectories inside the coverage region of each gNB. 
Then, the Model training process represented in Fig. 2 runs the 
clustering of these historical trajectories in order to learn and 
model the most representative UE trajectories (i.e. prototype 
trajectories) in each gNB and store them in a database in the 
OAM. With a specific periodicity, new collected UE 
trajectories may be included in the trajectory modelling process 
in order to periodically update the database of prototype 
trajectories. 

 
Once the training is finalised, the obtained prototype 

trajectories, which constitute the learnt model, are transferred 
to each gNB in the AI/ML model deployment step. Then, the 
inference stage carries out the online mobility prediction of the 
UEs served by the gNB. During the inference, a UE reports 
location measurements to its serving gNB. Then, by comparing 
these location reports with the prototype trajectories, the Model 
inference determines the prototype trajectory that the UE will 
likely follow in the near future. This will allow predicting the 
future positions of this UE, the next gNB that the UE will visit 
and the estimated time for handover to this new gNB. Finally, 
the obtained predictions are used, in this example, for the 
optimization of the handover procedure. The proposed 
methodology can be easily adapted to the rest of solutions and 
use cases defined in [17]. It is worth mentioning that, although 
the proposed approach has been presented in the context of the 
3GPP framework, it can be also aligned with other frameworks, 
such as Open-RAN (O-RAN) specifications [30]. In this case, 
the Model training can be run in the non-RT RIC (non-Real 
Time RAN Intelligent Controller) and the Model inference can 
be run in the near-RT RIC (near Real Time RAN Intelligent 
Controller) to assist the operation of the gNB-CU. 

 

 
Fig. 2. Solution for AI/ML enabled mobility optimisation. 
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IV. PROPOSED CLUSTERING AND PREDICTION METHODOLOGY 

A. General overview 
The proposed methodology consists of two main steps: 
First, in the Model training process, the historical locations 

reported by the UEs and available in the OAM are pre-
processed in order to build a set of historical UE trajectories for 
each cell. Then, in a cell-by-cell basis, a trajectory clustering 
process is done for all the UE trajectories of the same cell. After 
the clustering process, a list of prototype trajectories is obtained 
for each cell. This list of prototype trajectories provides a 
characterization of the most frequent and relevant trajectories 
followed by the UEs along each cell. Further details of the 
Model training based on a trajectory clustering are provided in 
section IV.B. 

 
The Model inference process aims to provide an on-line 

prediction of the future locations of currently connected UEs. 
When a specific UE enters in the coverage region of a specific 
gNB, the UE initiates the process of reporting its current 
geographical location as it moves inside the cell. Each time a 
new UE location is reported, the current trajectory followed by 
the UE is compared with the different prototype trajectories of 
this cell in order to determine, with certain likelihood, which is 
the most likely trajectory that the UE will follow inside the cell. 
The details of the Model inference carried out for UE mobility 
prediction are provided in section IV.C.  

   

B. Model training (UE trajectory clustering) 
The proposed methodology for learning the prototype 

trajectories is illustrated in Fig. 3. It assumes a cellular system 
with B Base Stations (BS) or gNBs, each one handling a cell 
that provides coverage on a certain geographical area. First, the 
collected UE location measurements are processed in order to 
build a set of Hb trajectories followed by the UEs in the 
coverage region of each b-th BS with b=1,…,B during a time 
period of D days. Each UE trajectory is represented as a 
sequence of consecutive geographical locations reported by 
each UE every T seconds. Then, for each b-th BS, the rh,b 
trajectory (h=1,…,Hb) is defined as the concatenation of the Nh,b 
coordinates of consecutive time instants denoted as 
rh,b=[rh,b(1),rh,b(2),…,rh,b(Nh,b)], where rh,b(i) corresponds to the 
two-dimensional (x,y) location i.e. (rx,h,b(i), ry,h,b(i)) of the UE at 
the i-th sample of the corresponding trajectory. In this process, 
for each of the Hb trajectories that belong to the b-th BS, the 
previous and the next serving BS identifier visited by the UE 
are also determined. In order to simplify the trajectory 
modelling process, all the Hb trajectories of the same b-th BS 
are pre-processed in order to have the same number of samples 
equal to Nb=max(Nh,b) with h=1,…,Hb. This is done by 
interpolating samples in each of the Hb trajectories. In order to 
do this, first, the length of each rh,b trajectory 𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡,ℎ,𝑏𝑏  is 
calculated as the summation of all the Euclidean distances 
between two consecutive samples for all the trajectory: 

𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡,ℎ,𝑏𝑏 =  ∑ ��𝑟𝑟𝑥𝑥,ℎ,𝑏𝑏(𝑖𝑖) − 𝑟𝑟𝑥𝑥,ℎ,𝑏𝑏(𝑖𝑖 + 1)�2 + �𝑟𝑟𝑦𝑦,ℎ,𝑏𝑏(𝑖𝑖) − 𝑟𝑟𝑦𝑦,ℎ,𝑏𝑏(𝑖𝑖 + 1)�2𝑁𝑁ℎ,𝑏𝑏−1
𝑖𝑖=1             

                (1) 

The location samples of the interpolated trajectory 
r’h,b=[r’h,b(1), r’h,b(2), …,r’h,b(Nb)] are calculated in a way that 
the distance between two consecutive samples (i.e. 
𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑�𝑟𝑟′ℎ,𝑏𝑏(𝑖𝑖), 𝑟𝑟′ℎ,𝑏𝑏(𝑖𝑖 + 1)� for all iϵ[1,Nb-1]) is constant and equal 
to Δh,b=𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑡,ℎ,𝑏𝑏/𝑁𝑁𝑏𝑏. Then, the trajectory clustering process is 
done for all the interpolated trajectories r’h,b in a BS-by-BS 
basis. The proposed methodology supports different kind of 
clustering algorithms such as K-means [31], Self Organising 
Maps (SOM) [32], DBSCAN [33], etc.  

 

 
Fig. 3 Off-line procedure for learning mobility patterns. 

 
In this paper, the clustering process is done according to the 

K-means methodology (see Algorithm 1) because of its 
simplicity, popularity, robustness and capability to manage 
large datasets with a relatively low computational cost. 
According to this, the Hb interpolated trajectories r’h,b of a given 
b-th BS are grouped in Kb clusters in a way that trajectories of 
the same cluster are similar among them and different from the 
trajectories belonging to the rest of the clusters. In order to 
determine the most adequate value of Kb, the K-means process 
is run for different values of the number of clusters between 
Kmin and Kmax. Then, the selected value of Kb is the one that 
provides a clustering with the minimum Davies-Bouldin index 
[34]. This index takes into account how similar are all the 
trajectories that belong to the same cluster and how different are 
the obtained prototype trajectories of the different clusters. Low 
values of the Davies-Bouldin index reflect a better quality of 
the clustering process. 

 
The result of the trajectory clustering for each b-th BS consists 

of a set of Kb prototype trajectories. The k-th prototype 
trajectory is represented as sk,b=[sk,b(1),sk,b(2),…,sk,b(Nb)] where 
sk,b(i) is the i-th geographical location (x,y). sk,b is determined as 
the centroid of all the trajectories that belong to the same cluster 
(i.e. each sk,b(i) is calculated as the average location of each of 
the positions r’h,b(i) for all the trajectories of the same cluster). 
In addition, several statistical indicators are also stored for each 
cluster:  

• Percentage of hits (Ak,b): It is the percentage of trajectories 
associated to the b-th BS that belong to the k-th cluster (with 
k=1,…,Kb). The prototype trajectories of clusters with a high 
percentage of hits will be more frequent and representative of 
the trajectories of each BS.  

  
Trajectory modelling (OAM) 
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• Average Euclidean distance of the trajectories in a cluster 
(Ek,b): It is a metric that captures the degree of similarity 
between trajectories of the same cluster with respect to the 
prototype trajectory sk,b of the cluster. This is calculated as the 
average Euclidean distance between each trajectory of a cluster 
and the corresponding prototype trajectory of this cluster. A 
high value of Ek,b reflects a higher dispersion in the cluster, 
meaning that the prototype trajectory is less representative of 
the clustered trajectories.  

• Previous and next serving BS identifier: For each k-th 
prototype trajectory in each b-th BS, the previous pk,b and next 
nk,b serving BS identifier are calculated as the mode (i.e. most 
frequent value) of previous and next BS for all the trajectories 
that belong to the same cluster. 

 
Algorithm 1. Trajectory clustering based on K-means. 

1    For Kb=Kmin until Kb=Kmax 
2          #Run the clustering to obtain Kb clusters. 
3          - Select randomly Kb out of the Hb trajectories. Each of the Kb 

            trajectories represents an initial cluster with a centroid equal to the 
            corresponding trajectory. 
4          - Each remaining Hb-Kb trajectory is assigned to the closest cluster   
            according to the Euclidean distance between the trajectory and the  
            centroid. 
5          Do 
6                 - Compute the new centroid of each of the Kb clusters. 
7                 - Reassign each of the Hb trajectories to the closest cluster 
                   according to the Euclidean distance between the trajectory and 
                   the centroid of each cluster. 
8          While no changes observed in the clustering in two consecutive  
                        iterations. 
9         end 
10       Compute Davies-Bouldin index for the obtained clustering. 
11   end 
12   Select the value of Kb that provides the minimum Davies-Bouldin index.  

 

C. Model inference (UE mobility prediction) 
The proposed mobility prediction approach is run in a UE-by-

UE basis and considers each new UE that enters in the coverage 
region of a certain b*-th BS. The trajectory prediction process 
is illustrated in Fig. 4. It starts with the collection of the 
geolocation coordinates reported by the UE to the b*-th BS in 
order to build the trajectory u that is currently being followed 
by this UE. It is assumed that whenever this UE enters in a 
region covered by the b*-th BS, the u vector is initialised as 
u=[u(1)] with the current UE location coordinates (x,y). After 
M UE location measurements the trajectory 
u=[u(1),u(2),…,u(M)] is a vector composed by the 
concatenation of these M pairs of coordinates followed by the 
UE at consecutive time instants. The mobility prediction is run 
in the b*-th BS each time a new UE location measurement is 
collected and determines the likelihood that the u trajectory 
followed by the UE is one of the learnt prototype trajectories 
sk,b* associated to the b*-th BS. The trajectory u and the 
prototype trajectories sk,b* are interpolated in a way that the 
distances between two consecutive samples of each of these 
trajectories is equal to Δ, i.e. 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑[𝑢𝑢(𝑖𝑖),𝑢𝑢(𝑖𝑖 + 1)] = 𝛥𝛥 for all 
iϵ[1,M-1] of the u trajectory and 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑�𝑑𝑑𝑘𝑘,𝑏𝑏∗(𝑖𝑖), 𝑑𝑑𝑘𝑘,𝑏𝑏∗(𝑖𝑖 + 1)� = 𝛥𝛥 
for all iϵ[1,Nb* -1] in all the sk,b* trajectories. The result of this 

interpolation is the interpolated trajectory u’ consisting of M’ 
samples u’=[u’(1),u’(2),…,u’(M’)] and the interpolated 
prototype trajectories s’k,b*=[s’k,b*(1), s’k,b*(2),…,s’k,b*(N’b*)] 
each one consisting of N’b* samples. After this interpolation, the 
trajectory prediction process aims to identify the s’k,b* prototype 
trajectory with highest similarity to the u’ trajectory followed 
by the UE according to Algorithm 2. 

 

 
Fig. 4. On-line trajectory prediction 

 
Without loss of generality, let us consider that the dimension of 
u’ is lower than the number of elements of the prototype 
trajectories s’k,b* (i.e. M’≤N’b*). This reflects that, in case that 
the UE was following a specific prototype trajectory, the actual 
location of the UE is somewhere within this prototype 
trajectory. In order to assess the similarity between u’ and s’k,b*, 
the methodology considers all the α-th possible portions of M’ 
consecutive elements of the vectors s’k,b* (k=1,…,Kb) as defined 
in line 3 in Algorithm 2. Then, the squared Euclidean distance 
𝑑𝑑𝑢𝑢′,𝑠𝑠′𝑘𝑘,𝑏𝑏∗

(𝛼𝛼)  between the α-th portion of s’k,b* and the UE 
trajectory u’ is calculated (see lines 4-7 in Algorithm 2). The 
similarity between u’ and s’k,b* is denoted as mk,b* and it is 
computed as the minimum value of the square Euclidean 
distance between u’ and the all the possible α-th portions of the 
prototype trajectory s’k,b*. A low value of mk,b* indicates that the 
trajectory u’ is very similar to some portion of vector s’k,b*. If 
the lowest value of mk,b* for all the Kb* prototype trajectories is 
higher than a similarity threshold ThS (see line 11 in Algorithm 
2), then, the methodology identifies that the current trajectory 
is not enough similar to any prototype trajectory and, as a 
consequence, it does not correspond to any of them. Otherwise, 
the likelihood Lk,b* that the UE is following the prototype 
trajectory s’k,b* is determined according to the mk,b* values for 
all the Kb* prototype trajectories. The percentage of hits Ak,b* of 
each prototype trajectory is also considered in the likelihood 
calculation (see line 15 in Algorithm 2) in order to provide 
higher likelihood to prototype trajectories with higher 
representativeness. A high value of Lk,b* reflects that the UE is 
following a trajectory very similar to a portion of sk,b*. 
Therefore, sk,b* provides information about the positions that the 
UE may likely follow in the future. In case that the highest 
likelihood is obtained for the prototype trajectory k*, and this 
value is higher than a specific threshold (i.e. Lk*,b*>ThL), then, 
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the methodology assumes that the UE is following this 
prototype trajectory sk*,b* and the next BS identifier is nk*,b*. In 
this case, according to the current UE location, it is possible to 
determine the remaining distance for the UE to reach the cell 
edge following the identified sk*,b* prototype trajectory. The  
  

Algorithm 2. UE mobility prediction algorithm 
1    For k=1 until k=Kb* 

2        For α=0 until α=(N’b*)-M’ 
3            Define the α-th portion of s’k,b* as vector [s’k,b*(1+α),…, s’k,b*(M’+α)]  
4            Determine: 
5           𝑑𝑑𝑢𝑢′,𝑠𝑠′𝑘𝑘,𝑏𝑏∗

(𝛼𝛼) = ∑ �𝑢𝑢𝑥𝑥′ (𝑚𝑚) − 𝑑𝑑𝑥𝑥′𝑘𝑘,𝑏𝑏∗(𝑚𝑚 + 𝛼𝛼)�2+�𝑢𝑢𝑦𝑦′ (𝑚𝑚) − 𝑑𝑑𝑦𝑦′𝑘𝑘,𝑏𝑏∗(𝑚𝑚 + 𝛼𝛼)�2  𝑀𝑀′
𝑚𝑚=1  

6            where (u’x,u’y) and (𝑑𝑑𝑥𝑥′𝑘𝑘,𝑏𝑏∗ , 𝑑𝑑𝑦𝑦′𝑘𝑘,𝑏𝑏∗) represent the (x,y) coordinates 
7            of each u’ and s’k,b* element. 
8            Determine 

   

 
9       end 
10  end 
11  if min[mk,b*]>ThS  
12       The UE trajectory does not match with any prototype 
13  else  
14      For k=1 until k=Kb*  
15          Determine       𝐿𝐿𝑘𝑘,𝑏𝑏∗ = 𝐴𝐴𝑘𝑘,𝑏𝑏∗/𝑚𝑚𝑘𝑘,𝑏𝑏∗

∑ (𝐴𝐴𝑘𝑘,𝑏𝑏∗/𝑚𝑚𝑘𝑘,𝑏𝑏∗)
𝐾𝐾𝑏𝑏∗
𝑘𝑘=1

  

16      end 
17       If there is only one prototype trajectory k* with the highest likelihood 
18          If Lk*,b*>ThL: 
19             The methodology assumes that the UE trajectory corresponds to  
20              the k*-th prototype trajectory. 
21             The methodology assumes that the next BS is nk*,b* 
22             Estimate the time for handover tHO (i.e. time to reach the cell   
23              edge). 
24              If tHO<ThHO reserve resources in the nk*,b* BS. 
25         Else: The UE trajectory cannot be predicted with enough likelihood 
26         end 
27      Else: #The highest likelihood is obtained for several prototypes 
28       Group the prototypes that follow the same path from the current UE  
29       location until the end of the prototype. Determine the aggregated  
30       likelihood Lg,b* for each g-th group of prototypes. 
31          If Lg,b*>ThL for a group of prototypes: 
32           Determine the next BS and estimate tHO (i.e. time to reach the  
33              cell edge). 
34             If tHO<ThHO reserve resources in the identified next BS. 
35         Else: The UE trajectory cannot be predicted with enough likelihood 
36         end 
37     end  
38     If the UE trajectory cannot be predicted with enough likelihood. 
39       #Check if, at least, it is possible to determine the next BS.  
40         For each neighbour BS β in the list of neighbours of b* 
41            Determine   

𝐿𝐿𝛽𝛽 = � 𝐿𝐿𝑘𝑘,𝑏𝑏∗

𝑘𝑘 𝑤𝑤𝑖𝑖𝑡𝑡ℎ 𝑛𝑛𝑘𝑘,𝑏𝑏∗=𝛽𝛽

 

42            Determine the β*-th neighbour with the highest likelihood 
43            If Lβ*>ThL: 
44                  The methodology assumes that next BS for this UE is the  
45                 β*-th neighbour BS 
46    Estimation of minimum tHO_min time for handover for all the 
47                   prototype trajectories with nk,b*=β* 
48                   If tHO_min<ThHO reserve resources in the β* BS. 
49            Else: the next BS cannot be predicted with enough likelihood. 
50            end 
51         end 
52     end 
53  end 

remaining time for handover tHO can be estimated  according  to  
the  remaining distance for the UE to reach the cell edge and an 
estimation of the average UE speed following the u trajectory. 
The  obtained result can be used  for  e.g.  optimizing the 
handover process. For example, in case that the estimated time 
for handover is lower than a specific threshold ThHO (i.e. 
tHO<ThHO) a resource reservation may be done at the next nk*,b* 
BS to guarantee service continuity to the UE. In case that the 
highest likelihood is obtained in multiple prototype trajectories, 
the algorithm selects these trajectories and groups those that 
follow the same path from the current UE location until the end 
of the trajectory. Then, for each g-th group of prototype 
trajectories, a likelihood Lg,b* is calculated as the summation of 
the likelihood for all the prototype trajectories that belong to the 
same group. In case that the group g with the highest likelihood 
fulfils Lg,b*>ThL, the methodology predicts the UE future 
trajectory, the next BS and provides an estimation of the time 
to reach the cell edge in a similar way as before (see lines 31-
34 in Algorithm 2). 

 
Finally, in case that no prototype trajectory can be predicted 

with enough likelihood, the methodology aims to, at least, 
predict the next BS. This is done by calculating the likelihood 
Lβ that the next BS is the β-th BS, being β the identifier of one 
of the neighbours of the b*-th BS. This is done by adding the 
likelihood Lk,b* of all the prototype trajectories of the b*-th BS 
that have the β-th BS as the next serving BS identifier (i.e. 
nk,b*=β) as shown in line 41 in Algorithm 2. Then, the β*-th BS 
with the highest likelihood is determined. In case that the 
likelihood Lβ* is higher than threshold ThL, then, the 
methodology assumes that the next BS for this UE is the β*-th 
BS. In a similar way as before, in order to estimate the time for 
handover, the methodology determines the time to reach the cell 
edge following all the possible prototype trajectories of the b*-
th BS that have the β*-th BS as the next serving BS identifier 
(i.e. nk,b*=β*) and takes the minimum value tHO_min. This term 
represents an estimation of the time to handover to the next 
serving BS identifier β* following the prototype trajectory that 
needs the lowest time to reach this β* neighbour BS. Although 
the prototype trajectory is not identified, the prediction of the 
next serving BS can be used for e.g. optimising the handover 
process. Finally, in case that Lβ*<ThL, the next BS cannot be 
predicted with enough likelihood for this UE. 

V. SCENARIO DESCRIPTION 
The proposed trajectory clustering and prediction 

methodology has been tested in a real-life mobility scenario 
using the dataset [18] that includes mobility traces for more 
than 50000 vehicles moving around inside the city of Cologne 
during 24 hours. The considered parameters of the algorithm 
are summarised in Table 1. The region under study includes a 
total of B=245 BSs as shown in Fig. 5. The Voronoi tessellation 
[35], represented with orange lines in Fig. 5, has been used to 
determine the coverage area of a BS, where the Voronoi region 
of a BS is composed by the geographical locations that have this 
BS as the closest one. After processing the trajectories inside 
each BS for the available dataset, approximately 5.46 million 
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trajectories have been obtained (5.02 million have been used in 
the clustering process and the remaining 442295 have been used 
for testing the prediction methodology). The K-means 
trajectory clustering process is repeated with different values of 
the number of clusters from Kmin=2 to Kmax=120. As a result of 
the clustering process for each BS in the whole scenario, a total 
number of 18506 prototype trajectories have been obtained. 

   
TABLE 1. CONSIDERED PARAMETERS 

Time period of measurements D=1 day (i.e. 24hours) 
Time between geographical samples T=1 second 
Number of BSs B=245 BS 
Number of trajectories used for training 5.02 million trajectories 
Number of trajectories used for prediction 442295 trajectories. 
Minimum number of clusters Kmin=2 
Maximum number of clusters Kmax=120 
Distance between two consecutive 
samples of the interpolated trajectory 

Δ=5 meters 

Similarity threshold ThS=20 meters 
Likelihood threshold (considered values) ThL=0.5, 0.7 and 0.9 
 

 
Fig. 5. Considered region in the city of Cologne (Germany) 

 
The performance of the proposed methodology has been 

evaluated in terms of its capability to predict the future UE 
trajectory and the next BS. The following Key Performance 
Indicators (KPI) have been evaluated for assessing the UE 
trajectory prediction: 

- Prototype prediction accuracy: This is the percentage of UE 
trajectories correctly predicted with a likelihood higher than ThL 
before the UE trajectory inside the current cell has been 
completed. 

- Elapsed time before prediction: This is the elapsed time 
between the instant of time when the UE begins its trajectory in 
the current cell and the time when the trajectory is correctly 
predicted with a likelihood that remains higher than ThL during 
the rest of UE the trajectory. 

- Travelled distance before prediction: This is the distance 
travelled by the UE during the elapsed time before prediction. 

 

In turn, concerning the evaluation of the performance of the 
next BS prediction, the following KPIs have been considered:  

- Next BS prediction accuracy: This is the percentage of UE 
trajectories in which the next BS visited by the UE is correctly 
predicted with a likelihood higher than ThL before the UE 
trajectory inside the current cell has been completed. 

- Prediction anticipation time: This is the difference between 
the instant of time when the next BS is correctly predicted with 
a likelihood that remains higher than ThL and the time when the 
UE finishes its trajectory inside the current cell. 

- Prediction anticipation distance: This is the distance 
travelled by the UE during the prediction anticipation time.  

  

VI. RESULTS 
As shown in Fig. 5, the considered scenario contains multiple 

types of cells. Some of them are located in suburban areas and 
provide coverage to regions in which UEs follow very simple 
trajectories along a main road and may change their direction in 
a reduced number of crossroads (e.g. BS11). Moreover, this 
kind of BSs usually have a small number of neighbor BSs. For 
these reasons, a high predictability is expected in this kind of 
cells. Other BSs are located in urban regions and provide 
coverage in areas with a higher number of streets and crossroads 
(e.g. BS195 located in the city center as shown in Fig. 5). As a 
consequence, higher number of possible UE trajectories inside 
the cell are observed. In addition, these urban regions usually 
have a higher density of BSs leading to a higher number of 
neighbor BSs. For these reasons, a lower predictability is 
expected in this kind of cells. In order to illustrate the 
performance of the proposed methodology in such different 
scenarios, section A shows the overall performance obtained in 
a suburban BS (i.e. BS11) and the analysis of some specific 
trajectories inside this cell. A similar study is presented in 
Section B for BS195 that represents a cell located in an urban 
area. Finally, Section C provides an overall evaluation for all 
the B=245 BSs.  

A. Analysis of a BS in an interurban area 
A.1. Trajectory clustering. 

Fig. 6 shows the collected UE locations in the Voronoi region 
of BS11. The borders between different Voronoi regions are 
represented in orange. A total of H11=4487 trajectories have 
been used in the clustering process, while 460 trajectories have 
been used for the evaluation of the prediction methodology. 
After running the clustering process in BS11, the number of 
clusters that minimises the Davies-Bouldin index is K11=10 
clusters. Fig. 7 presents the obtained prototype trajectories, 
while Table 2 shows the number of hits Ak,11, the Euclidean 
distance Ek,11 and the previous pk,11 and next nk,11 serving BS 
identifier for each of the obtained clusters. As shown in Fig. 7, 
the prototype trajectories represent different UE movements 
along the main streets inside BS11. The most frequent observed 
trajectories correspond to prototype trajectories 0 and 1 
(A0,11=49.36% and A1,11=43.86%). Note also that, as shown in 
Table 2, some prototype trajectories represent UEs that come 
from a neighbour cell and, after going through BS11, they move 
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to a new neighbour cell. However, in other identified clusters, 
the prototype trajectory represents UEs that begin or end its 
movement at this BS11. This is represented as “--“ in Table 2. 
In particular, prototype trajectory 6 represents UEs that begin 
their movement in BS11 and then move to BS206, while, 
prototype trajectories 4, 7 and 9 represent UEs that come from 
BS65 or BS206 and finish their movement at BS11 (see Fig. 7). 

 
Fig. 6. Collected UE locations in the Voronoi region of BS11 

 
A.2. Prediction of different UE trajectories in BS11.  

 
In order to illustrate the performance of the prediction 

methodology, the result of the prediction of different UE 
trajectories is presented in this section. In addition, the benefit 

of including the percentage of hits of each prototype trajectory 
in the calculation of the likelihood is compared to the case in 
which the percentage of hits is not considered as it was done in 
[36]. Fig. 8a shows a map with the trajectory of a UE that comes 
from BS65, moves in the region of BS11 in the south-west 
direction and finally reaches the region of BS206, while Fig. 8b 
and 8c present the evolution of the likelihood of the different 
prototype trajectories as the UE is moving. In this example, the 
likelihood threshold is set to ThL=0.7. As shown in Fig. 8b, 
when the percentage of hits is not considered in the likelihood 
calculation, every time a new UE trajectory sample is collected, 
the methodology determines a set of candidate prototype 
trajectories that contain the current UE trajectory and provides 
the same likelihood for all these candidate prototypes. As a 
consequence, at the beginning, the methodology is not able to 
provide a high likelihood Lk,11 for any of the prototype 
trajectories. However, as new location samples are obtained 
while the UE is moving in the south-west direction, some 
prototype trajectories are discarded (see Fig. 8b). After six UE 
trajectory location samples (i.e. six seconds of trajectory) the 
methodology is able to determine that the UE trajectory 
corresponds to prototype trajectory 1 (i.e. cluster 1). Then, the 
methodology identifies that the next BS will be BS206 with an 
anticipation of 3 seconds. It is worth noting that, in this 
example, changing the likelihood threshold to e.g. ThL=0.5 or 
ThL=0.9 has a marginal impact in the anticipation time (see Fig 
8.b). In case that the percentage of hits is considered in the 
calculation of the likelihood, the methodology identifies that the 

 
TABLE 2. STATISTICS FOR THE OBTAINED CLUSTERS IN BS11 

Cluster Number (and percentage) of hits (Ak,11) Average distance to the centroid (E k,11) Previous BS (pk,11) Next BS (nk,11) 
Cluster 0 2215 (49.36%) 6.33 206 65 
Cluster 1 1968 (43.86%) 6.76 65 206 
Cluster 2 146 (3.25%) 7.71 65 65 
Cluster 3 44 (0.98%) 5.14 206 206 
Cluster 4 2 (0.04%) 10.94 65 -- 
Cluster 5 1 (0.02%) 0 206 206 
Cluster 6 51 (1.13%) 2.46 -- 206 
Cluster 7 10 (0.22%) 18.49 206 -- 
Cluster 8 29 (0.64%) 5.26 206 65 
Cluster 9 21 (0.46%) 6.90 65 -- 

 

 
Fig. 7. Prototype trajectory for each cluster.
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UE trajectory corresponds to prototype trajectory 1 from the 
very beginning of the UE trajectory (see Fig. 8c) because cluster 
1 has a very high percentage of hits, as shown in Table 2. 
 

 
 (a) 

 

 
(b) 

                                                   
(c) 

Fig. 8. a) Map of BS11, b) Likelihood according to [36], c) 
Likelihood with the proposed approach. 

 
Fig. 9 presents another example for a different UE trajectory 

in BS11. In this case, the UE comes from BS65 and moves in 
the south-west direction, then, it turns left and goes in the south-
east direction and finally it turns left again and goes in the north-
east direction (see Fig. 9a). As shown in Fig. 9b, initially, the 
prediction methodology provides a high likelihood for 
prototype trajectory 1 since it has a very high percentage of hits 
(see Table 2). However, after 9 seconds (i.e. when the UE turns 
left for the first time), prototype trajectory 2 is predicted with a 
very high likelihood since the rest of trajectories are discarded. 
As shown, the prototype trajectory and the next BS can be 
correctly predicted after 9 seconds of UE movement (i.e. with 
an anticipation of 24 seconds). In this example, selecting a 
likelihood threshold ThL=0.5 or ThL=0.9 has no impact on the 
anticipation time. 

 
(a) 

 
(b) 

Fig. 9. a) Map of BS11, b) Likelihood with the proposed approach. 
 
A.3. Evaluation of global prediction statistics.  

 
Table 3 shows the results of the UE trajectory and the next  

BS prediction obtained after evaluating the proposed 
methodology for the 460 trajectories available in BS11. The 
percentage of hits of each prototype is considered for the 
likelihood calculation. As shown in Table 3, both the prototype 
trajectory and the next BS visited by the UE are correctly 
predicted for almost all the UE trajectories. If the likelihood 
threshold is set to ThL=0.7, the average trajectory time needed 
to correctly predict the prototype trajectory is around 2.31 
seconds that corresponds to an average distance of 59.03 meters 
travelled ty the UEs (see Table 3). This time is relatively small 
when compared to the average dwell time of the users in BS11 
that is around 10.10 seconds. Note also that the next BS 
prediction is done with a time anticipation of 7.79 seconds. This 
time is large enough to e.g. perform a reservation process in the 
identified neighbor BS to facilitate the handover process and 
guarantee service continuity.  
 
TABLE 3. PROTOTYPE TRAJECTORY AND NEXT BS PREDICTION IN BS11 
Statistics of prototype trajectory prediction ThL=0.5 ThL=0.7 ThL=0.9 
Trajectory prediction accuracy (%) 97.82 97.82 97.82 
Average elapsed time before prediction (seconds) 2.31 2.31  2.43 
Average distance before prediction (meters) 59.03 59.03 60.70 
Statistics of the next BS prediction ThL=0.5 ThL=0.7 ThL=0.9 
Next BS prediction accuracy (%) 97.82 97.82 97.82 
Average prediction anticipation time (seconds) 7.79 7.79 7.67 
Average prediction anticipation distance (meters) 200.45 200.45 198.77 
   
The impact of the likelihood threshold is also evaluated in 

Table 3. It is worth noting that, in this BS11, setting a higher 
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value of the likelihood threshold (e.g. ThL=0.9) leads to a 
slightly higher average time needed to predict correctly the UE 
trajectory and a slightly lower anticipation time for the next BS 
prediction. The reason is that, when setting a higher value of the 
likelihood threshold, a higher likelihood is required to assume 
that the predictions done by the methodology are correct. 

 

B. Analysis of a BS in an urban area 
This section analyses the proposed methodology in BS195. 

As shown in Fig. 10, this BS covers a larger number of streets 
and crossroads than BS11.  

 
Fig. 10. Collected UE locations in BS195 

A total of H195=22954 trajectories have been used in the 
clustering process while the remaining 2320 trajectories have 
been used for the evaluation of the prediction methodology. 
After running the clustering process, the optimum number of 
clusters is K195=87 which provides a Davies-Bouldin index of 
0.28. Due to the large amount of possible and diverse prototype 
trajectories identified in BS195 the trajectory and next BS 
predictions become more challenging. In order to illustrate this, 
Fig. 11 shows the result of the prediction of the trajectory 
represented in black colour for a UE that comes from BS176, 
moves inside the region of BS195 and finally moves to BS205. 
As shown in Fig. 11a, initially the methodology is able to 
identify a set of eight candidate prototype trajectories with 
different associated likelihoods (see Fig. 11b). As the UE is 
moving and new UE location samples are processed, some 
prototype trajectories are discarded.  In particular, at time=12 
seconds (i.e. when the UE moving to north turns right to the 
east) prototype trajectories 42 and 78 are discarded. At time=21 
seconds (i.e. when the UE moving to the east direction turns left 
to the north) prototype trajectory 14 is also discarded. In any 
case, at time=21 seconds, no prototype trajectory has been 
identified yet with a likelihood higher than ThL=0.7. However, 
since prototypes 51, 60 and 67 have BS205 as the next BS and 
the summation of these likelihoods is higher than ThL=0.7, the 
methodology can predict BS205 as the next BS visited by the 
UE (see Fig. 11c).  

 

 
(a) 

 
(b) 

 
(c) 

Fig. 11. a) Candidate prototypes, b) Likelihood of prototype prediction, c) Likelihood of next BS prediction.
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Concerning the trajectory prediction (see Figure 11b), at 
time=38 seconds, prototypes 51 and 71 are discarded and the 
methodology predicts prototype trajectory 60 with a likelihood 
higher than ThL=0.7 with an anticipation of 5 seconds before 
the end of the UE trajectory. In case the likelihood threshold is 
set to ThL=0.9, the methodology would not provide any 
prediction until time=38 seconds and time=41 seconds when 
BS205 and prototype trajectory 60 would be correctly 
predicted, respectively (see Figures 11b and 11c). In turn, in 
case that ThL=0.5, the methodology would initially make 
several wrong predictions before making the correct one (i.e. at 
time=12seconds the methodology would wrongly predict 
prototype 14, at time=21seconds prototype 51 would be 
wrongly predicted and, finally, at time=38 seconds prototype 
60 would be correctly predicted, see Figure 11b). 

 
Table 4 shows the global prediction results obtained in 

BS195. As seen, the prediction accuracy for the next BS 
prediction is higher than the accuracy for the UE prototype 
trajectory prediction. The rationale of this is that, in some 
situations, the methodology is not able to determine the UE 
prototype trajectory among a set of possible candidate 
prototypes, but the next BS can be correctly predicted since 
most of these candidate trajectories have the same next BS. 
Note also that the prediction accuracies are lower in BS195 than 
in the results obtained in BS11 (see Tables 3 and 4). If the 
likelihood threshold is set to ThL=0.7, the required time to 
predict the prototype trajectory in BS195 (i.e. 11.47 seconds) is 
rather high when compared to the average dwell time (i.e. 
15.51seconds) which indicates that, on average, it is necessary 
to observe around 74% of a trajectory to do a reliable prototype 
trajectory prediction. The selected likelihood threshold has a 
clear impact in the obtained results. As shown in Table 4, a high 
likelihood threshold leads to a lower prediction accuracy, a 
higher required time for the UE trajectory prediction and a 
lower next BS anticipation time.  

 
TABLE 4. PROTOTYPE TRAJECTORY AND NEXT BS PREDICTION IN BS195 
Statistics of prototype trajectory prediction ThL=0.5 ThL=0.7 ThL=0.9 
Trajectory prediction accuracy (%) 86.12 78.06 58.18 
Average elapsed time before prediction (seconds) 4.60 11.47 12.89 
Average distance before prediction (meters) 130.33 155.75 162.65 
Statistics of the next BS prediction ThL=0.5 ThL=0.7 ThL=0.9 
Next BS prediction accuracy 98.01 89.18 83.75 
Average prediction anticipation time (seconds) 7.20 5.74 4.77 
Average prediction anticipation distance (meters) 123.88 107.15 94.61 

 

C. Global analysis of the prediction methodology 
 
This section evaluates the global results when running the 

proposed methodology in the whole scenario consisting of 
B=245 BS. After testing the prediction methodology with a 
total number of 442295 UE trajectories, the percentage of 
correct UE trajectory predictions and next BS predictions have 
been determined for each BS. Fig. 12 and Fig. 13 present the 
Cumulative Distribution Function (CDF) of these two metrics 
for all the BSs in the scenario. The obtained prediction 
performance is highly dependent on the considered BS. As 

shown in Fig. 12, for the case of setting ThL=0.7, the prototype 
trajectory is correctly predicted for all the UE trajectories in 
more than 25% of the BSs. However, there are some BSs in 
which the trajectory prediction accuracy is much lower (e.g. in 
10% of the BSs, the prototype trajectory is correctly predicted 
for less than 62% of the trajectories). Note also in Fig. 13 that 
the next BS prediction accuracy is considerably higher than the 
UE trajectory prediction accuracy (e.g. in more than 55% of the 
BSs the next BS is correctly predicted for all the trajectories 
when considering ThL=0.7). 

 

 
Fig. 12. CDF of the percentage of UE trajectory correct predictions 

 
Fig. 13. CDF of the percentage of next BS correct predictions 

 
Fig. 14 presents the CDF of the average anticipation time for 

next BS prediction. As shown, this metric is also highly 
dependent on the considered BS (e.g. in some BSs the average 
time anticipation is more than 50 seconds while there are a few 
BSs in which the average time anticipation is only 1 second). 
For the case of ThL=0.7, the next BS can be predicted with an 
average time anticipation higher than 3 seconds for 99% of the 
BSs and higher than 10 seconds for 92% of the BSs (see Fig. 
14). The impact of the likelihood threshold in the anticipation 
time is also evaluated in Fig. 14. For 99% of the BSs, an 
anticipation time higher than 4.45 seconds and 1.5 seconds is 
obtained for ThL=0.5 and ThL=0.9, respectively. Finally, the 
percentage of the UE trajectory required for a correct trajectory 
prediction is evaluated. This is calculated dividing the elapsed 
time before prediction by the average dwell time of each UE 
trajectory. This percentage is calculated and averaged for all the 
trajectories of a specific BS. Then, Fig. 15 presents the CDF of 
this percentage for all the BSs in the scenario. As shown in Fig. 
15, when ThL=0.7, in 10% of the BSs, the percentage of the UE 
trajectory required for a correct prediction is less than 27%. 
However, there are a 10% of BSs in which the required 
percentage of UE trajectory is higher than 82%.  

 

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2024.3388554

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



    
Fig. 14. CDF of the time anticipation of the next BS prediction 

 

 
Fig. 15. CDF of the percentage of UE trajectory required for a 

correct trajectory prediction 

D. Practical implementation considerations 
 
 This subsection provides a description of potential 

limitations of the proposed methodology and practical 
implementation considerations: 

1. As described in section VI.C, the performance of the 
proposed prediction methodology is highly dependent on the 
considered BS. In some BSs that cover regions with a few 
streets/roads, the UE mobility may be quite predictable. 
However, in other BSs covering regions with a larger number 
of streets, the number of possible prototype trajectories may be 
rather large making the UE mobility prediction much more 
challenging. It would be recommended to disable the prediction 
methodology for these BSs with a relatively low prediction 
accuracy. 

2. The proposed methodology requires a rich and a large 
database of UE trajectories in order to capture the relevant 
prototype trajectories inside each cell. In some specific cases, it 
may happen that a current UE trajectory inside a given cell does 
not match to any of the prototype trajectories currently stored 
for this cell, making it difficult the prediction for this specific 
trajectory. The proposed prediction methodology is capable of 
identifying such situations. Then, when this situation is 
detected, this new trajectory is included in the prototype 
trajectory database in the OAM as a new prototype trajectory to 
be considered for future UE mobility predictions in this cell. 

3. UE mobility patterns are highly dependent on the time of 
the day, day of the week, etc. (e.g. some specific trajectories 
may happen more frequently at certain hours of the day or at the 
weekends). In order to provide a more accurate time/space UE 

mobility characterization and improve the prediction 
performance, the proposed methodology can be easily extended 
by storing a set of prototype trajectories at different time 
periods (different times of the day, different days of the week, 
etc.) for each cell.   

4. The proposed methodology provides an estimation of the 
time when the UE will reach the next cell, based on the 
prediction of the prototype trajectory that the UE will follow 
inside the cell and its current average speed. A more precise 
estimation can be done if other context information is also 
included in the model (e.g. the traffic conditions in the area). As 
an example, information of the time spent by other UEs that 
have recently followed the same trajectory can be useful for a 
more accurate estimation of the time to reach the next cell. 

 

VII. CONCLUSIONS  
This paper has proposed a new methodology for UE mobility 

prediction based on the comparison of the recent UE locations 
in the current cell and a set of prototype trajectories previously 
obtained by means of a clustering process. The proposed 
methodology provides accurate predictions of the future 
trajectory followed by the UE in the current cell, the next cell 
visited by the UE and an estimation of the time when the UE will 
connect to this new cell. The proposed approach is aligned with 
the 3GPP functional framework for AI-enabled Radio Access 
Network (RAN) intelligence and the obtained predictions can be 
useful for improving several functionalities such as mobility 
optimization, load balancing and proactive resource allocation. 
The proposed methodology has been tested using a dataset that 
that includes mobility traces for more than 50000 vehicles inside 
the city of Cologne and considering a network deployment with 
hundreds of base stations. The obtained results are highly 
dependent on the selected likelihood threshold ThL. A too high 
value of ThL would lead to a too pessimistic evaluation of the 
prediction methodology since predictions are considered correct 
only when the likelihood is very high. In turn, setting a too low 
value of the likelihood threshold ThL will lead to a too optimistic 
evaluation of the prediction methodology leading to higher 
percentage of correct predictions, a lower required trajectory 
time for prediction (or equivalently a higher anticipation time). 
If the likelihood threshold is set to ThL=0.7, the prototype 
trajectory followed by a UE has been correctly predicted for 
86.7% of UE trajectories while the prediction accuracy for the 
next BS visited by the UE is 94.4%. The obtained prediction 
results are also highly dependent on the considered BS. There 
are BSs that cover regions with a reduced number of streets and 
crossroads in which the UE trajectories can be highly predictable 
and the prediction accuracy can reach 100%. In other BSs, UEs 
may have multiple and diverse trajectories inside the BS 
resulting in lower prediction accuracy. Finally, the time required 
for UE trajectory prediction and the anticipation time of the next 
BS prediction has been evaluated. These metrics are also quite 
dependent on the considered BS. In general, if the likelihood 
threshold is set to ThL=0.7, the next BS can be correctly 
predicted with an average time anticipation higher than 3 
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seconds for 99% of the BSs and higher than 10 seconds for 92% 
of the BSs.         
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