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Abstract—The use of Open Radio Access Networks (Open
RAN) in vehicular networks can lead to better connectivity,
reliability, and performance. However, communication in this
setting is often done over an unsecured wireless network,
which creates a challenge in verifying the validity of received
transactions by Internet of Vehicles (IoV) due to the untrusted
network. It also creates a potential for attackers to tamper with
the data content and conduct different IoV-related attacks. To
address these issues, a new framework called ”STIoV” has been
proposed for secure and trustworthy communication in IoV. The
framework includes a mutual authentication scheme to register
and exchange session keys among the IoV participants, and
a credit-based trust management system to assign reputation
scores for the vehicular devices. The latter scheme discards
transactions with low credit scores. To overcome the complexity
and variability of the IoV network, digital twin technology is used
to map Road Side Units (RSU) servers into virtual space, which
facilitates constructing the vehicular relation model. An Intrusion
Detection System (IDS) based on deep learning techniques is also
introduced to detect anomalies in the traffic flow. The legitimate
data is further used by the blockchain scheme for transaction
verification, block creation and addition. Finally, the proposed
framework has been evaluated based on two network intrusion
datasets, and the results show the accuracy and efficacy of STIoV
in comparison to several recent state-of-the-art solutions.

Index Terms—Digital Twin, Deep Learning, Blockchain, In-
ternet of Vehicles (IoV), Intrusion Detection System (IDS),
Trustworthiness.

I. INTRODUCTION

THE Internet of Things (IoT) has been embedded into
many systems and deployed in a variety of critical sectors

(e.g., transportation, vehicular, communications and energy)
due to the numerous benefits that such technology offers. The
Internet of Vehicles (IoV), a network of connected vehicle
sensors, actuators, and smart devices that enables various
objects to gather, send, and process data via the Internet, is
the result of this evolution [1], [2]. The vehicular network
is a critical component of IoV systems as it allows vehicles
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to communicate with other entities such as infrastructure,
pedestrians, networks, grids, and cloud [3]. IoV networks
require efficiency, high-speed connectivity, and reliable data
transmission to achieve quality of service (QoS). However,
the traditional radio access network (RAN) is incapable of
supporting such a wide range of applications. Therefore, the
open radio access networks (Open RAN) has emerged as an
alternative approach for next-generation RAN [4]. As vehicu-
lar networks may have multiple vendors providing services in
such a connected network, the Open RAN supports interop-
erability and interoperation in deployment between different
vendors at a lower cost [5].

Although the Open RAN provides significant advantages
to IoV companies and improves the quality of vehicular
services for consumers, maintaining security and trust remains
a considerable concern [6]. This is because the present Open
RAN network mostly uses unsecured wireless communication
channels to generate, collect, analyze and transmit vehicle-
related data. This leads to various security and trust issues in
the existing Open RAN network. These security issues mostly
lead to cyberattacks that continuously pose a significant threat
to IoV. The attackers use advanced methods and different
techniques to disrupt vehicular services and cause tremendous
damage. A cyberattack such as Distributed Denial of Service
(DDoS) aims to disrupt vehicular services by rendering IoV
unavailable or unresponsive to intended clients [7]. When these
vehicular devices go out of service as a result of such an attack,
it causes a significant impact on both service providers and
consumers.

Generally, IoV systems use multiple sensors to enhance data
reliability. But when observing the same object, whether from
reliable, faulty, or corrupted sensors, the outcomes can vary.
In addition, the truth must be deduced from the contradictory
data, and any unreliable or insecure IoV nodes must be
identified and addressed. As a result, ensuring trustworthiness
across IoV nodes is critical in the development of a holistic
vehicular system [8]. Trust management is categorized into
three different domains namely distributed, semi-distributed,
and blockchain-based. In distributed trust management, the
trust is evaluated with the sensor capacity of disseminating
data in the network. Thus, the success rate of trust is highly
dependent on sensor capacity. The underlying approach is
prone to bad-mouthing, Sybil, bad-collision, and re-entry
attacks. In semi-distributed trust management, sensors share
the information with trust value. The trust value is computed
based on a threshold. However, the computation is completely
done by a third party, thus, it is prone to a single point of
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failure. This system is susceptible of various threats like man-
in-middle, DoS, and DDoS [9]. The blockchain-based trust
management consists of a policy-based mechanism or credit-
based mechanism. The policy-based mechanism consists of
Public Key Infrastructure (PKI) to maintain the trust in the net-
work. The credit-based system computes the reputation score
or credit score of entities and maintains the trust accordingly.
The highest credit score assures more trustworthiness and vice-
versa [10].

Vehicular vendors aim for efficient and secure IoV systems,
but a persistent challenge in Open RAN-based IoV systems is
ensuring data security and trust amidst diverse communicating
entities, due to the varied and universal interconnected IoV
network. This includes various communications like vehicle-
to-network and vehicle-to-vehicle, which can modify vehicle
records. With the advent of blockchain technology, several
domains, including IoV, have benefited immensely from such a
technology as it significantly transforms the vehicular ecosys-
tem [11]. As blockchain technology provides a distributed
and decentralized architecture, vehicular data can be securely
processed, transferred, and shared with multiple distributed
ledgers. This technology allows various stakeholders to store
and exchange data and view vehicular records while ensuring
the security and privacy of all transactions. Several existing
studies using blockchain-based schemes for maintaining secu-
rity and trust have been proposed in the literature, such as [12],
[13]. However, many of these solutions lack a reliable, scal-
able, cost-effective, and trustworthy blockchain-based scheme
[14], [15], [16]. The massive amount of heterogeneous and
ambiguous data produced from IoV networks requires a cost-
effective, efficient, and robust Intrusion Detection System
(IDS) to overcome cyberattacks. Artificial intelligence (AI)
plays a vital role in smart environments, and its application
has been widely used in the IoV domain [17]. Machine
Learning (ML) and Deep Learning (DL) have drawn a lot of
interest when discussing AI because of their effectiveness in
identifying malicious activity and minimizing system damage
when combined with security features like the IDS. In this
setting, DL models, such as recurrent neural networks and
convolutional neural networks, excel at analyzing diverse and
dynamic data patterns inherent in vehicular communication.
By learning and adapting to evolving threats in real-time,
these models enable the IDS to accurately identify anomalies
and potential intrusions within the Open RAN, ensuring the
security and integrity of communication in vehicular networks.
Many existing studies such as [18], [19] used different ML
and DL approaches in IoV environments; however, little work
has been done toward blockchain-based schemes and DL as
integrated frameworks in IoV networks.

Digital Twins (DTs) are an emerging digital mapping tech-
nology that can help capture socially aware healthcare services
and improve the functioning of security and trust management
systems by establishing a real-time digital simulation model
of physical items [20]. DTs, in particular, implement in
IoV a two-way closed-loop feedback mechanism of dynamic
information. It not only gathers real-time operational data from
IoV physical things, but it also implements control to modify
the state of such entities [21]. In this article, we use DTs in

Fig. 1: Digital twin empowered IoV network

IoV to map Road Side Units (RSUs) servers into virtual space,
which facilitates constructing the vehicular relation model.

A. System Model

In this subsection, we discuss the system model consisting
of a DT empowered IoV network and threat model that has
been adopted and followed for this work.

1) Digital Twin Empowered IoV Network Model: The net-
work model of STIoV mainly consists of two spaces referred
to as physical and virtual space. Fig. 1 depicts the two-
space architecture of the proposed STIoV framework. The
description of these spaces is provided below.

• Physical Space: The physical layer consists of three lay-
ers: device layer, RSU layer, and cloud layer. The device
layer primarily consists of vehicles that have limited com-
putational power and are responsible for gathering traffic
information and transmitting it on a hop-by-hop to RSU
servers for processing and storage via a gateway. The
RSU layer consists of relatively high compute-intensive
and large storage space equipment deployed across geo-
distributed sites, forming a peer-to-peer network. They
are in charge of processing recent blockchain data, which
includes a high number of recent vehicular transactions,
in a short amount of time. Finally, there is a cloud
layer, which is made up of numerous cloud platforms.
The cloud servers in our model are distributed rather
than being managed by a single entity. The incoming
transactions from the RSU layer are initially screened
by the DL-based IDS for intrusions. Finally, only normal
transactions are forwarded to cloud servers. This layer
builds a cloud-based peer-to-peer network of blockchain
with a smart contracts facility. The smart contracts are
used to validate the incoming transaction, execute a con-
sensus algorithm with other cloud servers, and then add
the block to the InterPlanetary File System (IPFS). The
returned cryptographic hash is stored in the blockchain
ledger.

• Virtual Space: The virtual space consists of the Digital
Twin (DT) network and is designed on RSUs located in
a particular area. It offers a vehicular relation model that
is in charge of creating (for example, traffic and attack
creation), transferring, and exchanging data across RSU
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servers while keeping the consistency of their DT models.
The model is produced, stored, and updated regularly
based on the data gathered in the DT formation module.
This virtual representation of the physical IoV network
is initially used for training the proposed DL-based IDS.
Once the IDS is trained, it can be deployed to screen
real-time vehicular data or transactions.

2) Threat Model: The emergence of the vehicular network
within Open Radio Access Networks (Open RAN) has brought
forth a unique set of security challenges. Applying the Dolev-
Yao (DY) threat model [22], we assume adversaries possess
full control over the communication network. This means they
can intercept, inject, modify, fabricate, and replay messages.
In the context of IoV in Open RAN, such adversaries could
eavesdrop on vehicle-to-vehicle or vehicle-to-infrastructure
communications, manipulate traffic data or controls, and
potentially disrupt the transport ecosystem. Conversely, the
Canetti and Krawczyk (CK) model focuses on session-specific
threats [23]. Here, adversaries target protocol executions or
sessions. These adversaries can corrupt parties during sessions,
violate confidentiality, and even hijack session keys. In the
IoV scenario within Open RAN, this translates to threats
like intercepting session establishments between vehicles and
infrastructure, potentially derailing real-time communications
vital for traffic management, safety mechanisms, and naviga-
tion aids. In the realm of IoV in Open RAN, both models
underscore the importance of safeguarding communication
integrity and the need for rigorous security measures.

B. Research Contribution

The following are the major contributions of this paper:
• We present a digital twin empowered Secure and Trust-

worthy communication framework called ”STIoV” which
comprehensively captures vehicular social features and
improves security and trust in highly dynamic IoV net-
works.

• The STIoV provides an efficient mutual authentication
and key agreement scheme between IoV, RSU, and cloud
servers. The relevant and sensitive data are exchanged
with a common session key over secure communication.

• A new blockchain-based credit-oriented trust manage-
ment system for the IoV network is proposed, which uses
blockchain technology to provide a reputation score to
IoV for transparent trust evaluation.

• A novel DL-based IDS is also proposed to detect in-
trusions in the IoV network. The IDS consists of two
main modules: first a ”data pre-processing module”
which combines data perturbation-driven encoding and
normalization-driven scaling with an unsupervised gener-
ative DL architecture, Stacked Variational AutoEncoder
(SVAE), for converting data into new format is proposed.
Second a ”multi-vector attack detection module” by using
Attention-based Bidirectional Long Short-Term Memory
(ABiLSTM) is proposed for detecting attack types in the
IoV network.

• A novel blockchain-based transaction writing scheme is
proposed. In this scheme, the authenticated and normal

transactions collected by peer-to-peer cloud servers are
used for transaction verification, block creation, and ad-
dition using a smart contract-based Proof-of-Authority
(PoA) consensus algorithm. We also employed IPFS for
transaction storage, and the resulting cryptographic hash
is kept in the blockchain ledger, making it lighter and
reducing block access time.

The remainder parts of this article are organized as follows.
In Section II, the proposed framework’s working and its core
components are discussed. Experimental results by implement-
ing DL and blockchain technology are presented in Section
III. Finally, we conclude this paper with the future research
directions in Section IV.

II. PROPOSED STIOV FRAMEWORK FOR DIGITAL TWIN
EMPOWERED VEHICULAR NETWORKS

In this section, we have discussed the core components
of our STIoV framework. This includes four core schemes,
called ”mutual authentication scheme”, ”Blockchain-based
trust management scheme”, ”DL-based intrusion detection”
and ”blockchain-based transaction writing scheme”. Each of
these schemes is explained in detail below:

A. Proposed Mutual Authentication Scheme

1) Network Entities Initialization Phase: This section de-
tails the initialization process of network entities. The trusted
authority (TAH ) registers all the entities of the network by
executing certain parameters, which are mentioned below.

Step-1: The TAH uses a non-singular elliptical curve
ELcv(l,m) of form g2= h3+lh+m (mod r) over galois field
GF(r), where r is denoted as large prime number under
condition of 4l3 + 27m2 ̸=0 (mod r) for making it non-
singularity as Ω for approximating zero point or infinity point.
Further, TAH chooses a base point BP ∈ ELcv(l,m) an order
of closest over the r and N. That is, N . BP = Ω, where N .
BP is denoted as a scalar multiplicative point over the elliptic
curve and N ∈ DSr denoted as a discrete algorithm over a
base point BP.

Step-2: The TAH chooses a hash function over the principal
of one-way message-digest hash for collision resilient, i.e.,
HF(.). This is evaluated using a hash-based algorithm (SHA-
256) for a reason of security, which produces 256-bit of unique
message digest.

Step-3: TAH picks an identity IDTAH
chooses a master key

MKTAH
and creates a random private key RPRTAH

∈ DSr,
where DSr = {1, 2, 3, 4, . . . , r − 1}. Next, TAH finds public
key PBTAH

= RPRTAH
. BP.

Step-4: The TAH preserves a RPRTAH
, secret key

MKTAH
, and shares public parameters like {ELcv(l,m), BP,

PBTAH
, HF(.)}.

2) Registration of Entities: This section shows the
registration process of all the required entities in the network
i.e., cloud server, RSU server, and IoV.

Registration of Cloud Server: The TAH makes registration
of a cloud server (CH) and follows the steps mentioned below
during its registration.
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TABLE I: Authentication Process between IoV nodes and RSU Server

IoV nodes (IoVi) RSU Server (FSV)
Generate random numbermdr1 ∈ DSr

uses a current timestamp mCTS1

Compute mL1= HF (PSIDIoVi
|| TMIDIoVi

||
mdr1 || mCTS1)
mL2= ENPB˙FS(mL1)
mL3= HF(mL2 || CRTIoVi

|| PSIDIoVi

|| TMIDIoVi
|| mCTS1)

MSG1={PSIDIoVi
,TMIDIoVi

,mCTS1,mL2,mL3}
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(open channel)
Verify |mCTS∗

1 - mCTS1| < δT , if valid
textitCRTIoVi

.BP= PBTAH
+ HF(PBIoVi

|| PBTAH
), if validated successfully

Fetch PSIDIoVi
with respect to TMIDIoVi

from the database
Computes mL∗

3= HF (mL2 || PSIDIoVi
||

TMIDIoVi
|| CRTIoVi

)
Checks mL∗

3= mL3, if validated successfully
Decrypts mL1= DRPRFS

(mL2)
Picks an unique random number FSr1 ∈ DSr

uses current timestamp mCTS2

Computes FS1= HF(PSIDIoVi
|| PSIDFS || FSr1 || mCTS2)

Encrypts FS1 and stored in FS2= ENPB˙IoV˙i(FS1)
produces a session key SESSFS= HF(TMIDnew

IoVi
|| mL1 ||

FS1 || mCTS1 || mCTS2),
TMID∗

IoVi
= TMIDnew

IoVi
⊕ HF(PSIDFS ||

TMIDIoVi
||mCTS2),

FS3=HF(TMID∗
IoVi

|| FS1 ||
CRTFS || PSIDFS || mCTS2)
MSG2=TMID∗

IoVi
,FS2,FS3,CRTFS ,PSIDFS ,mCTS2

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(via open channel)

Checks | mCTS∗
2 - mCTS2 | < δT

validated if, CRTFS .BP=PBTAH
+ HF(PBFS || PBTAH

)
Decrypts FS2 to receive FS1= DRPRIoVi

(FS2)
Evaluate FS∗

3= HF(TMID∗
IoVi

|| FS1 || CRTFS || PSIDFS || mCTS2)
if FS∗

3= FS3 valid
Computes TMIDnew

IoVi
= TMID∗

IoVi
⊕ HF(PSIDFS || TMIDIoVi

|| mCTS2)
Produces a session key SESSIoVi

=HF(TMIDnew
IoVi

|| mL1 || FS1 || mCTS1 || mCTS2)
Produces current timestamp mCTS3

Performs verification of session key SESVIoVi
=h(SESIoVi

||CTS3)
Change TMIDIoVi

and TMIDnew
IoVi

in the database
MSG3=SESSVIoVi

,mCTS3
−−−−−−−−−−−−−−−−−−−−→

(using open channel)

Verify | mCTS∗
3 - mCTS3 | < δT

Verify SESSVIoVi
= HF (SESSVFS || mCTS3) if validated successfully

Updates TIDIoVi
and TIDnew

IoVi

in the database securely.
Both IoVi and FS validates session key
SESSVIoVi

(=SESSVFS )

TABLE II: Symbol and Description

Symbol Descriptions
TAH Third party
MKTAH

, RPRTAH
, PBTAH

Master key, Private key, and Public key of Third party
IDCH , IDFS , IDIoVi

Identity of Cloud server, Fog server, and IoV
PSIDCH , PSIDFS , PSIDIoVi

Pseudo identity of Cloud server, Fog Server, and IoV
RTSTCH , RTSTFS , RTSTIoVi

Registration Timestamp of Cloud server, Fog server, and IoV
TMIDCH , TMIDFS , TMIDIoVi

Temporary Identity of Cloud server, Fog server, and IoV
CRTCH , CRTFS , CRTIoVi

Certificate of Cloud server, Fog Server, and IoV
RPRCH , RPRFS , RPRIoVi

Private key of Cloud server, Fog server, and IoV
PBCH , PBFS , PBIoVi

Public key of Cloud server, Fog server, and IoV
HF(.), ELcv(l,m), BP Hash Function, Elliptical curve point l, and m, and Base point
mCTS1, mCTS2, mCTS3 Current Timestamp of Cloud server, Fog server, and IoV
SESVCH , SESVFS , SESVIoVi

Session key of Cloud server, Fog server, and IoV

Step-1: The TAH picks an unique identity of IDCH and
finds pseudo identity PSIDCH= HF(IDTAH

|| MKTAH
||

RTSTCH ), where RTSTCH is registration timestamp of
respective cloud server. Next, TAH picks a temporal identity
TMIDCH and also picks a random secret key RPRCH ∈
DSr and computes the public key by using PBCH = RPRCH

. BP.
Step-2: The TAH produces a certificate of CH as CRTCH

= MKTAH
+ HF (PBTAH

|| PBCH || ) * RPRTAH
(mod

r). Next, TAH preserves a cloud credentials i.e., (TMIDCH ,
PSIDCH ,CRTCH , RPRCH , ELcv(l,m), HF(.)) in memory
and distributes a public key PBCH as public.

Registration of RSU Server:
Step-1: The TAH picks an unique identity of IDFS and

finds pseudo identity PSIDFS= HF(IDTAH
|| MKTAH

||
RTSTFS), where RTSTFS is registration timestamp of re-
spective RSU server. Next, TAH picks a temporal identity
TMIDFS and also picks a random secret key RPRFS ∈
DSr and computes the public key by using PBFS = RPRFS

. BP.
Step-2: The TAH produces a certificate of FS as CRTFS

= MKTAH
+ HF(PBTAH

|| PBFS || ) * RPRTAH
(mod

r). Next, TAH preserves a RSU server credentials i.e.,
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(TMIDFS , PSIDFS ,CRTFS , RPRFS , ELcv(l,m),
HF(.)) in memory and distributes a public key PBFS as
public.

Registration of IoV:
Step-1: The TAH picks an unique identity of IDIoVi

and
finds pseudo identity PSIDIoVi

= h(IDTAH
|| MKTAH

||
RTSTIoVi ), where RTSTIoVi is registration timestamp of re-
spective IoV. Next, TAH picks a temporal identity TMIDIoVi

and also picks a random secret key RPRIoVi
∈ DSr and

computes the public key by using PBIoVi
= RPRIoVi

. BP.
Step-2: The Tp produces a certificate of IoVi as CRTIoVi

= MKTAH
+ HF (PBTAH

|| PBIoVi || ) * RPRTAH
(mod

r). Next, TAH preserves a IoV credentials i.e., (TMIDIoVi ,
PSIDIoVi

,CRTIoVi
, RPRIoVi

, ELcv(l,m), HF(.)) in mem-
ory and distributes a public key PBIoVi

as public.
3) Authentication Phase: This phase includes two different

authentications in the network namely (i) authentication of
IoV and RSU server and (ii) authentication of RSU server
and cloud server. The authentication is based on session key
approval from both entities. This mutual session key-based
authentication ensures secure communication and data sharing
in the network. These steps need to be completed to ensure
session-based communication.

(i) IoV to RSU server Authentication
Step-1: IoVi picks a unique random number mdr1 ∈ DSr

and uses a current timestamp mCTS1 and finds mL1= HF
(PSIDIoVi

|| TMIDIoVi
|| mdr1 || mCTS1). Further, IoVi

encrypts mL1 and stores in mL2= ENPB˙FS(mL1). Further-
more, IoVi finds mL3= HF(mL2 || CRTIoVi || PSIDIoVi ||
TMIDIoVi || mCTS1) and creates request message for ac-
cess the channel MSG1={PSIDIoVi

, TMIDIoVi
, mCTS1,

mL2, mL3} and share to RSU server via open channel.
Step-2: After receiving of MSG1 by RSU server at

time interval mCTS∗
1 , RSU server verify the timestamp

|mCTS∗
1 - mCTS1| < δT . After successful verification of

timestamp, RSU servers enable certificate verification using
CRTIoVi

.BP= PBTAH
+ HF(PBIoVi

|| PBTAP
) if both

timestamp and certificates are valid then RSU server extracts
credential such as PSIDIoVi

with respect to TMIDIoVi

from database and finds mL∗
3= HF (mL2 || PSIDIoVi ||

TMIDIoVi || CRTIoVi ). Further RSU server verify mL∗
3=

mL3. If both computation matches, RSU server decrypts mL2

and stored in mL1= DRPRFS
(mL2).

Step-3: The RSU server again picks an unique random
number FSr1 ∈ DSr and uses a current timestamp mCTS2

and produces new temporary identity TMIDnew
IoVi

and eval-
uates mFS1= HF(PSIDIoVi || PSIDFS || mFSV r1 ||
mCTS2) and encrypts FS1 as FS2= ENPB˙IoV˙i(FSr1).
Next, RSU server (FS) produces a session key SESSFS=
HF(TMIDnew

IoVi
|| mL1 || FS1 || mCTS1 || mCTS2),

TMID∗
IoVi

= TMIDnew
IoVi

⊕ HF(PSIDFS || TMIDIoVi

||mCTS2), and FS3=HF(TMID∗
IoVi

|| FS1 || CRTFS ||
PSIDFS || mCTS2) and sends a reply message MSG2=
{TMID∗

IoVi
, FS2, FS3, CRTFS , PSIDFS , mCTS2} and

share to IoVi through open channel.
Step-4: After receive of reply message (MSG2) from the

RSU server on certain time mCTS∗
2 , IoVi verifies whether |

mCTS∗
2 - mCTS2 | < δT is valid or not. If validated success-

fully, then IoVi checks for certificate CRTFS .BP=PBTAH
+

HF(PBFS || PBTAH
). Further, IoVi decrypts FS2 to find

FS1= DRPRIoVi
(FS2). Furthermore, IoVi evaluates FS∗

3=
HF(TMID∗

IoVi
|| FS1 || CRTFS || PSIDFS || mCTS2)

and verify, if FS∗
3= FS3 then IoVi evaluates TMIDnew

IoVi
=

TMID∗
IoVi

⊕ HF(PSIDFS || TMIDIoVi
|| mCTS2) and

produces a session key SESSIoVi
=HF(TMIDnew

IoVi
|| mL1

|| FS1 || mCTS1 || mCTS2) and sends to FS. Further,
IoVi uses a current timestamp mCTS3 and perform session
key verification SESSVIoVi by SESSVIoVi=HF(SESSIoVi

||mCTS3) and changes the TMIDIoVi
and TMIDnew

IoVi
in

the database. Furthermore, IoVi produces acknowledgement
message as MSG3={SESSVIoVi

, mCTS3} and shares to
FS via open channel.

Step-5: After delivery of acknowledgment message MSG3

at time interval mCTS∗
3 , then FS checks timestamp with

| mCTS∗
3 - mCTS3 | < δT is valid or not. Next, FS

checks SESSVIoVi
= HF (SESSVFS || mCTS3). After

successful match, the FS establish a session key SESSVIoVi

(=SESSVFS) with IoVi. Finally, FS changes TMIDIoVi

and TMIDnew
IoVi

in the database securely. Table. I illustrates
the authentication process of IoVi and FS.

(ii) Authentication of RSU and Cloud Server
Step-1: FS picks an unique random number FSr1 ∈ DSr

and uses a current timestamp mCTS1 and finds LFS1=
HF (SIDFS || TMIDFS || FSr1 || mCTS1). Further, FS
encrypts LFS1 and stored in LFS2= ENPB˙CH( LFS1).
Furthermore, FS evaluates LFS3= HF( LFS2 || CRTFS ||
PSIDFS || TMIDFS || mCTS1) and produces a request
message MSG1={PSIDFS , TMIDFS , mCTS1, LFS2,
LFS3} and shares with CH via open channel.

Step-2: After receiving of MSG1 by cloud server at
time interval mCTS∗

1 , RSU server verifies the timestamp
|mCTS∗

1 - mCTS1| < δT . After successful verification of
timestamp, RSU servers enable certificate verification us-
ing CRTFS .BP= PBTAH

+ HF(PBFS || PBTAH
) if both

timestamp and certificates are valid then RSU server extracts
credential such as SIDFS with respect to TMIDFSV from
database and finds LFS∗

3= HF ( LFS2 || PSIDFS ||
TMIDFS || CRTFS). Further, cloud verify LFS∗

3= LFS3.
If both computation matches, cloud server decrypts LFS2

and stored in LFS1= DRPRCH
( LFS2).

Step-3: The cloud server again picks an unique random
number CHr1 ∈ DSr and uses a current timestamp mCTS2

and produces new temporary identity TMIDnew
FS and evalu-

ates CH1= HF(PSIDFS || PSIDCH || CHr1 || mCTS2)
and encrypts CH1 and stored in CH2= ENPB˙FS(CH1).
Next, cloud server (CH) produces a session key SESSCH=
HF(TMIDnew

FS || LFS1 || CH1 || mCTS1 || mCTS2),
TMID∗

FS= TMIDnew
FS ⊕ HF(PSIDCH || TMIDFS

||mCTS2), and CH3= HF(TMID∗
FS || CH1 || CRTCH ||

PSIDCH || mCTS2) and sends a reply message MSG2=
{TMID∗

FS , CH2, CRTCH , PSIDCH , mCTS2} and share
to FS via open channel.

Step-4: After receiving of reply message (MSG2) from the
cloud server on certain interval of time mCTS∗

2 , FS verifies
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TABLE III: Authentication Process between RSU Server and Cloud Server

RSU Server (FS) Cloud Server (CH)
creates an unique random numberFSr1 ∈ DSr

uses a current timestamp mCTS1

Evaluates LFS1= HF (PSIDFS || TMIDFS || FSr1 || mCTS1)
LFS2= ENPB˙CH( LFS1)
LFS3= HF( LFS2 || CRTFS ||
PSIDFS || TMIDFS || mCTS1)
MSG1={PSIDFS ,TMIDFS ,mCTS1,LFS2,LFS3}−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

(open channel)
Verify |mCTS∗

1 - mCTS1| < δT , if valid
textitCRTFS .BP= PBTAH

+ HF(PBFS || PBTAH
), if valid

Fetch PSIDFS with respect to
TMIDFS from the database
Computes LFS∗

3= HF ( LFS2 || PSIDFS ||
TMIDFS || CRTFS )
Verify LFS∗

3= LFS3, if validated successfully
Decrypts LFS1= DRPRCH

( LFS2)
Picks an unique random number CHr1 ∈ DSr

and uses a current timestamp mCTS2

Computes CH1= HF(PSIDFS || PSIDCH ||
CHr1 || mCTS2)
Encrypt CH1 and stored in CH2= ENPB˙FS(CH1)
produces a session key SESSCH= HF(TMIDnew

FS ||
LFS1 || CH1 || mCTS1 || mCTS2),
TMID∗

FS= TMIDnew
FS ⊕ HF(PSIDCH ||

TMIDFS ||mCTS2),
mCSV3= HF(TMID∗

FS || CH1 ||
CRTCH || PSIDCH || mCTS2)
MSG2=TMID∗

FS ,CH2,CRTCH ,PSIDCH ,mCTS2←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
(via open channel)

Verify | mCTS∗
2 - mCTS2 | < δT

Verify if, CRTCH .BP=PBTAH

+ HF(PBCH || PBTAH
)

Decrypts the CH2 to receive CH1= DRPRFS
(CH2)

Computes CH∗
3 = HF(TMID∗

FS ||
CH1 || CRTCH || PSIDCH || mCTS2)
if CH∗

3 = CH3 valid
Computes TMIDnew

FS = TMID∗
FS ⊕

HF(PSIDCH || TMIDFS || mCTS2)
Evaluates session key SESSFS=H(TMIDnew

FS ||
LFS1 || CH1 || mCTS1 || mCTS2)

Uses current timestamp mCTS3

Performs verification of session key SESSVFS=h(SESSFS

||mCTS3)
Change TMIDFS and TMIDnew

FS
in th database
MSG3=SESSVFS ,mCTS3−−−−−−−−−−−−−−−−−−−→

(via open channel)

Verify | mCTS∗
3 - mCTS3 | < δT

Verify SESSVFS= HF (SESSVCH || mCTS3) if validated successfully
Change TMIDFS and TMIDnew

FS
in th database.
Verify both session key FS and CH
SESSVFS (=SESSVCH )

whether | mCTS∗
2 - mCTS2 | < δT is valid or not. if it

valid then FS checks for certificate CRTCH .BP=PBTAH
+

HF(PBCH || PBTAH
). Further, FS decrypts CH2 to finds

CH1= DRPRFS
(CH2). Furthermore, FS evaluates CH∗

3=
HF(TMID∗

FS || CH1 || CRTCH || PSIDCH || mCTS2)
and verify, if CH∗

3= CH3 then FS evaluates TMIDnew
FS =

TMID∗
FS ⊕ h(PSIDCH || TMIDFS || mCTS2) and

produces a session key SESSFS=HF(TMIDnew
FS || LFS1 ||

CH1 || mCTS1 || mCTS2) and sends to CH. Furthermore,
FS uses a current timestamp mCTS3 and performs ses-
sion key verification SESSVFS by SESSVFS=HF(SESSFS

||mCTS3) and changes the TMIDFS and TMIDnew
FS in

the database. Furthermore, FS produces acknowledgment
message as MSG3={SESSVFS , mCTS3} and shares to CH
via open channel.

Step-5: After delivery of acknowledgment message MSG3

at time interval mCTS∗
3 , then CH checks timestamp with

| mCTS∗
3 - mCTS3 | < δT is valid or not. Further, CH

checks SESSVFS= HF (SESSVCH || mCTS3). After suc-
cessful match, the CH establish a session key SESSVFS

(=SESSVCH ) to FS. Finally, CH changes TMIDFS and
TMIDnew

FS in the database securely. Table III illustrates the
authentication process of FSV and CSV .

B. Proposed Blockchain-based Trust Management Scheme

The proposed model consists of three layers namely the
IoV device layer, RSU layer, and cloud layer. The IoV device
layer is responsible for generating the health data of patients.
The correctness of the data must be checked before making
the entire system reliable. These collected data from the
IoV sensors can be noised, manipulated, and biased [24].
As the immutability feature of blockchain doesn’t guarantee
the risk of manipulation and malicious activities. The trust-
based blockchain framework can assure security and can
prevent malicious activities in the entire network. Moreover,
the framework incorporates a digital twin empowered secure
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Algorithm 1 IoV trust evaluation based on computation of Cr
1: procedure CREDIT SCORE(Tv)
2: Set Tr =0
3: Th= range(min, max)
4: Check Tv with Dataset (DS)
5: /*Compute Cr using Tv and Th */
6: if (Tv = Th) then
7: Tr +=1
8: else
9: Tr -=1

10: end if
11: /*Computation of Credit Score (Cr ) */
12: Cr = ((Tr )/10)/ NTx ), where NTx is no. of transactions.
13: /* Check if Cr for evaluation of trust */
14: if (Cr is valid) then
15: ”shared the transactions over the RSU nodes”
16: else
17: ”Discard the transaction and keep observation over the

IoV”
18: end if
19: end procedure

and trustworthy communication approach, capturing diverse
vehicular social features to enhance security and trust in
dynamic IoV networks. The system ensures fairness by imple-
menting an efficient mutual authentication and key agreement
scheme among IoV, RSU, and cloud servers, facilitating secure
communication with a common session key. Moreover, the
introduction of a blockchain-based credit-oriented trust man-
agement system transparently assigns reputation scores to IoV,
minimizing biases and errors in trustworthiness evaluations
within the network.

In this framework, we present a credit based trust system
where the credit score is evaluated against the IoV. The
highest credit score gets aligned with a high reputation in
the network and vice versa. The trust over the collected data
from IoV is computed via transaction patterns also known as
transaction values. The transaction values are matched against
the respective threshold also known as pattern. Based on
transaction value (Tv) the transaction score (Tr ) is computed
if Tv falls under the minimum or maximum range of threshold
or the pattern. The range is matched against the real-time
data collected over the IoV network scenarios. Further, Tr
is processed to compute a credit score (Cr ) of a respective
IoV. The high Cr gets treated as more trustworthiness and
vice versa. Based on the Cr the transactions are shared over
RSU nodes, otherwise, transactions get discarded from the
respective device. The computation of credit score is shown
in Algorithm 1.

C. Proposed Deep Learning Scheme for Intrusion Detection

The proposed DL-based IDS includes two modules; 1) First,
a data pre-processing module with three key stages is designed
and applied to the datasets. The underlying approach combines
a data perturbation-driven encoding (i.e., label encoding tech-
nique) and normalization-driven scaling (i.e., min-max scaling
technique) with an unsupervised generative DL architecture
i.e., Stacked Variational AutoEncoder (SVAE). The data pre-
processing module aims to first alter/convert and then learn

Algorithm 2 SVAE procedure for encoding DT data

1: procedure SVAE(Unlabelled dataset D={di}N
i=1,

training epochs = K)
2: Randomly Initialize parameters ϕ and θ
3: for epoch = 1→ K do
4: for i = 1→ N do
5: Draw N samples from dataset D = {di}N

i=1

6: Sample ∈ from the noise distribution ∈
∼ N(0, 1)

7: end for
8: Update gradients g according to Eq.1
9: Use g to update parameters ϕ and θ

10: Use g to update ϕ to update encoders weight
matrix Wq

11: Use g to update θ to update decoders weight matrix
Wp

12: end for
13: return An encoded dataset D̂ = {di}T

i=1 is obtained from the
trained encoder network qϕ(v|d)

14: end procedure

hidden patterns of DT without knowing the actual class labels
(i.e., anomalous or benign). 2) Second, the extracted and en-
coded/transformed data is fed to a multi-vector attack detection
module i.e., Attention-based Bidirectional Long Short-Term
Memory (ABiLSTM) for intrusion detection and identification.
This approach therefore decreases the dependency on passive
modes of threat detection that rely on the use of conventional
models of intrusion detection (i.e., database of signatures or
rules). Both modules working are explained below:

1) The Data Pre-processing module: In the data pre-
processing module, first, a data perturbation-driven encoding
technique is used in which the categorical variable is mapped
to numeric values using a label encoding technique. Then,
normalization-driven scaling is performed using the min-
max scaling technique. This process helps in filtering and
maintaining the analytical values of datasets. The details of
both steps are discussed in [6]. Finally, by using Algorithm 2
the SVAE technique is applied for encoding data. Variational
AutoEncoder (VAE) is a powerful probabilistic generative
technique for learning representations of high-dimensional
data. The VAE is trained by a set of adapted weights to encode
the input dataset D = {di}N

i=1, where d is the features and
N is the records, exclusive of the class labels into a hidden
representation. Next, the data codes are retrieved based on a
set of generative weights derived from the latent representation
of the data. Further, VAE assumes a latent variable v is used
to generate the data D. On v, we create a Gaussian prior
pθ(v) = N(v|0, 1), an encoder model qϕ(v|d) with ϕ as a
parameter, and a decoder model pθ(v|d) with θ as a parameter,
where N(0, 1) is the normal distribution with mean 0 and
variance 1. Universal function approximators, such as neural
network models [25], can be used for the encoder-decoder pair.
Using stochastic gradient descent g to optimize the variational
lower bound G on the marginal probability, the training dataset
D is utilized to estimate the model parameters ϕ and θ:

G
(
θ, ϕ; d(i)

)
= −D

KL

(
qϕ(v|d(i)) || pθ(v)

)
+Eqϕ(v|d(i))

[
log pθ

(
d(i)|v

)]
.

(1)
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Algorithm 3 The multi-vector attack detection from DT data

1: Input: Encoded Dataset D̂ = {di}T
i=1

2: Output: O =Normal → 0, Threat1 → 1, Threat2 → 2,
Threat3 → 3 and so on.

3: Divide D̂ into D̂Training and D̂Testing sets
4: D̂Training ′

= pre-processing
(
D̂Training

)
5: Add attention layer to BiLSTM using Eq. 14 to build ABiLSTM
6: for each BiLSTM layer K ∈ BiLSTM neural network do
7: for each cell ∈ BiLSTM layer K do
8: BiLSTMTrModel= Train BiLSTM Softmax

(
D̂Training ′

)
9: end for

10: end for
11: D̂Testing ′

= pre-processing
(
D̂Testing

)
12: while True do
13: ThreatPrediction = BiLSTMTrModel

(
D̂Testing ′

)
14: O = ThreatPrediction

15: return O
16: end while

−D
KL

denotes Kullback-Leibler (KL) divergence in Eq.1 and
can be analytically integrated since we conclude that both
the previous pθ(v) and the posterior approximation qϕ(v|d)
are Gaussian. KL divergence is a regularizer that applies the
prior pθ(v) on the estimated posterior qϕ(v|d). As long as
the batch size is large enough (e.g., 100), the log pθ

(
d(i)|v

)
expectation, which corresponds to a reconstruction error, can
be calculated with just one sample from qϕ(v|d(i)). We need
a reparameterization in order to sample from qϕ(v|d(i)). We
make a Gaussian isotropic statement such that

qϕ(v|d(i)) = N(v|µ(i), σ2(i) × I). (2)

where I is the identity matrix. The encoder function output
are µ(i) and σ(i). A reparameterization v = µ+σ⊙ ∈ can now
be used, the element-wise product is referred to as ⊙ and ∈∼
N(∈ |0, 1) is an auxiliary noise variable i.e., ∈. In addition,
we developed a stacked VAE (SVAE), in which multiple VAE
are cascaded, i.e., the previous layer’s hidden layer output is
used as the input of the following layer, and a layer-by-layer
greedy training strategy is used.

2) The Multi-Vector Attack Detection Module: Given the
encoded dataset D̂ = {di}T

i=1 i.e., D̂ = (d1, . . . , dt), hidden
vector sequence h = (h1, . . . , ht) and time step t ∈ [1, tf ],
for a specific time interval tf , one vector of the input data D̂
sequence is processed by Long-Short Term Memory (LSTM).
Based on the three gate architectures, i.e., input, forget, and
output gates, the LSTM architecture is built. The input gate
allows the information to be processed without disturbance
in each memory cell, and the output gate protects other
units from irrelevant data disturbances [26]. As for forgetting
units, it makes forgetting irrelevant information from memory.
Finally, the forget unit allows the memory to forget irrelevant
information. An LSTM network only considers the sequence’s
historical details and can capture the current state’s depen-
dency on the previous state (i.e., forward direction in context).
However, it can be helpful for many sequence learning tasks
to have access to both past and future contexts, especially for
the DT sequence data in the actual prognostic applications
[27]. The bidirectional LSTM (BiLSTM) at time t combines

a forward LSTM −→ that uses past information at time t − 1
and a reverse LSTM ←− that uses future information at time
t + 1 to process DT data. Algorithm 3 describes steps used
by the BiLSTM-based attack detection module. The transition
function is calculated using the below equations [28]:

−→
ht = f

(−→
dt ,
−−→
ht−1;

−−−−−→
ΘLSTM

)
(3)

←−
ht = f

(←−
dt ,
←−−
ht+1;

←−−−−−
ΘLSTM

)
(4)

The parameters
−−−−−→
ΘLSTM and

←−−−−−
ΘLSTM of BiLSTM are shared

and learned during the time steps.

it = σ (Widt + Hiht−1 + bi) , (5)

ft = σ (Wfdt + Hfht−1 + bf ) , (6)

zt = tanh (Wzdt + Hzht−1 + bz) , (7)

ct = zt ⊙ it + ct−1 ⊙ ft, (8)

ot = σ (Wodt + Hoht−1 + bo) , (9)

ht = tanh (ct)⊙ ot. (10)

The variables W(.) denotes the input weight matrix of back-
ward pass and variables W(.) of forward pass. The variable H(.)

and H(.) indicates weights between two consecutive hidden
states of forward and backward pass. The terms b(.) and b(.)
represent the bias term. The symbols σ and tanh are sigmoid
and tanh activation functions. The operator ⊙ defines element-
wise multiplication. The output y(t) is calculated using the
forward and backward functions.

y(t) = σy(
−→
ht ,
←−
ht). (11)

The function σy is capable of performing any of the four
operations—concatenation, multiplication, addition, and aver-
aging—and it concatenates the sequences of output neurons in
hidden layers. To enhance the performance of attack detection,
we incorporated an attention mechanism into our BiLSTM
model. Unlike standard BiLSTM networks that use their most
recent hidden state as output, a BiLSTM network with an
attention mechanism multiplies the hidden states by trainable
weights. The weight coefficient of the attention mechanism is
computed as follows:

ET = tanh (WW HT + BW ) (12)

AT =
exp (ET )∑N

I=1 exp (EI )
(13)

VT =

N∑
t=1

ET AT (14)

The essential characteristic of the BiLSTM layer’s output
vector HT at the T -th time is represented by the following
notations: ET , WW denote weight matrices, BW signifies bias,
and AT represents weighting factors. The output of attention
at time T is expressed as VT . An attention function with
ReLU activation, implemented through a fully connected layer,
processes the attention layer’s outputs. Subsequently, the in-
trusion is determined by the softmax activation function, and
the objective is assessed using categorical cross-entropy loss.
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Algorithm 4 Proof-of-Authority based consensus mechanism
to Verify and Create Block in Blockchain Network

1: State: CH ∈ IDCH List of miners,
2: CBk = (ABk , FBk ) ABk denotes local blockchain whereas FBk

denotes DAG block
3: br → Records of block
4: pr → Parents node of block
5: mr → verifies block and transactions of block
6: sr → new block addition in chain
7: dr → time to validate record of block
8: function INITIATE()z
9: while Valid do

10: sleep ← CTS / dr, CTS → Timestamp
11: if z ∈ CSV l ∧ sr mod |CSV l| == z then
12: br.pr ← lblock(CBk ) , lblock → last block
13: br.CSV ← FBk
14: br.sr ← sr
15: CBk ← (ABk ∪ br, FBk ∪ br.pr )
16: disseminate (CBk )
17: delay(dr)
18: end if
19: end while
20: end function
21: function CALULATESCORE(ABm , FBm )
22: returns UNIT512 MAX * depth(ABm , FBm ) - step-

number(ABm , FBm )
23: end function
24: function BLOCKDISSEMINATE(ABm , FBm )
25: if CalculateScore(ABm , FBm ) > CalculateScore(ABk , FBk )

then
26: CalculateScore(ABk , FBk ) ← CalculateScore(ABm , FBm )
27: end if
28: end function
29: function ISSUCCESSFUL(br)z
30: Vote← {brk.IoV | brk ∈ ABk ∧ brk.step >= br.step } return

(|V ote| * 2 > |CSV l|)
31: end function

D. Proposed Blockchain-based Transaction Writing Scheme

This phase includes verification and block creation over the
proposed framework. A legitimate IoV can generate transac-
tions in the network once it gets successfully validated using
a mutual session-based key agreement. Next, the transaction
gets validated using the PoA consensus mechanism, and the
block gets created by the miners (CSV ) and disseminated in the
network for verification. After successful verification by peer
nodes ((CSl )), the block gets appended into the blockchain
network. The block contains CBk = (ABk , FBk ) ABk denotes
local blockchain whereas FBk denotes DAG block. The block
creation is done after the majority of voting (more than 50% of
votes of peers). The details of block verification and creation
are shown in Algorithm 4.

III. PERFORMANCE ANALYSIS

In the process of implementing simulations for the newly
proposed STIoV (Secure Transactions in Internet of Vehicles)
framework, a high-performance Tyrone personal computer
was utilized. This computing system was equipped with dual
Intel CPUs, each clocking in at 2.20GHz, and an impressive
memory capacity of 128 GB RAM. For the deep learning (DL)
methodologies employed within the study, we leveraged the
capabilities of ”keras”, a specialized deep learning library that

TABLE IV: Adopted SVAE parameters

Component Configuration

Input Layer Features: 44 from Dα and
78 from Dβ datasets

Encoder
Hidden Layers: 2
1) Layer 1: 128 nodes, tanh activation
2) Layer 2: 32 nodes, tanh activation

Decoder
Hidden Layers: 2
1) Layer 1: 32 nodes, tanh activation
2) Layer 2: 128 nodes, tanh activation

SVAE Model Loss Function: ’kullback leibler divergence’,
Epochs: 10, Optimizer: ’adam’, Batch Size: 50

TABLE V: Adopted ABiLSTM-based attack detection param-
eters

Component Configuration
Input Layer Features encoded using SVAE technique

Hidden layers

Number of Layers: 5
1) Layer 1: 256 nodes,
2) Layer 2: 128 nodes,
3) Layer 3: 64 nodes,
4) Layer 4: 32 nodes,
5) Layer 5: 16 nodes,
Dropout Rate: 0.2,
Activation Function: relu.

Output layer
Units: 10 (1 normal and 9 attack for Dα),
11 (1 benign and 10 attack for Dβ ),
Activation Function: softmax

ABiLSTM Model

Loss Function: ’categorical crossentropy’,
Optimizer: ’adam’,
Number of Epochs: 10,
Batch Size: 50

operates on top of the ”TensorFlow” framework. Moreover,
to effectively design the smart contract module integral to the
research, we opted for the ”Ethereum Rinkeby” test network
– a well-recognized platform in the blockchain domain. Off-
chain data storage requirements were facilitated using the
InterPlanetary File System (IPFS), specifically the 0.4.19 ver-
sion. The core objective was to evaluate the performance of the
STIoV framework. To this end, two distinct IoT-based intru-
sion datasets were adopted: ToN-IoT (Dα) [29] and CICIDS-
2017 (Dβ) [30]. Comprehensive details, characteristics, and
structures of both datasets can be explored in the study
[31]. Before feeding the data into our models, a significant
preprocessing stage was conducted on both datasets. The
methods and techniques for this preprocessing are detailed in
[31]. After these preliminary steps, the datasets were system-
atically divided, allocating 70% for training purposes and the
remaining 30% for testing to ensure a robust evaluation.

A. Implementation results for blockchain-based schemes

The blockchain result analysis is shown in Fig. 2, where
registration time, block mining time, and block creation time
are computed. The registration time of IoV via the network
is shown in Fig. 2(a), and it is clear that the registration time
grows with the number of IoV. Figures 2(b), 2(c), and 2(d)
illustrate block mining, block creation, and block access times
for different numbers of peers and varying numbers of IoV.
It is clear that when there are more devices or transactions
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(a) Registration Time of IoMT Nodes (b) Block Mining Time for Varying Number of Transactions (c) Block Creation Time for Varying number of transactions

(d) Block Access Time for Varying number of Transactions (f) Non Repudiation Time for Varying number of transactions(e) Contract Deployment Time for Varying number of transactions

(g) Transaction Upload Time over IPFS Storage Layer (h) Gas Consumed for Varying number of Transactions (i) Off-chain Storage Size (in KB) over IPFS 

Fig. 2: Blockchain Result Analysis

taking place on the network, each process’s execution time
lengthens. The contract deployment time is shown in Fig. 2(e).
This procedure guarantees the timely completion of various
smart contract processes. The non-repudiation time for various
peer counts and transaction volumes is shown in Fig. 2(f). It
is apparent that as there are more transactions in the network,
the execution time is escalating significantly. The transaction
upload time across the IPFS storage layer is depicted in Fig.
2(g). As the number of transactions rises, it is apparent that
the execution time does as well. The time required to use gas
for various numbers of networked transactions is shown in
Fig. 2(h). The time required to consume gas is approximately
the same for transactions with a low volume, but increases for
transactions with a high volume. The amount of the transaction
off-chain storage in KB is shown in Fig. 2(i). It is clear that the
execution time and storage rely on the quantity of transactions
uploaded to the safe storage layer of IPFS.

B. Implementation results for DL-based IDS

A data perturbation-driven encoding and normalization-
driven scaling with a DL-based SVAE technique is designed

and applied in the data pre-processing module. This method
filters, and encodes data into a new format, and retains
the analytical values of both datasets. The adopted hyper-
parameters for executing SVAE are illustrated in Table IV.

The proposed data pre-processing module efficiency is
evaluated by designing a utility system i.e., an ABiLSTM-
based attack detection module. The performance is compared
in two scenarios, i.e., with actual (i.e., before applying data
pre-processing module) and transformed (i.e., after applying
data pre-processing module) Dα [29], and Dβ [30] datasets.
We have evaluated the results based on a multi-vector attack
scenario for both datasets. The evaluation metrics such as ac-
curacy vs loss, class-wise prediction, and confusion matrix are
used to evaluate the performance of the proposed framework.
Table V shows the adopted hyper-parameters in designing an
ABiLSTM-based attack detection module.

1) The Accuracy vs Loss metric: First, we have used the
accuracy vs loss evaluation metric to measure performance.
Fig 3 and Fig 4 illustrate accuracy vs loss ABiLSTM-based
attack detection module, after and before applying data pre-
processing module using Dα and Dβ datasets. The accuracy
vs loss for the ABiLSTM-based attack detection module using
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Fig. 3: The Accuracy vs loss for ABiLSTM-based attack
detection module with transformed Dα dataset
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Fig. 4: The Accuracy vs loss for ABiLSTM-based attack
detection module with transformed Dβ dataset

the actual Dα dataset is 99.07% and 0.0388% respectively,
whereas the accuracy vs loss for the modified dataset is
99.09% and 0.0312%. Similarly, with the actual Dβ dataset,
the obtained values are 98.73% and 0.0285%, respectively,
whereas with the modified dataset, they are 98.49% and
0.0260%.

2) Confusion Matrix: The Confusion Matrix (CM) summa-
rizes the number of records that the proposed scheme detects
correctly or incorrectly. The Overall CM is formed based
on all attack and normal classes. Misclassified vectors are
represented by off-diagonal elements in CM. The instances
in a predicted class are displayed in each column, and the
instances in an actual class are displayed in each row inside the
CM. In a multi-attack scenario, Fig 5 shows the CM obtained
using transformed Dα and Fig 6 shows the CM obtained using
transformed Dβ datasets. The CM reveals that performance
based on Dα dataset is outstanding. However, for two attack
groups (i.e., Bot and Web attack) of Dβ dataset, the attack
detection module has not performed well. This is due to the
lower training instances present in the dataset. Overall, for both
datasets ABiLSTM-based attack detection module has shown
remarkable results.

C. Comparative analysis with baseline algorithms

Based on two datasets i.e., Dα and Dβ , the performance
of ABiLSTM-based attack detection module is compared to
peer ML methods such as Decision Tree (DT), Random Forest
(RF), and Naive Bayes (NB) in multi-class attack detection.
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Fig. 6: Confusion matrix with transformed Dβ dataset

Table VI and VII illustrate multi-class DR comparison with
peer ML techniques. It shows that for the majority of the
attack vectors present in Dα dataset the DR is on an average
between 91%− 100%. The ABiLSTM-based attack detection
module has not done well for Bot and Web attacks when
utilizing the Dβ dataset, though. This is a result of the dataset’s
lower instance count. Fig 7a and Fig 7b shows AC, PR, DR
and F1 values obtained by ABiLSTM-based attack detection
module as 99.07%, 99.15%, 97.8%, 97.74% with actual and
99.09%, 99.37%, 96.72%, 96.89% with transformed Dα, and
98.73%, 88.59%, 83.92%, 84.88% with actual and 98.49%,
92.11%, 81.37%, 82.98% with transformed Dβ datasets re-
spectively. The proposed ABiLSTM-based attack detection
module clearly outperforms the existing baseline schemes, as
evidenced by the results.
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TABLE VI: Multi-vector DR (%) comparison against baseline algorithms based on Dα dataset

Techniques Backdoor DDoS DoS Injection MITM Normal Password Ransomware Scanning XSS
DT 100.00 100.00 100.00 0.00 0.00 100.00 100.00 100.00 100.00 100.00
RF 99.98 90.40 91.97 93.53 0.00 100.00 97.81 99.40 95.74 85.47
NB 99.22 26.80 91.70 92.96 95.11 100.00 75.32 79.98 96.91 19.02

ABiLSTM (with Actual) 99.73 93.95 99.34 93.82 99.39 100.00 97.62 99.98 97.01 97.20
ABiLSTM (with Transformed) 99.12 91.43 95.66 97.48 87.65 99.99 98.78 99.91 99.66 97.61

TABLE VII: Multi-vector DR (%) comparison against baseline algorithms based on Dβ dataset
Techniques BENIGN DoS Hulk DDoS PortScan DoS GoldenEye FTPPatator DoS slowloris DoS Slowhttptes SSHPatator Bot Web Attack

DT 100.00 90.00 99.00 97.00 66.00 99.00 35.00 0.00 97.00 0.00 0.00
RF 100.00 95.00 100.00 97.00 50.00 72.00 0.00 55.00 0.00 0.00 0.00
NB 55.00 89.00 98.00 50.00 99.00 100.00 60.00 77.00 97.00 76.00 08.00

ABiLSTM (with Actual) 99.77 95.54 98.47 77.51 93.85 99.56 96.90 98.15 96.54 64.65 02.55
ABiLSTM (with Transformed) 99.07 99.53 99.12 80.18 96.87 98.82 95.06 92.49 96.54 34.58 03.00

(a) Overall performance comparison
based on Dα dataset

(b) Overall performance comparison
based on Dβ dataset

Fig. 7: Comparison of performance with baseline algorithms

TABLE VIII: Comparison of performance with state-of-the-art
methods.

Authors Technique Dataset Accuracy
Singh et al. [32] DaaS UNSW-NB15 95.00%
Singh et al. [33] DBM KDD99 88.59%

Alsaedi et al. [34] CART Dα 77.00%
He et al. [35] DVB KDD99 91.95%

Wang et al. [36] TS-PADM Internet ads 97.45%

Poposed Work ABiLSTM

Dα (Original) 99.07%
Dα (Transformed) 99.09%

Dβ (Original) 98.73%
Dβ (Transformed) 98.49%

Terms & Abbreviations: DaaS: Dew Computing as a Service, DBM: Deep
Boltzmann Machine, CART: Classification and Regression Trees, DVB:
Distributed Variational Bayes, TS-PADM: Time Series Probability statistics-
based Anomaly Detection Model.

D. Comparisons with state-of-the-art approaches

Table VIII compares the proposed ABiLSTM-based attack
detection module to existing state-of-the-art methods in terms
of accuracy. It can be seen that most current methods employed
obsolete data sources such as KDD99, UNSW-NB15, and
Power-dataset, which do not involve new attacks and hence
have less significance in designing effective attack detection
modules. Two different sources i.e., Dβ and Dα are used to
assess the performance of our work. Furthermore, we can
observe that, when compared to [32], [34], [33], [35], [36],
the ABiLSTM-based attack detection module has the highest
accuracy with both original and modified datasets. We suggest
multiple viewpoints based on its potential design to reveal why
the ABiLSTM-based attack detection module showed better
results and outperforms other techniques for protecting DT
data and identifying abnormal behaviours. First, by converting
DT data into another format, the data pre-processing module
can filter and transform data in an unsupervised manner, and

second using the encoded data to validate threat detection
using the ABiLSTM technique is an example of measuring
the effectiveness of the attack detection system.

IV. CONCLUSION

In this article, we explored the IoV network and introduced
a new communication framework called STIoV, which is pow-
ered by digital twin technology to ensure security and trust-
worthiness. We mapped physical RSU networks into a virtual
environment to create a vehicular relationship model between
IoV. Additionally, we proposed a mutual authentication and
key agreement scheme to make sure IoV communication is
secure and strong. To achieve transparent trust evaluation, we
also suggested a new blockchain-based credit-oriented trust
management system. The DT model was used by the proposed
DL-based IDS to detect intrusion. Lastly, we proposed a
novel blockchain-based transaction writing scheme where the
cloud server writes transaction value into a blockchain to
guarantee privacy and integrity. In future work, we plan to
deploy proposed framework on a real-world DT-empowered
IoV network, and test and improve our method on the main
Ethereum network.
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