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Abstract—Limited edge server resources and uneven distribu-
tion of traffic density in vehicular networks result in problems
such as unbalanced network load and high task processing
latency. To address these issues, we proposed an efficient caching
and offloading resource allocation (ECORA) strategy in vehicular
social networks. First, to improve the utilization of vehicular
idle resources, a collaborative computation and storage resource
allocation mechanism was designed using mobile social simi-
larity. Next, with the optimization objective of minimizing the
average task processing delay, we studied the combined resource
allocation optimization problem and decoupled it into two sub-
problems. For the service caching subproblem, we designed
a stable matching algorithm by mobile social connections to
dynamically update the cache resource allocation scheme for
improving the task unloading efficiency. For the task offloading
subproblem, a discrete cuckoo search algorithm based on differ-
ential evolution was designed to adaptively select the best task
offloading scheme, which minimized the average task processing
delay. Simulation results revealed that the ECORA strategy
outperformed the resource allocation strategy based on particle
swarm optimization and genetic algorithm, and reduced the
average task processing delay by at least 7.59%. Meanwhile, the
ECORA strategy can achieve superior network load balancing.

Index Terms—Cuckoo algorithm, resource allocation, task
offloading, vehicular social networks.

I. INTRODUCTION

With the rapid development of 5G communication technolo-
gies, novel compute-intensive and latency-sensitive mobile ve-
hicular services have attracted considerable research attention
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for applications such as remote driving, environmental aware-
ness, and 4K live streaming [1]–[5]. Mobile Edge Computing
(MEC) is used in the Internet of vehicles can reduce the
transmission distance, improve user experience, and enhance
resource allocation efficiency [6], [7]. Therefore, studying
the resource allocation strategy for vehicular networks is
crucial [8]–[11]. However, considering the rapid increase in
the number of intelligent connected vehicles and data traffic
in the future, the limited edge server resources render timely
response to the massive task requests from vehicle users
difficult. Therefore, the resource allocation efficiency of edge
server is reduced, and task processing delay is considerably
affected, which renders the design of the resource allocation
algorithm challenging [12]–[16].

Recently, multi-edge server collaboration have attracted
considerable research attention [17]. In this technique, multiple
edge servers collaborate to perform computing tasks, including
scheduling storage and computing resources, to maximize
network performance and resource utilization [18]–[20]. Based
on superior edge server collaborations, a new cooperation
system should be considered to integrate and use the idle
computing resources in intelligent networked vehicles [21].
Thus, the original available resources in the server collabora-
tion system should be extended to optimize the quality of the
user experience. According to the global intelligent connected
vehicle forecast report (2020-2024) released by International
Data Corporation (IDC), the global shipments of intelligent
networked vehicles will reach approximately 76.2 million units
by 2024 [22]. More than 71% of new cars shipped globally
will be equipped with smart connectivity systems. Full use of
the idle resources of a large number of intelligent networked
vehicles will relieve the resource shortage of the Internet of
vehicles, enhance the scalability of the computing services,
and improve the service quality of vehicle users.

However, research on edge server and vehicle collaborative
resource allocation has some key problems. First, in most
studies, only the task unloading process between mission ve-
hicles, edge servers, and collaborative vehicles in the Internet
of vehicles is analyzed, and the effect of the collaborative
vehicle service caching process on task unloading is ignored.
Specifically, cooperative vehicles exhibit sufficient computing
resources. However, if the cooperative vehicles do not ex-
hibit cache-related services, it cannot perform corresponding
computing tasks. Thus, this phenomenon leads to the inad-
equate utilization of the computing resources of cooperative
vehicles. Second, because of the limited storage resources of
collaborative vehicles, only a few services can be cached at a
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time. Considering the task between vehicle unloading request
is random and the inability to perform advance prediction, the
current allocation of resources process should be overhauled
to incorporate an intelligent caching mechanism to perceive
mobile social connections between the vehicles. Finally, in the
Internet of vehicles, the task load and resource status of various
edge servers change with the vehicle flow density, speed, and
other factors. Therefore, the influence of vehicle movement
can be attributed to load balancing among edge servers should
be considered.

This study proposed an efficient caching and offloading
resource allocation (ECORA) strategy in vehicular social
networks. Unlike existing studies, this study focuses on re-
source allocation of joint service caching and task offloading
between vehicles and mobile edge servers, in the cooperative
communication scenario. To realize edge server load balancing
and improve the utilization rate of idle resources of intelligent
networked vehicles, we comprehensively analyzed the influ-
ence of social contact and motion state between vehicles on
service caching and task unloading process. We propose a
stable matching algorithm based on mobile social contact and
a discrete cuckoo search algorithm based on differential evo-
lution. This strategy supports dynamic update and allocation
of cache resources and assists the vehicle to adaptively select
the best task unloading location. Thus, the service quality can
be improved, and the average task processing delay can be
reduced. The main contributions are summarized as follows.

• A social vehicle communication system model combin-
ing service caching and task unloading was designed.
By using multi-edge servers and vehicle cooperation to
allocate resources, it realized network load balancing and
optimized the efficiency of idle resources allocation.

• An efficient caching and offloading resource allocation
strategy in vehicular social networks was proposed. In
this strategy, the average task processing delay is min-
imized for achieving high service quality and the NP-
hard resource allocation problem of joint service cache
and task unload are categorized into two sub-problems
of service cache and task unload. To address the sub-
problem of service cache, a stable matching algorithm
based on mobile social contact was designed. To address
the task unloading subproblem, a discrete cuckoo search
algorithm based on differential evolution was designed.

• Our results revealed that compared with the particle
swarm optimization (PSO) [23] and genetic algorithm
(GA) strategies [24], the ECORA strategy reduced the
average task processing delay by at least 7.59% and
9.98% with improved network load balancing.

II. RELATED WORK

Considering that the limited resources of conventional edge
servers cannot timely process the computing task requests of
numerous vehicle users, the collaborative resource allocation
of multiple edge servers has attracted considerable research
attentions [25]–[28]. For example, Zhu et al. [29] proposed
a collaborative resource allocation strategy for multiple edge
servers. Specifically, in this strategy, the total energy con-
straint and individual energy constraint of each server as

well as the limitation of individual computing frequency
are considered and when to unload the corresponding task
to the specified server is determined. Thus, the task pro-
cessing delay can be minimized. Guo et al [30] proposed
an uninstallation strategy based on game theory for multi-
edge server cooperation scenarios. By studying the stable
balance among computation cost, energy consumption and
delay, they reduced energy consumption and processing delay.
Mao et al. [31] proposed a task unloading mechanism for
Internet of Vehicles based on trusted RSU services, built
a new infrastructure trust management model. According to
introduce social factors to strengthen the security management
of RSU, it can improve the system’s ability to handle task
unloading when attacked and maintain low delay and high
task success rate. Furthermore, Wang et al. [32] proposed a
collaborative resource allocation strategy between edge cloud
and central cloud. They classified tasks into according to
priorities based on delay tolerance and subsequently reordered
the tasks. The reinforcement learning algorithm was used to
intelligently allocate local edge server resources and cloud
resources, thus optimizing the service quality of vehicle users.
Yin et al. [33] designed a UAV assisted multi-input multi-
output non-orthogonal multi-access (MIMO-NOMA) resource
allocation strategy based on the wireless caching network, and
optimized the UAV deployment scheme, hybrid beamforming
scheme and power allocation scheme to achieve lower user
delay during content delivery. Many studies have focused on
maximizing the use of computing resources by building edge
server clusters to reduce computing overhead and latency [34]–
[36]. However, in the aforementioned study, the allocation of
resources of edge servers is considered, and the computing and
storage resources of intelligent networked vehicles are ignored.
Moreover, as the number of vehicles and requests increases,
the limited resources of edge servers cannot satisfy the service
user requirement.

Due to the increasing demand of vehicular networks for
resources related to computing and caching, in this case, each
vehicle has different types of resources, and these resources
can be shared independently, how to flexibly allocate resources
among multiple vehicles is challenging. Pradhan et al. [37]
proposed a semi-Markovian decision based resource alloca-
tion mechanism to manage resources from different vehicles
and allocate necessary resources to their users on demand
to improve resource management revenue. Kim et al. [38]
proposed an optimal job partitioning and allocating algorithm
for vehicular cloud computing, which minimized the overall
execution time of jobs by tracking available resources, analyz-
ing the optimal number and size of task division. Considering
the high mobility of vehicles, when vehicles frequently join
or leave the mobile network, the risk of communication link
failure and communication overhead will be greatly increased,
and the efficiency of resource sharing will be reduced. Gu et
al. [39] proposed a novel three-stage joint resource allocation
and RIS optimization algorithm. Considering channel quality
and social trust between V2X links, they established a RIS
assisted vehicular network communication system with social
trust. Thus, solving RIS reflection coefficient design, power
allocation of each pair of vehicles and spectrum reuse mode
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optimization in stages. Huang et al. [40] proposed a task
offloading and resource allocation strategy based on joint task
type and speed perception. Considering that different types
of tasks and speed need different delay requirements, further
analyzed the internal relationship among speed, task type and
delay requirements, and established a joint task type and speed
perception delay constraint model. Enables more accurate task
offloading and resource allocation. The above research focuses
on the consideration of multi-vehicle cooperation to assist the
vehicular networks to carry out the task unloading process,
which can not effectively take advantage of the rich resources
of MEC. If the vehicle requests to unload too many tasks, the
resources of the edge server can not work together to execute
the tasks, the sum of the computing requirements of these tasks
may exceed the total computing resources of the multi-vehicle
collaborative system. Such problems will lead to the overload
of multi-vehicle cooperative system and the deterioration of
QoS of tasks.

Numerous studies have been conducted to alleviate the
limited resources of the Internet of vehicles, enhance vehicular
networks computing service scalability as well as computing
power. In the current research, multi-edge server and multi-
vehicles can cooperate to allocate resources using idle re-
sources of vehicles [23], [24], [41], [42]. Thus, effectively
satisfying the new generation vehicle computational and delay
sensitive business service requirements is critical. For example,
Li et al [24] proposed a novel resource allocation strategy
based on GA in multi-user and multi-edge server scenarios. In
this strategy, the interaction between unloading decision and
resource allocation is analyzed comprehensively, and reduce
the energy consumption in the unloading decision process by
using the GA to constrain the channel selection and power
allocation. Hou et al. [23] proposed a resource allocation strat-
egy based on PSO for cooperation between mobile vehicles
and edge computing nodes. The strategy describes the effect of
compute node selection on transmission link reliability during
uninstallation and task assignment. Xu et al. [43] proposed
a short-term resource allocation strategy for content provider
(CP) and content requester (CR), which used the contract
theory to allocate communication and computing resources for
each potential CP-Cr pair and matched CP and CR based on
a stable matching algorithm. Thus, realizing efficient content
sharing between vehicles or between vehicles and infrastruc-
ture. A PSO algorithm was designed to maximize transmission
link reliability under delay constraints. A reprocessing strategy
was introduced to prevent possible task computing interruption
and failure, which enhances the fault tolerance of system task
processing and optimizes user service experience. To alleviate
the shortage of spectrum resources, vehicles can not only
communicate through the licensed spectrum, but also consider
offloading part of the computing tasks to the edge server
through the unlicensed spectrum. Furthermore, to address the
uncertainty of vehicle movement and improve service reliabil-
ity, a task replication strategy was proposed to allow multiple
cooperative vehicles to perform a task simultaneously [37],
[39], [44]. The aforementioned studies have focused on the
task unloading process in the scenario of cooperation between
vehicles and edge servers, without considering the effect of

the service caching process on resource allocation. The service
caching process is combined with the task unloading process,
and the cooperative vehicle cannot perform corresponding
computing tasks without caching related services. Moreover,
most of the work ignores the mobile social connection between
the cooperative vehicle and the mission vehicle. For example,
the initiative of the cooperative vehicle’s service cache and
its willingness to assist the unloading task are not considered.
In this case, the cooperative vehicle has a high probability of
rejecting the unloading request and the communication link
established is short in duration. This will lead to the reduction
of task unloading efficiency and the decline of vehicle service
quality. Therefore, it is critical to joint optimize the task unload
and service caching.

III. SYSTEM MODEL AND DEFINITIONS

In this study, we proposed an efficient caching and offload-
ing resource allocation strategy in vehicular social networks.
First, we establish a social vehicular communication system
model combining service caching and task unloading (Fig. 1).
As displayed in Fig. 1(a), the model contains two layers,
namely the physical and mobile social layers. The physical
layer consists of several roadside units (RSU), edge servers,
mission vehicles, and collaborative vehicles, which can es-
tablish communication, service caching, and task unloading.
The mobile social layer is mapped by the physical layer and
used to determine willingness based on social relations, mobile
relevance, and resource idle rate. Thus, willingness of the
vehicles to collaborate on resource allocation, service caching
and task offloading, as well as between vehicles and edge
servers is considered.

As displayed in Fig.1.(b), the model consists of M mis-
sion vehicles, N collaboration vehicles, and K roadside
units (RSUs), and edge servers deployed at the RSUs. Here,
the collection of mission vehicles is referred to MV =
{MV1,MV2, ...,MVm, ...,MVM}, which is used for unload-
ing tasks to RSUs (or cooperative vehicles) within the commu-
nication range. A collection of collaborative vehicles, known
as CV = {CV1, CV2, ..., CVn, ..., CVN}, provides computing
resources to complete the tasks of mission vehicles. In this
study, RSUs and edge servers configured around them are
regarded as a whole, denoted as access points (APs), and their
set is represented by AP = {AP1, AP2, ..., APk, ..., APK}.
The AP has lightweight computing and caching resources
that place the caching service on the collaborative vehicle
and provide computing resources to complete the tasks of the
mission vehicle. Furthermore, the total local storage resource
size of MVm is set to Sm, and the total local computing
resource size is set to Cm. The local total storage resource
size of collaborative vehicle CVn is defined as Sn, and the
local total computing resource size is defined as Cn. The total
local storage resource size of APk is defined as Sk, and the
total local computing resource size as Ck.

In the mobile social layer, this layer consists of the physical
layer mapping, as well as multi-mission vehicles, collaborative
vehicles, RSUs, and edge servers deployed at the RSUs.
Among them, the mission vehicle can determine whether the
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(a) (b)

Fig. 1. ECORA system model.(a).social vehicular communication system. (b).Physical layer of social vehicular networks communication system.

cooperative vehicles and RSUs can unload the task and return
the result according to the mobile social relationship. RSU can
determine whether collaborative vehicles are willing to cache
service data and related applications according to mobile social
relations. Furthermore, RSU can determine whether edge
servers of other RSUs are willing to cooperate to complete
computing tasks. The system model can provide F service
cache resources, and SRf , f ∈ {1, 2, ..., F} represents the
size of the f kinds of service caching resources.

In this study, the total bandwidth of the available spectrum
in the system model is assumed to be W , which is categorized
into several orthogonal sub-channels, and the bandwidth of
each subchannel is B0. Each V2V link can reuse one V2I
subchannel resource for data transmission. All service APs
and cooperative vehicles are assumed to constitute a set SD,
and SD = {SD1, SD2, ..., SDy, ...}, Y ∈ {CV ∪ AP},
y ∈ Y , where SDy represents the yth collaborative vehicle
(or access point) in the set that provides the service. Tasks
generated by the MVm of the mission vehicle can be unloaded
to cooperative vehicle CVn, associated access point APk, and
cooperative access point APk′ . Therefore, studying the MVm
unloading task process based on three situations is critical.

A. Service Caching Mechanism

When the access point and the collaborative vehicle provide
services to the mission vehicle, the corresponding services
should be cached locally in advance. Because of the limited
cache resources of collaborative vehicles, all services cannot
be cached locally simultaneously. Therefore, at the beginning
of each time slot, the access point determines the services the
collaborative vehicle should cache based on popularity. Here,
popularity ρ is defined as the popularity of different contents
within a certain interaction time, following Zipf distribution
and expressed as follows:

p(f) =
f−α∑F
f=1 f

−α
, f ∈ F, (1)

where parameter α describes the steepness of the Zipf distribu-
tion and reflects the popularity of various contents. Assuming
that St = {St

y, y ∈ Y } represents the service caching policy
of all cache devices in the t slot, and considering that the
access point can directly obtain the cache content from the
core network, and the transmission time is ignored. Here,
St
y,y∈AP = 1 means all APs in the t slot can provide all

cache resource services. Furthermore, St
y,y∈CV represents the

service caching strategy of t slot cooperative vehicles.
St
y,f ∈ {0, 1}, y ∈ CV is defined to represent the CVy

cache resource allocation strategy in the t slot. For represen-
tation, the variable t representing the time slot is ignored for
caching and unloading the following policies. Furthermore,
Sy,f = 1 indicates that the f th service resource was cached by
cooperative vehicle CVy in the t time slot, whereas Sy,f = 0
denotes that the f th service resource was not been cached by
cooperative vehicle CVy in the t time slot. When CVy caches
service resources, it cannot violate its own cache capacity
limit Zy . Therefore, the constraint conditions for collaborative
vehicle CVy to cache service resources are as follows:

F∑
f=1

Sy,f · SRf ≤ Zy, ∀y ∈ CV. (2)

However, the popularity of service resources can change
over time. Therefore, cooperative vehicles consider whether
to replace cached content at each time slot. When a new data
packet arrives, the cooperative vehicle determines whether its
remaining cache capacity is greater than the packet capacity.
If the remaining cache capacity is sufficient, the data packet
is saved. Otherwise, the existing cache services are sorted
quantitatively by popularity, and the cache services with low
popularity are deleted in batches to replace the new data
packets with high popularity.

Furthermore, to avoid overloading the access point and en-
sure CVn can determine whether the desired service cache data
can be downloaded from APk, we introduced an NK ×NN -
dimensional matrix B. Here, bk,n represent the elements in the
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kth row and nth columns of the matrix. Furthermore, bk,n = 1
indicates that collaborative vehicle CVn can communicate
with APk and download service resources, whereas bk,n = 0
denotes that collaborative vehicle CVn cannot communicate
with APk and download service resources. Because of the
limited load of the APk, the APk cannot violate its own
maximum connection number limit Λ when providing cache
resources. Therefore, the APk should satisfy the following
constraints when providing service cache:

N∑
n=1

bk,n ≤ Λ. (3)

B. Task Offloading Mechanism

Each mission vehicle is assumed to generate a computa-
tional task in each time slot, and the mission vehicle prioritizes
unloading the task to the cooperative vehicle with the best
channel quality within the communication range. Furthermore,
the time required for the access point to download the cache
service of the core network through optical fiber is ignored,
and the default access point can cache all services. If the
cooperative vehicle associated with the mission vehicle has
insufficient resources or does not cache the required services,
the mission vehicle offloads the computing task to the access
point. Furthermore, if the access point associated with the
mission vehicle has insufficient resources, the access point
unloads the computing task to another access point. Therefore,
at the beginning of each time slot, the mission vehicle should
determine the unloading position of the task according to the
idle rate of resources, social relations, and mobility relevance.

First, the idle rate of computing resources is defined as ρfy ,
which represents the proportion of idle computing resources
to the total computing resources in SDy , that is, ρfy = ρey/Cy ,
(y ∈ Y ). Here, ρey indicates the size of idle computing
resources of SDy , Cy indicates the total local computing
resource size of the SDy .

Here, Am,y is defined as the computing resource allocation
strategy, which is used to indicate whether the mission vehicle
MVm unloads the task at SDy . Furthermore, Am,y = 0
indicates that MVm is not unloaded from SDy , whereas
Am,y = 1 indicates that MVm unloads tasks from SDy .
In each time slot, mission vehicle MVm can select only one
unloading position to perform the unloading task. Therefore,
constraint conditions should be satisfied as follows:
Y∑

y=1

Am,y =

N∑
n=1

Am,n+

K∑
k=1

Am,k+

K∑
k=1

K∑
k′=1,k′ ̸=k

Am,k,k′ = 1

(4)
where Am,n is a binary variable, which is used to indicate
whether MVm unloads the task at CVn, Am,k is a binary
variable used to indicate whether MVm unloads the task at
APk, Am,k,k′ is a binary variable used to indicate whether
MVm unloads the task at APk′ associated with APk.

To ensure that the mission vehicle preferentially selects the
cooperative vehicle (or access point) associated with itself to
unload the task, the idle rate threshold ρfth is set. Thus, the
times of cooperation and related costs are reduced consider-
ably. At this stage, the constraint conditions for the mission

vehicle to select the cooperative vehicle (or access point) to
unload the task are denoted as (5), where if a cooperative
vehicle computing resource idle rate ρfy is greater than the
given threshold ρfth, and the cooperative vehicle has cached the
corresponding service content. Next, MVm selects the unload
task of the cooperative vehicle. If the ρfy of any cooperative
vehicle is lower than the specified threshold, and the ρfy of the
access point associated with MVm is greater than the specified
threshold, MVm unloads the task at the access point.

Furthermore, if the computing resource idle rate ρfy of any
cooperative vehicle is lower than the specified threshold, the
computing resource idle rate ρfy of the access point associated
with MVm is lower than the specified threshold, and the
computing resource idle rate ρfy of an access point is greater
than the specified threshold ρfth. Then MVm selects the access
point to unload the task. If none of the aforementioned
conditions is satisfied, MVm stops the unloading task request
and waits for the emergence of the cooperative vehicle (or
access point) SDy that meets the unloading requirements in
the next time slot.

However, in vehicular networks, multiple SDy that satisfy
the requirements exist when mission vehicle MVm chooses
unloading task according to constraints. At this stage, MVm
can score and sort cooperative vehicles (or APs) that satisfy
the requirements according to social relationship, mobility
association, and idle rate of computing resources. Then MVm
selects high-quality cooperative vehicles (or APs) with high
social mobility similarity to unload tasks.

Furthermore, the social relationship between MVm and
cooperative vehicle (or AP) SDy can be expressed by interest
similarity and social trust degree. The similarity of interest
can be defined as the social content similarity of historical
browsing between MVm and SDy (the connection duration
of interaction service and the number of interaction service
resource). Users with high interest similarity are often more
likely to share data in the future. Let

−→
Ifa = (Ifa1, I

f
a2) be the

interest feature vector of the users, where
−→
Ifm represents the

interest feature vector of the MVm,
−→
Ify represents the interest

feature vector of the SDy . Cosine similarity is used to measure
the interest similarity Sm,y between SDy and MVm, which
is expressed as follows:

Sm,y =

∑F
f=1(

−→
Ifm ·

−→
Ify )∑F

f=1(||
−→
Ifm|| × ||

−→
Ify ||)

. (6)

We used the intermediary centrality to measure the degree
of social trust between MVm and SDy . Here, dots represented
MVm and SDy . Edges represented the social connection
between MVm and SDy . Therefore, we can develop mobile
social relationship networks and calculate the intermediary
center based on this network. The degree of social trust
between MVm and SDy can be expressed as follows:

Bm,y =
∑

m,y∈V

gm,y(e)

Gm,y
, (7)

where Gm,y represents the number of shortest paths between
MVm and SDy , gm,y(e) represents the number of paths
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Am,y = 1, {pfy ≥ pfth, y ∈ CV } ∪ {Sy,f = 1}
Am,y = 1, {pfy < pfth, y ∈ CV } ∪ {pfy ≥ pfth, y ∈ AP and associated with (a.w.)MVm}
Am,y = 1, {pfy < pfth, y ∈ CV } ∪ {pfy < pfth, y ∈ AP and a.w.MVm} ∪ {pfy ≥ pfth, y ∈ AP and not a.w.MVm}
Am,y = 0, otherwise

(5)

containing edges with a weight of e, and V represents the
number of points. To facilitate calculation, the normalized
social trust can be expressed as follows:

Bm,y =
Bm,y

(K +N +M)2
. (8)

Considering the interest similarity and social trust between
MVm and SDy , the social connection between MVm and
SDy can be expressed as follows:

θm,y = α2Sm,y + β2Bm,y, (9)

where α2 and β2 are debug factors, satisfying α2 = β2 = 0.5.
Finally, we introduce movement correlation and study its

effect on task unloading. In mobility relevance, each vehi-
cle change their location and driving direction in real time,
which is the topological mobility in the Internet of vehicles.
Therefore, the position change between MVm and SDy ,
and the change of MVm’s own driving direction should be
considered comprehensively to determine whether MVm and
SDy are willing to unload tasks. For the whole Internet of
vehicles, the process of task unloading should be scattered
in various network topologies of the Internet of vehicles as
much as possible, rather than concentrated in a certain area.
This method can reduce the load pressure of RSU and edge
servers and the mission vehicle can unload data as close
as possible. According to vehicle mobility, we establish the
position correlation function Dm,y:

Dm,y = 1− e
(− µ·Ry

dm,y
)
, (10)

where dm,y is the Euclidean distance between MVm and SDy ,
and Ry is the communication radius of SDy . Here, µ is the
weight parameter, and its expression as follows:

µ =

{
1, MVm drives toSDy

0.5, MVm leaves toSDy

, (11)

where µ = 1 indicates that when MVm drives to SDy , the
connection between MVm and SDy lasts for a long time.
Then MVm and SDy are highly likely to remain connected
in the future for some time, and the probability of unloading
task increases. Here, µ = 0.5 indicates that when MVm
drives away from SDy , the connection between MVm and
SDy lasts for a short time, and the probability of unloading
tasks decreases and data interaction increases. At this stage,
tasks should be scattered in the network topology rather than
centralized so that MVm will unload tasks in a further place.

C. Optimization

When mission vehicle MVm generates task Tm and unloads
it to the collaborative vehicle CVn for execution, the execution

delay can be categorized into two parts: 1) The transmission
delay tupm,n of MVm uploading data to CVn. 2) The calculated
delay tulm,n required for CVn to perform the task Tm, that is
tulm,n = cm/cm,n. Here, cm represents the MVm’s computing
amount of the task, cm,n represents the computing resources
that CVn allocates to task Tm. Task Tm generated by MVm
is unloaded to CVn, and the time delay required for task
execution is tpm,n as follows:

tpm,n = tupm,n + tulm,n, (12)

where MVm generates Tm and unloads it to associated APk

for execution. In this case, the execution delay includes two
parts: 1) The transmission delay of MVm uploading data
to APk. 2) The calculated delay tulm,k required for APk

to perform the task. Here, cm,k represents the computing
resources APk allocates to a task. The delay required for task
Tm generated by MVm to unload to APk associated with itself
to perform the task is tpm,k and expressed as follows:

tpm,k = tupm,k + tulm,k. (13)

After MVm generates Tm and unloads it to associated APk

for execution, the APk may not perform task because of
insufficient computing resources. In this case, APk cooperates
with other surrounding APs to fully utilize idle computing
resources. Thus, system resource utilization and enhancing
user experience are improved. If APk selects an idle access
point APk′ to cooperate in task execution, then the execution
delay can be categorized into three parts: 1) The transmission
delay of MVm uploading data to APk. 2) The transmission
delay of APk uploading data to APk′ . 3) The calculated
delay tulm,k′ required by APk′ to perform task Tm, that is,
tulm,k′ = cm/cm,k′ . cm,k′ represents the computing resources
APk′ allocates to a task. The time delay required when the
task Tm generated by MVm is unloaded from APk′ to perform
the task is tpm,k,k′ , and it is expressed as follows:

tpm,k,k′ = tupm,k + tsk,k′ + tulm,k′ . (14)

In mission vehicle requesting task unloading, the objective
function of the optimization problem can be expressed as
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follows:

T =

min
∑

y=1,y∈Y

N∑
n=1

M∑
m=1

K∑
k=1

K∑
k′=1,k′ ̸=k

Am,y(t
p
m,n + tpm,k + tpm,k,k′)

M

s.t. C1 : QoSm,y ≥ ψ,∀m ∈MV, y ∈ Y

C2 :
∑
y=1

Am,y = 1,∀m ∈MV, y ∈ Y

C3 :

F∑
f=1

Sy,f · SRf ≤ Z,∀y ∈ CV

C4 :

N∑
n=1

bk,n ≤ Λ,

K∑
k=1

bk,n ≤ 1 (15)

C5 : 0 ≤ cm,n ≤ Cn,

M∑
m=1

cm,n ≤ Cn,∀n ∈ CV

0 ≤ cm,k ≤ Ck,

M∑
m=1

cm,k ≤ Ck,∀k ∈ AP

0 ≤ cm,k′ ≤ Ck′ ,

M∑
m=1

cm,k′ ≤ Ck′ ,∀k′ ∈ AP

where Am,y is defined as the computing resource allocation
strategy, which is used to indicate whether the mission vehicle
MVm unloads the task at SDy . Constraint C1 indicates
that to ensure the user experience of mission vehicles, the
QoSm,y of communication links is required to exceed the
minimum QoS threshold ψ. The constraint C2 indicates that
the mission vehicle can select only one unloading position
to perform the unloading task. The constraint C3 indicates
that, considering the limited cache resources, to prevent the
waste of cache resources, limiting the cached resources of a
CV is necessary while ensuring that the cache space occupied
by any CV does not exceed Z. Constraint C4 indicates that
when an access point APk provides a cache resource service,
its maximum connection number does not exceed Λ, and the
cooperative vehicle can only select one access point to receive
the service cache. Constraint condition C5 indicates that the
size of computing resources allocated to the mission vehicle
is limited, while ensuring that the total computing resources
allocated to the mission vehicle cannot exceed the maximum
value provided by the cooperative vehicle (or access point).

IV. OUR PROPOSED ECORA STRATEGY

Because the original optimization problem is NP-hard,
obtaining the optimal joint cache and computational resource
allocation strategy in the polynomial time is critical. To sim-
plify the problem, the combinatorial optimization problem was
categorized into two sub-problems, namely service caching
subproblem and task unloading subproblem.

A. Stable Matching Algorithm Based on Mobile Social Con-
tact

To address the service cache subproblem. First, the service
cache requirement relationship between APk and CVn was

modeled as a matching model. In t time slot, CVn requests
f th service cache resource. For APk, the data transmission is
assumed to complete in a short time with a mission vehicle
with high social similarity to the service under the QoS
requirements of the requesting business. Therefore, the effect
function of APk on CVn is expressed as follows:

Y AP
k,n =

θk,n ·QoSk,n

tupk,n
, (16)

where θk,n represents the social connection between CVn and
APk, and θk,n = α2Sk,n + β2Bk,n can be obtained. At this
stage, Sk,n is the interest similarity between CVn and APk,
and Bk,n is the normalized social trust. QoSk,n represents the
communication service quality between CVn and APk, and
QoSk,n = α1Pk,n +β1QRk,n can be obtained, where α1 and
β1 are debug factors, satisfying α1 = β1 = 0.5. Then QRk,n

is the link state between CVn and APk.
Unlike APk, CVn mainly considers its relative position with

the access point and the popularity of the cache content of the
request service. CVn also considers whether a communication
link exists between APk and CVn. Based on this, the effect
function of CVn on APk is expressed as follows:

Y CV
k,n =

Dk,n ·QRk,n

1 + e−ρ(f)max
, (17)

where Dk,n represents the moving correlation between CVn
on APk, and Dk,n = 1−exp(−µRk/dk,n) can be obtained. In
this case, Rk is the communication radius of APk, and dk,n is
the Euclidean distance between CVn on APk. Here, ρ(f)max

indicates that CVn selects the cache service with the highest
popularity from its uncached service set and requests sharing
to APk.

The order of CV in APk’s preference list PRAPk is mainly
in descending order according to the size of Y AP

k,n , that is, the
CVn corresponding to the maximum value of Y AP

k,n ranks first
in the list of PRAPk . Similarly, APk in CV ’s preference list
PRCVn is arranged in the descending order according to Y CV

k,n .
Based on the aforementioned assumptions, one-to-one stable
matching is defined as follows:

B. Discrete Cuckoo Search Algorithm Based on Differential
Evolution

Based on the aforementioned algorithm, the system iterates
continuously until no blocking pair exists in the matching re-
sults of service cache. Thus, the service caching subproblem is
solved, which improves the efficiency of collaborative vehicle
service cache and boosts the success rate of task unloading.
Moreover, we proposed a discrete cuckoo search algorithm
based on differential evolution to solve the task unloading
subproblem.

The position of the ith nest in the t generation is assumed
to be xti, and xti = {xti,1, xti,2, ..., xti,m, ..., xti,M}, where M

represents the dimension. Furthermore, xt+1
i represents the

new location of the ith nest after global update of xti of the
nest location of the t generation. At this stage, the path and
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Algorithm 1 Stable matching algorithm based on mobile
social contact.
Each APk∗∗ and CVn∗∗ establishes their own initial preference lists
PRAPk∗∗ and PRCVn∗∗ , and records the unmatched CVn : DM =
{CVn, ∀CVn ∈ CV }

while DM ̸= Ø, ∃PRCVn∗∗ ̸= Ø do:
if
∑F

f=1 Sn,f · SRf ≤ Zn then:
CVn in turn sends data caching requests to the APk with

the highest order in the preference list;
else

CVn deletes the least popular local service cache content;
CVn continues to send data cache requests to the APk with

the highest order in the preference list.
end if
for ∀APk ∈ AP , 1 ≤ k ≤ K do:

if APk prefers CVn to CVn∗ , which matches the last row
of the candidate list, and meets

∑N
n=1 bk,n < Λ then:

APk temporarily accepts the CVn and reorders the
preference list;

CVn moves out of DM;
else if APk prefers CVn to CVn∗ , which matches the last

row of the candidate list, and meets
∑N

n=1 bk,n = Λ then:
APk temporarily accepts CVn and reorders the prefer-

ence list;
APk removes CVn∗ from its preference list;
CVn∗ removes APk from its preference list;
CVn∗ is moved into DM and CVn is moved out of

DM.
else if APk does not prefer CVn compared with CVn∗ that

matches the last row of the candidate list then:
APk refuses CVn, CVn removes APk from its prefer-

ence list;
end if

end for
end while

position of cuckoo searching for parasitic nests are updated as
follows:

xt+1
i,m = xti,m + α3 ·Rand · Levy(β3), i = 1, 2, · · · ,K +N,

(18)
where xti,m represents the value of the ith nest in the m
dimension of the nest position in the t generation. Similarly,
xt+1
i,m is the value of the m dimension in the new position of

the ith nest. Here, α3 is the step size factor and used to control
the step size. This value is typically set to be α3 = 1. Where
Levy(β3) ∼ u = t−β3 , (1 < β3 ≤ 3), β3 is the influence
factor, typically β3 = 1.5. The Levy distribution is expressed
as follows:

Levy(β3) = 0.01· u

|v|
1
β3

·(xtj,m−btg,m), j, g = 1, 2, · · · ,K+N,

(19)
where u and v both obey normal distribution, that is, u ∼
N(0, σ2

u), v ∼ N(0, σ2
v). σu =

{
Γ(1+β3)·sin(π·β3/2)

Γ[(1+β3)/2]·β3·2(β3−1)/2

}1/β3

,
σv = 1. In addition, btg = {btg,1, btg,2, · · · , btg,m, · · · , btg,M}
represents the current optimal solution that can be found in the
current search algorithm. According to (19) , the nest position
is reserved for the next generation.

Because the location information of the solution space is a
continuous value, it cannot be directly used by the optimization
objective function to solve the optimal value. Therefore, the
effect function should be constructed to map the continuous

value of position to the binary discrete value between {0, 1}.
The expression of the effect function H is as follows:

H(xi,m(t+ 1)) =
xt+1
i,m − xmin

m

xmax
m − xmin

m

, (20)

xt+1
i,m =

{
1, H(xi,m(t+ 1)) < γ
0, otherwise, (21)

where xmin
m is the minimum value of m dimension in the nest

position, and xmax
m is the maximum value of m dimension

in the nest position. Furthermore, γ is uniformly distributed,
and γ ∼ U(0, 1). When the host bird finds the cuckoo’s egg
(probability Pa), it abandons the nest. Therefore, after the
complete local search by Levy flight, some solutions should be
searched again to update their positions and retain a superior
set of solutions. In the process of local search, to obtain the
difference between the current individual and the excellent
individual in the population, xti,m is carried out differential
evolution. The individual obtained after evolution has more
genetic information, rendering it close to the excellent indi-
vidual in the population. The specific process is as follows:

1) Mutation Operation: The mutation operation is used to
obtain individual variation through the difference strategy to
obtain the genetic information of multiple individuals. The
expression of individual variation uti,m is as follows:

uti,m = xti,m+κ·(xtp,m−xtq,m), p, q = 1, 2, · · · ,K+N, (22)

where κ is the scaling factor, xtp,m represents the value of
the pth nest in the m dimension of the nest position in the t
generation, and xtq,m represents the value of the qth nest in
the m dimension of the nest position in the t generation.

C. Crossover Operation

The crossover operation generates candidate individual vti,m
by crossing between the parent and the mutant, which ensures
that at least one set of information in the next generation
of individual information originates from the mutant. The
expression of candidate individual vti,m is as follows:

vti,m =

{
uti,m, α4 < CR or m = β4
xti,m, otherwise, (23)

where CR ∈ [0, 1] is the crossover probability, α4 =
rand(0, 1) is the random number generated during [0, 1],
β4 = unidrnd(M) represents a random positive integer
generated during [1,M ].

D. Select Operation

After the population mutation and crossover operation, the
position is discretized, and the dominant relationship between
the individual vti,m and xti,m the parent is determined by
comparing the size of the optimization objective function .
Therefore, a new generation of individuals xt+1

i,m to inherit the
dominant individuals to the next generation:

xt+1
i,m =

{
vti,m, T (vti,m) < T (xti,m)
xti,m, otherwise. (24)

The specific flow of the discrete cuckoo search algorithm
based on differential evolution is stated in Algorithm 2.
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Algorithm 2 Discrete cuckoo search algorithm based on
differential evolution
Input: system parameters, including MV , CV , AP ,
service cache matching results Φ, computing tasks
Tm = {ωm, tm, sinm , soutm , SRfm, cm}, rm,n and other indicators.
cuckoo algorithm parameters, including nest location set
{x1, x2, · · · , xK+N}, tmax, Pa and other indicators.
Initialization: Initialize the nest position and other parameters, and
record the current optimal solution.
Begin:

for t < tmax do:
Calculate and update all nest positions xt+1

i,m according to (18);
Binary discretization of all nest locations xt+1

i,m ∼ (0, 1);
According to (15), the optimization objective function value T

is calculated;
if T is the optimal value in the current iteration then:

The solution space associated with is the optimal solution
space and retaining the current nest position;

else
The current nest position is not retained;

end if
if rand(0, 1) > Pa then:

Perform mutation, crossover and selection operations to
locally update the nest position;

Binary discretization of all nest locations xt+1
i,m ∼ (0, 1);

According to (15), the optimization objective function value
T ′ is calculated;

if T ′ is the optimal value in the current iteration then:
The solution space associated with T ′ is the optimal

solution space and retaining the current nest position;
else

The current nest position is not retained;
end if

end if
end for
The current optimal solution space is the task uninstallation strat-
egy;
Output the optimal task uninstallation strategy x∗.

End

V. PERFORMANCE ANALYSIS

Simulations were performed using MATLAB for the two-
way six-lane traffic scenario to compare the convergence
properties of the GA strategy and PSO strategy. The influence
of various traffic conditions on the quality of service, task
processing delay, and other indicators were investigated. The
influence of two key parameters (Pα and α3) on the con-
vergence of the proposed algorithm is analyzed, and a series
of simulations performed. Furthermore, the input data range
of the task generated by the mission vehicle is [0.3, 0.45]
Mb/task, and the calculation demand range of the task is
[0.3, 0.45] GHz/task. The specific simulation parameters are
summarized in Table. I.

The simulation compares the variation rule of average task
processing delay in various resource allocation strategies with
different traffic density, as displayed in Fig. 2. The horizontal
axis represents the number of iterations, and the vertical axis
represents the average task processing delay. Furthermore, the
ECORA, PSO, and GA strategy are represented by rhombus,
square, and circle curves in the figure Fig. 2(a)∼Fig. 2(d)
reveals that the average task processing delay of the ECORA
strategy, PSO strategy, and GA strategy increases with the

TABLE I
SIMULATION PARAMETERS.

Symbol Parameters Value
P t
m,k AP transmitting power and antenna gain 16dB

P t
m,n Vehicle transmitting power and antenna gain 3dB
W Total channel bandwidth 20MHZ
θth Threshold of the received signal power 5dB
σ Standard deviation of shadow fading 5
F Number of cache service types 4
ρfth Idle rate threshold 0.1
N Number of the collaborative vehicles 18
M Number of the mission vehicles 45
r Effective communication radius of vehicle 100m
R Effective communication radius of AP 150m

increase in the traffic density, and the average task processing
delay of ECORA strategy is the lowest because with the
increase in the traffic density, the resources of the system are
limited. When the number of mission vehicles with computing
requirements increases, the computing resources available to
each mission vehicle decreases, and subsequently, the delay of
task processing increases. Furthermore, the PSO strategy and
GA strategy ignore the uneven traffic density and the effect of
increasing traffic density on the resource allocation process,
which results in an unbalanced AP load. When the traffic
density increases, the number of mission vehicles near some
AP increases sharply, but the cooperative vehicles around the
AP do not consider the service caching strategy, and idle com-
puting resources cannot be utilized. In this case, the limited
computing resources of the AP cannot satisfy the unloading
requirements of surrounding mission vehicles, which results in
high task processing delay. The ECORA strategy can provide
popular cache service for collaborative vehicles in advance
according to the position of vehicles, driving direction, and
other mobile attributes, combined with social contact between
vehicles. Ensure that cooperative vehicles exist around the
mission vehicle that can unload the specified task to improve
the success rate of mission unloading of the mission vehicle.
Next, the influence of traffic density on task processing delay
is effectively reduced, and the task processing delay is low.
Furthermore, Fig. 2(b) reveals that when traffic density is 0.08
vehicles/m, the average delay of task processing of ECORA
strategy is 1.777 ms, whereas those of the PSO and GA
strategies is 1.923 ms and 1.974 ms, respectively. The overall
task processing delay of the algorithm improved by 7.59% and
9.98%, respectively.

The simulation compares the variation rules of average task
processing delay in various resource allocation strategies at
different average vehicle speeds, as displayed in Fig. 3. In the
figure, the horizontal axis represents the number of iterations,
and the vertical axis represents the average task processing
delay. Furthermore, addition, ECORA, PSO, and GA strategies
are represented by rhombus, square, and circle curves in the
figure. As displayed in Fig. 3(a)∼Fig. 3(d), the average task
processing delay of the ECORA, PSO, and GA strategies
increases slowly with the increase in the average vehicle speed,
and the average task processing delay of ECORA strategy is
the lowest because with the increase in the average speed,
the duration of communication between vehicles and between
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(a) Traffic density = 0.06.
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(b) Traffic density = 0.08.
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(c) Traffic density = 0.10.
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(d) Traffic density = 0.12.

Fig. 2. Change of the average task processing delay under various traffic density conditions, here ECORA is our proposed scheme, PSO is from [23], and
GA is from [24].
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(a) The average speed is 30km/h.
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(b) The average speed is 60km/h.
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(c) The average speed is 90km/h.
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(d) The average speed is 120km/h.

Fig. 3. Average task processing delay under various average speed, here ECORA is our proposed scheme, PSO is from [23], and GA is from [24].

vehicles and AP decreases, which leads to an increase in the
probability of communication link interruption and the failure

rate of task unloading, which increases the delay of task
processing. Furthermore, the PSO and GA strategies ignore
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the influence of social connection and mobile attribute on
resource allocation process. When the average vehicle speed
increased, the duration of the communication link between
mission vehicle and cooperative vehicle decreased, and fewer
cooperative vehicles were present around mission vehicle
to cache and unload mission service. Thus, more mission
vehicles unload tasks to AP, which results in an increased
AP load and higher task processing time. In ECORA strategy,
cooperative vehicles follow the service caching principle of
high mobility similarity and high social similarity. Cooperative
vehicles with sufficient caching services around the mission
vehicles provide computing resources. The discrete cuckoo
search algorithm based on differential evolution was used
to allocate resources efficiently and determine the unloading
position of the task. Effectively reducing the effect of high-
speed vehicle movement on task processing delay, and the
task processing delay is low. Furthermore, Fig. 3(b) reveals
that when the average speed is 60 km/h, the average delay
of task processing of ECORA strategy is 0.938 ms, whereas
those of PSO and GA strategies is 1.156 ms and 1.214 ms,
respectively. Thus, the overall task processing delay of the
algorithm improved by 18.86% and 22.73% respectively.

The variation rule of average task processing delay in
ECORA algorithm is shown in Fig.4 when different algorithm
parameters are simulated and compared. In the figure, the
horizontal axis represents the number of iterations of the
algorithm, and the vertical axis represents the average task
processing delay. In addition, in Fig.4(a), curves with rhombus,
square, circle, triangle and dot respectively represent the
change of average task processing delay when Pα is 0.05,
0.15, 0.25, 0.35 and 0.45. Similarly, in Fig.4(b), curves with
rhombus, square, circle, triangle and dot represent the change
of average task processing delay when the step factor α3

of ECORA strategy is 0.01, 0.1, 1, 5 and 10 respectively.
As can be seen from Fig.4(a), as the number of iterations
increases, when the Pα value is 0.05, the convergence speed
is the slowest and the average task processing delay is the
largest. This is because when the Pα value is too low, the
update frequency of local search decreases and the update
frequency of the optimal solution of unloading task decreases.
In this case, the convergence speed is the slowest, and the
algorithm is easy to fall into local optimal, which leads to
the maximum average task processing delay. In addition, it
can be seen from Fig.4(b) that with the increase of iteration
times, the algorithm has the best convergence capability when
the value α3 is 1. At this point, the convergence speed is the
highest and the average task processing delay is the lowest.
This is because when the α3 value is too large, different bird’s
nest positions (equation solutions) are far away from each
other after the global search in the initial iteration, and it is
difficult to determine the optimal solution by moving the bird’s
nest positions in a small range in the subsequent local search.
As a result, the probability of finding the optimal solution
decreases, the convergence speed is slow, and obtaining the
optimal solution using the algorithm is difficult. Similarly,
if the α3 value is too small, different bird’s nest locations
will be close to each other after the global search in the
initial iteration, and it is difficult to determine the optimal

solution by moving the bird’s nest location in a small range
in the subsequent local search. As a result, the probability of
finding the optimal solution decreases, the convergence speed
is slow, and using the algorithm to obtain the optimal solution
is difficult.

The load state distribution of all APS in the same section of
road at the same time with different strategies were simulated.
The results are displayed in Fig.5. In the figure, the horizontal
axis represents the ID of the AP and the vertical axis represents
the load status of the AP. Furthermore, from the top to bottom
in the bar chart are the GA, PSO, and ECORA strategies.
The load value of the GA and PSO strategies at AP3 is
considerably higher than 10, and the load value at {AP1, AP2}
is 0. However, the load value of ECORA policy is not 0 at
any AP and is less than 4 at any AP because in the GA and
PSO strategies, communication link reliability and processing
delay are considered as the basis of the optimal solution of
task unloading for mission vehicles, ignoring the influence of
service caching process of cooperative vehicles on the success
rate of task unloading. In fact, PSO and GA strategies cannot
allocate idle caching resources for cooperative vehicles based
on mobile social connections. When the number of cooper-
ative vehicles is reduced, the success rate of task unload-
ing between mission vehicles and cooperative vehicles drops
sharply, thus reducing the computational resource utilization
rate of cooperative vehicles. Therefore, considering the uneven
distribution of traffic flow density, there are more cooperative
vehicles near {AP1, AP2} and less cooperative vehicles near
AP3. Meanwhile, PSO and GA strategies cannot make full
use of computing resource utilization of cooperative vehicles
around AP3, resulting in waste of the computing resources
of cooperative vehicles and increasing the load of AP3. In
ECORA, the number of cooperative vehicles near {AP1, AP2}
is large, and the mission vehicles there can unload tasks to
select cooperative vehicles. Thus, the {AP1, AP2} load is
small. The ECORA strategy detects popular task unloading
types and performs service caching through social contact
and mobile contact between vehicles to ensure that many
cooperative vehicles around mission vehicles that can per-
form unloading services. According to the constraints of load
limit and the maximum task completion time and others, the
optimal solution of unloading scheme is calculated. Under
the condition of load balancing, the average delay of vehicle
task processing is reduced and the quality of communication
service is improved. Therefore, the load state distribution of
AP under this strategy is more reasonable. Therefore, the
ECORA algorithm can effectively balance AP load.

VI. CONCLUSION AND FUTURE WORK

In this study, we proposed an efficient caching and offload-
ing resource allocation strategy in vehicular social networks.
First, we studied the influence of social contact and motion
state between vehicles on the service cache and task unloading
process. Next, we established the social vehicular network
communication system model of joint service caching and
task unloading, thus optimizing the utilization rate of storage
and computing resources under the cooperation mechanism
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Fig. 4. Average task processing delay changes under different strategy parameters.
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Fig. 5. RSU load distribution, here ECORA is our proposed scheme, PSO is
from [23], and GA is from [24].

between vehicles and improving service quality. To minimize
the average task processing delay for achieving high quality
of service, we studied the combined resource allocation opti-
mization problem of joint service caching and task unloading,
and categorized the NP-hard problem into two sub-problems
to be solved separately. A stable matching algorithm based
on mobile social connections and a discrete cuckoo search
algorithm based on differential evolution were designed. By
dynamically updating the cache resource allocation scheme,
the optimal task unloading scheme was adaptively selected
to maximize the quality of service and minimize the average
task processing delay. The simulation results revealed that
compared with PSO and GA strategies, the ECORA strategy
can effectively reduce the average task processing delay,
improve the quality of user data communication service, and
effectively achieve RSU load balancing. In the future, we will
develop an accurate resource allocation model for the social
vehicular network so that the 5G social network can provide
superior services for time-sensitive and computation-intensive
intelligent transportation scenarios such as unmanned driving
and remote driving.
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