
MAY 2023 1

To DASH, or not to DASH? Optimal Video Bitrate
Selection and Edge Network Caching in

MEC-empowered Slice-Enabled Networks
Dionysis Xenakis

Abstract—An increasing body of works highlight that Dy-
namic adaptive streaming over HTTP (DASH) can negatively
impact the user Quality of Experience (QoE) in cache-enabled
networks. Besides, network-agnostic DASH cannot fully harness
the potential of slice-enabled 5G and Beyond networks, which can
promise minimum rate performance for the i) MEC-empowered
cellular base station (BS) to user link, and ii) content delivery
network (CDN) to MEC-empowered BS link. In this paper, we
show that network-agnostic DASH is incompatible with MEC-
empowered edge network caching and network slicing in next
generation mobile data networks. Accordingly, we propose joint
video bitrate selection and edge network caching when specific
rate and cache size guarantees can be provided along the end-
to-end content delivery path. By formulating the aforementioned
problem as a dynamic program (DP), we present an exhaustive
(brute-force) search algorithm to optimally solve it and derive
an exact algorithm of polynomial time to avoid unnecessary
recalculations of previously visited solution branches. Through
extensive experimental results we assess the performance of
the proposed algorithm and compare it against other solutions,
aiming to draw valuable insights for algorithmic design tailored
to MEC-empowered slice-enabled mobile data networks.

Index Terms—Dynamic Adaptive Streaming over HTTP, Edge
Caching, Network Slicing, 5G, 6G, Dynamic Programming

I. INTRODUCTION

MULTI-access edge computing (MEC) and Network
Slicing (NS) are integral parts of 5G and Beyond 5G

(B5G) networks, which aim to the delivery of ultra-rich media
formats with strict Quality of Service (QoS) and Quality of
Experience (QoE) performance guarantees. MEC-empowered
services promise to greatly reduce network response times
and decongest end-to-end (e2e) backhaul links by leveraging
compute and storage resources at the network edge. NS
deliver logically partitioned network islands that bind together
heterogeneous resources (spectrum, compute, storage, content)
across different operational domains, e.g., mobile network op-
erators (MNOs), infrastructure, MEC and over-the-top (OTT)
service providers. Fully and jointly harnessing the potential
of MEC and NS is critical towards the standardization and
research for 5G and B5G mobile data networks [1]–[3].

Video streaming constitutes the largest volume of mobile
data traffic (>75% by 2023), being a key focus area of im-
provement for service providers [4]. Recent reports highlight
that network responsiveness upon video streaming is critical

D. Xenakis (Corresponding Author) is Assistant Professor at the Depart-
ment of Digital Industry Technologies of the National and Kapodistrian
University of Athens, Greece. E-mail: nio@uoa.gr.

for user satisfaction. Besides, the Quality of Experience (QoE)
is primarily affected by the time-to-content and the video stalls
encountered during the video play-out [5]. Dynamic Adaptive
Streaming over HTTP (DASH) is currently the most popular
method for delivering video content over mobile networks [6].
According to DASH, the original video content is transcoded
into multiple video bitrates and is partitioned into a number
of video segments that have an equal playout time. Video
segments of different resolutions are fully aligned in time and
are stored at the Content Delivery Network (CDN), to enable
video consumers switch among the available resolutions on a
segment-by-segment basis. DASH has served the mobile video
delivery well in pre-5G network setups, where the e2e network
status was primarily driven by fluctuations of the wireless
channel and the backhaul links. However, in view of 5G/B5G
mobile data networks that can bind together heterogeneous
communication, compute, storage and network resources [7],
[8], network-agnostic DASH inevitably lacks the intelligence
necessary to fully harness the potential of MEC and NS.

To bridge the gap between MEC-empowered content
caching, e2e network slicing, and application-layer DASH,
in this work, we bring to light and address the problem of
”oscillation dynamics” in MEC-empowered slice-enabled data
networks. In particular, we focus on the emerging scenario
where the mobile data network can dedicate storage capacity
at the MEC-empowered proxy BSs and reserve e2e network
resources between i) the MEC-empowered proxy BS and
the user (BS-to-user link) and ii) the CDN and the MEC-
empowered proxy BS (CDN-to-BS link). Through experimen-
tation, we highlight that, if not properly designed, the inter-
mediation of MEC-empowered proxy BSs along the e2e CDN-
to-user streaming path can greatly increase the time-to-content
upon cache miss events and result in under-utilization of ded-
icated backhaul resources upon cache hit events, if traditional
DASH is deployed. Accordingly, we present a novel video
streaming over HTTP paradigm where the MEC-empowered
BSs cache a carefully planned sequence of video segments to
allow full utilization of the CDN-to-BS backhaul link while
delivering available content through the BS-to-user link. We
argue that given knowledge on i) the video segments cached
at the MEC-empowered BS proxy, and ii) the storage/rate
performance guarantees set for the e2e link, we can readily
identify the maximum video bitrate that the mobile data
network can support; thus, enabling multiple video segment
requests for the same video file and user, better utilization of
available/reserved resources, and complete mitigation of video

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 2

stalls. Our key contributions can be summarized as follows:

• We provide an experimental study that brings to light key
performance limitations and design pitfalls of application-
driven video streaming over HTTP in cache- and slice-
enabled mobile data networks.

• We formulate the joint bitrate selection, content place-
ment and storage allocation problem in MEC-empowered
slice-enabled mobile data networks under fixed buffer and
rate performance constraints.

• We derive an exact (optimal) algorithm to solve the
original problem in polynomial time and fully analyze
its time/memory complexity requirements.

• We provide a comprehensive study to assess the perfor-
mance of the proposed algorithm and highlight the key
trade-offs inherent to mobile video streaming over HTTP
in MEC-empowered slice-enabled setups.

At this point, we note that the proposed modeling and
algorithm are aligned with recent specifications provided by
the European Telecommunications Standards Institute (ETSI)
on MEC [2], [3], a.k.a., ETSI MEC, and 3GPP on the 5G
system [7]. In more detail, group specification [2] provides
implementation details and discusses the different roles that
the ETSI MEC and the 3GPP 5G functional components
should undertake in joint MEC/5G deployments. According to
it, MEC can be flexibly deployed in different locations ranging
from near the base station to the central Data Network. Four
different deployment options are provisioned, the first of which
considers co-deployment of MEC applications into the 5G
base station. This particular deployment option is commonly
considered in current literature and is also studied in this
work. Common for all deployment options is the use of a 5G
User Plan Function (UPF) instance to steer traffic between the
targeted MEC applications and the network. Besides, group
specification [3] describes different use cases and service
scenarios including, among others, the effective support of
content caching, bandwidth management, and SAND through
joint optimization of the ETSI MEC and the 3GPP cellular
infrastructures, i.e., Sections A.3, A.16 and A.27, respectively.
Our work aims to fully utilize such technological capabilities,
providing the necessary decision support framework for joint
content caching and video bitrate selection given specific
network and storage capacity guarantees/constraints.

To the remainder of the paper, Section II summarizes related
works. Section III provides an experimental study on ”os-
cillation dynamics” created by DASH in MEC-/slice-enabled
data networks. Section IV provides the proposed problem
formulation and solution, along with the required time/memory
complexity analysis. Section V includes an in-depth experi-
mental study on the performance of the proposed solution,
drawing valuable design guidelines for mobile video streaming
in MEC-empowered slice-enabled 5G/B5G networks.

II. RELATED WORKS AND MOTIVATION

Video traffic is proliferated by massive requests for the same
video content, making a very small portion of it to be popular
[9]. In previous work in [10], we have addressed the problem

of cooperative content caching in 5G network clusters com-
posed by MEC-empowered BSs of different cache sizes. As-
suming a common content popularity distribution across each
cluster, we have formulated cluster-wide content placement
as a zero-one multiple knapsack problem (ZOMKP) where
the cluster-wide cache hit probability is to be maximized.
An exact (optimal) algorithm that solves the ZOMKP has
been provided and extensive simulation results have compared
the performance of the proposed algorithm with greedy and
random caching. Under the assumption that each BS stores a
single video file and DASH delivers entire files (not segments),
the authors in [11] assess the performance of random video
caching and multi-casting in large-scale stochastic networks.
By leveraging stochastic geometry, tractable expressions for
the successful transmission probability in dense networks have
been derived. Instead of caching entire popular video files
and performing video streaming based solely either on cache
hits, or on full utilization of backhaul connectivity (cache miss
events), in this work we identify the sequence of segments of a
given video file that should be cached in order to minimize the
required cache size at the MEC-empowered BS given specific
rate performance guarantees for the e2e video streaming path.

In [12], the authors discuss the problem of oscillation
dynamics created by DASH in Information Centric Networks
(ICNs) and propose bitrate-based partitioning of available
caches (higher bitrates are stored closer to the users). Assum-
ing that each user is served through a single video streaming
path and that all video files are partitioned into the same
number of segments, they formulate the cache placement
problem as a binary integer linear problem (BILP) and propose
distributed heuristics to solve it in polynomial time. In our
work, we extend the valuable insights derived in this work
by bringing to light the problem of oscillation dynamics cre-
ated by DASH over MEC-empowered slice-enabled networks,
where specific rate performance guarantees can be provided
across the e2e video streaming path.

Enhanced predictions of the radio link quality and user
mobility have also been shown to improve DASH [13]–[15].
The authors in [13] employ Kalman filters to balance the
responsiveness and smoothness of DASH through accurate
prediction of the wireless link capacity. Yang et al. [14]
propose two machine learning (ML) algorithms that leverage
video request and channel state information logs to improve
network caching and bitrate selection at the MEC servers. The
problem of maximizing the system-wide average video bitrate
through QoE-aware RRM is presented in [15]. Although
stall and bitrate switch events are not considered, fairness
and social welfare are encompassed into a Nash bargaining
model that addresses the transmit power allocation problem
per user/BS. The performance of server- and network-assisted
DASH (SAND) is assessed in [16], assuming co-location of
BSs and MEC servers. Aiming to maximize a weighted sum
of the average video bitrates, stall ratios and bitrate switches
per user, the authors formulate the joint video bitrate selection
and MEC load balancing problem as a MINLP. Accordingly,
they decompose the original MINLP into two sub-problems
that are solved using polynomial time heuristics. The fairness
and QoE performance of the proposed algorithms is compared

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 3

FULL CONTENT

NETWORK SLICE #1

CACHE SIZE L

UE MEC BS
CDNCore Network

R2

1440p

320p

720p

S2,1 S2,3

S4,2

S6,2 S6,3

S4,4

S6,1 S6,41080p

480p

720p
S5,1

S4,2

S3,3

S5,4

2160p

1440p

1080p

320p

480p

720p

S1,2S1,1 S1,M

HTTP Client

Access Network

R1
HTTP Server

Video Playout

CACHE LOGIC

PROXY LOGICDASH LOGIC

SLICE LOGIC

HTTP Proxy

S2,2S2,1 S2,M

S4,2S4,1 S4,M

S3,2S3,1 S3,M

S6,2S6,1 S6,M

S5,2S5,1 S5,M

S2,1 S2,3

S4,2 S4,4

S6,4S6,3S6,2S6,1

S4,2

Fig. 1. System Setup and Decision Logic Blocks

against simple client-based DASH heuristics, assuming that
MEC servers host the full set of target video segments.

The authors in [17] consider a two-tier cooperative MEC
architecture, where a pool of MEC servers maintains a joint
cache of non-overlapping video segments and cellular BSs
attach to MEC servers to exploit their caching and transcod-
ing capabilities. By integrating input on the RRM strategy
of BSs, joint optimization of MEC-empowered caching and
transcoding is formulated as a MILP, which is solved using
low complexity heuristics. Collaborative video caching and
transcoding are investigated in [18], where an ILP is proposed
to minimize the initial playback delay of end users. Assuming
that MEC servers and cellular BSs are co-located and that each
user requests for a fixed video bitrate, the ILP is relaxed into
sub-problems solved independently. Different from [13]–[18],
this work addresses the problem of joint edge network caching
and video bitrate selection in MEC-empowered slice-enabled
networks where specific network resources are dedicated to
guarantee the CDN-to-BS and BS-to-user rate performance.
Our focus is on how to attain the maximum (optimal) cache
storage savings while completely avoiding video stalls, without
relaxing the original problem, or using meta-heuristics.

To summarize, instead of focusing on on-off scenarios
where video streaming is either based on cached content
[10]- [11], or on backhaul connectivity [13], we focus on the
emerging scenario where specific segments of the full video
file can be cached near the edge network to fully leverage
dedicated resources along the e2e CDN-to-user streaming path.
We also extend prior works on oscillation dynamics [12] in the
context of MEC-empowered slice-enabled networks, bringing
to light the impact of traditional HTTP proxy strategies. To
our knowledge, we address the problem of joint video bitrate
selection and edge network caching under specific storage/rate
performance guarantees for the first time. Besides, different
from the majority of existing works [16], [17], we propose an
exact (optimal) algorithm to solve the original joint optimiza-
tion problem, providing time/memory complexity analysis.

III. THE PROBLEM OF OSCILLATION DYNAMICS IN
MEC-EMPOWERED SLICE-ENABLED NETWORKS

Fig. 1 provides an illustrative example of how video stream-
ing over HTTP is performed under a MEC-empowered slice-
enabled mobile network. We consider that the user equipment
(UE) aims to consume a tagged video file f , all segments of
which are available in different resolutions at the CDN. The

MEC-empowered cellular BS acts as an intermediary between
the user and the CDN server, also reserving e2e resources to
seamlessly support the video streaming over HTTP process.
The UE is served through network slice #1 that reserves i)
up to a storage capacity L at the (serving) MEC-empowered
BS for caching specific segments of the target file f , ii) radio
resources to guarantee an average throughput of R1 Mbps for
the BS-to-user link and iii) backhaul resources to guarantee an
average throughput of R2 Mbps for the CDN-to-BS link. The
slice format parameters L, R1, and R2, are selected by the
slice logic run at the MEC-empowered BS and remain fixed
for the entire video session. The MEC-empowered BS further
employs i) a cache logic to infer on the most appropriate
subset of video segments to be cached, and ii) a proxy logic
that controls how HTTP client requests are served through
the BS-to-user link, or the CDN-to-BS and BS-to-user links
(cache miss). Video segment requests are adapted based on
the DASH logic run at the UE (HTTP Client), specifying the
target resolution and sequence ID(s) of requested segments.

A. System setup, video datasets and building blocks

For the purposes of our study, we have implemented all
functional and algorithmic components of Fig. 1 at full-scale
in Python. Executable files along with a tutorial on our exper-
imental setup are available in [19]. Our setup included three
distinct containerized functions, each hosting the functionality
of a specific node in Fig. 1 and running on a different Dell
OptiPlex 3060 PC (Intel Core i5@3GHz processor, 8GB RAM
DDR4 running Ubuntu 22.04 LTS 64-bit). PC1 hosted the
VLC player, which has been configured to request video
segments from a local HTTP client that places HTTP GET
requests according to the DASH logic considered. PC2 hosted
the full functionality of the HTTP proxy, which serves cache
hits, or places HTTP GET requests for missing video segment
to the CDN server (PC3). Communications between PC1-PC2-
PC3 where employed over a physical underlay network of
point-to-point 10Gbps Ethernet links; nonetheless, to realisti-
cally emulate the 5G wireless channel in BS-to-user and CDN-
to-BS links, we have implemented a logical overlay network
built on fine-grained application-layer rate control.

To achieve this, prior to the egress (transmission) socket
of each HTTP server (i.e., the HTTP proxy at PC2 and the
CDN server at PC3), we have implemented a 5G Channel
Emulator that counts the bits of egress packets transmitted per
sec and matches them with the channel throughput produced
by realistic channel emulation traces derived using Matlab.
In this fashion, we realistically emulate fluctuations of the
instantaneous network throughput in the BS-to-user and CDN-
to-user links while simultaneously attaining the target average
throughput values of R1 and R2 with very high accuracy;
thus, alleviating limitations of existing software tools that
face difficulties in emulating fine-grained network-level rate-
control, e.g., Mininet. This approach further allows for the
full control, visibility and reproducibility of the experimental
setup, enabling fair comparison between the different algo-
rithms under scope, e.g., by allowing the use of the same
seed/traces across different experiments. Besides, the use of

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 4

real-life equipment makes it impossible to have exactly the
same channel baseline across different experiments.

For benchmarking, we have considered the Big Buck Bunny
video with an original resolution at 2160p, frame rate at
30 FPS and video playout duration of Vf = 634.6 seconds
[20]. By using the H.264 video encoder of FFmpeg [21], we
have transcoded the original video file into six resolutions,
i.e., 2160p, 1440p, 1080p, 720p, 480p and 360p, and used
the GPAC MP4 Box [22] to partition each file into DASH-
compatible video/audio segments of a playout time equal to
T = 10 seconds (last segment is 4.6 secs). Video segments
and manifest files are available in [23]. We now specify the
experimental study setup in light of Fig. 1.

DASH Logic: We employ the VLC media player [24],
which implements DASH in a segment-by-segment fashion,
i.e., the next segment is requested only if the previous one
is downloaded. We consider the Predictive DASH strategy of
VLC, which adapts the video bitrate based on re-buffering
events and stall times, to attain higher video bitrates.

Cache Logic: We employ Random Segment Caching, i.e.,
the MEC-empowered cellular BS orders all segments of a
target video content randomly (all video bitrates) and caches
files sequentially until it fully fills its cache.

Proxy logic: We distinct between two different proxy strate-
gies to highlight the importance of instilling cache-awareness
into the HTTP proxy streaming logic:

Send-After-Get (SAG) is the traditional method employed
by HTTP proxies (a.k.a., store-and-forward). In cache hits,
the SAG proxy delivers the cached video segments through
the BS-to-user link directly. In cache misses, the SAG proxy
requests the target video segment from the CDN server and
downloads/stores the full segment before relaying it to the UE.

Send-While-Get (SWG). In cache misses, it forwards packets
received by the CDN server without waiting for the the full
video segment to be downloaded/stored (a.k.a. cut-through).

Slice logic: We consider a fixed network slice reserving up
to L = 150 MBs, R1 = 8.3 Mbps and R2 = 3.6 Mbps.

Emulation of the R1/R2 links. The instantaneous through-
put of the BS-to-user and CDN-to-BS links is emulated
through application-layer rate control, by counting the number
of bits transmitted per second in each HTTP socket and
matching them to the output of a 5G channel governed
by Rayleigh-distributed fading with σ1 = R1 ·

√
2/π and

σ2 = R2 ·
√

2/π, respectively.

B. Definition of metrics and methods

The VLC Output records the actual video playout as ob-
served by real users: on and off (stall). The Predicted output
incorporates the timestamps on the actual delivery of packets
at the HTTP client to predict the VLC Output. The Resolution
refers to the DASH logic decision on the requested video
bitrate (per segment). The Cache records hits and misses at
the MEC proxy. The Rates metric measures the number of
bits delivered per second over the CDN-to-BS (R2) and BS-
to-user (R1) links (effective throughput). The MOS (Stalls)
metric assesses the user QoE according to [25]:

MOSst. = 3.5 ∗ exp−(0.15X + 0.19)Y + 1.5, (1)

where X is the mean stalling duration and Y is the number
of video stalls. X and Y are calculated by using the following
methodology. Let T denote the segment playout duration and
I the number of video segments that the video player should
buffer before it starts playing out the video content at the
UE player. In real-life players, I is typically in the range of
a few segments (1-2). Let ti denote the instant (timestamp)
where the last bit of segment i is received at the HTTP client
and bi the video playout time of segments (or parts of them)
that have been successfully delivered to the HTTP client but
haven’t been played out yet. We term the last parameter as the
buffered playout time and we note that by definition b1 = 0
seconds. Accordingly, the initial playout delay is given by tI
and stall events take place whenever bi = 0 for I ≤ i ≤ M ,
where M denotes the number of segments of the video file. If
segment i− 1 is received before its planned playout time, the
buffered playout time for segment i increases by ti − ti−1:

bi = max (0, T + bi−1 − (ti − ti−1)) , I ≤ i ≤M. (2)

Following a similar approach, we can assess the video
stalling time (if any) for segment i as follows:

τi = min (0, (ti − ti−1)− T − bi−1) , I ≤ i ≤M. (3)

The mean stalling time is given by X =
∑M

i=2 τi/M and
the number of stalls Y by non-zero elements in {τI , ..., τM}.

C. Experimental Study Results

In Fig. 2 we assess the performance of fixed video streaming
over HTTP at 1440p assuming random segment caching and
two different proxy strategies (SAG/SWG). To better highlight
our key findings, we focus on the first 180 seconds of the
video streaming process. Let us focus on plots 1-5 of Fig. 2,
which consider the SAG proxy logic. The timing of HTTP
client requests per segment ID is marked in the SAG Cache
plot (plot 3). In this plot, we observe that a single cache hit
(segment 9) during the first 180 seconds. We also observe that
random caching over the full set of video bitrates performs
poorly, given that the available cache size is L = 150MBs and
the total file size at 1440p is 418.8 MBs [23]. Thus, a-priori
prediction of the target video file and feasible video bitrate
per user can alleviate the lack of backhaul resources in the
CDN-to-BS link. Nonetheless, as observed by the SAG VLC
Output plot (plot 1), if not properly designed, the selection of
a fixed video bitrate can be problematic in scenarios where
the e2e link cannot support the required network throughput
for the target bitrate, i.e., video streaming at 1440p requires
roughly 5.28 Mbps for the BBB file considered in our study.

In plot 1, we also observe that VLC awaits to receive two
full segments before starting playing out the first segment
(I = 2) and in some occasions, it chooses not to play out
buffered segments immediately, even if their planned playout
timing has reached (e.g., segment 3 in plots 1 and 3). This
approach enables real-life video players to create a sufficient
playout buffer time at the early stage of the video playout
and act more aggressively on the selection of higher bitrates
for subsequent segments. Due to the requirement to download
the full segment at the cellular MEC proxy before starting

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 5

0 20 40 60 80 100 120 140 160 180
Time (seconds)

off

on

V
L

C
 O

u
tp

u
t Caching: Random |DASH: Fixed 1440p |Streaming: SAG |R1=8.3Mbps, R2=3.6Mbps, L=150MB

1 2 3 4 5 6 7 8

0 20 40 60 80 100 120 140 160 180
Time (seconds)

off

on

V
L

C
 O

u
tp

u
t Caching: Random |DASH: Fixed 1440p |Streaming: SWG |R1=8.3Mbps, R2=3.6Mbps, L=150MB

139 118 1210651 2 3 4 7

0 20 40 60 80 100 120 140 160 180
Time (seconds)

off

on

P
re

d
ic

te
d

1 2 3 4 5 6 7 8 9

0 20 40 60 80 100 120 140 160 180
Time (seconds)

off

on

P
re

d
ic

te
d

5 61 2 3 4 7 118 10 12 139 14

0 20 40 60 80 100 120 140 160 180
Time (seconds)

Miss

Hit

C
ac

h
e

1 2 3 4 5 6 7 8

9

10

0 20 40 60 80 100 120 140 160 180
Time (seconds)

Miss

Hit

C
ac

h
e

1 2 3 4 5 6 7 8

9

10 11 12

13

14 15

0 20 40 60 80 100 120 140 160 180
Time (seconds)

0
5

10
15

R
at

es
 (

M
b

p
s)

1 2 3 4 5 6 7 8

9

10

0 20 40 60 80 100 120 140 160 180
Time (seconds)

1.5

3.5
5

M
O

S
 (

S
ta

lls
)

10321 85 11 126 144 97 13

0 20 40 60 80 100 120 140 160 180
Time (seconds)

1.5

3.5
5

M
O

S
 (

st
al

ls
)

0 20 40 60 80 100 120 140 160 180
Time (seconds)

0

5

10

R
at

es
 (

M
b

p
s)

14987 1365 1211 15104321
BS-to-user rate CDN-to-BS rate

Fig. 2. Fixed resolution @ 1440p with random caching: SAG (plots 1-5) and
SWG (plots 6-10). L = 150MB, R1 = 8.3 Mbps, R2 = 3.6 Mbps.

delivering it to the UE, SAG inevitably keeps the BS-to-user
link idle when receiving the full segment from the CDN-to-BS
link. Furthermore, since the VLC streaming logic is limited by
segment-by-segment requests, as in most of the existing media
players, the CDN-to-BS link remains idle when delivering
segments through the BS-to-user link.

The combined effect of cache-agnostic DASH and proxy
streaming, increases the effective time-to-content by a factor of
R1+R2

R1R2
, highlighting that even in its simplest form (i.e., fixed

resolution), video streaming over HTTP clashes with network
slicing and edge network caching. In the SAG Predicted plot
(plot 2), we employ the methodology of section III-B (Eq. 3)
for I = 1 and observe that even without accounting for the
actual value of I , the predicted and actual video playout are
very close after a few segments. The SAG MOS plot (plot
5) demonstrates that the user MOS degrades very fast from
the early steps of video streaming, due to the large number of
video stalls encountered when using SAG.

Let us now focus on the performance of the SWG proxy
logic for the same parameter values (plots 6-10 in Fig. 2). In
the SWG VLC Output plot (plot 6), we observe a reduced
initial playout delay as well as a smoother video playout
of segments (as compared to the SAG VLC Output-plot 1),
enabling the playout of 5 additional segments within the
same observation period. Clearly, the improved performance

Fig. 3. Predictive DASH with random caching: SAG (1-5) and SWG (6-10).
L = 150MB, R1 = 8.3 Mbps, R2 = 3.6 Mbps.

of SWG is not the result of an enhanced content caching at the
MEC-empowered proxy, nor the result of an increased amount
of reserved resources. Instead, it is the result of a better uti-
lization of the CDN-to-BS and BS-to-user links as highlighted
by SWG Rate plot (plot 9). In plot 9, we observe that SWG
fully utilizes the R2 capacity upon cache miss events, as it
enables immediate relaying of smaller HTTP chunks upon
reception from the CDN Server. However, the problem of
under-utilizing the CDN-to-BS link upon cache hit events (e.g.,
segments 9 and 13) still remains. Besides, reserved resources
in the high-end BS-to-user link are still under-utilized upon
cache miss events, matching the BS-to-user to the CDN-to-
BS rate performance for the first 8 segments, i.e., this effect
is not observed upon cache hit events (9/13) where the full
R1 capacity is exploited. This performance trend highlights
the need for incorporating knowledge on the list of cached
segments at the UE side and for deploying multi-segment
HTTP requests when specific e2e resources are reserved for
video streaming over HTTP.

In Fig. 3 we assess the performance of Predictive DASH
with random segment caching. In the SAG Resolution plot
(plot 2) we observe that Predictive DASH performs aggres-
sively and targets to the highest available resolution from
the first segment. After receiving it (32 secs) it initiates the
video playout immediately (plot 1) but, given the long delay

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 6

experienced (due to cache miss and the use of SAG), it adapts
the target resolution for segment 2 to the lowest available
(360p). Segment 2 is delivered fast to the HTTP client owing to
its small file size and short time-to-content (cache hit). Having
no knowledge on the actual reasons that enabled fast reception
of segment 2, Predictive DASH targets to a higher resolution
for segments 3-5 (480p) and also receives them relatively fast
(plot 2). When a cache hit takes place for segment 5, the video
player chooses to increase again the requested video bitrate to
the highest available (2160p). Predictive DASH chooses to
postpone the playout of buffered segments (e.g., 2) until at
least one subsequent segment is received (e.g., 3), to smooth
out the video playout of subsequent blocks; however, at the
cost of temporary stalls (plot 1). After experiencing video
stalls for segments 6-7, the DASH logic chooses to lower
again the target video resolution to 1440p for segments 8-14.
It becomes clear that DASH over cache- and slice-enabled
inevitably oscillates the selected video bitrate and severely
degrades the video playout performance at the user terminal
in the long-term. Oscillation dynamics stem from the cache-
and slice-agnostic nature of DASH that cannot robustly infer
on the network status, which is actually driven by the segment
size, the status of the e2e link and the local cache hits.

The negative impact of oscillation dynamics is also shown in
the SAG MOS plot (plot 5), where the user MOS is shown to
fast degrade from the early blocks of the playout process. Be-
sides, as shown in the SAG Rate plot (plot 4), adaptive bitrate
selection over cache-enabled networks makes it impossible for
the underlying network to fully utilize reserved CDN-to-BS
and BS-to-user resources, leading to poor social welfare and
deteriorated system-wide performance even if network slicing
is not used. In the SAG Rate plot (plot 4), we observe that
the employment of cache- and slice-agnostic DASH leads to
severe under-utilization of both network and storage resources,
raising concerns on the robustness of DASH atop 5G/B5G
mobile data networks that integrate heterogeneous storage,
compute and network resources. Similar trends are observed
for the SWG proxy logic in Fig. 3 (plots 6-10). Once again, the
reduced time-to-content for specific segments, e.g., segment 2
@360p and 4 @2160p in plot 8, creates oscillations on the
video playout (plot 6). Such oscillations are further amplified
due the unequal rates reserved for the CDN-to-BS and BS-to-
user links. Hence, although the SWG proxy logic enhances the
video playout process at the UE (plot 1 vs. plot 6), oscillation
dynamics still degrade the user QoE (SWG MOS - plot 10).

IV. OPTIMAL VIDEO STREAMING OVER HTTP IN
MEC-EMPOWERED SLICE-ENABLED NETWORKS

Motivated by the study of Section III, we now propose
a novel video streaming over HTTP paradigm according to
which, the video bitrate should be fixed throughout the video
session lifetime in line with i) the slice format parameter
values L, R1, R2 and ii) the cached content available at
the MEC-empowered BS. Such an approach stems from
our findings that adaptive bitrate selection and segment-by-
segment video requests actually degrade the user QoE in
scenarios where specific network resources are dedicated for

video streaming. Accordingly, we divide the video streaming
process into consecutive epochs, with each epoch enabling
the UE video player (HTTP client) to batch multiple requests
for consecutive video segments of a target video bitrate and
better utilize reserved storage/network resources. Full utiliza-
tion of the CDN-to-BS link capacity dictates caching of the
early video segments per epoch, aiming to prolong the time
available for fetching non-cached segments through the low-
end CDN-to-BS link while delivering both cached and non-
cached segments through the high-end BS-to-user link (Fig.
4). Hence, the MEC-empowered proxy BS should i) infer on
the maximum video bitrate it can support for the given slice
parameter values and video file, ii) identify how segments
should be allocated into streaming epochs, and iii) decide
which particular segments should be proactively cached for
each streaming epoch to mitigate video stalls at the UE side.

A. System Model and Problem Formulation

We consider a MEC-empowered slice-enabled cellular net-
work that provides access to a number of users U , which are
interested in consuming popular video files from a tagged
content library F . Each video file f ∈ F has a playout
time of Vf seconds, is encoded at Qf different bitrates and
is partitioned into Mf = dVf

Tf
e video segments, each having

a common video playout duration of Tf seconds to support
DASH-compatible video streaming. The duration of the last
segment is VfmodTf seconds. Let sf,m,q denote the filename
and Sf,m,q the file size (Mbits) of video segment m that is
part of file f ∈ F and is encoded at video bitrate q, where
1 ≤ m ≤Mf and 1 ≤ q ≤ Qf . The MEC-empowered cellular
BSs are considered capable of inferring on the list of files
Fu ⊆ F that each user u ∈ U is interested in consuming, e.g.,
using techniques as in [9]. Based on such predictions, each
MEC-empowered BS reserves up to a fixed cache size Lu,f

for each associated user u to proactively cache video segments
of file f ∈ Fu, potentially at different bitrates.

Without focusing on which particular subset Fu is selected
per user u, or how the maximum cache size Lu,f is set
by the MEC-empowered cellular BS, i.e., current literature
includes numerous works to this end (Section II), we focus
on which particular video segments and bitrates should be
placed into the MEC-empowered BS’s cache for a given
file f ∈ Fu and user u ∈ U . In particular, we focus on
the emerging scenario where the slice-enabled network can
fuel the caching logic of the MEC-empowered BSs with
information on specific average throughput guarantees for the
CDN-to-BS and the BS-to-user links. Accordingly, each MEC-
empowered cellular BS proactively caches popular contents
to enhance the video streaming over HTTP process for the
attached users, acting as an HTTP proxy that delivers cached
video segments directly through the BS-to-user link, or relays
non-cached video segments from the CDN to the user through
both the CDN-to-BS and BS-to-user links. We further focus
on a tagged MEC-empowered BS that serves user u ∈ U with
file f ∈ Fu by reserving resources to guarantee an average
throughput of R1 Mbps for the BS-to-user link and R2 Mbps
for the CDN-to-BS link. The MEC-empowered BS should

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 7

sq,3 Sq,i sq,b+isq,b+1 sq,M-1 sq,Msq,1sq,2 sq,a sq,a+b

Epoch 1 Epoch E-k Epoch E

HTTP Client HTTP Server HTTP Proxy
HTTP GET (q,1 to 4]) HTTP GET (q,3)

HTTP GET (q,4)

Batch Request
HTTP POST(q,1)
HTTP POST(q,2)

HTTP POST(q,3)

HTTP POST(q,4)

HTTP POST(q,3)

HTTP POST(q,4)

Ep
oc

h
1

Prioritized
Service
based

on segm.
ID

In-sequence
reception of

video
segments

HTTP GET (q,M-1 to M) HTTP GET (f,q,M)Batch Request
HTTP POST(q,M-1)

HTTP POST(q,M)

HTTP POST(q,M)

Ep
oc

h
E

In-sequence
reception of

video
segments

e1 e'1 eE-k e'E-k eE=d'E

sq,4
d1 dE-k e'E

Fig. 4. Epoch-based content caching and video streaming over HTTP

TABLE I
PAPER NOTATION

Notation Parameter Description
F Content library (includes all video files)
U Set of user IDs served by the MEC-empowered network
Fu Selected files to be cached for a tagged user u
Vf Video duration of video file f (sec)
Tf Segment duration of video file f (sec)
Mf No of video segments for the tagged file f
sf,m,q Filename of segment m encoded at bitrate q for file f
Sf,m,q Filesize (Mbits) of segment m encoded at bitrate q for filef
Lf,u Reserved storage capacity for a user u and file f
R1 BS-to-user link average throughput guarantee (Mbps)
R2 CDN-to-BS link average throughput guarantee (Mbps)
σ1 Rayleigh distribution parameter for BS-to-user link fading
σ2 Rayleigh distribution parameter for CDN-to-BS link fading
bi Aggregate playout time of buffered segments due by the

reception of segment i
τi Stalling time experienced by the reception of segment i
I Minimum no of received segments before video playout
D Maximum tolerable initial playout video delay (sec)
q∗ Maximum (optimal) video bitrate assuming zero stalls
E No of epochs with cached (or not) video segments for filef
[ek, dk] Sequence of segment IDs cached for epoch k (≤ E)
[dk+1, e

′
k] Sequence of segment IDs NOT cached for epoch k (≤ E)

c∗q Caching code indicating the sequence of segment IDs se-
lected for caching (or not) per epoch, for all epochs

C∗q Cache size (in Mbits) required to deploy caching code c∗q

identify the maximum video bitrate q∗ that it can support while
avoiding video stalls. To this end, it caches segments of video
file f taking into account the reserved cache size Lu,f and
average throughput R1 and R2 (Fig. 1).

B. Problem Formulation

Aligned with our discussion in the beginning of Section IV,
we consider that the MEC-empowered cellular BS employs
epoch-based content caching before the streaming service
begins and suggests the most appropriate video bitrate to
the end user upon service initiation (SAND). Given the slice
Lu,f , R1, R2, and targeting to complete mitigation of video
stalls, epoch-based network caching can have more than one
feasible solutions. Accordingly, identifying the sequence of
cached segments (termed as caching code) that minimizes
cache usage at the MEC-empowered BS may allow for a better
utilization of the available cache, e.g., serving more users,

or caching more files. Accordingly, we start our formulation
with the problem of epoch-based content caching for a target
video bitrate q ∈ {1, ..., Qf} and then extend it to derive the
maximum feasible video bitrate q∗ that can be supported.

The MEC-empowered cellular BS should identify the num-
ber of epochs E and infer on the consecutive video segments
[ek, dk] that it should cache per epoch k, where 1 ≤ k ≤ E,
e1 = 1, ek ≤ dk and 1 ≤ ek, dk ≤ Mf . Each epoch should
include at least one cached and one non-cached segment
(dk < e′k), i.e., if not, it could have been merged with the sub-
sequent one. Thus, segments ek to dk are cached at the MEC-
empowered BS while segments dk+1 + 1 to e′k are fetched
by the CDN through the CDN-to-BS and BS-to-user links
(see Fig.4). The caching code [{e1, d1, e′1}, ..., {eE , dE , e′E}],
where e′k = ek+1 − 1 is the last segment of epoch k and
eE+1 =Mf +1, should be further constructed so as to respect
the slice format Lu,f , R1 and R2 and mitigate video stalls.

We now formulate the problem of epoch-based network
caching given a target video bitrate q, file f and user u.
Accordingly, we omit subscripts f and u for notational con-
venience. The optimization problem is to identify the caching
code c∗q = [{e1, d1, e′1}, ..., {eE , dE , e′E}] with the minimum
cache size requirements C∗q that accounts for the given slice
parameter values and meets the video playout constraints.

Problem Formulation 1. Epoch-based caching for target
bitrate q. Input: [L,R1, R2, {Sm,q},M, T, V,D, q]

C∗q = arg{E,e1,d1,e′1,...,eE ,dE ,e′E}
min

E∑
k=1

dk∑
m=ek

Sm,q

(4)
w.r.t. ek ≤ dk < e′k < ek+1,∀k : 1 ≤ k ≤ E (5)

e1 = 1, e′E =M and eE+1 =M + 1 (6)
S1,q

D
≤ R1 (7)

E∑
k=1

dk∑
m=ek

Sm,q ≤ L (8)

∑l
m=2 Sm,q

T · (l − 1)
≤ R1,∀l : 2 ≤ l ≤ e′1 (9)∑lk

m=ek
Sm,q

T · (lk − ek)
≤ R1,

∀k : 1 < k ≤ E and ∀lk : ek ≤ lk ≤ e′k (10)∑lk
m=dk+1 Sm,q

T · (lk − ek)
≤ R2,

∀k : 1 ≤ k < E and ∀lk : dk ≤ lk ≤ e′k (11)

Eq. (4) derives the (optimal) caching code c∗q =
[{e1, d1, e′1}, ..., {eE , dE , e′E}] that minimizes the cache size
requirements at the MEC-empowered BS while meeting the
constraints in Eqs. (5) to (11). Eq. (5) constrains the caching
code to include at least one cached and one non-cached
segment per epoch. Eq. (6) bounds the caching code param-
eters within valid intervals. Eq. (7) bounds the initial playout
video delay within a target threshold of D seconds. Eq. (8)
constrains the aggregate file size of cached segments not to
exceed the available cache size L. Eq. (9) constrains the

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 8

aggregate download time of segments 2 to l not to exceed
the corresponding video playout time of segment l for all
feasible [2, l] intervals, i.e., the delay of receiving the first
segment is not a video stall. Eq. (10) acts in a similar fashion
for all streaming epochs other than the first one. Eqs. (9)
and (10) consider that both cached and non-cached segments
are delivered through the BS-to-user link for a tagged epoch.
For all streaming epochs 1 ≤ k ≤ E, Eq. (11) constrains
the download time of non-cached segments (dk + 1 to lk) to
match the video playout time of segment lk, under all possible
[dk +1, lk] intervals (dk +1 ≤ lk ≤ e′k). In this constraint, we
account for the extended time available due to the reception
of cached blocks early in the epoch (BS-to-user link).

C. Exhaustive Search Algorithm

Algorithm 1: Identify maximum video bitrate q∗ and
optimal code c∗q∗ for Problem Formulation 1

1 Input: L,R1, R2, {Sm,q},M, T, V,D
2 Output: q∗, c∗q = {{e1, d1, e′1}, ., {eE , dE , e′E}}, C∗q
3 Function: MainEBC(Input)
4 q∗ = −1;C∗q = −1; c∗q = ∅
5 for q = Q to 1 do
6 c =

∑M
m=1 Sm,q;

7 if Sm,q/D ≤ R1 then
8 [c∗q , C∗q] =

ExhEBC(.., q, 1,M, ∅, {1,M,M}, c)
9 if C∗q ≤ L && C∗q ≥ 0 then

10 q∗ = q; break;
11 end
12 end
13 end
14 return q∗, c∗q , C∗q ; end

Algorithms 1-3 enable us to identify the maximum video
bitrate q∗ and the optimal solution to Problem Formulation 1.
Algorithm 1 examines all available video bitrates (highest to
lowest) and identifies whether a feasible solution exists for a
target video bitrate using Algorithm 2. Algorithm 2 employs
exhaustive search to explore the full state space of Problem
Formulation 1 and identify the optimal caching code c∗q (if any)
with the minimum cache size requirements C∗q . Algorithm 3
infers if the tagged interval [ek, e′k] can meet the constraints of
Problem Formulation 1, identifying the segment dk with the
minimum cache requirements.

We now overview Algorithm 1. Moving from the highest
to the lowest video bitrate q ∈ {1, ..., Q} (step 5), in step 7,
we check if the initial playout delay constraint D is met (Eq.
(7)). If not, the current target resolution is skipped. If yes,
exhaustive search for the segment interval [1,M] is triggered
(step 8) assuming full segment caching as baseline. Since
Algorithm 2 returns C∗q = 0 if the R2 capacity is sufficient to
deliver all video segments (no caching necessary), or C∗q = −1
if no solution exists (Eqs. (9)-(11) are met), if the cache size
constraint of Eq. (8) is met (step 9), the maximum video bitrate
q∗ is set to the current one (step 10).

Algorithm 2: Exhaustive search for a target video
bitrate q and segment interval [k1, k2]

1 Input: L,R1, R2, {Sm,q},M, T, V,D, q, k1,
2 k2, w,hq, Hq

3 Output: c∗q = {{e1, d1, e′1}, ..., {eE , dE , e′E}}, C∗q
4 Function: ExhEBC(Input)
5 [d, cBits] = findSolution(..., k1, k2)
6 if d > 0 then
7 if cost(q, {Sm,q}, w ∪ {k1, d, k2}) < Hq then
8 hq = w ∪ {k1, d, k2};
9 Hq = cost(q, {Sm,q}, w ∪ {k1, d, k2});

10 end
11 end
12 if k2 − k1 ≥ 2 then
13 for k = (k1 + 2) to (k2 − 1) do
14 [d, cBits] = findSolution(..., k1, k − 1)
15 if d > 0 then
16 if cost(q, {Sm,q}, w ∪ {k1, d, k − 1}) <

Hq then
17 [hq, Hq] =

recursiveEBC(..., k, k2, w ∪
{k1, d, k − 1},hq, Hq]);

18 end
19 end
20 end
21 end
22 return cq = hq, Cq = Hq;
23 end

We now focus on the exhaustive search algorithm
(Algorithm 2). Parameter w keeps track of the solution search
path followed in previous recursions, while parameters hq-
Hq store the optimal caching code-cache size requirements
for the interval [1, k2] in previous calls. Thus, w includes a
search path starting from segment 1 and ending up to segment
k1−1. In step 5, we employ Algorithm 3 to identify whether
a solution exists in [k1, k2] to satisfy the rate constraints of
Eqs. (9)-(11). If so (steps 6-9), we evaluate if the caching
code w ∪ {k1, d, k2} can reduce the cache size requirements
as compared to the current optimal code hq , updating hq / Hq

if necessary. In steps 12-13, the evaluation of all alternative
but valid compositions in [k1, k2], containing at least two
parts/epochs, is triggered. A valid composition includes epochs
composed by at least one cached and one non-cached segment
(Eq. (6)). In step 14, we investigate the validity of epoch
[k1, k− 1] and in step 16, we evaluate whether the alternative
composition w ∪ {k1, d, k − 1} requires a lower cache size
as compared to the current solution hq . If so, a recursion is
triggered for the residual interval [k, k2]. This branch-and-
bound approach enables fast elimination of solution paths
that require more cache, avoiding unnecessary calculations.
In steps 12-21, all potential compositions of M are explored
and the optimal caching code is identified, i.e., Algorithm 2
is exact. The depth of recursions reaches up to the maximum
number of epochs that the segment interval [k1, k2] can have,
i.e., E ≤ bk2−k1+1

2 c (see Appendix A).

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 9

Algorithm 3: Validate the rate constraints for segment
interval [ek, e′k] and identify the optimal dk

1 Input: R1, R2, {Sm,q},M, T, V, q, ek, e
′
k

2 Output: segment dk, cached bits Cq[ek, e
′
k]

3 Function: findSolution(Input)
4 if e′k − ek < 1 then
5 return dk = −1, Cq[ek, e

′
k] = −1;

6 end
7 i1 = ek; i2 = e′k;x = −1;noCache = 1;
8 cBits = ncBits = totBits = 0;
9 pT ime = T · (e′k − ek); iSize =

∑e′k
m=ek

Sm,q;
10 if ek == 1 then
11 i1 = 2; cBits = S1,q;
12 end
13 for m = i1 to i2 do
14 if totBits+Sm,q/(T · (m− i1+1)) > R1 then
15 return dk = −1, Cq[ek, e

′
k] = −1;

16 end
17 if totBits+Sm,q/(T · (m− i1+1)) > R2 then
18 noCache = 0;
19 end
20 totBits = totBits+ Sm,q;
21 if x < 0 &&

(iSize− totBits− cBits)/pT ime ≤ R2 then
22 x = m; cBits = cBits+ totBits;
23 end
24 end
25 if x == e′k then
26 return dk = −1, Cq[ek, e

′
k] = −1;

27 end
28 if noCache then
29 return dk = 0, Cq[ek, e

′
k] = 0;

30 end
31 for m = x+ 1 to e′k do
32 for z = m to e′k do
33 if (ncBits+ Sz,q)/(T · (z − ek)) > R2

then
34 break;
35 end
36 ncBits = ncBits+ Sz,q;
37 end
38 if z == e′k then
39 break;
40 else
41 cBits = cBits+ Sz,q; ncBits = 0;
42 end
43 end
44 if z − 1 == e′k then
45 return dk = −1, Cq[ek, e

′
k] = −1;

46 end
47 return dk = z − 1, Cq[ek, e

′
k] = cBits;

48 end

Fig. 5. (a) Run-time example for interval [1, 8], (b) State space size (all) and
number of solutions containing exactly E epochs for interval [1,M].

We now overview Algorithm 3. Steps 4-6 validate whether
the target interval can include at least one cached and one non-
cached segment (Eq. (5)). Steps 10-12 are used to validate
if the constraint of Eq. (9) is met when k1 = 1. Steps 13-
20 validate if the constraints of Eqs. (9)-(10) are met and
infer on whether the CDN-to-user link capacity is sufficient
to avoid network caching. Steps 21-23 identify the lowest
segment ID x that satisfies the rate constraint of Eq. (11)
for lk = e′k. This segment ID can be shifted in steps 31-36,
to provide additional time for fetching non-cached segments
through the CDN-to-BS link, if complete mitigation of video
stalls cannot be achieved. Steps 28-30 are used to infer on
whether the reserved CDN-to-BS throughput R2 can meet the
video playout constraints of Problem Formulation 1 without
caching. Steps 31-43 validate that all constraints in Eq. (11)
are met, shifting the value of x (dk candidate) to higher values
if necessary. Such an event, typically occurs if the file size of
early segments in [x+1, e′k] is comparably larger than those in
[ek, x]. Steps 46-47 are executed if Eq. (11) cannot be satisfied.

Fig. 5(a) illustrates how Algorithm 2 explores the full state
space for a video file of M = 8 blocks, highlighting with light
red the segment intervals that are assessed more than once. In
Fig. 5(b), we also highlight the size and structure of the full
state space for different sizes M , indicating the number of
solution intervals composed by exactly E epochs.

Theorem 1. The time complexity of Algorithm 1 is
upper bounded by O(Q · FM−1 · M2), where Fn =
1√
5

[(
1+
√
5

2

)n
−
(

1−
√
5

2

)n]
is the Fibonacci sequence.

Proof: See Appendix A.

D. Exact Algorithm of Polynomial Time

We now propose Algorithm 4 to solve Problem Formulation
1 in polynomial time (replacing Algorithm 2), by keeping
record on the outcome of segment intervals that have been
previously assessed; thus, mitigating unnecessary recalcula-
tions by instantly inferring on the optimal caching code
for the respective intervals (and sub-intervals). Algorithm 4
employs two global MxM arrays to keep track of the cache
size requirements and the current optimal caching code per
segment interval [i, j] (1 ≤ i ≤ j ≤ M), i.e., gB and gS,
respectively, given the target bitrate q.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 10

Algorithm 4: Proposed DP for a target video bitrate q
and segment interval [k1, k2]

1 Global: gS (MxM array), gB (MxM array)
2 Input: L,R1, R2, {Sm,q},M, T, V,D, q, k1,
3 k2, w,hq, Hq

4 Output: c∗q = {{e1, d1, e′1}, ..., {eE , dE , e′E}}, C∗q
5 Function: ProposedEBC(Input)
6 if gB(k1, k2) == 0 then
7 [d, cBits] = findSolution(..., k1, k2);
8 if d > 0 then
9 gS(k1, k2) = {k1, d, k2};

10 gB(k1, k2) = cost(q, {Sm,q}, {k1, d, k2});
11 if cost(q, {Sm,q}, w ∪ {k1, d, k2}) < Hq

then
12 hq = w ∪ {k1, d, k2};
13 Hq = cost(q, {Sm,q}, w ∪ {k1, d, k2});
14 end
15 end
16 if k2 − k1 ≥ 2 then
17 for k = (k1 + 2) to (k2 − 1) do
18 if gB(k1, k − 1) == 0 then
19 [d, gB(k1, k − 1)] =

findSolution(..., k1, k − 1)
20 if d > 0 then
21 gS(k1, k − 1) = {k1, d, k − 1};
22 tb = gB(k1, k − 1);
23 if w 6= ∅ then
24 tb = tb+ gB(1, k1 − 1);
25 end
26 if tb < Hq then
27 [hq, Hq] =

ProposedEBC(..., k, k2, w∪
{k1, d, k − 1},hq, Hq]);

28 if gB(k1, k − 1) > 0 &&
gB(k, k2) > 0 &&
gB(k1, k−1)+gB(k, k2) <
gB(k1, k2) then

29 gS(k1, k2) =
gS(k1, k−1)∪gS(k, k2);

30 gB(k1, k2) = gB(k1, k −
1) + gB(k, k2);

31 end
32 end
33 else
34 gB(k1, k − 1) = −1;
35 end
36 end
37 end
38 end
39 else if gB(k1, k2) > 0 then
40 if cost(q, {Sm,q}, w ∪ gS(k1, k2)) < Hq then
41 hq = w ∪ gS(k1, k2);
42 Hq = cost(q, {Sm,q}, w ∪ gS(k1, k2));
43 end
44 end
45 return cq = hq, Cq = Hq;
46 end

We now overview Algorithm 4. If the interval of interest
[k1, k2] has not been examined in previous steps (step 6),
we identify the optimal structure for epoch [k1, k2] (step
7). If [k1, k2] is a valid epoch (step 8), we keep record of
the respective epoch structure {k1, d, k2} and its cache size
requirements (steps 9-10), and evaluate whether appending
the respective epoch to the caching code path w, which has
triggered the call for the segment interval [k1, k2], performs
better than the current solution hq (step 11). If so, we replace
the current optimal solution hq and update its cache size
requirements Hq (steps 12-13). If the interval [k1, k2] includes
valid sub-intervals (step 16), we trigger the evaluation of all
their compositions (step 17). During this evaluation we skip
segment intervals that have been previously assessed (step 18)
to fully leverage the depth-first search logic employed by the
proposed method. If the respective sub-interval [k1, k− 1] has
not been assessed before, we identify its optimal structure (step
19), record it (step 21) and store the cache size requirements
of the augmented code w ∪ {{k1, d, k − 1}} (steps 22-24).

If the augmented code w ∪ {k1, d, k − 1} has the potential
to perform better than the current solution hq (step 26), i.e.,
branch-and-bound, we append to w the epoch {k1, d, k − 1}
and trigger a recursive call for the residual interval [k, k2]
(step 27). Accordingly, we evaluate whether the augmented
solution of epochs [k1, k− 1] and [k, k2] performs better than
the current optimal caching code in [k1, k2] (step 28) and if
so, we update the respective records gS(k1, k2) and gB(k1, k2)
(steps 29-30). This step builds bottom-up knowledge on the
optimal solution and its cache size requirements per interval,
taking into consideration all valid compositions of its sub-
intervals (due to depth-first search). Step 33 is performed when
the interval [k1, k − 1] is not a valid epoch(d ≤ 0), keeping
track of this assessment outcome to avoid recalculations (step
34). Step 39 is performed if the interval [k1, k2] has been
assessed before (disjoint with step 6) and evaluates whether
the augmented solution w ∪ gS(k1, k2) performs better than
the current solution hq (step 40). If so, the current optimal
solution hq is updated with w ∪ gS(k1, k2) (steps 41-42).

Proposition 1. The time complexity and memory usage of
Algorithm 4 are bounded by O(M4) and O(M2), respectively.

Proof. See Appendix B.

V. NUMERICAL RESULTS

A. Experimental Setup and Parameters

In this section, we present extensive experimental results
according to the system setup and evaluation methodology
detailed in Section III-A. For performance comparisons, we
consider the following competitive algorithms for the DASH,
HTTP Proxy and Cache building blocks of Fig. 1:

Pred-SAG-Random: Adaptive bitrate selection using the
Predictive DASH algorithm. HTTP proxy streaming using
SAG and random caching over all segments (and bitrates).

Pred-SWG-Random: Similar to Pred-SWG-Random but us-
ing the SWG (instead of the SAG) HTTP proxy logic.

Fixed-SWG-Random: Fixed resolution according to the out-
put of Algorithm 1, assuming the SWG proxy logic and
random segment caching over all segments (and bitrates).

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 11

Proposed: Fixed resolution according to Algorithm 1 using
the SWG proxy logic and caching based on Algorithm 4. Both
the HTTP client and the HTTP proxy place multi-segment
requests for the full video a-priori, where each request is
served in a multi-threaded fashion.

MS-Fixed-SWG-Random: Similar to Proposed but assuming
random segment caching over all segments (and bitrates).

At this point, we note that multi-segment requests and multi-
threaded HTTP service enable the Proposed and the MS-Fixed-
SWG-Random algorithms to send cached video segments par-
allel to the reception of non-cached video segments (relayed
over the CDN-to-BS link); thus, fully leveraging the reserved
slice resources in the BS-to-user link. We now define some
additional metrics used in our study:

Average Resolution: Averaged over segments played out.
MOS (Resolution): Based on the ITU-T QoE metric under

Recommendation P.1203.1 [26]. We consider mode ”0” of the
P.1203.1 implementation in [27], which assigns a MOS to each
segment based on its video bitrate, frame-rate and resolution.

Bitrate Switches: Number of bitrate adaptation events.
Effective R′1 Throughput (Mbps): Total bits sent over the

BS-to-user link during the transfer of video segments, aver-
aged over the throughput experienced per segment.

Effective R′2 Throughput (Mbps): Similar to R′1 but with
focus on the CDN-to-BS link.

Total Network Usage time (secs): Time duration during
which the e2e link is occupied (< actual video playout time).

B. Video streaming performance over time

Fig. 6 extends the study of section III, by evaluating the
performance of the Proposed and MS-Fixed-SWG-Random
algorithms under the same system setup of Fig. 3. We start
our discussions with the focus on the MS-Fixed-SWG-Random
algorithm (plots 1-4). In plot 1 (VLC Output), we observe
that MS-Fixed-SWG-Random benefits from the employment of
multi-segment HTTP requests and multi-thread HTTP service,
enabling simultaneous download of all cached segments at the
MEC-empowered proxy (9, 13, 38, 51); thus, fully leveraging
the resources reserved in the BS-to-user link (plot 3 of Fig.
6) while keeping the CDN-to-BS always busy, i.e., in contrast
with Pred-SWG-Random that leaves the CDN-to-BS link idle
upon cache hit events (Section III). Notably, although MS-
Fixed-SWG-Random fully utilizes the available cache L at the
MEC-empowered BS, it is unable to fully leverage reserved
resources over the BS-to-user link in the long-term due to
its slice-agnostic logic, i.e., the BS-to-user link is not fully
utilized after 80 seconds (plot 3) resulting in degraded MOS
after playing out a few segments (plot 4).

Moving to the Proposed algorithm (plots 5-8), we observe
a smooth video playout (VLC Output - plot 5) that attains
the highest value for the user MOS (plot 8). By observing
the Cache plot (plot 6), we verify that the optimal caching
code is given by hf,1440p = {1, 26, 64} and that the Pro-
posed algorithm fully leverages multi-segment requests (HTTP
client/proxy) as well as multi-thread HTTP service (HTTP
proxy/CDN server) for the same parameter values, fetching
cached and non-cached video segments simultaneously. By

observing plot 7 (Rate plot), we verify that the Proposed
algorithm fully utilizes both the CDN-to-BS (dashed line) and
the BS-to-user links (continuous line), enabling concurrent
delivery of all cached segments (1-26) to the UE through
the BS-to-user link in parallel to the background delivery of
segments 27-36 from the CDN server to the HTTP proxy by
second 147. After completing the delivery of cached segments,
the BS-to-user link is fully utilized to deliver non-cached video
segments that became available through the concurrent CDN-
to-BS delivery, i.e., segments 27-31 are delivered at the max-
imum available BS-to-user rate. This result demonstrates that
the Proposed video streaming paradigm not only minimizes the
storage requirements at the MEC-empowered BS but also takes
full advantage of reserved slice resources to attain the highest
feasible video bitrate while completely mitigating video stalls.

C. Resolution- and Stall-Related Metrics

We now turn our attention to the performance of all algo-
rithms for an increasing BS-to-user link capacity R1. To also
assess the impact of a larger CDN-to-BS average link capacity
R2 and available cache size L, we consider the performance
of all algorithms for the scenarios: a) R2 = 8Mbps and
L = 200MBs (baseline), b) R2 = 8Mbps and L = 50MBs
(four-fold decrease of cache size) and c) R2 = 2Mbps
and L = 200MBs (four-fold decrease of CDN-to-BS link
capacity). Fig. 7(a) highlights that in low to medium R1

values (≤12Mbps), Predictive DASH algorithms (Pred-SWG-
Random/Pred-SAG-Random) attain a better average resolution
performance as compared to the Proposed, MS-Fixed-SWG-
Random and Fixed-SWG-Random. Nonetheless, algorithms
that adopt the proposed video bitrate selection at fixed res-
olution attain an enhanced performance when the available
link capacity R1 enables the transfer of large segment sizes,
which correspond to the highest available resolution, e.g.,
R1 > 15.8MBps enables transfer of the largest 2160p segment.

Fig. 7(a) also highlights that the SAG and SWG proxy
logic attain a roughly similar performance under the baseline
scenario, while the same applies if a four-fold reduction of
the available cache size is considered. Nonetheless, a four-
fold decrease of the available CDN-to-BS link capacity R2

from 8 to 2 Mbps, is shown to deteriorate the average
resolution performance if Pred-SAG-Random is used instead
of Pred-SWG-Random (L = 200Mbps). This performance
trend highlights that slice-agnostic DASH has a significantly
negative impact compared to cache-agnostic DASH, even if a
very large BS-to-user capacity is available.

Interestingly, the results of Fig. 7 reveal that the average
resolution performance, which has been widely used in current
literature, can be misleading. Taking into consideration that the
number of video segments is given by M = 64, we observe
that Predictive DASH algorithms (SAG and SWG) adapt the
video bitrate very frequently (Fig. 7(b)) due to cache hit/miss
events, especially when the BS-to-user link capacity R1 is
low. Besides, traditional SAG video streaming is shown to be
more vulnerable to oscillation dynamics (Fig. 7(b)) whereas,
video streaming at fixed resolution (Proposed, MS-Fixed-
SWG-Random and Fixed-SWG-Random), attains the highest

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 12

Fig. 6. Video streaming for the MS-Fixed-SWG-Random (1-4) and Proposed (5-8) algorithms. L = 150MB, R1 = 8.3 Mbps, R2 = 3.6 Mbps.

MOS (Fig. 7(c)). This interesting result implies that although
Predictive DASH algorithms support a higher average resolu-
tion performance, they ultimately degrade the user QoE due to
very frequent switching across distant resolutions (triggered by
cache hit/miss events). This trend is even more evident when
the available slice resources enable video streaming at medium
to high video resolutions, e.g., for R1 > 3 Mbps where fixed
video bitrate selection enables streaming at 720p (Fig. 7(a)).

The Proposed algorithm is shown to minimize both the
number (Fig. 7(d)) and the duration (Fig. 7(e)) of video
stalls, leading to the highest MOS (stallings) performance
(Fig. 7(f)), for all parameter values under scope. In Fig. 7,
we further observe that although Pred-SAG-Random and Pred-
SWG-Random have similar performance in terms of resolution-
related metrics, i.e., (a)-(c) plots, Pred-SWG-Random always

performs better than Pred-SAG-Random in terms of stall-
related metrics, i.e., (d)-(f) plots, as it better utilizes the
available CDN-to-BS and BS-to-user link capacity. This effect
is more evident for a larger cache size L. MS-Fixed-SWG-
Random and Fixed-SWG-Random perform similarly with the
Proposed algorithm under a large number of system setups,
as they are both assumed to employ optimal video bitrate
selection (Algorithm 1). Nonetheless, the Proposed algorithm
attains a superior performance when a small cache size is
available (e.g., L = 50MBs), due to the fact that the cache
hit performance of random caching scales linearly with L.
Besides, the Proposed algorithm employs optimal epoch-based
caching, which enables it to attain better performance when the
BS-to-user link capacity R1 allows the transfer of larger video
segments (and bitrates) that require comparably larger cache

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 13

1 3 6 8 12 18
Capacity R

1
 (Mbps)

360p

480p

720p

1080p

1440p

1920p

2160p
A

ve
ra

g
e

R
es

o
lu

ti
o

n

1 3 6 8 12 18
Capacity R

1
 (Mbps)

0

5

10

15

20

25

30

35

A
ve

ra
g

e
N

o
. o

f
S

w
it

ch
es

1 3 6 8 12 18
Capacity R

1
 (Mbps)

2

2.8

3.5

4

4.3

4.6

M
O

S
 (

R
es

o
lu

ti
o

n
)

1 3 6 8 12 18
Capacity R

1
 (Mbps)

0

5

10

15

20

25

30

35

40

45

50

A
ve

ra
g

e
N

o
. o

f
S

ta
lls

1 3 6 8 12 18
Capacity R

1
 (Mbps)

0

5

10

15

20

25

30

35

A
ve

ra
g

e
S

ta
ll

T
im

e

1 3 6 8 12 18
Capacity R

1
 (Mbps)

1.5

2

2.5

3

3.5

4

4.5

5

M
O

S
 (

S
ta

lli
n

g
s)

Proposed: R
2
=8Mbps, L=200MBs

Proposed: R
2
=8Mbps, L=50MBs

Proposed: R
2
=2Mbps, L=200MBs

MS-Fixed-SWG-Random: R
2
=8Mbps, L=200MBs

MS-Fixed-SWG-Random: R
2
=2Mbps, L=200MBs

MS-Fixed-SWG-Random: R
2
=8Mbps, L=50MBs

Pred-SwG-Random: R
2
=8Mbps, L=200MBs

Pred-SwG-Random: R
2
=8Mbps, L=50MBs

Pred-SwG-Random: R
2
=2Mbps, L=200MBs

Pred-SAG-Random: R
2
=8Mbps, L=200MBs

Pred-SAG-Random: R
2
=8Mbps, L=50MBs

Pred-SAG-Random: R
2
=2Mbps, L=200MBs

Fixed-SWG-Random: R
2
=8Mbps, L=200MBs

Fixed-SWG-Random: R
2
=8Mbps, L=50MBs

Fixed-SWG-Random: R
2
=2Mbps, L=200MBs

Pred-SWG or Pred-SAG

Algorithms with Fixed Resolution

(a) (b) (c)

Algorithms with Fixed Resolution

Algorithms with Fixed Resolution

(d) (e) (f)

Proposed
All Values

Proposed
All Values

Fig. 7. Performance comparisons of all algorithms vs. maximum average capacity threshold R1: Resolution- and Stall-related metrics

size. For example, MS-Fixed-SWG-Random and Fixed-SWG-
Random are shown to encounter a large amount of video stalls
(Fig. 7(d)/(e)) and degrade the MOS (stallings) performance
(Fig. 7(f)) for R1 > 15Mbps. Besides, the Proposed algorithm
attains at least the same performance with them by utilizing
comparably lower cache size (see section V-D).

D. Network and Cache Usage Metrics

Fig. 8 plots the performance of all algorithms under network
and cache usage metrics. Starting with the scenario where
limited backhaul resources are reserved, i.e., R2 = 2Mbps,
we observe that Pred-SAG-Random necessitates a comparably
larger BS-to-user capacity R1, i.e., in lower R1 values the
effective R′1 and R′2 throughput does not match the reserved
e2e capacity of min(R1, R2). On the other hand, MS-Fixed-
SWG-Random exhibits similar performance with Fixed-SWG-
Random and Pred-SWG-Random, i.e., matching min(R1, R2),
indicating that the capability to simultaneously request/receive
multiple segments cannot be fully harnessed when random
caching is employed if the available R2 link is limited. In
the contrary, the Proposed algorithm scales better its effective
BS-to-user throughput R′1 to the reserved R1 link capacity,
due to optimal epoch-based caching, e.g., when R2 = 2Mbps
and R1 < 6Mbps in Fig. 8(a), the Proposed algorithm
almost doubles the effective throughput R′1. Nevertheless, this
performance trend reaches to a point where an increase of the
BS-to-user link capacity R1 cannot be further harnessed.

In particular, the Proposed algorithm selects a target video
bitrate only if the transfer of its largest video segment can

be achieved by completely mitigating video stalls; thus, since
the largest video segment can be comparably larger than
the average segment size, the effective R′1 throughput can
be lower than the average bitrate, especially at the end of
caching epochs. For that reason, we observe that the Proposed
algorithm requires a comparably lower network usage time
when R2 = 2Mbps (Fig. 8(c)), indicating that the Proposed
algorithm releases reserved network and storage resources ear-
lier than the actual video playback time; thus, providing more
space for service to other network applications. In the contrary,
for R2 = 2Mbps, we observe that all competitive (other than
the Proposed one) algorithms require a significantly larger
network usage time to complete the delivery of video segments
(Fig. 8(c)), higher than the playback time (Figs. 7(d)/(e)).

In the scenarios where backhaul capacity is R2 = 8Mbps,
the Proposed and MS-Fixed-SWG-Random algorithms are
shown to enhance both the effective BS-to-user R′1 (Fig. 8(a))
and the CDN-to-BS R′2 throughput (Fig. 8(b)) as compared
to the Pred-SWG-Random algorithm, due to their native ca-
pability to request and receive multiple video segments in
parallel. Besides, for that reason, the Proposed and MS-Fixed-
SWG-Random algorithms are shown to linearly scale their
effective throughput performance (R′1 and R′2) in values lower
than min(R1, R2). Nevertheless, due to the employment of
optimal epoch-based caching, the Proposed algorithm attains
a superior performance compared to MS-Fixed-SWG-Random
in scenarios where R1 is large enough to support the transfer
of large file sizes (2160p), e.g., R1 > 15.8. The performance
gains following from optimal epoch-based caching are also

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 14

1 3 6 8 12 18
Capacity R

1
 (Mbps)

0

2

4

6

8

10
E

ff
ec

ti
ve

 R
1
 (

M
b

p
s)

1 3 6 8 12 18
Capacity R

1
 (Mbps)

0

1

2

3

4

5

6

7

8

E
ff

ec
ti

ve
 R

2
 (

M
b

p
s)

1 3 6 8 12 18
Capacity R

1
 (Mbps)

0

400

600

900

1800

2250

N
et

w
o

rk
 U

sa
g

e
T

im
e

(s
ec

s)

1 3 6 8 12 18
Capacity R

1
 (Mbps)

0

10

20

40

60

90

In
it

ia
l P

la
yb

ac
k

D
el

ay
 (

se
cs

)

Proposed: R
2
=8Mbps, L=200MBs

Proposed: R
2
=8Mbps, L=50MBs

Proposed: R
2
=2Mbps, L=200MBs

MS-Fixed-SWG-Random: R
2
=8Mbps, L=200MBs

MS-Fixed-SWG-Random: R
2
=2Mbps, L=200MBs

MS-Fixed-SWG-Random: R
2
=8Mbps, L=50MBs

Pred-SwG-Random: R
2
=8Mbps, L=200MBs

Pred-SwG-Random: R
2
=8Mbps, L=50MBs

Pred-SwG-Random: R
2
=2Mbps, L=200MBs

Pred-SAG-Random: R
2
=8Mbps, L=200MBs

Pred-SAG-Random: R
2
=8Mbps, L=50MBs

Pred-SAG-Random: R
2
=2Mbps, L=200MBs

Fixed-SWG-Random: R
2
=8Mbps, L=200MBs

Fixed-SWG-Random: R
2
=8Mbps, L=50MBs

Fixed-SWG-Random: R
2
=2Mbps, L=200MBs

1 3 6 8 12 18
Capacity R

1
 (Mbps)

0

10

20

30

40

50
C

ac
h

e
H

it
 R

at
io

 (
%

)

1 3 6 8 12 18
Capacity R

1
 (Mbps)

0

15

50

125

200

C
ac

h
e

U
sa

g
e

(M
B

s)

Proposed, All Values
MS-Fixed-SWG-Random L=200MBs

Fixed-SWG-Random L=200MBs All non-Proposed for L=50MB

All non-proposed for L=200MBs

All non-proposed for L=50MBs

All non-Proposed for L=200MB

All non-SAG for R2=2Mbps

Proposed for R2=2Mbps

Fixed-SWG-Random for R2=8Mbps

(e)(d)

(a) (b) (c)

(f)

R2=8Mbps: Proposed,

MS-Fixed-SWG-Random

Fig. 8. Performance comparisons of all algorithms vs. maximum average capacity threshold R1: Network / Cache usage metrics

shown in Fig. 8(d), where the Proposed algorithm outperforms
all competitive algorithms in terms of Initial Playback delay,
due to the fact that the Proposed algorithm a) always caches
the first video segment when R2 < R1, and b) employs joint
optimization of video bitrate selection and segment caching.
Fig. 8(d) illustrates that cache- and slice-agnostic Predictive
DASH (SAG or SWG), results in comparably larger initial
playback delay, especially when the e2e link capacity is low.

Fig. 8(e) plots the cache hit ratio (CHR) performance.
As expected, all algorithms employing slice-agnostic random
caching attain a roughly similar performance for the same
cache size L. On the contrary, the Proposed algorithm is
shown to adapt its CHR performance depending on the
available R1 and R2 capacity guarantees. For example, when
R2 = 2Mbps, the Proposed algorithm attains a very high
CHR to alleviate the scarcity of backhaul resources whereas,
for R2 = 8Mbps, it attains a low CHR performance for
R1 < 15.8Mbps and a high CHR for R1 ≥ 15.8Mbps
to sustain the highest available resolution (Fig. 7(a)). This
performance trend highlights that maximizing the CHR is
not necessarily a key requirement for MEC-empowered slice-
enabled 5G/B5G data networks, which aim to guarantee some
minimum QoS/QoE through the joint utilization of reserved
network and cache resources. Besides, as compared to all com-
petitive solutions, the Proposed algorithm attains a superior
QoE performance (based either on resolution, or video stalls)
while minimizing the cache usage at the MEC-empowered BS
(Fig. 8(f)); thus, releasing a considerable amount of storage
and network resources for other services, or users.

E. Run time Performance

We now measure and compare the run time performance
for deriving the optimal solution using either the Exhaus-
tive search (Algorithm 2), or the Proposed DP algorithm
(Algorithm 4) in Fig. 9. Recall that the time complexity of
both algorithms scales with the number of video segments
M (Theorem 1/Proposition 1). By assuming the same slice
parameters with Fig. 6, we focus on the run time performance
under four different segment size distributions: a) segments of
the BBB video at 1440p resolution (BBB@1440p), b) equal-
sized segments with size equal to the average segment size of
the BBB@1440p video, c) normally-distributed segment sizes
assuming the average segment size and standard deviation of
the BBB video@1440p, and d) randomly-distributed segment
size assuming that the average segment size equals that of the
BBB video@1440p. As expected, the run time of exhaustive
search scales exponentially with M , whereas the proposed
algorithm requires polynomial run time. Besides, the run time
of the proposed algorithm is in the order of a few seconds for
all parameters under scope, whereas the run time of exhaustive
search scales exponentially with M, e.g., for M = 60, the
proposed algorithm requires 3 seconds to calculate the optimal
solution, whereas the exhaustive search requires about 1.5
day (128.540 secs) to reach the same output. This observa-
tion clearly highlights the importance of our contributions,
including the proposed system modeling and solution. It is also
interesting to note that the size distribution of video segments
has a non-negligible impact on the runtime performance of
both algorithms, mainly due to the fact that the branch-and-

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 15

10 15 20 25 30 35 40 45 50 55 60
10-3

10-2

10-1

100

101

102

103

104

105

106
D

ec
is

io
n

 a
lg

o
ri

th
m

 r
u

n
ti

m
e

(s
ec

o
n

d
s)

Exhaustive: Equal Segment Size
Exhaustive: BBB@1440p
Exhaustive: Normal Segment Size
Proposed: Equal Segment Size
Proposed: BBB@1440p
Proposed: Normal Segment Size
Exhaustive: Random Segment Size
Proposed: Random Segment Size

Fig. 9. Run time performance for exhaustive search and proposed ECB

bound approach adapts to the structure/values of the solution
space and does not employ a fixed number of steps.

In particular, both algorithms exhibit the highest run time
requirements for the equal-sized scenario, which in general
can be considered as a trivial solution scenario. This perfor-
mance trend is somewhat expected, provided that equal-sized
segments trigger full exploration of the solution state space
(for both algorithms). The run time of each algorithm in the
BBB@1440p and normal segment size scenarios is lower,
yet not very far away from that of the equal-sized segment
scenario. On the other hand, both algorithms seem to infer
on the optimal solution at a sub-sec scale if randomly-sized
segments constitute the target file. This performance trend
readily follows from the fact that branch-and-bound enables
fast elimination of solution paths that either require more
cache, or fail to meet the optimization constraints.

VI. CONCLUSION

In this paper, we have provided a comprehensive study to
highlight that traditional video streaming over HTTP using
DASH and/or SAG HTTP proxies cannot harness the potential
of MEC and network slicing in 5G/B5G networks. Accord-
ingly, we have proposed a novel video streaming over HTTP
paradigm that exploits information on the available cache size,
the file size of video segments as well as knowledge of the
reserved BS-to-user and CDN-to-BS network resources, to
identify the maximum attainable video bitrate that guarantees
complete mitigation of video stalls. An optimal algorithm for
solving the joint problem of video bitrate selection and epoch-
based caching has been proposed, while its time/memory
complexity have been assessed. Through extensive numeri-
cal results, we have demonstrated that the proposed video
streaming over HTTP algorithm outperforms traditional and
contemporary DASH solutions under a vast set of performance
metrics, enabling better utilization of reserved network/cache
resources, full mitigation of video stalls and maximized user
QoE. As future work, we aim to develop low-complexity
variants of the proposed polynomial-time yet exact algorithm,

investigating the trade-off between time complexity and per-
formance. Future work also includes extension of our system
model and proposed solution in view of multi-source video
streaming scenarios.

APPENDIX A
PROOF OF THEOREM 1

The time complexity of Algorithm 3, which identifies if a
target segment interval [ek, e

′
k] can be considered as a valid

epoch, is given by nk +
∑

m=xk
(nk −m) + C, where nk =

e′k−ek+1 is the number of segments in [ek, e
′
k], C is a number

of constant evaluation steps, and xk takes values according to
steps 21-23. Considering that 1 ≤ xk ≤M , it readily follows
that the time complexity of Algorithm 3 is bounded by O(nk+
nk · (nk − 1)/2 + C), which is O(n2k). Moreover, the time
complexity required to identify if a given caching code c =
{{1, d1, e′1, }, ..., {eE , dE , e′E}} that is composed by exactly
E epochs is valid, i.e., if c satisfies Eqs. (5)-(11), is given
by O(

∑E
k=1(e

′
k − ek + 1)2). This operation is performed by

Algorithm 2 in a recursive fashion, by employing Algorithm
3 for each one of the different compositions of M with E
parts on an epoch-by-epoch basis. Taking into account that∑

i(ni)
2 < (

∑
i ni)

2 for ni > 0 and that
∑E

k=1(e
′
k−ek+1) =

e′E−e1+1 =M , the time complexity required to infer on the
feasibility of a tagged caching code c, which is composed by
exactly E epochs, is upper bounded by O(M2), independent
of the sequence of epoch intervals {ek, e′k} (k ∈ {1, ..., E}).

Considering that there exists up to one caching code to
minimize the cache requirements of a tagged segment interval
(Algorithm 3 derives this code), it follows that the number of
all valid caching codes that the exhaustive search algorithm
should explore is equal to the number of compositions of
M into E parts with size greater than one, i.e., a valid
epoch should include at least one cached and one non-cached
segment. Besides, for that reason, the number of epochs E
ranges from 1 to bn2 c. We observe that each composition of M
in E parts is equivalent with the composition of M+E into E
parts with each part having size greater than 1 (i.e., we increase
each part by 1). Thus, since the number of compositions
of M into E parts is given by the binomial

(
E−1
M−1

)
, the

compositions of M into E parts of size greater than one,
is given by the composition of M − E into E parts, i.e.,(

E−1
M−E−1

)
. Accordingly, when the full segment interval [1,M]

is considered, the time complexity of Algorithm 2 is bounded
by O

(∑bM2 c
k=1 M

2 ·
(

E−1
M−E−1

))
= O(M2 · FM−1), where Fn

is the Fibonacci sequence. Since Algorithm 1 triggers a call
to Algorithm 2 for up to Q times, we reach to Theorem 1.

APPENDIX B
PROOF OF PROPOSITION 1

Algorithm 4 keeps track of previous visits to segment
intervals and eliminates recalculations on their optimal caching
code (and validity) in future steps. Due to its depth-first search
logic, stepping out from a given interval [i, j] takes place only
if all possible solutions in sub-branches (sub-intervals) have
been evaluated (i.e., steps 17 and 27). Accordingly, Algorithm
4 visits every segment interval [i, j] only once to i) infer

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

MAY 2023 16

on its validity as an epoch and identify its optimal structure
in O((j − i + 1)2) using Algorithm 3, and ii) perform a
number of constant steps, e.g., to evaluate augmented solutions
in steps 39-42, or steps 29-30. Hence, the time complexity
of Algorithm 4 is derived as the sum of unique segment
intervals of size greater than one multiplied by the time
complexity required to identify the optimal solution for each
such interval. The time complexity of Algorithm 3 is derived
in Appendix A. Thus, we now assess the number of unique
segment intervals (j− i ≥ 2) in [1,M] of a tagged size k ≥ 2.
A valid caching code should include segment intervals of size
greater than one; thus, any interval [i, j] starting with i = 2, or
ending to j =M−1, is not valid and should be excluded from
the evaluation (steps 17-18). For M > 3, we observe that i)
there exists exactly one segment interval of size k =M , i.e.,
[1,M], ii) there exist no valid intervals of size k = M − 1,
iii) there exist two segment intervals of size k =M − 2, i.e.,
[1,M − 2] and [3,M], and iv) there exist exactly M − k − 1
valid intervals of size k for all k ∈ {2, ...,M−3}. Accordingly,
the number of valid and unique intervals in [1,M] is given by
3 +

∑M−3
k=2 (M − k− 1) = 1

2M(M − 5) + 5. Hence, the time
complexity of Algorithm 4 is derived by:

O

(
M2 + 2 · (M − 2)2 +

M−3∑
k=2

k2 · (M − k − 1)

)

= O

(
M4

12
− M3

3
+

29M2

12
− 31M

6
+ 6

)
, (12)

which is O(M4). The memory complexity O(M2) comes
from the requirement of keeping track previously visited
segment intervals using two MxM arrays, i.e., gS and gB.

ACKNOWLEDGMENT

The author would like to acknowledge the valuable contri-
bution of Mr. Nikolaos Episkopos to the coding and derivation
of experimental measurements presented in this work.

REFERENCES

[1] C. Bernardos et al., “European Vision for the 6G Network Ecosys-
tem”,The 5G Infrastructure Association (5GIA), July 2021.

[2] S. Kekki et al., ”MEC in 5G networks”, 1st ed., Eur. Telecommun.
Standards Inst., ETSI White Paper 28, Jun. 2018.

[3] ETSI MEC, ”Multi-access Edge Computing (MEC); Use Cases and
Requirements”, ETSI GS MEC 002 V3.1.1, Apr. 2023.

[4] P. Cerwall et al., ”Ericsson Mobility Report”, White Paper, Nov. 2021.
[5] A. A. Barakabitze et al., ”QoE Management of Multimedia Streaming

Services in Future Networks: A Tutorial and Survey”, IEEE Commun.
Surv. & Tut., vol. 22, no. 1, pp. 526-565, Q1 2020.

[6] A. Bentaleb et al., ”A Survey on Bitrate Adaptation Schemes for
Streaming Media Over HTTP”, IEEE Commun. Surv. & Tut., vol. 21,
no. 1, pp. 562-585, Q1 2019.

[7] 3GPP TS 38.300 V16.8.0, “NR; NR and NG-RAN Overall Description;
Stage-2”, 3GPP, Technical Specification, Dec. 2021.

[8] D. King et al., “FG-NET2030 – Focus Group on Technologies for
Network 2030, Network 2030 - Terms and Definitions for Network 2030”,
Standard. Sector of ITU, Technical Specification, Jun 2020.

[9] H. S. Goian et al., ”Popularity-Based Video Caching Techniques for
Cache-Enabled Networks: A Survey”, IEEE Access, vol. 7, pp. 27699-
27719, March 2019.

[10] T. M. Ayenew, D. Xenakis, N. Passas and L. Merakos, ”Cooperative
Content Caching in MEC-Enabled Heterogeneous Cellular Networks”,
IEEE Access, vol. 9, pp. 98883-98903, July 2021.

[11] D. Jiang et al., ”Analysis and Optimization of Caching and Multicasting
for Multi-Quality Videos in Large-Scale Wireless Networks”, IEEE Trans.
on Comm., vol.67, no.7, pp.4913-4927, Jul 2019

[12] W. Li et al., ”Quality of Experience in ICN: Keep Your Low- Bitrate
Close and High-Bitrate Closer”, IEEE/ACM Trans. on Netw., vol. 29, no.
2, pp. 557-570, April 2021.

[13] B. Wang et al., ”Improving the Performance of Online Bitrate Adaptation
with Multi-Step Prediction Over Cellular Networks”, IEEE Trans. on
Mobil. Comput., vol.20, no.1, pp.174-187, 1 Jan 2021

[14] S. Yang et al.,”Multi-Access Edge Computing Enhanced Video Stream-
ing: Proof-of-Concept Implementation and Prediction/QoE Models”,
IEEE Trans. on Vehic. Techn., vol.68, no.2, pp.1888-1902, Feb 2019

[15] G. S. Park et al., ”Video Quality-Aware Traffic Offloading System for
Video Streaming Services Over 5G Networks With Dual Connectivity”,
IEEE Trans. on Vehic. Techn., vol.68, no.6, pp.5928-5943, Jun 2019

[16] A. Mehrabi, M. Siekkinen and A. Ylä-Jääski, ”Edge Computing Assisted
Adaptive Mobile Video Streaming”, IEEE Trans. on Mob. Comput., vol.
18, no. 4, pp. 787-800, 1 April 2019.

[17] X. Huang et al., ”Towards 5G: Joint Optimization of Video Segment
Caching, Transcoding and Resource Allocation for Adaptive Video
Streaming in a Multi-Access Edge Computing Network”, IEEE Trans.
on Vehic. Techn., vol.70, no.10, pp.10909-10924, Oct 2021

[18] T. X. Tran et al., ”Adaptive Bitrate Video Caching and Processing in
Mobile-Edge Computing Networks”, IEEE Trans. on Mobil. Comput.,
vol.18, no.9, pp.1965-1978, Sept 2019.

[19] RE-CENT video streaming toolbox, GitHub. [Online]:
https://github.com/Fogus-Gr/recent-dash-proposed-caching

[20] Big Buck Bunny, short computer-animated comedy film featuring ani-
mals of the forest, made by the Blender Institute, part of the Blender
Foundation, 2008. [Online] peach.blender.org.

[21] FFmpeg, suite of libraries and programs for handling video, audio, and
other multimedia files and streams. [Online]: ffmpeg.org

[22] J. Le Feuvre, ”GPAC filters”, Proceedings of the 11th ACM Multimedia
Systems Conference, pp. 249-254, May 2020.

[23] N. Episkopos, D. Xenakis, ”Big Buck Bunny Segments”, GitHub.
[Online]: https://gain.di.uoa.gr/DASH/dash segments bbb.7z

[24] VideoLan, ”VLC media player”. [Online] videolan.org/vlc/.
[25] T. Hoßfeld et al., ” Internet Video Delivery in YouTube: From Traffic

Measurements to Quality of Experience”, in Data Traffic Monitoring and
Analysis, Lecture Notes in Computer Science, Springer, vol 7754, 2013.

[26] ITU-T Series P: Telephone transmission quality, telephone installations,
local line networks, ”Parametric bitstream-based quality assessment of
progressive download and adaptive audiovisual streaming services over
reliable transport - Video quality estimation module”, Recommendation
ITU-T P.1203.1, Jan. 2019.

[27] S. Göring et al., ”ITU-T Rec. P.1203 Standalone Implementation”, July
2021. [Online]: https://github.com/itu-p1203/itu-p1203.

Dr. Dionysis Xenakis is Assistant Professor at
the Department of Digital Industry Technologies
of the National and Kapodistrian University of
Athens (NKUA), Greece. Dionysis received the
Ph.D. degree from the Department of Informatics
and Telecommunications at NKUA in 2014 and has
participated in numerous EU-funded projects, serv-
ing as Project Coordinator, Technical Manager, PI
and Researcher. He was recipient of the prestigious
Onassis PhD and Postdoc fellowships. Dionysis has
co-authored more than 40 peer-reviewed journal and

conference papers, while he has chaired and served as TPC member in numer-
ous top-tier IEEE conferences (IEEE GLOBECOM, IEEE ICC, etc.). Dionysis
has been reviewer to almost all high-ranking IEEE journals in Computer
Science - Data Networks and is currently Editor in IEEE Networking Letters.
He has also served as Selection Member Committee in the 2021/2022/2023
IEEE ComSoc Student Competition, representing the EMEA region. Dionysis
is head of the CISCO Networking Academy at NKUA Greece and member
of Industry-Academia Committees promoting critical synergies between the
two sectors. His current research interests lie in the design and analysis of
MEC-enabled 5G/6G mobile data networks, Distributed Ledger Technologies
and Digital Twins.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3329662

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

