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A Min-max Optimization-based Approach for
Secure Localization in Wireless Networks

Slavisa Tomic and Marko Beko

Abstract—Range-based localization of a target device in wire-
less networks in the presence of malicious attackers that tend
to disrupt the localization process by counterfeiting (spoofing)
their radio measurements is addressed in this work. In con-
trast to state-of-the-art methods, that assume that all devices
participating in the process are non-malicious in the beginning,
we here tackle the problem from the opposite perspective. All
devices are treated as malicious at first, and, by assuming that
an upper-bound on the attack intensity is (imperfectly) known a
priori, the worst-case scenario is studied, from which two novel
estimators are derived. The first approach is based on convex
relaxation and leads to a robust second-order cone programming
(R-SOCP), while the other one assumes problem reformulation
as a robust generalized trust region sub-problem (R-GTRS).
Received signal strength (RSS) scenario is in the main focus,
but an adaptation of the new approach to a general range-based
setting is presented as well. The proposed min-max approach
is validated though computer simulations, where it showed its
worthiness by outperforming the state-of-the-art approaches and
offering a more reliable (secure) solution to the problem. Finally,
it is worth mentioning that a theoretical analysis on the detection
performance is also included in the work.

Index Terms—Convex optimization, distance-spoofing, gener-
alized trust region sub-problem (GTRS), min-max approach,
probability of detection, robust localization, second-order cone
programming (SOCP), secure localization.

I. INTRODUCTION

Accurate determination of object’s location (e.g., a wireless
device) plays a paramount role in many applications such as in
positioning, tracking and autonomous navigation systems [1],
[2]. Nevertheless, the majority of currently available location-
based services (such as [3]-[6]) are vulnerable to security
threats [7], since malicious agents (attackers) can easily ac-
cess the network and disable accurate localization process
(for instance, either by impersonating genuine devices or by
modifying their code to turn them malicious). Moreover, in
many situations, it suffices to simply obstruct a direct wireless
link between two genuine devices to aggravate the localization
process, since this leads to reduced power of the received
signal, corresponding to increased distance estimation. Note
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that in these cases, the adversary does not even need to break
any crypto, nor expose to risk of breaking any upper layer
protocols when setting the malicious deed [8], [9]. Besides,
inadvertent errors (malfunctions) can occur at any time. There-
fore, simply localizing an object might not be sufficient in
many applications nowadays, but localization must be done
securely in order to avoid calamities or even fatal outcomes.

The authors in [8] and [9] proposed a secure-ranging
solution, but their main goal was to study design of schemes
to ratify that the distance between two devices is as it
is proclaimed. To accomplish this, both works employed
bounding protocols, like verifiable multilateration and location
verification, to endure attacks [8], [9].

Over the last years, several secure localization systems
have been developed [10]-[20]. The work in [10], proposed
a greedy approach to determine the location consistent with
the largest number of measurements from reference points.
In [10], the authors divided the localization area into a
grid and presented a voting-based scheme with the goal to
count the votes of a grid point based on established criteria.
The authors in [11] designed an attack-resistant and device-
independent method based on Petri-net. In [12], an iterative
gradient descent approach employing discrepant observation
trimming to remove the devices with large residues from the
localization process based on iterative updating of the cost
function was proposed. A couple of solutions that are based
on spatial-density clustering to distinguish atypical groups was
proposed in [13]. To prevent introducing local outliers into
normal groups, an adjustable clustering algorithm was carried
out, after which a sequential probability ratio test founded
on consistency properties of both time of arrival (TOA) and
received signal strength (RSS) observations was implemented
to improve detection performance. The work in [14] intro-
duced two classes of attacks (aligned node location and inside-
attack) in which the attackers employ their own knowledge
about the target location. In the former one, collinearity of
devices is exploited, whereas in the latter one degree of
consistency filtering debilitation algorithm is used by placing
malicious devices within benign ones. The work proposed a
solution relying on a novel beacon placement strategy together
with a filtering technique that filters-out malicious location
references launched by inside-attacks. The authors in [15]
proposed a device identification algorithm based on the reverse
time synchronization strategy where devices’ clock skews are
determined at the head of a wireless network and the spatially-
correlated radio link information to accomplish simultaneous
device identification and attack detection. The work in [16],
introduced a weighted least squares (WLS) estimator for RSS-
based localization, under non-cryptographic uncoordinated at-
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tacks. The proposed WLS estimator was derived by defining
an opportune weight allocation based on log-distance model,
where remote devices receive small weights and vice versa. In
the work of [17], the authors considered sequential localization
(tracking) problem of a moving device in mobile IoT networks
in the presence of malicious attackers. Based on some particu-
lar assumptions on prior distributions on attack parameters and
uncertainties, the authors in [17] formulated the tracking prob-
lem as a maximum a posteriori one, and solved it by employing
an iterative variational message passing-based algorithm that
approximates the intractable posterior probability by the prod-
uct of variational distributions. Finally, the identification of
malicious nodes came as a byproduct of the obtained solution.
In [18], another clustering scheme based on circle intersections
followed by a threshold-based keying process was proposed
to detect attackers, which are then omitted from a non-linear
localization process transformed into a generalized trust region
sub-problem (GTRS) framework. The authors in [18] assumed
that an attacker can only enlarge distance measurements by
considering the use of two-way TOA measurements.

Very recently, both works of [16] and [18] were resumed
and updated by the introduction of a new secure WLS
(SWLS) [19] for RSS-based localization and the consideration
of a general range-based measurement technique and the use
of law of cosines (LC) for the derivation of a novel LC-
GTRS scheme [20], respectively. It is worth mentioning that
the SWLS method [19] relies on the exact knowledge of
the noise power and empirical tuning of a hyperparameter to
establish a threshold and distinguish between malicious and
non-malicious devices, while the LC-GTRS method in [20]
requires that the difference between non-malicious and mali-
cious devices is at least three (in a 2-dimensional space).

Unlike the state-of-the-art methods, that consider all devices
as non-malicious at first, this work contemplates the problem
from a different perspective. From the very beginning, the
worst-case scenario is of interest and all devices are considered
as malicious at first. By assuming that the upper-bound of
the magnitude of the attack intensity is (imperfectly) known
beforehand, the malicious attacks are treated as nuisance
parameters after which a min-max approach is applied to for-
mulate the secure localization problem as a robust non-linear
least squares estimator. Two approaches are then proposed:
one based on second-order cone relaxation to convert the
non-linear problem into a convex robust second-order cone
programming (R-SOCP) problem, and another one based on
a weighting strategy and approximation to cast the problem
into a robust GTRS (R-GTRS) framework. The former one
can be readily solved by convex optimization tools, such as
CVX [21], while the latter one is suitable for solving via
bisection [22].

The main contributions of the present work are four-fold,
and are summarized as follows:

• This work proposes a novel perspective on the local-
ization problem in the presence of malicious attack-
ers/malfunctions, where all devices are considered as
malicious at first in order to study the worst-case scenario.

• It formulates the secure localization problem in the form
of a robust non-linear least squares estimator by applying

a min-max approach and treating the malicious attacks
as nuisance parameters, assuming that the upper-bound
on the magnitude of the attack intensity is (imperfectly)
known.

• The current work introduces two robust estimators to
solve the secure localization problem via second-order
cone relaxation technique, and a weighting strategy and
GTRS framework.

• Based on the minimum probability of error criterion, the
work proposes a novel maximum (conditional) likelihood
detector in closed-form (both theoretical and practical),
where the conditional likelihood ratio is compared to a
threshold in order to detect malicious attackers.

II. PROBLEM FORMULATION

Consider an arbitrarily deployed 2-dimensional1 wireless
network containing a target node whose unknown location
(that we wish to estimate) is represented by x and N stationary
reference nodes (anchors) whose true (known) locations are
represented by ai, i = 1, ..., N . We assume that the target
can hear all reference points, and that it is opportunely
equipped in order to withdraw distance measurements from the
received radio signal (e.g., via TOA or RSS measurements).
Furthermore, we assume that some portion (anywhere from
none to all) of the reference points are malicious or damaged,
so that their measurements incline to hinder the localization
process. These malicious strikes (or possibly failures) include
counterfeiting their own distance observations (for instance,
by changing the transmit power levels), and are assumed
uncoordinated (all attackers operate independently from each
other) and non-cryptographic (no risk of upper-layer security
protocol violations when realizing attacks). Therefore, by
assuming that the signal power is dominated by path loss
(which can be modeled using the log-distance model [23]),
the k-th RSS measurement sample (1 ≤ k ≤ K) between the
target node and the i-th reference point (in dBm) is modeled
as

Pi,k = P0 − δi − 10γ log10
∥x− ai∥

d0
+ ni,k, (1)

where P0 denotes the received power at a reference distance
d0 (usually, d0 = 1 m), γ is the path loss exponent, ni,k

represents the measurement noise, modeled as a zero-mean
Gaussian random variable, i.e., ni,k ∼ N (0, σ2

i,k), and δi ∈ R
is the (unknown) intensity of the spoofing attack (δi = 0 if
the reference point i is not malicious). Note that this work
does not make any assumptions about the distribution of the
spoofing attacks; it only requires that the magnitude of the
attack intensity is (imperfectly) upper bounded by a constant,
i.e., |δi| ≤ ∆, for i = 1, ..., N . This is a mild assumption, since
in practice the value of ∆ could be determined by physical
limitations of the environment and/or hardware employed (for
instance, by knowing the size of the area of interest, commu-
nication range, receiver sensibility, etc.). Besides, an attacker
cannot perform unlimited distance reduction attacks (since
distance cannot take on negative values), while exaggeration in

1The generalization of the proposed solutions to a 3-dimensional scenario
is straightforward.
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distance enlargement attacks would most likely easily expose
the attacker, since it would make difficult for an attacker to
hide its malicious intentions within noise [18]. In the following
text, the median of the K RSS measurements, Pi, is calculated
for each link i and is used for the sake of simplicity. Likewise,
with the goal of simplifying the notation and with no loss of
generality, the measurement variances are considered equal for
any link i (and sample k), i.e., σ2

1 = σ2
2 = . . . = σ2

N = σ2.
Following the maximum likelihood (ML) criterion [24, Ch.

7] and exploiting the RSS observation in (1), the target location
can be determined as

x̂ = arg min
x

N∑
i=1

1

σ2
i

(
P0 − Pi − δi − 10γ log10

∥x− ai∥
d0

)2

.

(2)
The ML estimator is among the most commonly used esti-
mators in practice, owing to its asymptotically optimal perfor-
mance (when large enough data records are available) [24, Ch.
7]. Still, the problem in (2) is under-determined and difficult
to tackle directly, since it is highly non-convex. Hence, a
new approach is proposed in the following section, which
allows for efficient circumvention of the non-convexity in (2),
resulting in two robust solutions.

III. THE PROPOSED ROBUST APPROACH

Unlike the existing approaches that first consider all refer-
ence points as honest in order to detect attackers, a different
approach is taken here, in which all reference points are
considered as malicious from the start, i.e., the worst-case
scenario is studied. In this regard, start by adding ∆

2 to both
sides of (1) to get

ρi10
ni
10γ = λi∥x− ai∥, (3)

where ρi = d010
P0−δ̃i
10γ and λi = 10

Pi+∆/2

10γ , with δ̃i =
δ − ∆

2 . By applying the first-order Taylor-series expansion to
10

ni
10γ , (3) can be approximated by

ρi

(
1 +

ln(10)

10γ
ni

)
≈ λi∥x− ai∥.

Rearranging and squaring the above expression, yields

ρ2i ≈ λ2
i ∥x− ai∥2 − 2ϵiλi∥x− ai∥+ ϵ2i ,

where ϵi ∼ N
(
0,
(
ρi

ln(10)
10γ σi

)2)
. Loosely speaking, by

disregarding the second-order noise term, from the above
expression one gets

ϵi ≈
λ2
i ∥x− ai∥2 − ρ2i
2λi∥x− ai∥

, (4)

Motivated by the desire to analyze the worst-case scenario,
the following min-max problem is derived from (4):

minimize
x

maximize
ρi

N∑
i=1

(
λ2
i ∥x− ai∥2 − ρ2i
2λi∥x− ai∥

)2

. (5)

By defining f(ρi) =
|λ2

i ∥x−ai∥2−ρ2
i |

2λi∥x−ai∥ , the problem in (5)
becomes equivalent to

minimize
x

maximize
ρi

N∑
i=1

f(ρi)
2.

Moreover, since

maximize
ρi

N∑
i=1

f(ρi)
2 =

N∑
i=1

[
maximize

ρi

f(ρi)

]2
,

and, by definition

|ρi| =
∣∣∣∣δi − ∆

2

∣∣∣∣ ≤ ∆

2
,

it follows that

maximize
ρi

f(ρi) =

f
(
−∆

2

)
, if f

(
−∆

2

)
≥ f

(
∆
2

)
f
(

∆
2

)
, if f

(
−∆

2

)
< f

(
∆
2

) ,

with

f

(
−∆

2

)
=

∣∣λ2
i ∥x− ai∥2 − η2

∣∣
2λi∥x− ai∥

,

f

(
∆

2

)
=

∣∣λ2
i ∥x− ai∥2 − ν2

∣∣
2λi∥x− ai∥

,

and η = d010
P0+∆/2

10γ and ν = d010
P0−∆/2

10γ .
Finally, bearing in mind that max{α, β} ≤ α + β for

some α, β ≥ 0, one can circumvent tackling (5) directly, and
minimize its upper bound instead, i.e.,

minimize
x

N∑
i=1

(
λi∥x− ai∥2 − λ−1

i η2

2∥x− ai∥

)2

+

N∑
i=1

(
λi∥x− ai∥2 − λ−1

i ν2

2∥x− ai∥

)2

.

(6)

Due to the norm terms (in both numerators and denomi-
nators), the least squares problem in (6) is non-linear; thus,
it is still difficult to solve it directly. Nonetheless, in the
following two subsections we show how to convert (6) into
(robust) SOCP and GTRS frameworks respectively, which can
be readily solved by convex optimization and bisection tools,
respectively, followed by an analysis on attacker detection.

A. The Proposed R-SOCP estimator

One can convert the non-convex problem in (6) into a
convex one by resorting to second-order cone relaxation
(SOCR) technique. To this end, develop the square-norm
terms in the numerators and introduce an auxiliary variable
y = ∥x∥2, together with epigraph variables e = [ei]

T ∈ RN

and t = [ti]
T ∈ RN , with ei and ti corresponding to the i-th

factors of the two sums in the objective function, respectively.
Enforce SOCR technique to convexify y = ∥x∥2 as y ≥ ∥x∥2,
as well as on the constraints involving the epigraph variables
of the form s =

(
r
c

)2
as s ≥

(
r
c

)2
. The problem in (6) is then

relaxed into the following SOCP problem [25, Ch. 4].

minimize
x,y,e,t

11×Ne+ 11×N t (7a)
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subject to ∥∥∥∥∥
[

2x
y − 1

]∥∥∥∥∥ ≤ y + 1, (7b)

∥∥∥∥∥∥
2(λi

(
y − 2aT

i x+ ∥ai∥2
)
− λ−1

i η2
)

4
(
y − 2aT

i x+ ∥ai∥2
)
− ei

∥∥∥∥∥∥
≤ 4

(
y − 2aT

i x+ ∥ai∥2
)
+ ei, i = 1, ..., N,

(7c)

∥∥∥∥∥∥
2(λi

(
y − 2aT

i x+ ∥ai∥2
)
− λ−1

i ν2
)

4
(
y − 2aT

i x+ ∥ai∥2
)
− ti

∥∥∥∥∥∥
≤ 4

(
y − 2aT

i x+ ∥ai∥2
)
+ ti, i = 1, ..., N,

(7d)

where the constraints of the form s ≥
(
r
c

)2
are written in a

more usual conic form, ∥[2r; c2 − s]∥ ≤ c2 + s. The estimator
in (7) can be readily solved by convex optimization tools such
as CVX [21], and is denoted by “R-SOCP” in the remaining
text.

An important issue one has to consider is feasibility and
sensitivity of the solution of (7) to perturbations in model
parameters. These properties are difficult to address for (7)
directly, since it is not strongly convex. Nevertheless, one can
readily obtain a strongly convex version of (7) by adding a
quadratic penalty term with an arbitrarily-small regularization
parameter (e.g., ϵ = 10−32) into the objective function. More
precisely, a strongly convex counterpart of (7) can be written
as

minimize
x,y,e,t

11×Ne+ 11×N t+ ϵ∥[xT , y, eT , tT ]T ∥2 (8a)

subject to (8b) = (7b), (8c) = (7c) and (8d) = (7d).
From the practical/engineering point of view, the two prob-

lems are virtually identical, but the latter one is strongly
convex, meaning that it has a unique solution (given that it
exists). Moreover, one can easily see that the feasible set of
solutions for (8), defined by the 2N + 3-tuple as

F =
{
(x, y, e1, ..., eN , t1, ..., tN ) : y ≥ ∥x∥2,

ei ≥

(
2

(
λi(y−2aT

i x+∥ai∥2)− η2

λi

))2

16(y−2aT
i x+∥ai∥2)

,

ti ≥

(
2
(
λi(y−2aT

i x+∥ai∥2)− ν2

λi

))2

16(y−2aT
i x+∥ai∥2)

,

i = 1, ..., N} ,

where the inequalities that involve ei and ti are derived directly
from (7c) and (7d) (i.e., (8c) and (8d)) respectively, is closed.
Note that F is also non-empty, given that the point (x =
[0, 0]T , y = 0) is always feasible. This can be seen by plugging
this point into (7c) (i.e., (8c)) which boils down to√

(2λi∥ai∥2 − 2λ−1
i η2)2 + (4∥ai∥2 − ei)2 ≤ 4∥ai∥2 + ei.

After squaring both sides and applying simple algebraic ma-
nipulations, the above expression is equivalent to

ei ≥
(2λi∥ai∥2 − 2λ−1

i η2)2

16∥ai∥2
.

Obviously, similar can be done for the constraint in (7d) (i.e.,
8d). Thus, it suffices to choose ei and ti sufficiently large

in order for F to be non-empty. Therefore, we can conclude
that the problem is always feasible. Moreover, it can be shown
that the solution map of (8) is continuous. The proof is omitted
here due to space limitations.

B. The Proposed R-GTRS estimator

In the convex optimization sense, the main troublemakers
in (6) are the norm terms in the denominators. Neverthe-
less, since these are actually distances between the target
and the reference points, they can be simply substituted by
their respective ML estimates, d̂i = d010

P0−Pi
10γ . Furthermore,

with the aim of reducing the significance of reference points
that produce remote distances to the target, define weights,

wi = 10
Pi
10∑N

i=1 10
Pi
10

(note that Pi is given in dBm; hence, the

measurements are converted to mW), to obtain

minimize
x

N∑
i=1

wi

(
λi∥x− ai∥2 − λ−1

i η2

2d̂i

)2

+

N∑
i=1

wi

(
λi∥x− ai∥2 − λ−1

i ν2

2d̂i

)2

,

which, after expanding the square terms and disregarding the
denominator (which has no effect on the minimization now),
can be written in the vector form as

minimize
y=[x, ∥x∥2]T

{
∥Hy − h∥2 : yTBy + 2bTy = 0

}
, (9)

where H ∈ R2N×3 and h ∈ R2N are given by

H = W



...
...

2λia
T
i −λi

...
...

2λia
T
i −λi

...
...


, h = W



...
λi∥ai∥2 − λ−1

i η2

...
λi∥ai∥2 − λ−1

i ν2

...


,

B =

[
I2 02×1

01×2 0

]
∈ R3×3, b =

[
02×1

−0.5

]
∈ R3,

with W = diag
([

...,
√
wi, ...,

√
wi, ...

]T) ∈ R2N×2N , and
Iq and 0v×u denoting the identity matrix of size q and the
matrix of all-zero entries of size v × u. Notice that both
the objective function and the constraint in (9) are quadratic
with respect to the optimization variable y. This class of
optimization problems is referred to as GTRS in the literature,
and its exact solution can be obtained by a bisection procedure,
since there is a readily computable interval on which GTRS is
a monotonically decreasing function [22], [26]. The estimator
in (9) is denoted by “R-GTRS” in the remaining text2.

2Note that the SWLS method in [19] is designed for RSS-based localization
originally. Since its derivation is based on a non-linear relationship between
the RSS and the distance (where positive and negative variations in the RSS
are exploited), its generalization to a common range-based setting (e.g., TOA)
is not straightforward. Therefore, this work opts to consider RSS setting
mainly, but it also provides a generalization of the proposed approach to
a common range-based scenario in Appendix A.
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C. Attacker Detection

On the one hand, in the considered problem (where even
all reference points could be attackers simultaneously) it is
reasonable to express an even prior belief in the likelihood of
the following hypotheses: H0 (reference node is not malicious)
and H1 (reference node is malicious), i.e., P (H0) = P (H1) =
1/2, where P (H0) and P (H1) are the prior probabilities
of the respective hypotheses. On the other hand, since the
malicious attacker is equally likely to enlarge or reduce the
received strength, one has that P (H1) = P (H10) + P (H11),
with H10 and H11 denoting respectively the prior hypotheses
of a negative and positive attack carried out by an attacker.
This approach of assigning prior probabilities is known as the
Bayesian approach to hypothesis testing [27, Ch. 3].

In order to maximize the probability of (correct) detection,
one needs to derive a test statistic. This can be done by
maximizing the conditional probability density function for
each link i

p(θi|Hj) =
1

(
√
2πσ2)

K
2

exp

− 1

2σ2

K∑
k=1

(
θi,k −Aj

)2 ,

(10)
for j = 0, 1, where θi =

[
θi,k
]T

, θi,k = P0 − Pi,k −
10γ log10

∥x−ai∥
d0

, A0 = 0, and A1 = δi. Maximizing (10)
is equivalent to minimizing

K∑
k=1

(
θi,k −Aj

)2
=

K∑
k=1

(
θi,k − θ̄i + θ̄i −Aj

)2
=

K∑
k=1

(
θi,k − θ̄i

)2
+K

(
θ̄i −Aj

)2
,

(11)

with θ̄i being the mean value of θi. Therefore, it is clear that
in order to minimize (11) one has to choose Hj for which Aj

is the closest to θ̄i, i.e., one should decide

H0, if
∣∣θ̄i∣∣ < δi

2 ,

H1, if
∣∣θ̄i∣∣ > δi

2 .

According to the Bayesian paradigm the (theoretical) proba-
bility of (correct) detection is determined as

PD =

1∑
j=0

P (Hj |Hj)P (Hj) =
1

2
Pr{−δi

2
< θ̄i <

δi
2
|H0}

+ 1
4

[
Pr{θ̄i < − δi

2 |H10}+ Pr{θ̄i > δi
2 |H11}

]
,

where P (U |V ) is the conditional probability that indicates the
probability of detecting U when V is true. Since, conditioned
on Hj , one has that θ̄i ∼ N (Aj ,

σ2

K ), the probability of
detection [27, Ch. 3] is given by

PD = 1
2

[
1−Q

(
−δi/2√
σ2/K

)
−Q

(
δi/2√
σ2/K

)]

+ 1
4

[
1−Q

(
−δi/2+δi√

σ2/K

)
−Q

(
δi/2−δi√

σ2/K

)]
= 1− 3

2Q

(√
Kδ2i
4σ2

)
.

(12)

Note that the true information about δi and σ required to
calculate PD is not available beforehand in practice. Hence,

the result in (12) is used as a (theoretical) benchmark on the
detection performance of the proposed solutions. Nevertheless,
at this stage the proposed approaches already provided secure
solutions for the localization problem; thus, one can estimate
δi and σ according to the ML criterion by exploiting x̂ as

δ̂i =

∑K
k=1 θ̂i,k
K

,

and

σ̂ =

∑N
i=1

√∑K
k=1

(
θ̂i,k−δ̂i

)2

K−1

N
,

with θ̂i,k = P0 − Pi,k − 10γ log10
∥x̂−ai∥

d0
.

Therefore, based on the minimum probability of error
criterion [27, Ch. 3], one has that

PE = Pr{decide H0|H1 true}+ Pr{decide H1|H0 true}
= P (H0|H1)P (H1) + P (H1|H0)P (H0).

(13)
Then, the following maximum (conditional) likelihood de-

tector is derived from (13), which decides H1 if

p(θ|H1)

p(θ|H0)
>

P (H0)

P (H1)
, (14)

as shown in Appendix B. Note that (14) is similar to the
Neyman–Pearson (NP) test, since the conditional likelihood
ratio is compared to a threshold. However, in contrast to
the NP test where one calculates the optimal threshold by
maximizing PD for a fixed probability of false alarm, PFA,
here, the threshold is determined by the quotient of the prior
probabilities. Since the prior probabilities are equal in this
case, we slightly modify the detection scheme by appropriately
weighting the two errors in (13). This is accomplished by
simply adjusting the threshold (which results into trading off
miss and false alarm errors, but one cannot reduce them both
simultaneously anyway) for our proposed detection scheme to
decide H1 if

p(θ|H1)

p(θ|H0)
> 3σ̂, (15)

and decide H0 otherwise. Note that the choice of 3σ̂ in (15) is
clearly a sub-optimal one, and obviously other choices could
be considered as well, but is sufficiently large to prevent
having coin flipping (14) as the detection criterion.

IV. PERFORMANCE ASSESSMENT

This section assesses the performance of the proposed
estimators through computer simulations performed in MAT-
LAB (version R2016b). The main interest is to analyze
their performance against existing solutions, not only from
the localization accuracy perspective, but also in terms of
computational complexity and attacker detection rate.

A. Computational Complexity Analysis

In this section, a summary of the computational complexity
together with the average running time (in seconds) of the
proposed solutions and the state-of-the-art is provided. It is
worth mentioning that the latter analysis was performed on
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TABLE I: Computational Complexity and Average Running
Time Analysis of the Considered Algorithms

Algorithm Complexity Average Duration (s)

R-SOCP in Section III-A O
(
N3.5

)
0.9

R-GTRS in Section III-B O (Tmax ×N) 0.014
SWLS in [19] O (N) 0.009

LC-GTRS in [20] O (Tmax ×N) 0.05

the machine with the following characteristics: CPU: INTEL
CORE I7-4710HQ 2.5 GHZ, RAM: 16 GB, where N = 6,
σ = 3 dB, and ∆ = 8 (dB), was considered in 10 Monte
Carlo, Mc, runs. This analysis is pertinent, because it gives
the reader a notion about the suitability of an algorithm to be
implemented in real-time applications.

According to [28], the worst case computational com-
plexity of an SOCP algorithm can be expressed by

O
(√

S
(
c2
∑S

r=1 sr +
∑S

r=1 s
2
r + c3

))
, wits S denoting the

number of the second-order cone (SOC) constraints, c is the
number of the equality constraints, and sr is the dimension
of the r-th SOC in the derived SOCP problem. Moreover,
given that Tmax stands for the maximum number of bisection
steps in the proposed R-GTRS approach and the existing LC-
GTRS in [20], the worst-case computational complexity of the
considered algorithms is presented in Table I. As expected,
the result shows that the heaviest computational burden is
suffered from the proposed R-SOCP estimator, while the
remaining estimators have linear computational complexity
in N . The results for time duration corroborate the ones of
computational complexity showing that the three estimators
with linear computational complexity are extremely fast, while
the proposed R-SOCP requires somewhat more time to be
executed, as anticipated.

B. Localization and Detection Performance

Here, the performance of the proposed solutions3 is com-
pared with the existing ones via computer simulations, from
both localization accuracy and attacker detection perspectives.
In the following simulations, all nodes were randomly placed
ND = 1000 times in a 25 × 25m2 area, and some of them
(possibly all) might have been malicious/defective. The mea-
surements were generated according to (1), with P0 = −10
(dBm), d0 = 1 (m), γ = 3, and K = 10, set as default,
with the distance between any two nodes being at least 1
meter. For the SWLS estimator in [19], the threshold tuning
parameter was set to ζ = 1.75. For each node deployment,
malicious reference points were chosen at random (ranging
from none to all N reference points) NM = 100 times.
Possible attacks were executed independently by each mali-

3Note that the results of the proposed R-SOCP estimator in (7) are shown
in the following figures. Nevertheless, it is worth noting that, in all performed
simulations, its performance was virtually identical to its strongly convex
counterpart in (8) (considering ϵ = 10−32) and that its solution was always
feasible.

cious node, according to an exponential distribution4, whose
rate is drawn from a uniform distribution on the interval
[0,∆] (dB), i.e., δi ∼ ±E(U [0,∆]), ∀i, if the i-th reference
point is malicious, with ± denoting random sign attribution
to δi. The principal metric used for assessing localization
accuracy is the root mean squared error (RMSE), defined as
RMSE =

√∑Mc

m=1
∥xm−x̂m∥2

Mc
, where x̂m is the estimate of

the true target location, xm, in the m-th Mc (Mc = ND×NM )
run. Lastly, it is worth mentioning that a lower bound on the
localization performance of all algorithms (achieved through
an exhaustive grid search (GS) of the ML function in (2))
is appended5. This brute force method is applied across the
whole (25× 25 (m2)) region with 0.1 (m) increment in both
x- and y- axes, and 1 (dB) increment for δi search.

Fig. 1 illustrates the RMSE (m) versus ∆ (dB) performance
comparison for different values of σ (dB) when N = 5. Nat-
urally, the figure shows that the performance of all estimators
deteriorates as σ grows. Clearly, the proposed approach shows
superior performance over the existing ones, which is more
evident for higher attack intensities for SWLS and for lower
attack intensities for LC-GTRS. This result is not surprising,
since the proposed approach (efficiently) takes advantage of
the additional information6 about ∆, from which the existing
methods cannot benefit directly. It is also worth mentioning
that, even though SWLS requires the true knowledge of σ,
its performance is very much affected by the low number of
reference points.

Fig. 2 illustrates the detection rate versus ∆ (dB) per-
formance comparison, for different values of σ (dB) when
N = 5. The figure offers results for all considered algorithms
in terms of “Correct” (NCD/(NCD+NFD+NND)), “False”
(NFD/(NCD + NFD + NND)) and “No” (NND/(NCD +
NFD + NND)) attacker detection, with NCD, NFD, NND

respectively denoting the no. of correctly detected attackers,
the no. of incorrectly detected attackers, and the no. of non-
detected attackers, together with the theoretical probability of
detection, PD, given in (11). At the first glance, the figure
reveals modest detection performance of all estimators, which
might be explained by elevated degree of the considered
problem (the fact that multiple attackers might be present
in the network and that the noise power is relatively high
allowing attackers to disguise their malicious intents within
the noise). As expected, Fig. 2 shows that LC-GTRS has
the best detection performance, since this method relies on
generalized likelihood ratio test (GLRT) to detect attackers
in its complete three-step localization procedure, while the

4Notice that this setting guarantees that the assumed knowledge on the
upper bound on the attack intensity, |δi| ≤ ∆, is imperfect, which is clearly
the case in practice. Nevertheless, it is worth mentioning that this choice of
attack distribution is just one of many possibilities to achieve this guarantee.

5Note that only ND = 10 node deployments and NM = 5 attacks were
executed to obtain the presented results due to the extreme computational
burden of the brute force method in the considered setting.

6A valid question that naturally arises is how to set an upper bound on the
attack magnitude in practice, given that ∆ is not perfectly available. Although
not presented here, our simulations indicate that, as a rule of thumb, the
assumed knowledge about ∆, ∆̃, should be conservative (set ∆̃ to a low
value), since in that case the proposed approach suffers only mild degradation
in its performance (for very low ∆), maintaining its performance for other
values of ∆.
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Fig. 1: RMSE (m) versus ∆ (dB) illustration, for different
choices of σ (dB), when N = 5.

proposed schemes obtain their final localization solutions
independently from detection, in a single step (where detection
comes as a byproduct of an almost trivial approach). Moreover,
one can see that the detection rate of the proposed methods
corresponds closely to the theoretical results given by (12).
Interestingly, it can be seen that for large attack intensities and
σ = 1 (dB), the proposed detection schemes basically always
detect attackers (either correctly or falsely), which could be
adjusted by further spreading the threshold in (15). Finally,
SWLS exhibits almost negligible detection performance. This
is owed to the threshold tuning parameter, which had to be set
fairly high (ζ = 1.75) in order for SWLS to operate; otherwise,
matrix singularity in the WLS procedure becomes an issues,
retrieving very poor results.

Fig. 3 illustrates the RMSE (m) versus ∆ (dB) performance
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Fig. 2: Detection rate versus ∆ (dB) illustration, for different
choices of σ (dB), when N = 5.

comparison for different values of N when σ = 3 (dB). It
can be seen that all estimators acquire significant performance
boost with the increase of N . One can notice that SWLS
practically does not work for the case of the bear minimum of
reference points (N = 4) needed to solve the problem in 2-
dimensional space. Once again, the proposed approach proves
its worth, exhibiting the best overall performance.

Fig. 4 illustrates the detection rate versus ∆ (dB) perfor-
mance comparison, for different values of N , when σ = 3
(dB). The figure exhibits considerable increase in the detection
performance of the proposed approach with the growth of ∆.
Once again, their detection performance tightly coincides with
PD and is very competitive with more a sophisticated GLRT
scheme used in LC-GTRS method.

Fig. 5 illustrates the RMSE (m) versus different proportions
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Fig. 3: RMSE (m) versus ∆ (dB) illustration, for different
choices of N , when σ = 3 (dB).

of the number of attackers, NA

N , performance comparison,
when N = 5, ∆ = 8 (dB), and σ = 1 (dB). Fig. 5 clearly
corroborates the effectiveness of the proposed solutions, show-
ing that they achieve practically constant localization accuracy
for NA

N ≥ 40%, whereas the performance of the existing
methods deteriorates when the number of attackers present
in the network grows in general.

To conclude the results analysis, Fig. 6 illustrates the cu-
mulative distribution function (CDF) of the localization error
(LE), defined as LE = ∥xm − x̂m∥ (m) in the m-th Mc run,
for N = 6, σ = 3 (dB) and ∆ = 3 (dB). The figure shows
that LC-GTRS start off well and has the best median, but
it finishes of poorly, while the proposed estimators start off
somewhat more modestly, but outperform the existing ones
overall, achieving LE ≤ 5 meters in above 90% of the cases,
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Fig. 4: Detection rate versus ∆ (dB) illustration, for different
choices of N , when σ = 3 (dB).
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N illustration, for N = 5, ∆ = 8
(dB), and σ = 1 (dB).
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(dB) and ∆ = 3 (dB).

whereas the other estimators achieve this aim in below 90%
of the cases7.

V. CONCLUSIONS

This work addressed an actual and nowadays a very perti-
nent topic of secure target localization in wireless networks
in the presence of malicious attackers. It introduced a novel
mim-max approach for secure localization in the presence
of malicious attackers. Unlike the existing approaches, the
proposed one treats all devices as malicious at the beginning
and is based on the worst-case study of the problem, by
assuming that (imperfect) knowledge about the upper-bound
on the attack intensity is known. In this way, the proposed
approach allowed us to mitigate the influence of the malicious
attacks by treating them as nuisance parameters. This led to
two possible directions that resulted in the derivation of two
robust estimators: SOCP- and GTRS-based. The former one
has somewhat higher computational burden, but showed a
slightly better localization accuracy, while the latter one is
computationally light and virtually matches the performance
of the more complex one. The work proposed a modified
maximum (conditional) likelihood detector for attacker de-
tection and presented an analysis on achievable detection
performance. In summary, the proposed approach works well
regardless of the number of attackers present in the network
and its biggest advantage over the existing solutions is that
it can even cope with the case where all reference points are
malicious. Its detection performance is closely in line with
theory and is competitive (for large attack intensities) with
more sophisticated approaches used in existing solutions.

APPENDIX A
THE PROPOSED ROBUST APPROACH IN A GENERAL

RANGE-BASED SETTING

Here, a general range-based model is considered as

di,k = ∥x− ai∥+ δi + ni,k, (16)

7Besides the presented results, it is worth mentioning that the effect of
K was also studied in our simulations, considering values up to K = 100.
The results are omitted here, but the main conclusions are consistent with the
ones drawn in this section, with slight improvements in (both localization and
detection) performance for bigger K for all methods, as expected.

where ni,k ∼ N (0, σ2
i,k) represents the measurement error.

Similarly as before, we use the median of all K measurements,
di, and drop the subscript k.

Start by subtracting ∆
4 from both sides of (16) to get

λi = ∥x− ai∥+ ρi + ni, (17)

where λi = di − ∆
4 and ρi = δi − ∆

4 . Loosely speaking, by
rearranging and squaring (17), followed by disregarding the
second-order noise term, gives

ni ≈
(λi − ρi)

2 − ∥x− ai∥2

2∥x− ai∥
. (18)

The following min-max problem is derived from (18)

minimize
x

maximize
ρi

N∑
i=1

(
(λi − ρi)

2 − ∥x− ai∥2

2∥x− ai∥

)2

. (19)

By defining f(ρi) =
|(λi−ρi)

2−∥x−ai∥2|
2∥x−ai∥ , the problem

in (19) becomes equivalent to

minimize
x

maximize
ρi

N∑
i=1

f(ρi)
2.

Moreover, since

maximize
ρi

N∑
i=1

f(ρi)
2 =

N∑
i=1

[
maximize

ρi

f(ρi)

]2
,

and, by definition

|ρi| =
∣∣∣∣δi − ∆

4

∣∣∣∣ ≤ 3∆

4
,

it follows that

maximize
ρi

f(ρi) =

f
(
− 3∆

4

)
, if f

(
− 3∆

4

)
≥ f

(
3∆
4

)
f
(

3∆
4

)
, if f

(
− 3∆

4

)
< f

(
− 3∆

4

) ,

with

f

(
−3∆

4

)
=

∣∣∣∣(λi +
3∆
4

)2
− ∥x− ai∥2

∣∣∣∣
2∥x− ai∥

and

f

(
3∆

4

)
=

∣∣∣∣(λi − 3∆
4

)2
− ∥x− ai∥2

∣∣∣∣
2∥x− ai∥

.

One bypasses tackling (19) directly by minimizing its upper
bound, i.e.,

minimize
x

N∑
i=1


(
di +

∆
2

)2
− ∥x− ai∥2

2∥x− ai∥


2

+

N∑
i=1

(
(di −∆)

2 − ∥x− ai∥2

2∥x− ai∥

)2

.

(20)
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A. R-SOCP estimator

By following a similar approach as in Section III-A, (20)
is relaxed into the following SOCP problem.

minimize
x,y,e,t

11×Ne+ 11×N t (21a)

subject to ∥∥∥∥∥
[

2x
y − 1

]∥∥∥∥∥ ≤ y + 1, (21b)

∥∥∥∥∥∥∥
2
((

di +
∆
2

)2
− y + 2aT

i x− ∥ai∥2
)

4
(
y − 2aT

i x+ ∥ai∥2
)
− ei


∥∥∥∥∥∥∥

≤ 4
(
y − 2aT

i x+ ∥ai∥2
)
+ ei, i = 1, ..., N,

(21c)

∥∥∥∥∥∥
2((di −∆)

2 − y + 2aT
i x− ∥ai∥2

)
4
(
y − 2aT

i x+ ∥ai∥2
)
− ti

∥∥∥∥∥∥
≤ 4

(
y − 2aT

i x+ ∥ai∥2
)
+ ti, i = 1, ..., N,

. (21d)

B. R-GTRS estimator

By introducing weights, wi =
d−1
i∑N

i=1 d−1
i

, and following a
similar approach as in Section III-B one gets

minimize
x

N∑
i=1

wi


(
di +

∆
2

)2
− ∥x− ai∥2

2di


2

+

N∑
i=1

wi

(
(di −∆)

2 − ∥x− ai∥2

2di

)2

,

which can be written in the GTRS form as

minimize
y=[x, ∥x∥2]T

{
∥Hy − h∥2 : yTBy + 2bTy = 0

}
, (22)

where H ∈ R2N×3 and h ∈ R2N are given by

H = W



...
...

2aT
i −1

...
...

2aT
i −1

...
...


, h = W



...
∥ai∥2 − (di +

∆
2 )

2

...
∥ai∥2 − (di∆)2

...


,

B =

[
I2 02×1

01×2 0

]
∈ R3×3, b =

[
02×1

−0.5

]
∈ R3,

with W = diag
([

...,
√
wi, ...,

√
wi, ...

]T) ∈ R2N×2N .

APPENDIX B
DERIVATION OF THE MAXIMUM LIKELIHOOD DETECTOR

By letting R1 = {θ : decide H1} denote the critical region
and R0 to be its complement [27, Ch. 3], from (13), one has
that

PE = P (H1)

∫
R0

p(θ|H0)dθ + P (H0)

∫
R1

p(θ|H1)dθ

= P (H1) +

∫
R1

P (H0)p(θ|H0)− P (H1)p(θ|H1)dθ,

by using the identity
∫
R0

p(θ|H0)dθ = 1−
∫
R1

p(θ|H0)dθ.
It follows that θ ∈ R1 if the integrand in the above

expression is negative, i.e., one decides H1 if

P (H0)p(θ|H0) < P (H1)p(θ|H1),

which is equivalent to deciding H1 if

p(θ|H1)

p(θ|H0)
>

P (H0)

P (H1)
.
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