
Intelligent Underwater Object Detection and Image 

Restoration for Autonomous Underwater Vehicles  
Sheezan Fayaz, Shabir A. Parah, Member, IEEE, G. J. Qureshi, Jaime Lloret, Senior Member, IEEE, Javier Del Ser, 

Senior Member, IEEE, Khan Muhammad, Senior Member, IEEE 

 

Abstract—Unmanned Underwater Vehicles (UUVs) have been 

reliable and economical technological solutions to perform 

undersea monitoring tasks in comparison to manned vehicles. 

However, in many situations, UUV is unable to fulfill complex 

undersea research tasks since target objects appear distorted due 

to light absorption and scattering. Besides, ocean surveying 

undergoes severe power requirements compared to terrestrial 

systems because of battery-driven low-storage vehicles like 

Unmanned Underwater Vehicles (UUVs). Therefore, limited 

power supply, motion resistance of water medium, and distorted 

target object appearance can delay the mission and reduce the 

efficiency of UUV in their underwater operations. Considering the 

resource-constrained undersea monitoring setup, we propose an 

intelligent two-stage framework for expeditious monitoring of 

underwater scenes. First, an effective deep neural network is 

employed for underwater object/region of interest (ROI) 

detection. Then the detected ROI is restored using an efficient 

restoration method, thereby improving the visual quality of the 

degraded images and aiding the navigating and monitoring tasks 

of UUVs. Our method has been objectively and subjectively 

assessed using 9 evaluation metrics and our key results reveal mAP 

of 94.35% and an Underwater Color Image Quality Evaluation 

(UCIQE) score of 3.09, surpassing state-of-the-art methods for 

object detection. Furthermore, the execution time of 0.550 secs is 

required for object detection and dehazing, making this proposal 

suitable for UUVs to perform automatic undersea object detection 

and dehazing within operational running requirements. 
 

Index Terms—Dark Channel, Deep Learning, Object Detection, 

Image Restoration, Unmanned Underwater Vehicles. 
 

I. INTRODUCTION 

HE UUV is receiving  huge attention for applications 

not just limited to scientific undersea exploration [1],[2] 

but also, for applications, like military, fishing, hull 

inspection, deep-sea survey, undersea construction and    
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rescue, monitoring seafood, pipeline detection and seabed 

mapping [3]. UUVs self- propelled and unmanned intelligent 

components employ automatic controllers and visual sensors 

[4]. In particular, Optical Subaquatic Vehicles (OSVs) having 

optical sensors providing better scene details of an undersea 

environment, are extensively employed to achieve complex and 

dynamic missions. The overall architecture of UUV and 

challenges of underwater imaging are discussed in the 

following section.   

 

II. BACKGROUND AND RELATED WORK 

i) Overview of generic UUV 

Architectural solutions suited for UUV pose high processing 

challenges, exacerbated by their limited power availability. 

Following are the nodes involved in a typical UUV architecture, 

which are described to illustrate its working procedure:  

• Vehicle Head Box (Node 1): it governs the vehicle 

movement, camera power, illumination, pitch, yaw, and 

roll (tilt survey). 

• Doppler velocity logger - DVL (Node 2): it performs 

data acquisition. 

• GPS and Engine Management (Node 3): it 

implements several tasks such as reading GPS data, 

managing engine, and controlling dive, propulsion, and 

rudder. 

• Sensor Reading (Node 4): undersea instrumentation 

sensor analysis and the management of their energy 

requirements. 

• Vehicle Controller (Master Node): it collects data to 

be processed from every node, and generates 

commands accordingly. The controller connects the 

network to the Ethernet. 

Fig. 1 gives an overview of UUV architecture employed for 

underwater monitoring tasks. 

T 

 
Fig. 1. Overview of Undersea UUV 
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ii) Challenges posed by underwater imaging 

The UUVs automatic control mechanism obtains multi-scale 

visual data from undersea environment through optical sensors. 

It also employs automatic control technique to take the decision 

to avoid undersea obstacles, thus, rendering the task of both 

dynamic decisiveness and optical navigation. However, 

navigating battery-driven low storage UUVs in complex 

undersea environment immensely hinders the undersea 

monitoring tasks.  The challenges are posed mainly by 

dispersion and absorption of light which degrades quality of 

subaqueous pictures showing reduced level of contrast with 

color distortion. This results in obtaining the distorted visual 

data by the UUVs from the complex undersea environment, 

impeding its decisive capability of avoiding obstacles. Besides, 

the availability of limited resources put forth a constriction and 

may result in delaying the mission. Therefore, the efficiency of 

UUVs has been limited by the challenge of obtaining 

undistorted, haze-free underwater images for effective 

monitoring of the scenes via less complex frameworks. 

In underwater imaging, three types of light radiation fall on 

the camera: direct transmission i.e., the light radiation directly 

reflected from the target sub-aquatic object; forward-scattering 

radiation that originates when light rays collide with tiny, 

suspended particles, thereby scattering before reaching the 

aperture of the camera; and background-scattering that is light 

energy from the atmospheric light which gets reflected by the 

water particles. Thus, an undersea picture is mathematically 

given by a sum of back-dispersing, forward-dispersing, and 

uninterrupted transmission. 

 

Et(u, v) =  Ed(u, v) + Ef(u, v) + Eb(u, v)                       (1) 

 

Where (u,v) indicates the coordinates of a pel; Et(u,v) denotes 

the total light energy falling on the camera. Ef(u,v), Ed(u,v), and 

Eb(u,v) indicate the forward-dispersing, uninterrupted 

transmission, and back-dispersing components, respectively. If 

space from sub-aquatic target to camera aperture is less, then 

the forward-dispersed light may be forsaken and just Ed(u,v) 

and Eb(u,v) are considered.  

To restore an underwater image, the mathematical model that 

is extensively employed for misty degraded images in computer 

vision is. 

 

I(e) =  J(e)t(𝑒) + A(1 − t(e))                                          (2) 

 

I(e) indicates the input pel at point e, J(e) represents the haze-

free image, t represents transmission map that is the light that 

falls on the aperture of camera without dispersing, and A 

denotes the atmospheric light. Aforementioned expression is 

known as Image Formation Model (IFM). The proposed 

method employs Eq. (2) for undersea image restoration. The 

image restoration algorithms aim at computing true or dehazed 

scene radiance which greatly relies on the computation of 

unknown variables such as atmospheric light A and 

transmission map t(e).   

 

iii) Related work 

To address the issues of resource constraints and considering 

the ill-posed problems of underwater imaging, ocean engineers 

have come up with neural networks that are employed in many 

disciplines for solving complex automatic problems. Neural 

networks are employed to process an immense number of 

images and involve specialized systems to reduce operational 

speed and storage requirements [5]. Computationally complex 

tasks like subaquatic image monitoring, processing, subaquatic 

object detection, and recognition can be outsourced to a 

specialized Deep Neural Network (DNN) for faster execution. 

Thus, a hybrid method involving a neural network-based 

underwater object detection and effective underwater image 

restoration can pave a way for efficient real-time applications 

in resource-constrained UUV setup. A thorough literature 

survey indicates that efficient neural computing-based 

techniques are relatively less employed in UUV for the precise 

navigation, exploration of marine life, instantaneous 

monitoring of the marine ecosystem, and execution of other 

underwater research tasks that are substantial. It is due to the 

fact that in UUV frameworks, expeditious monitoring is a 

challenging task. Although, due to the advent of PUVs (Piolet-

less Undersea Vehicles), AUVs (Automatic Undersea 

Vehicles), digital cameras etc., the availability of underwater 

imagery has exponentially increased lately. However, the 

power capacity of the battery used in AUV is a limiting factor 

keeping the navigating and monitoring operations limited in 

duration and range, usually as little as 24 hrs. The cruising 

speed of deep-sea exploration vehicles is 3 kts (1.543m/s) and 

the average speed of deep tow is 2knts (1.028m/s). The 

adversity surges by the additional light scattering and light 

absorption phenomenon that interferes with efficient and 

expeditious underwater imaging. 

For automatic and instantaneous monitoring of underwater 

images and solving undersea issues, deep learning which is 

SOTA field of ML (Machine Learning) presents unparalleled 

potential opportunities. Till now low-level manually designed 

features have been exploited in earlier conventional methods of 

classification. Also, Support Vector Machine (SVM), Principal 

Component Analysis (PCA), Linear Discriminant Analysis 

(LDA), and other conventional machine learning approaches 

are quickly saturated if the training dataset increases. As the 

availability of digital images is greatly increasing with time, 

there is a requirement for improved access techniques for 

retrieving images from a massive image database. Deep Neural 

Networks (DNNs) enable researchers to resolve several 

underwater issues such as protecting undersea ecological 

conditions, sub-aquatic disaster reduction and prevention, 

emergency rescue, detecting a sub-aquatic target, its 

recognition, and tracking. DNNs can be employed for 

underwater systems such as classifying and recognizing 

underwater data (CNN) [6], reconstructing underwater data 

(CNN) [7], and predicting underwater information (RNN: 

Recurrent Neural Network), (CNN) [8]. In this line of research, 

Libao et al., [9] proposed a new approach for saliency analysis 

and extraction of Region of Interest (ROI) for remote sensing 

pictures. The algorithm consists of intra-spectrum information 

distribution computation for pictures that are multi-spectral and 

a local-global contrast analysis for panchromatic pictures. For 

pictures, audios, texts, etc., to be meaningful, DNNs perform 

the transformation of input data through several layers than the 

networks that employ shallow learning [10]. Each layer is used 

to transform the signal with the help of a computing unit called 
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neuron that grasps parameters by training. The aforementioned 

discussion presents a lot of algorithms that are primarily 

governed by neural networks, however, efficient DNNs that 

have less computational complexity have been hardly used in 

UUVs for object spotting and its classification. Also, at one end 

many software-based services have greatly increased, on the 

other end, for the quality services, the expectations are 

significantly rising. To meet the requirements, we attempt to 

make use of an efficient DNN that employs the latest version of 

the You Only Look Once Version 8 (YOLOV8) object 

detection framework. We have also performed the ROI 

detection experiment using YOLOV4. In the proposed 

technique, YOLOV8 is responsible for ROI detection and 

extraction reducing the size of an image and hence resource 

requirements. Subsequently, the extracted ROIs are passed over 

to the novel and precise dehazing algorithm to further enhance 

sea life monitoring performed via autonomous vehicles. We 

aim to detect ROI in an image and yield high-quality images in 

a reduced amount of time to aid the UUV navigation and 

decisiveness to avoid obstacles.  
We made several major contributions to the underwater 

monitoring via UUV network which are summarized as 

follows: 

1. The proposed framework is a two-stage system for 

addressing momentous issues of poor quality in underwater 

images and resource constraints in UUVs. 

2. Our proposed method automatically performs the region of 

interest (ROI) detection and extraction, ensuring higher 

operational speed by using an efficient neural computing 

mechanism. DNN has been employed in this stage due to 

its fast inference time. 

3. The detected ROI having reduced size and only useful data 

is restored using an efficient and precise restoration 

method, thereby improving the visual quality of the 

degraded underwater images and aiding the subaquatic 

monitoring process performed by UUVs in undersea 

environments.  

4. The redundant data in the underwater images is eradicated 

to reduce their sizes, hence reducing processing time and 

other resources like bandwidth, transmission power, and 

storage required in UUV setup for full coverage 

communication to survey underwater environments. The 

proposal is evaluated both subjectively and objectively 

(using 9 evaluation scores) and the results surpass SOTA.  

Rest sections of the manuscript are as follows: Background 

of our technique comes under Section II. Our technique has 

been discussed in detail in Section III. Section IV highlights 

performance evaluation based on comparison of our method 

with SOTA. Section V concludes proposed work and puts forth 

future work. 

III. PROPOSED METHODOLOGY 

Considering the limitations ocean engineers come across 

while dealing with the unmanned vehicles, the proposed 

framework employs efficient DNN to detect and extract 

underwater ROIs. The framework is a two-stage model and 

aims to efficiently detect, extract ROIs, and restore underwater 

blur ROIs keeping in view the UUV navigation in complex 

environment and its resource constraints. The famous undersea 

UUV system employs battery-driven device. It is less expensive 

than conventional vessels; however, the power capacity of the 

battery is a limiting factor making the undersea surveys limited 

in range and duration. Thus, in the proposed framework the 

trivial data in the undersea images is eliminated which reduces 

image sizes, thereby reducing processing time, bandwidth 

requirement, transmit power, and storage like resources 

required for effective underwater surveillance. 

The first stage performs speedy ROI detection in degraded 

undersea images. For this stage, we have employed both 

YOLOV8 and YOLOV4 to compare the performance of both 

versions for efficient ROI detection. YOLOV8 is a deep neural 

network that enables fast target spotting/detection. RCNN 

(Region-based convolutional neural network) first extracts 

many region proposals from the input image. Then a CNN 

network is used to perform forward propagation on every 

extracted region proposal to draw out features. Subsequently, 

features from each region proposal are utilized to perform 

prediction of the class and the boundary box for that region 

proposal. On the contrary, the YOLOV8 takes just single 

forward propagation through DNN to detect targets. It 

indicates, in only single go of the network, predictions over the 

entire underwater picture are performed. At the same time, the 

prediction process of bounding boxes and probabilities 

associated with varied classes is performed. 

Subaqueous dataset employed for training and testing of the 

YOLO (V4 and V8) model has been curated and it consists of 

some substantial underwater species and objects i.e., fish, 

human divers, and submarines.  

The second stage of the proposed network performs the 

restoration of degraded underwater ROIs that have been 

detected and extracted by the first stage. This stage employs the 

restoration algorithm which tends to dehaze the underwater 

images with fewer inaccuracies because of the less erroneous 

prior information. UDCP is an algorithm that is prior-driven 

and can result in massive errors in estimation if prior 

information like medium transmission and air light or 

atmospheric light is erroneous. Thus, a need of increasing the 

precision in such estimations comes to light for producing 

output undersea pictures with pleasing appearance within less 

time. For UDCP - Undersea Dark Channel Prior, brightest pel 

in undersea picture is often considered atmospheric light. This 

prior data is invalid and incapable of yielding good results if an 

object in a picture is brighter compared to atmospheric light. 

Moreover, the precision in TM (Transmission Map) estimation 

relies on the computation accuracy of BL (Background Light). 

Previous prior driven algorithms for undersea image restoration 

including DCP and UDCP calculate the TM of just single 

channel and assume the medium transmissions of the rest of the 

color channels are the same which results in distorted textures, 

block artifacts, plus halo artifacts over the recovered undersea 

picture. Such distortions creep into the process because the 

medium transmission of the three channels is not always the 

same in a local patch. Therefore, to address these issues, we 

have employed the algorithm which estimates the TMs of each 

of the three colors i.e., RGB. To decrease the complication in 

proposed algorithm, we compute transmission map of the blue 

channel from the mathematical relation of a misty picture 

representation, then estimate TMs of rest of the GB colors using 

the arithmetic relation of medium TMs of the green-red 

channels with the blue channel. Thus, our technique break 
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downs the issue to a single-color TM computation, 

nevertheless, computes the TMs of all channels with no 

compromise on picture quality.  

Eq. (2) indicates misty picture representation. Just to not 

have confusions, for proposed scheme, the undersea dark color 

channel calculated via our algorithm is indicated by JMUWDCP. 

The dark channel is calculated using GB channels. The true 

scene of particular channel computed by our scheme is 

represented by Jmc. Therefore, 

           JMWUDCP = min
c∈g,b

( min
yεπ(𝑒)

Jmc (y))                                   (3) 

       JMUWDCP → 0                     
Min filters are applied to the misty picture expression, then 

considering the idea of proposed scheme, 

min
c∈g,b

( min
y∈π(e)

I𝑐(𝑦))

= min
cεg,b

( min
y∈π(e)

( J𝑚𝑐(𝑦)t(𝑒))+cεr,g,b(A𝑚𝑐(1

− t(e)))                                                       (4) 

Amc denotes the global atmospheric light. On normalizing the 

Eq. (4) with respect to Amc, we have, 

 

(
minCϵb,g( minYϵπ(𝑒)(IC(y))

(cεr,g,bAmc)
)

= t(e) (
min
𝑐ϵb,g

(minYϵπ(e) Jmc(y))

(cεr,g,bAmc)
) + 1

− t(e)                                                          (5) 

 Amc is estimated using RGB color channels of the 

deteriorated undersea image. To robustly calculate the BL, our 

scheme has used a statistical approach on chosen highest 

intensity pels of deteriorated undersea picture. A mode 

approach is proposed for calculating global airlight using hazy 

undersea picture. Th technique is implemented on the RGB-

colors because light radiation can be computed separately in 

each color channel. First of all, pels of the window π which has 

center at e of deteriorated undersea image are chosen, then 

organized in decreasing order of pel values. Subsequently, 

among those pels, about one percent of the pels with the highest 

brightness are selected from each color channel, then the pel 

with maximum repetition i.e., highest probability pel gets 

selected as airlight. Thus, undersea channel that contains dark 

pels estimated via GB colors, also pel showing maximum 

repeated occurrence in highest intensity pels i.e., airlight are 

placed in Eq. (5), and the expression for medium TM is 

obtained as,  

     t𝑏𝑙(e) = 1 − (
minCϵb,g(minYϵπ(e)IC(y)

(cεr,g,bAmc)
)                     (6) 

The medium transmission map computed using Eq. (6) has 

been considered as TM of channel blue (B). This supposition is 

made on the certitude that channel blue has the shortest 

wavelength out of RGB channels, thus, it travels most 

underwater. Based upon this fact, TM at e is indicated as tbl(e) 

which is TM of channel blue. According to Schechner et al. 

[11], TM at spot x i.e., tc(e) is shown as: 

                                tc(e) =  e−Ƞcd(x)                                     (7) 

d(x) gives the camera-object distance, η indicates attenuation 

factor that can be computed via a summation of absorption 

factor a and scattering factor b, thus, η = a + b. Moreover, Li 

et al. [12] proposed that in underwater conditions, the ratios of 

the attenuation coefficients of different colors can be given as: 

                             
Ƞr

Ƞb

=
(−0.00113λr + 1.62517)Ab

(−0.00113λb + 1.62517)Ar

         (8) 

                 
Ƞg

Ƞb

=
(−0.00113λg + 1.62517)Ab

(−0.00113λb + 1.62517)Ag

             (9) 

Where 
Ƞ𝑔

Ƞ𝑏
 and 

Ƞ𝑟

Ƞ𝑏
 are the total attenuation factors of GB and 

RB channels, wavelengths of various colors are denoted by λc. 

Generally, λg, λr, and λb are around 550nm, 700nm, and 450nm, 

respectively. Hence, the TMs of the rest of the RG-color 

channels can be estimated from the equations shown below: 

                             tr(e) = (tb(𝑒))
Ƞr
Ƞb                                      (10) 

                                 tg(𝑒) = (tb(𝑒))
Ƞg

Ƞb                                     (11) 

 

To further eradicate the distortions in recovered undersea 

picture, medium TM is enhanced with a guidance filter [13]. 

Fig. 2 highlights the process flow of our method. Besides, the 

outline of the proposed method is given in Algorithm 1. 

 

 

 

 

 

 

 

 

 

 

 

IV. RESULTS AND DISCUSSION 

This part of manuscript has been divided into four sections: 

Firstly, object detection method is evaluated, and the results are 

presented in Section IV (A). Next, the image restoration method 

is evaluated from different aspects and is compared with SOTA 

as given in Section IV (B). In Section IV (C), an overall 

comparative study of our proposal with SOTA is presented 

using both subjective and objective evaluation. Finally, Section 

IV (D) highlights the benefits of the proposed method in 

undersea monitoring tasks, supporting unmanned vehicle 

framework.  

A. Results by Our Object Detection Method 

Experiment for underwater object detection and ROI 

extraction has been performed and our model has been trained 

using GPU NVIDIA Tesla K80. The undersea detection has 

Algorithm 1: Steps Involved in Proposed Method 

1. Given input I(e) 
2. Detect and Extract ROI   Fish, Diver, Submarine 

3. Fish = 1000, Diver = 1000, Submarine = 1000 

Total number of images = 3000 
Training images = 2400 

Testing images = 600 

4. Solve the following sub-problems: 
(i) Compute JMUWDCP from (3) 

(ii) Compute Amc using mode operation. 

(iii) Compute tb(e), tg(e), and tr(e) via (6) – (11). 
(iv) Refine medium TM. 

5. Extract Output J(e)  
6. Return Dehazed ROI 

 
Fig. 2. General process flow of our method 
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been performed via YOLOV4 and YOLOV8. We select the so-

called medium-sized version of YOLOV8 (i.e., YOLOv8m). 

In the object detection process, Precision, Recall, and Mean 

Average Precision are often employed for checking the 

accuracy of the algorithm. The model used for comparison has 

learnt via training performed using degraded undersea picture 

dataset comprising submarines, divers, and fish. These three 

kinds of underwater objects are the vital resources of the 

underwater world and summarize the subaqueous target 

spotting operation for rest of subaqueous targets. We have 

employed 3000 curated undersea images; out of these 2400 

images have been used for training the algorithm and 600 

images have been used for testing and the batch size is 128. The 

framework performs the underwater object detection with a 

Mean Average Precision (mAP) = 94.6%, Recall = 90.6%, and 

average Intersection over Union (IoU) = 79.1%. Besides, 

YOLOV8 performs the ROI detection with mAP = 94.35% and 

precision = 94.60%, in approximately 0.028 ms enabling an 

instantaneous underwater ROI detection and extraction, which 

in turn results in speedy dehazing and restoration of blurred 

underwater images. 

Table I highlights precision and mAP values of Fast RCNN, 

Faster RCNN, and YOLOV3 for images from “Underwater 

Robot Pic ing  ontest” com ared with the precision and mAP 

scores of our method employing YOLOV4 and YOLOV8 for 

curated underwater submarines, divers, and fish. 

Recall, mAP, and speed i.e., Frames per Second (FPS) are 

used to compare the accuracy and speed of YOLO(V4 and V8) 

based proposed method, Faster RCNN, and YOLOV3. The 

obtained results are shown in Table II. The dataset from popular 

site URPC (UNDERSEA ROBOT PICKING CONTEST) is 

converted to the VOC2007 format for comparison. 

TABLE I 

COMPARISON OF OUR METHOD TRAINED ON UNDERSEA FISH, SUBMARINE, 
AND DIVER WITH FAMOUS DNNS 

Parameters 

Networks 

Fast 

RCNN 

Faster 

RCNN 

YOLO

V3 
YOLOV4 YOLOV8 

mAP (%) 27.26 27.53 35.43 94.35 94.60 

Precision 

% 

Sea-

Cucumber 
30.13 30.18 37.14 Fish, 

Sub-

marine 

and 

Diver 

94 94.3 Sea 

Urchin 
26.79 27.29 35.42 

Scallop 24.87 25.13 33.74 

 

TABLE II 
PERFORMANCE COMPARISON OF OUR METHOD WITH OTHER DNNS 

Networks mAP (%) Recall (%) FPS 

Faster RCNN 69.7 75.6 8 

YOLOV3 76.1 89.5 20 
YOLOV4 94.35 90 31 

YOLOV8 94.6 90.6 30 

 

Furthermore, a comparison is also made with Xu and 

Matzner [14] that have employed three different datasets to 

compute mAP values for their algorithm. Table III indicates the 

mAP values yielded by Xu and Matzner and our model trained 

on degraded undersea images. 

It can be seen from the results that our method performs 

better and is more efficient. Besides, there is not considerable 

difference seen in ROI detection time and precision for YOLO 

V8 and V4. Since the proposed algorithm is a two-stage 

network, the performance evaluation of the second stage is 

carried out in the following Section IV (B). 

 
TABLE III 

 COMPARISON OF MAP VALUES USING DIFFERENT DATASETS 

Techniques Datasets mAP (%) 

 

Xu and Matzner [14] 
Wells Dam 55.75 

Voith Hydro 54.74 

Igiugig 45.07 

Our method Curated 94.6 

The second stage consists of an underwater image restoration 

algorithm that provides more accuracy in estimating the prior 

data. Hence, the algorithm greatly improves the quality of 

images and produces subaqueous pictures with visually 

pleasing appearance. 

B. Performance Evaluation of Restoration Method 

The ocular artifacts result in perversions having non-linear 

characteristics and may badly affect visual operations and 

subaqueous operations for science related and ocean survey 

works e.g., tracking, monitoring subaqueous world, classifying 

picture objects etc.  

 

i) Comparing Proposed Method Airlight Computation with 

SOTA Techniques 

Several approaches used to estimate the TM rely also on 

calculated BL/Airlight. Therefore, various subaqueous picture 

restoration algorithms require to get compared in terms of BL 

estimation. Addressing this issue, this section is included for 

comparing the various algorithms employed for BL 

computation. For comparing BL estimated by different prior-

driven restoration methods, we have selected an undersea 

image, as shown in Fig 3.  

 

Ground truth BL of the undersea test picture as shown in Fig 

3 (b), has been acquired via around ten-fifteen  erson’s 

feedbacks based upon concept to select distant subaqueous 

target from capturing device and radiation for backdrop 

illumination. Fig. 3 (c) to (i) show results of various popular 

picture dehazing algorithms. UDCP execution in Fig. 3 (c) is 

like DCP. Output of DCP [16] is given in Fig. 3 (d), indicating 

airlight calculation using the concept of Dark channel prior. 

Calculated airlights of DCP [17], DCP [18], DCP +Maximum 

Intensity Prior (MIP) [19], MIP [20], Image Blurriness and 

Light Absorption (IBLA) [21] are shown in Fig. 3 (e) to (i). 

Survey [22] reveal methods to calculate airlight through DCP 

 
(a)                                         

 
(b) 

(c) (d) (e) (f) 

(g) (h) (i) (j) 
Fig. 3. (a) Misty subaqueous Image, (b) Ground Truth BL, (c) 

UDCP [15], (d) DCP [16], (e) DCP [17], (f) DCP [18], (g) 
DCP+MIP [19], (h) MIP [20], (i) IBLA [21], and (j) Proposed 

Method. 

 

 

 

   Fig. 2. Detected ROIs and their extraction 
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scheme do not recklessly choose pel with the highest brightness 

as airlight, but ignores visual imaging characteristics of the 

undersea conditions depicting substantial variations in R and 

BG colors, hindering DCP from estimating airlight. Also, Fig. 

3 (j) indicates result of our technique. 

 

ii) Comparing Medium TM Computation with Well-known 

SOTA Techniques 

In various methods used to calculate medium TM, it has been 

observed, nearer an undersea image is to aperture, greater is 

medium TM value, and seems whitish. In contrast, farther the 

undersea pictures will be, the dimmer will be their medium 

TMs. Fig. 4 (a) indicates the hazy undersea picture employed to 

estimate TM. For the high visual quality representation of TM, 

a guided filter [13] is employed for TM refinement. Fig. 4 (b) 

shows the TM result of the UDCP. Fig. 4 (c) and (d) depict 

DCP’s estimated TM, which is not precise. The difficulty 

comes into being because of less accurate calculation of 

airlight. DCP chooses maximum valued pel as airlight, that may 

be an inherently bright undersea object or can be illuminated 

point. Taking this fact into consideration, airlight may lead to 

erroneous scene depth-map and can produce erroneous medium 

TMs of scenes. Fig. 4 (e) and (f) represent medium TMs 

computed using renowned prior-based methods like MIP, 

IBLA, and Fig. 4 (g) shows results of our technique. The figure 

reveals the proposed technique performs better as it generates 

clearer transmission maps.  

 
C. Overall Performance Evaluation 

The proposed framework is a combination of a deep learning-

based object detection algorithm and a prior-based image 

restoration algorithm. Our framework involves two networks to 

accomplish the task of instantaneous and effective dehazing 

considering the problem of resource constraints. Thus, in this 

section, we have presented the experimental outputs of overall 

network. For evaluating the undersea image quality, both 

quality plus quantity-based methods have been employed for 

comparing DCP [24], UDCP [15], and proposed method. To 

measure the quality level of an undersea image, Image quality 

assessment (IQA) has been employed, and it is categorized into 

Objective Evaluation (OE) and Subjective Evaluation (SE).  

 

(1) Objective Evaluation (OE) 

Due to the unavailability of ground-truth images, we have 

chosen quality metrics like Entropy, UIConM, UIQM [25], and 

UCIQE [26] to assess and rate the nonreference pictures. 

Besides, the time analysis of the algorithm has also been 

performed.  

Table IV tabulates the values of UCIQE, Entropy, and UIQM 

of undersea pictures with dimensions equal to 400 × 600 

recovered by DCP [17], UDCP [27], Image Blurring and Light 

Absorption (IBLA) Prior [21], UDCP (TEoUI- TM Estimation 

in Undersea Single Images) [15], Maximum Intensity Prior 

(MIP) [20], Underwater Light Attenuation Prior (ULAP) [22], 

and the proposed method.  
TABLE IV 

 COMPARISON OF SOTA WITH OUR ALGORITHM 

We have also computed the UIQM and UIConM scores of 

hazy and dehazed 400×400 images. Fig. 5 highlights the 

enhancement of UIQM and UIConM values by the proposed 

method.  

UIConM (Dreg.) and UIConM (Res.) represent the UIConM 

values of degraded and restored undersea images, respectively. 

Similarly, UIQM (Dreg.) and UIQM (Res.) represent the UIQM 

values of degraded and restored undersea images, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the bar chart, it is seen that the proposed algorithm 

increases the UIConM and UIQM scores, thus improving the 

appearance of a subaqueous picture. Average values of 

UIConM and UIQM on seven 400×400 restored underwater 

images are 0.860 and 5.364, respectively. Furthermore, for the 

time analysis, we have compared the proposed algorithm with 

the popular schemes like DCP and UDCP in terms of time in 

table V.  

 
TABLE V  

TIME COMPARISON OF SOME ALGORITHMS WITH PROPOSED ALGORITHM 

 
Also, the time taken to restore detected ROIs by UDCP, and 

our technique is highlighted in Fig. 6. In addition, our scheme 

is compared to latest techniques employed to recover and 

                                                
(a) 

   
(b)                      (c) 

     
            (d) 

    
(e)                          

  
(f) 

     
            (g) 

Fig. 4. (a) Misty Subaqueous Image [13] (b) TM Estimated Using 
UDCP [15], (c) TM Estimated Using DCP [16], (d) TM Estimated 

Using DCP [23], (e) TM Estimated Using MIP [20], (f) TM Estimated 
Using IBLA [21], and (g) TM Estimated Using Proposed Method. 

Serial No. Algorithms Time (secs) 

1. DCP [24] 2.121 

2. UDCP [15] 3.845 

3. Proposed 0.55003 

 

 METHOD ENTROPY UCIQE UIQM 

UDCP 6.48 0.55 2.51  

IBLA  6.84 0.59  1.47  

MIP 6.54  0.52 0.78 
DCP 6.39 0.50 0.16 

UDCP (TEoUI) 6.99 0.58 2.84 

ULAP 6.75 0.58 3.70 
Proposed Method 7.25 3.09 8.97 

 

 
 
Fig. 5. UIConM and UIQM Values of Degraded and Restored 

Underwater Images 
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enhance subaqueous picture such as J. Yuan et al., [28], 2022; 

Wang et al. [29], 2017; Peng et al., [21], 2017; Song et al., [22], 

2018; Pan et al., [30]; 2019, and Zhuang et al., [31]; 2020. The 

performance comparison is carried out based on UIQM 

depicted by Table VI and subaqueous picture dimension is 512 

× 512. 

TABLE VI 
COMPARISON OF PROPOSED METHOD WITH SOTA 

 

Also, using UCIQE scores, latest subaqueous picture 

dehazing techniques namely, Peng et al. 2017 [21], Pan et al. 

2019 [30], and Hou et al. 2020 [32] are compared with the 

proposed algorithm. From Table VII, it is highlighted average 

UCIQE of every comparative method is smaller than our 

mechanism. Mostly, the UCIQE of our algorithm has been 

higher than 1. The high UCIQE means the dehazed undersea 

images of the proposed scheme show fine balance in saturation, 

degree of contrast, and degree of chroma. 

TABLE VII 

 UCIQE VALUES OF PROPOSED AND SOME RECENT ALGORITHMS 

   

TABLE VIII 

 TIME COMPARISON OF PROPOSED ALGORITHM WITH CNN BASED 

ALGORITHM 

 
Besides, a time comparison of our technique and latest 

subaqueous picture recognition scheme and texture-based 

dehazing scheme by Saifuddin Saif [33] in 2021 and J. Yuan et 

al. [28] in 2022, respectively is shown in Table VIII. The 

algorithm proposed by Saif [33] is based on enhanced 

convolutional neural network (ECNN) [33]. 

(2) Subjective Evaluation (SE)  

ROIs detected and restored using proposed scheme have 

been compared to the restored ROIs of UDCP and DCP. Fig. 7 

shows the overall image quality of restored ROIs of various 

prior-based techniques. It is concluded considering underwater 

images indicated in Fig. 7 that our method recovers undersea 

pictures showing improved visual quality than UDCP. Results 

produced by the UDCP seem to be unnatural and oversaturated. 

From the first and fourth images of the fifth column, it is clear 

that our scheme enhances the fine details of the image and 

restores the intricate information in the image as well. Besides, 

proposed method also protects the natural look of the sub-

aquatic picture, producing high-quality outputs that are not 

extremely saturated.  

Several popular state-of-the-art algorithms attempt to 

perform underwater image restoration; however, these 

algorithms are either computationally complex hence not 

suitable for UUV setup or estimate less accurate prior data. 

DCP and UDCP do not propose accurate prior data i.e., the 

transmission map and the atmospheric light on which the 

quality of restored underwater image relies. Addressing these 

issues, the proposed method aims to increase the fidelity of the 

estimated prior information, reduce the computational time, and 

resource requirements conforming to the UUV requirement 

guidelines.   

S.No. Techniques, Year UIQM 

1. J. Yuan et al. [28], 2022 4.869 
2. Zhuang et al. [31], 2020 4.93 

3. Pan et al. [30], 2019 4.08 

4. Song et al. [22], 2018 3.98 

5. Wang et al. [29], 2017 4.19 

6. Peng et al. [21], 2017 4.07 

7. Peng et al. - Histogram Equalization [21], 2017 4.89 

8. Our Method, 2023 6.274 

 

  

S. No. Techniques UCIQE 

1. Peng et al. [21] 3.00 

2. Peng et al. + Hist [21] 3.767 

3. Pan et al. [30] 0.605 

4. Hou et al. [32] 0.6003 

5. Proposed Method 3.815 

 

No. Algorithms Time (secs) 

1. TEBCF [28] 7.75 
2. ECNN [33] 30 

3. Proposed Method 0.56 

 

Degraded 
Image 

Detected 
ROIs 

Restored 
ROIs using 

DCP 

Restored 
ROIs using 

UDCP 

Restored 
ROIs using 

Our 

Scheme 

     

     

     

     

     

     

     
Fig. 7. Comparison of Proposed Algorithm with UDCP [13] and DCP [22]. 
 

 

 
Fig. 6. Time analysis of the proposed algorithm and UDCP 
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   The overall operational time taken by our technique goes 

hand in hand with the cruising speed of unmanned underwater 

vehicles. Also, pertinent to mention here that YOLOV8 and 

YOLOV4 models have been trained on highly degraded images 

of underwater scenes, nevertheless, the algorithm shows better 

accuracy with speedy detection supporting the main paradigm 

of unmanned monitoring. 

 

D. Benefits of the Proposed Method in Unmanned Underwater 

Vehicle Monitoring Network 

Autonomous monitoring tasks are often constrained by the 

energy and computation limitations of underwater devices like 

UUVs, underwater sensors etc. [34], [35]. The transmission 

distance in undersea environments is more than the terrestrial 

transmission distance leading to huge demand of resources like 

transmit power, bandwidth, etc. [36], [37], [38]. Besides, 

degraded and less visible underwater images cause an 

additional surge in the issue of resource scarcity and limit the 

effective monitoring and navigation across oceans via UUV 

setup. Thus, the proposed algorithm aims at detecting and 

improving the visual quality of substantial underwater objects 

at the cost of least resource consumption. The algorithm 

performs instantaneous and automatic ROI detection and 

extraction, eliminating trivial data, and thereby reducing the 

size of an underwater image. This results in drastic reduction in 

processing time as shown in fig. 6 and table VIII. The storage, 

bandwidth, and power requirements are also reduced. Besides, 

the proposed algorithm efficiently dehazes underwater scene 

points which combats the issues involved in underwater 

imaging as can be understood from fig. 7 and table IV. Thus, it 

ensures highly accurate decision-making to avoid the undersea 

obstacles and hence efficient navigation of UUVs across water 

bodies can be achieved. Pertinent to mention here, our 

algorithm goes hand in hand with the UUV resource 

constrained network and improves its overall efficiency for 

adoptability in automatic undersea monitoring missions. 

 

V. CONCLUSION AND FUTURE WORK 

UUVs have given a drastic surge to the technological 

uprising of underwater communication and computation. 

However, these vehicles involve lot of battery-powered low 

storage devices that demand considerable amount of power, 

limiting its application in undersea environment. Also, the 

decision-making function of these unmanned vehicles to 

navigate smoothly in undersea complex environment is 

hampered by the degraded vision. If these issues are addressed, 

UUV can extend not only its coverage but also pave way for 

real-time undersea monitoring. Therefore, keeping in view 

these issues, this paper proposed a light-weight algorithm 

enabling ocean engineers to monitor undersea life automatically 

and instantaneously. Our study employed an efficient DNN 

amalgamated with a less erroneous picture restoration scheme 

to solve the complex problem of underwater surveillance by 

performing ROI detection, extraction, and restoration, helping 

to dehaze a single sub-aquatic image. The proposed algorithm 

has experimented both YOLOV8 and YOLOV4 for degraded 

and diverse undersea dataset of 3000 images. The performance 

of both versions has been highlighted in terms of ROI detection 

time and accuracy. Besides, from the results obtained using SE 

and OE metrics, it can be concluded that our technique 

performed well in terms of time, resource consumption, and 

quality of an image compared to SOTA methods. These 

features validate the feasibility of this proposal for deployment 

in undersea environments, contributing to UUV efficiency. 

The processing time of our method is less compared to SOTA 

algorithms; however, a requirement is felt to further decrease 

the computational time considering the severe resource 

requirements of vehicle components. Besides this, ocean 

engineers and researchers should also focus on developing 

benchmark Segment Anything Model (SAM) that can adapt to 

variety of downstream operations, efficient open-set 

recognition schemes, and efficient diffusion models for 

underwater image augmentation. Furthermore, we plan to 

include an efficient bright and red channel based dehazing 

scheme in our algorithm for robust prior information 

estimation. This can help apply this technology in other related 

applied domains. 
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