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Abstract—The recent advancements in cellular Vehicle-to-
everything (C-V2X) and edge computing paradigms foster novel
use cases for connected and automated vehicles that come with
strict performance requirements. These guarantees can be pro-
vided by network slicing, which is currently enabled by the vir-
tualization and cloudification of mobile networks, following the
5G/6G core service-based approach and the cloud-native Open
Radio Access Network (O-RAN) principles. However, a significant
challenge arises when considering the movement of end users: en-
suring network slice continuity as they transition between different
network operators. In this paper, we introduce a novel cloud-native
orchestration framework for network slice federation that incorpo-
rates well-defined interfaces to exchange federated service and slice
resource templates among operators. The proposed framework
is fully compliant with i) standardized slice service models, and
ii) GSMA efforts that are building the fundamental aspects for
Edge Federation to allow the sharing of network resources across
mobile operators. To validate our approach, we have designed and
deployed a cloud-native federated 5G experimental platform. An
extensive series of experiments have been carried out, revealing that
the federation implementation directly influences federation time,
and the operator’s slice deployment strategy significantly impacts
both infrastructure and end user performance.

Index Terms—5G SBA, C-V2X, cloud-native, edge federation,
multiple administrative domains, network slicing, NFV, O-RAN,
OPG, orchestration, UPF.

I. INTRODUCTION

THE vehicle-to-everything (V2X) paradigm enables vehi-
cles to interact with their environment, including other
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vehicles, infrastructure, and the network. By 2027, connected
vehicles are projected to number 367 million globally [1].
Meanwhile, the fifth generation (5G) of mobile communica-
tions, especially with its edge computing and network slicing
capabilities, is seen as the key enabler for V2X, meeting the
necessary connectivity, capacity, and security demands [2], [3].

For network slicing and edge computing to fully realize their
potential, virtualization and cloudification of mobile networks
are vital [4], [5]. With this evolution, 5G core networks adopt
cloud-native methods, aligning with the 3 rd Generation Partner-
ship Project’s (3GPP) service-based architecture (SBA) [6]. In
the Radio Access Network (RAN) under the Open RAN Alliance
(O-RAN) [7], the gNodeB (gNB) split into O-Centralized Unit
(O-CU), O-Distributed Unit (O-DU), and O-Radio Unit (O-RU).
This transition, emphasizing open standards, promotes vendor
flexibility and RAN growth [8]. O-RAN units like O-CU and
O-DU are adopting cloud-native design, indicating a shift to
cloud RAN practices [9].

The aforementioned trends have fueled various end-to-end
(e2e) service and slice orchestration initiatives. Regarding the
former, Management and Orchestration (MANO) and Multi-
Access Edge Computing (MEC) by European Telecommunica-
tions Standards Institute (ETSI), propose frameworks to manage
and orchestrate network and edge resources, respectively. In
the radio access domain, O-RAN proposes the Service Man-
agement and Orchestration (SMO) framework for managing
and orchestrating network functions (NFs) [10]. Regarding the
latter, standardization bodies further define specifications and
frameworks for network slicing management [11], [12], [13].

Nonetheless, mobility still brings significant challenges in 5G
cloud-native networks where users may move across different
administrative domains, i.e., domains controlled by different
operators. For instance, end users may need to handover to a
different operator in rural/remote areas where the connectivity
of their currently serving operator is low, or the communication
resources are scarce. A similar situation could be also noticed
in cross-border scenarios, where service continuity needs to be
guaranteed in each region (e.g., teleoperated driving or health-
care scenarios where the ambulances can operate in both sides
of the border) [14]. Further, in V2X scenarios like Vehicle-
to-Network-to-Vehicles (V2N2V) communications, application
servers at the network’s edge could be managed by different
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operators [15]. If a vehicle exits its primary operator’s area,
its data might reroute through the home network, potentially
slowing V2X performance. Moreover, events like stadium gath-
erings highlight how operators, using third-party resources, can
offer tailored services, such as live broadcasts or extensive
user-generated content uploads. To tackle this kind of situations,
the concept of Edge Federation has been recently introduced,
which enables the interconnection of multiple administrative
network domains (multi-ADs) and allows the sharing of network
resources and services across different operators [16], [17].

A key enabler for Edge Federation is the Operator Platform
(OP) concept proposed by GSMA [18]. OP includes standard
Application Programming Interfaces (APIs) and protocols for
edge computing resource discovery, resource management, and
service deployment. By adopting the OP guidelines, network
operators and service providers can create and deploy new
edge services quickly and easily, while ensuring interoperability
and compliance with industry standards. However, in terms of
network slicing federation, OP is at a very early stage, as there
are only some simple references, while no slice mechanisms and
API endpoints have been defined. To ensure service continuity,
as the users move from one administrative area of one operator
to another, the service configuration files and slice resources
should be also transferred to the destination operator in real-time.
The OP concept in its current release defines the role of the
Federation Manager, which is responsible for implementing the
east-west bound interface (EWBI) and managing the federation
among multiple OPs instances. At its core, EWBI defines a set of
resources that can be used to define and deploy cloud-native ap-
plications, while no slice-related resources have been identified.

Since the slice federation concept is new, a number of unre-
solved challenges may arise. Beyond general concerns like slice
security, privacy, and inter-operator billing, deeper issues arise:
i) when accessing network slicing, operators decide whether to
use the visited network’s slice features or their home network
design. This emphasizes the challenge of sharing slice template
requirements with visiting operators; ii) adapting to an operator’s
unique cloud orchestrator can spark conflicts, highlighting the
need for standardized protocols. Incorporating O-RAN adds
complexity: i) efficient management of both intra and inter-slice
resources is vital, stressing the role of O-RAN applications like
xApps [19], [20]; ii) there is a need for thorough e2e O-RAN
testing and strategies to integrate O-RAN with open-source
projects [21].

Recent studies emphasize service and slice orchestration in
cloud-native networks for mobile scenarios. Works like [22],
[23], [24] focus on the dynamic nature of slice management in
the presence of mobile users, but within the infrastructure of a
single operator. Transitioning from single to multi-AD contexts,
standardization efforts like [25], [26], EU-funded projects such
as the [27], [28], and research works such as the [14], [29],
[30], [31], [32], [33] have paved the way by defining essential
architectures and interfaces for service and slice federation.
However, a significant limitation is the reliance of many works
on simulation-based results or non-integrated testbeds, revealing
a gap in real-world evaluations. A survey [34] and a recent work
by the same authors [35] on operator slice mobility showcased a

cloud-native proof of concept, though without detailing specific
orchestration schematics or interfaces.

In this paper, motivated by the above challenges and the
gaps in the literature, we introduce a cloud-native orchestration
framework for network slice federation in different administra-
tive domains. In particular, our contribution is threefold:
� We propose a novel Slice Federation as a Service (SFaaS)

framework that extends the OP with network slice fed-
eration capabilities. The proposed framework is 3GPP-
compliant (i.e., it follows the 3GPP slice management
system) and leverages the EWBI to federate a specific
application called SliceFedRequest, for the exchange of
the slice resource template among operators to ensure the
end users’ seamless mobility.

� We design and deploy an e2e 5G testbed with cloud-native
5G core and O-RAN features to demonstrate the proposed
framework. Our testbed is implemented using a combi-
nation of open-source technologies (e.g., Open5GS1 and
UERANSIM2) and state-of-the-art market solutions (i.e.,
NearbyOne edge orchestrator [36]) to emulate realistic
federated environments.

� We perform a thorough experimental performance evalua-
tion to assess: i) the impact of the federation process in such
scenarios, and ii) the post-federation network performance
in terms of the slice creation under various scenarios, as
well as the quality of service for the “federated” users.

The structure of the paper is as follows. Section II reviews
related work in the field. Section III introduces the system
architecture of our work. In Section IV, we present the pro-
posed framework for network slice federation. Section V pro-
vides details of the deployed testbed and evaluates our novel
framework. Section VI discusses lessons learned, offers broader
context based on our findings, and suggests directions for future
research. Finally, Section VII concludes our work.

II. RELATED WORK

As 5G networks evolve, network slicing is crucial for diverse
service requirements, driving the need for effective slice feder-
ation in single and multi-AD contexts.

In the context of single administrative domains, many studies
have focused on service and slice orchestration in cloud-native
networks. However, most are limited to the infrastructure of one
operator [22], [23], [24]. Moving to multi-AD orchestration,
standard efforts like [25], [26] along with EU-funded projects
like [27], [28], have expanded this domain. Still, many rely on
simulations or non-integrated testbeds, highlighting a gap in
real-world evaluations. Additionally, many of these approaches
have not incorporated the OP concept by GSMA, for service
federation.

For multi-AD frameworks, works such as [29] and [30] have
emphasized the significance of such frameworks. They have
emphasized the relevance of centralized placement and service
function chains in multi-AD 5G architectures, and service mo-
bility in MEC-enabled networks, respectively. However, these

1https://github.com/open5gs/open5gs
2https://github.com/aligungr/UERANSIM
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TABLE I
COMPARISON OF SLICE FEDERATION IN CLOUD-NATIVE MANAGEMENT AND ORCHESTRATION SYSTEMS

works either overlook 5G implementations or rely on simula-
tions, leaving gaps in practical deployments

Moreover, a significant portion of research has leaned toward
service and slice federation. Notable contributions include [14]
which has enhanced a 5G network slicing management model,
and [31] which has emphasized multiple domain network slicing
orchestration. Despite their importance, they have not fully
integrated cloud-native methods, leaving a research gap. This
is further highlighted by a study like [32], which has prioritized
information exchange but sidelined the cloud-native approach.

Among the relevant research, [33] has notably advanced
network service federation by enabling automated multi-AD
orchestration of network services. The work demonstrated this
advancement through an open-source orchestration implemen-
tation. However, a recurring theme is the limited integration of
real 5G solutions or the absence of a cloud-native approach in
their strategies. It is also worth noting that none have considered
O-RAN features, which our framework integrates.

In the realm of cloud-native network slicing, a survey like [34]
has highlighted Kubernetes benefits. The same authors, as seen
in [35], proposed a novel microservice and SDN-based MEC
network slicing architecture, aligning with ETSI requirements.
While making significant contributions to cloud-native slice
federation, [35] lacks consideration for: i) integration with
Kubernetes for effective MEC slice resource management; ii)
adapting a cloud-native 5G core, specifically developing NFs
and MEC services as microservices.

Distinct from the mentioned works, we offer a framework
that combines orchestration in multi-ADs, integrates service and
slice orchestration, and presents a real-world testbed. Rooted
in cloud-native principles and combined with practical 5G so-
lutions, our approach sets a new standard in next-gen mobile
networks. For a detailed comparison, please refer to Table II,
which shows how our multi-AD architecture stands out from
current research.

III. SYSTEM ARCHITECTURE

In this section, we provide a background on cloud-native net-
work slicing implementations in 5G networks. We then present
the system architecture for our proposed solution, accompanied
by a toy example that illustrates the concept of network slice
federation.

A. 5G Cloud-Native Network Slicing

In 5G, network slicing creates virtual networks across do-
mains, optimizing resource utilization and service delivery.
Control-user plane separation (CUPS) enables the allocation
of control and user plane (CP and UP, respectively) resources
separately for each network slice. This separation allows both the
sharing of CP functions across slices, as well as the deployment
of dedicated UP functions to specific slices.

In the core domain, NFs can be shared among network slices,
reducing management complexity. The User Plane Function
(UPF), as well as the main CP 5G core NFs, like the Access and
Mobility Management Function (AMF), Session Management
Function (SMF), Policy Control Function (PCF), Authentication
Server Function (AUSF), Network Slice Selection Function
(NSSF), Network Repository Function (NRF), Unified Data
Management (UDM) and Unified Data Repository (UDR), can
be dedicated or shared among slices. Different approaches in-
clude implementing dedicated core NFs for each slice or sharing
certain control plane functions while assigning user plane func-
tions exclusively [37].

In the evolving O-RAN-based access domain, the gNB adopts
a functional split into O-CU, O-DU, and O-Radio Unit (O-
RU), with O-CU further divided into O-CU-CP and O-CU-UP.
O-RAN introduces the RAN Intelligent Controller (RIC) that
separates RAN control and monitoring from the base station [8].
RIC comprises two entities: Near-Real-Time (Near-RT) RIC and
Non-RT RIC, serving as platforms for xApps and rApps, which
optimize the radio network. xApps run on Near-RT RIC, while
rApps operate on Non-RT RIC within the management plane.
Hence, for O-RAN network slicing, certain NFs might be shared
across RAN slice subnets, like O-CU-CP, O-DU, O-RU, while
others, such as O-CU-UP and xApps, may be slice-specific [13].

B. Network Architecture

Our system follows a multi-stakeholder architecture, as il-
lustrated in Fig. 1, comprising three distinct entities: i) the
Mobile Network Operator (MNO),3 ii) the slice customer, and
iii) the end-user. The MNO owns the telco infrastructure, where
cloud-native applications and mobile NFs are running, along
with a cloud orchestration platform based on the OP concept with
extensions, consisting of a Slice Manager, a Service Manager,

3Please note that the terms MNO and operator are used interchangeably in
this paper.



DALGITSIS et al.: CLOUD-NATIVE ORCHESTRATION FRAMEWORK FOR NETWORK SLICE FEDERATION ACROSS ADMINISTRATIVE DOMAINS 9309

Fig. 1. System architecture.

a Federation Manager, and a Slice Federation Manager. The
Slice Manager with its respective management and orchestration
functions, such as the Communication Service Management
Function (CSMF), the Network Slice Management Function
(NSMF), and the Network Slice Subnet Management Function
(NSSMF) has been defined by 3GPP [38], while the Service
Manager and the Federation Manager roles have been presented
by OP to enable Edge Federation [18]. On the other hand, the
Slice Federation Manager, is introduced in this paper to facilitate
the implementation of slice federation. Regarding the network
operation, initially, an application provider offers services for the
end users to be deployed within the telco infrastructure, while the
slice customer requests a communication service in the form of
a network slice to cater for its end users’ specific characteristics
and requirements. The end users represent the final consumers
of both the applications and network services. As in Fig. 1, the
user’s home network is provided by the Home MNO, and the
visited network by the Visiting MNO.

The telecommunication network of each operator is divided
into network slices, with each slice customized to fulfill the
specific requirements of the end users across various technical
domains, including the access network (AN), transport network
(TN), and core network (CN). The Slice Manager of each
MNO, provides and manages network slices within the telco
infrastructure and encompasses domain-specific slice functions.
These functions handle the orchestration and management of
network slices within their respective domains, ensuring effi-
cient resource allocation based on the specific requirements of
each slice.

From the OP concept, the Service Manager is responsible for
service and resource provisioning within the telco site infras-
tructure. In particular, the telco infrastructure is considered a
collection of multiple edge and cloud nodes across the compute
continuum, capable of hosting, executing, and orchestrating
cloud-native applications and NFs (5G core and O-RAN NFs).
Moreover, the Federation Manager facilitates application mo-
bility among MNOs through the EWBI endpoints. At its core,
EWBI defines a set of resources that can be used to define
and deploy cloud-native applications. Each of these resources

plays a crucial role in specifying and managing cloud-native
applications across multiple sites.

Finally, each orchestration platform includes the newly in-
troduced role of this proposal, the Slice Federation Manager.
The Slice Federation Manager in Home MNO translates the
slice template (ST), which has been generated by the slice
customer request into a federated slice template (FST). The ST
can be represented as a JSON file that includes various details
about the slice, such as the slice type, slice tenant, slice ID,
slice requirements (e.g., guaranteed bit rate, latency, maximum
number of users, etc.), and slice domains (e.g., RAN, core). On
the other hand, the FST serves as a structured representation of
the ST extended with a federation field while referring to edge
sites and resources of the Visiting MNO. In Fig. 1, the interfaces
among the primary components are also illustrated. A detailed
discussion on these interfaces can be found in Section IV.

C. Slice Federation: Toy Example

To further illustrate the concept of slice federation in mobile
environments, let us consider a scenario involving two MNOs
and the seamless transition of a V2X slice as a user moves
between their coverage areas (Fig. 2).

To begin with, inside the Home MNO’s network reside
two types of slices, a V2X and an eMBB (Enhanced Mobile
Broadband) slice enabling V2X and video streaming applica-
tions, respectively, while the Visiting MNO has deployed a
URLLC (Ultra-reliable and low-latency communications) slice.
The V2X and the eMBB slice share certain components in both
core and access domains. The core network shares some of the
CP NFs, while in the access domain, the RT-RIC and the O-
DU/O-RU are common between the two slices, ensuring efficient
resource utilization and coordination. Nevertheless, a dedicated
SMF and UPF, as well as a specific xApp and a dedicated O-CU
are running in the V2X slice, providing functionalities on the
V2X application.

As the user of the V2X slice moves from an area covered
by Home MNO to Visiting MNO’s coverage area, the Visiting



9310 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 7, JULY 2024

Fig. 2. Slice federation example.

MNO needs to extend its service to accommodate the user dur-
ing its transition ensuring seamless connectivity and real-time
communication between the user’s vehicle and the surrounding
infrastructure. During the federation procedure, the Home Slice
Federation Manager and the Home Federation Manager query
the Home Slice Manager and the Visiting Federation Manager
respectively, to allocate resources and manage the seamless
handover of services (V2X slice configuration and xApps) for
the V2X slice between the two operators. The Federation Man-
agers facilitate the east-west communication between the two
operators, ensuring that the V2X slice resources are seamlessly
constructed into Visiting MNO’s network as the user moves.

IV. SLICE FEDERATION MECHANISM: INTEGRATING 3GPP
SLICE MANAGEMENT SYSTEM AND OPERATOR PLATFORM

CONCEPT

In this section, we extend the architectural concept of the OP
towards the 3GPP network slice management system to address
the needs for slice federation in 5G/6G mobile cloud-native
communication networks. First, we describe the missing inter-
faces for slice federation within the Federation Manager role.
Next, we delve into the protocols and connections within the
framework, outlining how different entities communicate within
our 5G system. Following that, we introduce the Slice Federation
as a Service (SFaaS) mechanism, along with an xApp federation
description in O-RAN architecture. Finally, we detail the slice
federation phases.

A. 3GPP-OP Integration for Slice Federation

3GPP has defined the CSMF, NSMF, and NSSMF model to
provide a hierarchical approach to network slicing in one opera-
tor, enabling the translation of service requirements into network
slice characteristics and their implementation across the network
infrastructure. In multi-ADs though, there is a need for an
additional control layer to be added to the single-administrative
domain architecture. To that end, we leverage the OP to map the
slice requirements to the capability of the infrastructure domain
by identifying the edge sites with the required resources. The
OP offers interfaces to other parties (application providers, end
users, other operators) using common definitions based on the
requirements of [39].

Within the context of OP, we have proposed the addition
of the Slice Federation Manager module, which is responsible
for the management and monitoring of the resources related to
the federated slice, while the existing Federation Manager role
ensures secure and reliable connectivity between two MNOs.
However, since no slice endpoints have been identified as of
now, new fields related to slicing must be included in the EWBI.
The following HTTP endpoints can enrich the EWBI of OP
under a new API resource called Slice Federation:
� POST request to create a slice federation session:
/slice/session

� GET request to read the status of the slice session:
/slice/session/{sessionID}/status

� DELETE request to delete the slice session:
/slice/session/{sessionID}

� POST request to create a slice instance:
/slice/session/{sessionID}/nsi

� GET request to read the status of the slice instance:
/slice/session/{sessionID}/nsi/{nsiID}

� PUT request to update the content of the slice instance:
/slice/session/{sessionID}/nsi/{nsiID}

� DELETE request to delete the slice instance:
/slice/session/{sessionID}/nsi/{nsiID}

These endpoints can serve to initiate customer requests for
slice creations to another MNO. Based on the Service Level
Agreements (SLAs), this request is forwarded to the Visiting
Slice Federation Manager, which uses the FST to translate it
back to an ST and then forward it again to the Visiting Slice
Controller to create a network slice instance (NSI).

B. Protocols and Interfaces Within the Framework

In our 5G framework, seamless communication between var-
ious entities is essential. This communication is facilitated by a
range of protocols and interfaces, each tailored to the specific
needs of individual connection types. This section explores
these connections in detail, highlighting the interactions between
different system components and the protocols that enable them.
Interfaces are illustrated in Fig. 1.

1) Slice Customer-to-Operator (SC - OP): A customer portal
as a part of the slice Business Support System (BSS) provided
by the Operator Platform, has allowed the enterprise-slice cus-
tomers to order network slices.
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2) Slice-to-Orchestration (Sl - Or): Orchestration and man-
agement of network slices utilize a client-server API mecha-
nism, bridging the slice management and orchestration layers.
Notably, domain-specific slice functions, such as NSSMF, send
instructions from the management layer to the orchestration
controllers. The Service Manager, acting as the RAN and core
controller, deploys the NFs into edge-cloud sites. Consequently,
it provides an API, allowing clients like core-NSSMF to initiate
a network slice.

3) e2e Slice-to-Federation (e2eSl - Fed): NSMF offers a
set of northbound interface (NBI) endpoints, providing a key
gateway through which the detailed status and characteristics
of each slice can be accessed. This information, serving both
individual customers and served users, is critically important.
The Slice Federation Manager uses this mechanism by accessing
the NSMF’s HTTP endpoints, operating within an HTTP client
model. This interaction promotes efficient, real-time monitoring
of slices across various network domains and simplifies the
process of slice federation by ensuring smooth information
retrieval and manipulation.

4) Operator-to-Edge Cloud Sites (OP - ECS): For the actual
deployment of the NFs into the edge-cloud sites, we have
harnessed the capabilities of the Kubernetes API, since we
consider all the telco infrastructure of each operator to be a
Kubernetes-based cloud platform. The Service Manager is the
service orchestrator within the platform.

5) Operator-to-Operator (OP - OP): To interconnect two
operator platforms, we have implemented the set of APIs from
EWBI, as suggested by the OP concept. The components in-
volved in this interconnection are the Federation Managers of
each MNO platform.

C. Slice Federation as a Service (SFaaS) Mechanism

To leverage the existing Edge Federation approach by OP and
initiate slice federation resource requests, we propose encapsu-
lating these requests in a Slice Federation as a Service (SFaaS)
mechanism. This involves the federation of a novel application,
named SliceFedRequest, which carries the FST and specifies the
slice customer’s requirements. The FST encompasses the slice
type, the QoS parameters, the NFs, the resource allocation, and
session details.

Our framework adopts a cloud-native approach, deploying the
application as a containerized microservice on a cloud-native
environment, utilizing technologies and tools like Docker,4 Ku-
bernetes5 and Helm Charts.6 First, a Docker image is captured
from the application. A Docker image serves as a self-contained
package that encapsulates all the necessary components and de-
pendencies of an application. Then, a container is an instance of a
container image running in isolation, providing a lightweight and
consistent runtime environment. Kubernetes acts as an orches-
tration platform, automating the deployment, scaling, and man-
agement of containers across a cluster of machines. It ensures
high availability, scalability, and fault tolerance for applications.

4https://docs.docker.com/
5https://kubernetes.io/docs/
6https://helm.sh/docs/

Helm Charts, on the other hand, serve as a packaging format
for Kubernetes resources and their configurations, simplifying
the management and deployment of complex applications and
services.

During federation setup, the Visiting MNO provides a Kuber-
netes cluster at an edge site for the SliceFedRequest. This MNO
also shares clusters for core and O-RAN NFs necessary for the
slice.

It is also worth noting that the SliceFedRequest has been
designed based on the Kubernetes container lifecycle hooks7

and liveness probes.8 Container lifecycle hooks in Kubernetes
provide a way to run specific commands or scripts at various
stages of a container’s lifecycle. These hooks allow us to perform
certain actions before or after important events in the container’s
lifecycle, such as starting or stopping the container. We leverage
the following two hooks:

1) PostStart: This hook is executed immediately after a con-
tainer is started. It enables performing actions or configu-
rations that should happen after the container has started,
such as requesting a slice federation session and the fed-
erated slice instance. The data of this request contain the
FST.

2) PreStop: This hook is executed immediately before a con-
tainer is stopped. It provides an opportunity to gracefully
terminate processes, close connections, or perform any
necessary cleanup tasks before the container is terminated,
such as deleting the federated slice instance and the slice
federation session.

Liveness probes is a mechanism to determine the health status
of a container running within a pod (pod is the smallest and
most basic unit of deployment in Kubernetes). A liveness probe
periodically checks the container’s health by sending a request
to a specified endpoint and analyzing the response.

In the SFaaS mechanism, a liveness probe ensures the Visiting
Slice Federation Manager operates correctly, reads the federated
slice status, and acts if issues arise. If this probe fails (e.g., due to
non-responsiveness or error status), Kubernetes reacts based on
probe settings. We use the Exec Probe type, which sends a status
command to the Visiting Slice Federation Manager and captures
its response. This response is then accessed by the Home Slice
Federation Manager to synchronize with the Visiting MNO.

Moreover, it’s through the strategic integration of these con-
tainer lifecycle hooks and the aforementioned liveness probes
that we are able to refine and customize the operation patterns
of our SliceFedRequest application. This ensures seamless slice
federation initialization, efficient cleanup, and consistent avail-
ability throughout its lifecycle management.

Federating xApps in O-RAN-based architectures: The SFaaS
mechanism not only federates the SliceFedRequest application
but also extends its federation to include access network ap-
plications, such as the xApps within the O-RAN-based archi-
tecture. In the context of RAN slicing, O-RAN incorporates
slicing capabilities by assigning dedicated O-CU-UP instances

7https://kubernetes.io/docs/concepts/containers/container-lifecycle-hooks/
8https://kubernetes.io/docs/tasks/configure-pod-container/configure-

liveness-readiness-startup-probes/
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Fig. 3. Slice federation sequence diagram between two MNOs.

to specific slices, while the shared O-CU-CP and Near-RT RIC
handle inter-slice operations and optimizations.

Moreover, O-RAN leverages the capabilities of the Non-RT
and Near-RT RICs. These components play a vital role in
ensuring resource isolation, optimization, and scalability. They
dynamically respond to traffic demands and leverage dedicated
or aware xApps and machine learning models specific to each
slice. This allows them to anticipate and respond to expected
fluctuations in traffic volume and location. For instance, a
slice-dedicated xApp like traffic steering can employ a simple
scheme for static IoT/mMTC scenarios, while more complex
schemes like dynamic channel/mode selection may be required
for demanding use cases such as V2X [40]. Additionally, slice-
aware xApps, such as the NexRAN inter-slice management
xApp within the O-DU scheduler, can prioritize the allocation
of physical resource blocks to ensure SLA compliance across
different slices [41].

Consequently, these xApps need to be deployed on the Near-
RT RIC of the Visiting MNO as federated services, following
cloud-native practices. It is important to note that these xApps
enter the federation process only upon acceptance of the SliceFe-
dRequest.

D. Slice Federation Phases

When all the building blocks from OP, 3GPP management
slice functions, and the proposed innovations come into play,
the network slice federation process involves five phases, as
described below:

1) Phase 1: Slice Federation Pre-registration
It is assumed that a slice for a user or a group of users
has been already created in the Home MNO. CSMF and
NSMF have been involved in translating customer slice
requests into slice requirements. Updates of the NFs and

applications involved, and the status of the slice are always
reported back to Slice Manager from the subslice domain
Controllers. The Slice Federation Manager constantly gets
and updates its state by retrieving the slice instance and
translating it into a federated slice template. It leverages a
Slice Manager interface to request the status of the user’s
slice. The status includes information on subslice domains,
slice requirements, and specific NFs associated with the
slice. The flow of these actions is depicted in Fig. 3 (steps
1-3).

2) Phase 2: Slice Federation Setup
The federation establishment shall be performed to setup
the federation relationship between the two MNO or-
chestration platforms. Steps 4-9 in Fig. 3 show the ac-
tions needed to establish the federation and exchange
infrastructure and network slice-related information be-
tween the MNOs, such as the edge site that will host the
SliceFedRequest and the endpoints of the Visiting Slice
Federation Manager, respectively.

3) Phase 3: SliceFedRequest Application Onboarding and
Deployment
To onboard the SliceFedRequest, files (e.g., Docker im-
ages) must be uploaded into a public/private registry.
Then, the artefacts referencing these files (e.g., helm
charts with Kubernetes manifests like Deployments and
ConfigMaps) are added, followed by the application that
references the artefacts. Once onboarded, the application
can be installed at an edge site (e.g., Kubernetes cluster),
as shown in steps 10—Fig. 3, initiating the federated slice
request.

4) Phase 4: Federated Slice Deployment
After deploying the SliceFedRequest, a federated slice
request is sent to the Visiting MNO’s Slice Federation
Manager (Fig. 4, step 1). The FST translates back to
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Fig. 4. Slice federated deployment sequence diagram in Visiting MNO.

ST, and slice deployment begins on the Visiting MNO’s
infrastructure. The SliceFedRequest periodically checks
the status of the federated slice request and, if accepted,
the Home Slice Federation Manager updates its content
for the federated slice instance and informs the slice
customer about the installation, connectivity, and man-
agement points. It also notifies the slice customer of any
SLA breaches or major slice failures. If more services,
like xApps in the access domain, are needed for the user’s
slice, the federation continues with their onboarding and
deployment (Fig. 4, steps 8-9).

5) Phase 5: Slice Federation Termination
When the federated slice is no longer needed, the Home
MNO through the EWBI uninstalls the SliceFedRequest.
This action triggers a DELETE request to undeploy and
destroy the federated slices. In addition, the Home MNO
uninstalls any other federated services, e.g. xApps, from
the other MNO’s edge site. Finally, when all resources
related to slice federation have been cleaned-up, the fed-
eration session is released.

The steps above detail the network slice federation process,
highlighting the role of the Slice Federation Manager and the
information flow between various components.

To provide a clearer representation of the aforementioned
slice federation phases, Fig. 5 offers a visual depiction of the
entire slice federated deployment sequence between the two
operators. The flowchart begins with the initiation of a slice
customer request. The system first evaluates if federation is
required. If it is not, the process reaches its conclusion. However,
if federation is deemed necessary, a federation session is enabled.
Subsequently, a federated slice template is prepared and the
SliceFedRequest is sent. Upon sending the SliceFedRequest, the
system then awaits a response from the Visiting Operator. If
the federated slice request is declined, the initiating customer is
immediately informed of this outcome. On the other hand, if the

Fig. 5. Slice federation instantiation flowchart.

request is accepted, the Slice Manager of the Visiting Operator
is tasked with determining suitable sites for deploying the NFs
constituting the network slice. Once these slices are successfully
created, the initiating customer is notified that their slice has been
federated and is now operational within an alternative adminis-
trative domain. If the slices are not immediately established, the
system periodically checks their status and keeps the customer
updated until their slice is fully federated.
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Fig. 6. Cloud-native 5G experimental platform.

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
slice federation approach. First, we describe the setup of the envi-
ronment employed in our experiments. Subsequently, we define
the performance metrics employed to assess the effectiveness of
our strategy and analyze the results, discussing their implications
for the telco edge-cloud infrastructure and the end users. Our
testbed implementation follows cloud-native paradigms, con-
templating both the infrastructure and the applications. Within
this context, we evaluate two aspects: i) the federation mecha-
nisms between operators and ii) the deployment of slices in the
post-federation phase.

A. Experimental Setup

We have designed and deployed a cloud-native 5G experi-
mental platform to evaluate federation and assess the impact
of post-federation slice deployments on the Visiting MNO’s
infrastructure and user performance. The platform’s architecture
is shown in Fig. 6, with two MNOs: the Home and Visiting
MNOs, each having an orchestration platform and an edge-
cloud infrastructure for slice federation and deployments. The
NearbyOne Controller [36] serves as the orchestration platform,
facilitating federation between operators by establishing EWBI
for seamless communication between them.

TABLE II
TESTBED PARAMETERS

Within each operator’s compute infrastructure, there is a
Kubernetes cluster with two nodes: the edge-node and the cloud-
node. The cloud-node hosts the Open5Gs control functions (i.e.,
AMF, SMF, PCF, AUSF, NRF, NSSF, UDM, and UDR), a
Prometheus server,9 and Grafana,10 for 5G core connectivity,
monitoring, and visualization, respectively. On the other hand,
the edge-node is responsible for running the UPF, an emulated
gNB and a user equipment (UE) from the UERANSIM open-
source project, as well as an iPerf server.11 Additionally, the
edge node runs the O-RAN Software Community (O-RAN-SC)
Near-RT RIC (release E) [42] and the NexRAN xApp, which
enables policy-driven closed-loop control of RAN slices by
reading the current state of RAN elements.

The specifics of our deployment (edge-cloud infra per opera-
tor), including computational resources and network parameters,
are detailed in Table II. For deploying our Kubernetes clus-
ter, we have utilized the Rancher Kubernetes Engine12 (RKE),
chosen for its robustness and reliability. Given the intended
workload, the nodes have been provisioned with 4 CPU cores
and 8 GB of RAM. These specifications, while surpassing the
minimum requirements, have been carefully chosen to provide
ample resources for both the 5G core control plane functions
on the master and the RAN stack on the worker node. This
two-node setup gives us also the flexibility to experiment with
the distributed UPF scenario. The deployment also facilitates
two individual slices, with each user registered to a distinct
slice, capturing a typical scenario where users are distributed
based on unique network demands. In addition, the bandwidth
limit of 550 Mb/s has been set as a representative value for
high-speed connectivity in 5G networks. Finally, to perform the
edge-cloud experiments of Section V-D, the Connection Health
Check AWS13 tool has been leveraged to measure the simulated
cloud-based network latency from a user perspective in Spain,
targeting services hosted in cloud regions of London and Ireland.
From our tests targeting the London region, we have recorded a
minimum average latency of 33 ms and a maximum average of
38 ms after multiple iterations. These distinct values have been
retained to depict the minor variations in latency, particularly
for a scenario where both the UPF and the user’s service are
hosted on the cloud. For tests targeting the Ireland region, a
mean latency value of 45 ms has been observed.

9https://github.com/prometheus-community/helm-charts
10https://github.com/grafana/helm-charts
11https://iPerf.fr/
12https://www.rancher.com/products/rke
13https://clients.amazonworkspaces.com/Health.htmls
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TABLE III
APPLICATIONS FOR FEDERATION

Fig. 7. Federated deployment application time.

In our experimental approach, we have leveraged the Near-
byOne dashboard, a user-friendly interface for slice federation
tasks. To measure the network’s performance, we have used stan-
dard testing tools, primarily iPerf and ping tests. Network slice
deployments have been executed as Helm chart deployments
supported by an automated bash script, ensuring consistency
and accuracy across the board. In analyzing our data, perfor-
mance metrics have been averaged across multiple runs, further
reinforced by a 95% confidence interval (CI), highlighting the
dependability and consistency of our findings.

B. Evaluation Results on Slice Federation

First, we present the experimental results on the performance
of the proposed slice federation using the NearbyOne Con-
trollers. The experiments have been initiated from the Home
MNO’s NearbyOne dashboard, focusing on the deployment of
two applications: i) the SliceFedRequest, which includes the FST
and applies it to the endpoint of the Slice Federation Manager
of the Visiting MNO, and ii) the NexRAN xApp, responsible
for RAN slicing. More information about these applications is
presented in Table III.

The overall application deployment time is divided into three
parts: i) the federation time, which is the time required for the
orchestrators to exchange information related to the federated
applications, ii) the onboarding time to the Visiting MNO’s edge
site, and iii) the application runtime, which is the time required
for the containerized application to be executed in the cloud-
native environment and perform its action.

Fig. 7 presents the application deployment time, with markers
illustrating the 95% CI for each time component, providing a

form of sensitivity analysis. The larger span in the SliceFe-
dRequest federation and onboarding-site time arises from po-
tential variations in network conditions, while the significant
CI in the xApp’s application runtime suggests fluctuations due
to the Kubernetes cluster load. As observed, federation time
dominates the other two parts. When federating an application,
the average federation time is in the order of 17 s. The federation
times depend on the implementation of the federation approach
followed by the orchestrator platforms. On the other hand, the
onboarding-site time is around 2 s, representing the time required
for the orchestration platform to reach the edge Kubernetes
cluster and deploy the helm chart. Lastly, the application runtime
depends on the Kubernetes platform, Kubernetes resources, and
other application-specific factors (e.g., init-containers, readiness
probes, container image size, and location). As the SliceFe-
dRequest is using a lightweight curl image and performs only a
curl request with some data, it takes on average 2 s to send the
request. Regarding the NexRAN xApp, the application runtime
is significantly large as we follow the O-RAN-SC Near-RT RIC
onboarding and deploying method in the same microservice. For
this, we deploy a web server to host the xApp configuration in a
JSON format and then specific requests pointing to the Near-RT
RIC services to onboard and install the helm chart. Specifically,
xApps, being a new and evolving technology, are closely tied
to the specific purposes they are created for and the particular
RIC implementations provided by vendors [43]. The findings
emphasize the importance of accurately determining when to
kick off service and slice pre-relocation. This action ensures
consistent service availability for mobile users.

C. Evaluation Results on Post-Federation Slice Deployments
Impacting Operator’s Infrastructure

While current 5G network slicing specifications provide the
guidelines, they do not dictate the exact implementation method-
ology. In essence, the 3GPP primarily focuses on drafting
these specifications, leaving the actual implementation details to
MNOs and associated vendors. In this study, Table IV presents
various approaches an operator could adopt for 5G network slice
implementation, each varying in NF sharing and slice-specific
features.

Fig. 8 represents the time spent in deploying slices under
each scenario. Scenario 1, where all NFs are exclusive to the
slice, took approximately 27 s to deploy. Scenarios 2 and 3
share NFs among slices, and employ slice-specific UPF, re-
spectively, recording average deployment times of 19.4 s and
21.9 s. Scenarios 4 and 5 adopt mixed strategies, deploying
in about 4 s each. The deployment duration includes tasks
such as NF installations, re-configurations, and establishment of
connections. The analysis highlights the trade-off between slice
deployment time and the strategy of NF sharing and isolation.
Local hosting of the container’s images accelerated deployment,
but increased storage demands.

Fig. 9 illustrates the relationship between the number of new
NFs and re-configurations across the five scenarios. As it can be
observed, although fresh deployments may offer isolation and
easy termination, they require extra resources. On the contrary,
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TABLE IV
SLICE DEPLOYMENT SCENARIOS

Fig. 8. Slice deployment time.

Fig. 9. Number of network functions in the slice scenarios.

NF re-configurations minimize resource demands but may risk
service disruptions and configuration errors.

To assess resource utilization on the Visiting MNO’s
infrastructure, we have monitored CPU and memory under
different UE traffic loads. CPU experiments have been
conducted within a slice, with its data rate varying by user
subscription. The iPerf tests, demonstrated increased CPU
utilization, particularly in the UPF, under high UE traffic
(Fig. 10). Memory measurements have been performed in two
distinct slices: slice1 and slice2, based on Scenario 4 with
slice-specific SMF and UPF. Slice1 (SMF1, UPF1) has been
set with a maximum data rate of 500 Mb/s, while slice2 (SMF2,
UPF2) with a rate of 100 Mb/s. Despite the variations in data rate
and traffic conditions, memory usage has remained relatively
stable across the board (Fig. 11). It is worth noting that,
control plane functions, especially the SMFs, have consumed
significantly more memory than the UPFs.

Fig. 10. CPU utilization of 5G core network functions.

Fig. 11. Memory measurements for two slices.

TABLE V
EDGE-CLOUD SITE PLACEMENTS

D. Evaluation Results on Post-Federation Slice Deployments
Impacting End User’s Performance

In addition to evaluating metrics that impact an MNO, we
also analyzed end-user performance, focusing on latency and
throughput crucial metrics for the end-user experience.

In the 5G-edge computing combination, low latency is crucial.
By leveraging edge computing and 5G’s distributed UPF model,
applications can be located nearer to users, enhancing response
times. Table V illustrates various application and NF placements
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Fig. 12. Latency measurements to edge-cloud scenarios.

Fig. 13. Slice data rate in Visiting MNO.

between edge and cloud, each reflecting potential real-world
deployments and latency variations. We then have evaluated
different UPF placements, with the UE accessing the iPerf server
(mimicking user service) via 5G and edge-cloud computing, to
measure latency.

In the edge1 scenario, the UPF and iPerf server are co-located
in the edge node, providing low latency, vital for V2X services.
Conversely, edge2 allocates the iPerf server to the cloud, balanc-
ing edge resource efficiency with cloud computation power—
practical for video streaming or online gaming. In both cloud
scenarios (cloud1 and cloud2), the UPF is paired with control
plane functions in the cloud, centralizing orchestration but in-
creasing latency due to potential infrastructure limitations. Also,
in edge2, cloud1, and cloud2, additional simulated network
latency is added per service (UPF pod and iPerf server pod),
using the tc command of the iproute package, representing
real-world scenarios. Fig. 12 illustrates ping experiments from
the UE to iPerf server. Edge1 scenario exhibits the lowest latency
without added simulation network latency. Cloud-hosted UPF
and/or iPerf server results in increased latency, highlighting the
importance of strategic UPF placement for meeting slice delay
requirements.

User throughput within a slice needs attention, especially in
scenarios with coexisting federated and existing slices. Fig. 13
shows that static slicing allocates only the guaranteed bit rate to

TABLE VI
SLICE REQUIREMENTS IN VISITING OPERATOR

both slices. However, dynamic slicing adjusts resources based
on each slice’s needs, leading to variable data rates. Table VI
summarizes the slice requirements. We have set the federated
slice’s maximum data rate at 550 Mb/s to emphasize its demands.
The gap between maximum and guaranteed rates highlights the
bandwidth flexibility of network slices. This setup illustrates
the challenges faced when federated slices operate near peak
capabilities. In resource-constrained situations, unassociated
users might experience degraded performance due to limited
resources.

VI. LEARNINGS AND CONSIDERATIONS

In this section, we summarize the key lessons from previous
sections and discuss potential applications and future directions
for our novel slice federation framework.

A. Key Learnings

1) Operational Complexities: The complexity of the SFaaS
framework has been closely linked with the number of services
that need to be federated to the Visiting Operator, per slice
request. This study has showcased a single SliceFedRequest and
xApp, but real-world scenarios might involve multiple xApps or
combinations. This lengthens the federation process and compli-
cates communication between orchestrator platforms, behaving
largely in an O(n) or O(n2) manner. Moreover, the deployment
strategy of the slice can modulate this complexity. Choosing
entirely new network functions for each slice mirrors O(n)
complexity, while adjusting settings of existing functions to
accommodate a new slice can range between O(n) to O(n2),
depending on interactions and configurations. However, it is
important to note that external factors, such as network latency or
hardware efficiency, can modify the practical outcomes despite
the theoretical complexity profile.

2) Federation Dependencies: Creating a federated slice in
the Visiting Operator depends on computational resources,
federation implementation, and the orchestrator’s logic. On-
demand provisioning of network slices requires dynamic NF and
service migrations across edge clouds. Results in Fig. 7 show
that service migrations for user groups take seconds, empha-
sizing the need for self-adaptive networks, such as those using
Deep Reinforcement Learning, and the importance of machine
learning for mobility prediction, service migration, and efficient
slice instantiation [44]. MLOps advancements, especially in
Kubernetes, have simplified this process [45].

3) Security Implications: Security remains complex, partic-
ularly during federation sessions or slice creations. Shared net-
work slices require a security-centric design, addressing user pri-
vacy and robust controls. Advances like [46] and [47] highlight
privacy and decentralized systems in healthcare cyber-physical
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systems. Our framework prioritizes security in the federation
phase, ensuring authentications during orchestrator access and
reinforcing post-federation security. In O-RAN architectures
spanning different domains, security and trust management be-
tween vendors are crucial.

B. Potential Applications

1) Automotive: Whether human or automated, drivers ben-
efit from “look ahead” data such as potential road hazards. As
vehicles transition between networks, slice federation becomes
vital for continuous service. Especially for remote driving in-
volving drones or vehicles, it ensures consistent service quality
and response, no matter the network connection.

2) Cloud Gaming: Players engage in real-time augmented
reality games, and due to game fairness or enhanced experiences,
some might need to access edge services of another operator.
Slice federation ensures consistent gameplay and performance
even when players roam across networks.

3) Privacy-Preserving Health Assistant: Wearable health
devices collect vast amounts of data. An edge-based health assis-
tant manages this data flow. Slice federation ensures seamless
monitoring and feedback, even when accessing services from
another operator’s edge server.

4) Infrastructure Sharing and the MNO-MVNO Paradigm:
MNOs and Mobile Virtual Network Operators (MVNOs) collab-
orate to share infrastructure. Slice federation ensures seamless
operation and consistent service delivery, even when transition-
ing between MNO and MVNO networks.

C. Future Directions

Based on this study’s findings, several promising research
areas emerge. Investigating O-RAN-based base stations that
support network slicing, as well as CU/DU splits, is crucial
to further evaluate RAN slice federation. Additionally, there
is potential in expanding our framework to incorporate ma-
chine learning-based analytics, improving the efficiency of slice
instantiation. In the evolving 5G landscape, it would also be
beneficial to explore orchestrating core and RAN solutions,
particularly in environments where APIs are not exposed.

VII. CONCLUSION

In this paper, we presented a novel framework for slice feder-
ation between operators in cloud-native 5G networks, aligning
with the OP concept and the 3GPP service slice model ar-
chitecture. The presented results highlighted two key aspects:
Firstly, we analyzed the overall federation deployment time,
which indicates the duration required for an application to be
executed in the Visiting MNO’s edge site. We evaluated this
metric across two different use-case applications. Secondly,
we assessed the impact of post-federation slice deployments
on the operator’s infrastructure and examined the performance
experienced by end users. Looking ahead, our future work aims
to extend our framework with machine learning-based analytics
for predicting user mobility, optimizing service migration, and
ensuring efficient slice instantiation.
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