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Abstract—In this work, an online energy management strategy
for mild hybrid electric vehicles is developed to minimize the fuel
consumption while simultaneously preventing battery overheating.
Since mild hybrids are typically equipped with a passively cooled
battery pack, the energy management strategy design needs to
keep the battery temperature below an upper limit, preventing
accelerated aging and thermal runaway. To address this issue, the
equivalent consumption minimization strategy (ECMS) approach
is extended to develop a real-time capable controller, termed ther-
mal ECMS (Th-ECMS), that is sensitive to the thermal dynamics of
the battery and that can enforce constraints on its temperature. The
rationale for our formulation is based on Pontryagin’s minimum
principle from optimal control theory. The online Th-ECMS is
developed on the basis of the offline version of Th-ECMS, intro-
duced in a previous work. Exploiting the a priori knowledge of the
driving mission, the offline Th-ECMS calibrates the equivalence
factors and obtains the optimal solution, which is compared with
the globally optimal dynamic programming solution. This offline
calibration method is run on a large number of driving missions
and the collected data is used to train a feed-forward neural net-
work that estimates optimal equivalence factors as functions of the
battery state of charge, battery temperature, and distance yet to
travel. The trained network is then used to populate two look-up
tables mapping the equivalence factors, and implementable on the
vehicle electronic control unit. Finally, the online Th-ECMS obtains
the equivalence factors through the look-up tables in real-time. The
online strategy was tested in four different driving missions, achiev-
ing a fuel economy remarkably similar to the optimal solution and
successfully avoiding battery overheating.

Index Terms—Mild hybrid, hybrid electric, energy management,
thermal management, passive cooling, battery.

I. INTRODUCTION

M ILD hybrid electric vehicles (MHEVs) represent a cost-
effective solution that can achieve a reduction in CO2
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emissions in the range of 5% to 30% in real-world driving
compared to a conventional vehicle [1], [2], depending on the
specific architecture and powertrain design. Consequently, the
market penetration of mild HEVs is significant and growing.
For example, the European market share increased from 0.2%
in 2017 to 14% in 2021 [2]. In monetary terms, a 17.45% annual
growth rate is expected for the MHEV market over a 2022–2027
forecast period [3].

Mild hybrids combine an internal combustion engine (ICE)
with a small battery pack (approximately 1 kWh) and a relatively
small electric machine, such as an integrated starter-generator
(ISG) or a belt starter-generator (BSG). Another typical feature
of a mild HEV is a 48 V energy storage system which enables
power assist during vehicle propulsion and regenerative braking
as well as electrification of several accessories (e.g. electri-
cally assisted turbochargers, power steering, air conditioning
compressors). The battery pack is a crucial component which
requires dedicated management. The performance and lifespan
of this component can be seriously compromised by overheating,
which can lead to thermal runaway and accelerated aging [4].
For full hybrids, active cooling systems are therefore employed
to ensure that battery temperature remains within its optimal
range, which is typically between 15 and 40 ◦C [5]. However, for
mild hybrids, the relatively high cost of an active cooling system
might reduce the cost-effectiveness of hybridization; for this
reason, passive cooling systems are often employed [2], [6], [7].
However, the duty cycle of a MHEV battery under an ordinary
energy management strategy (EMS) may be highly cyclic and
lead to overheating if passive cooling is used [8].

The energy management strategy is responsible for control-
ling the mechanical power split between the internal combustion
engine (ICE) and the BSG. Based on our previous consider-
ations, it is clear that an EMS for mild HEVs with a passive
cooling system must provide compliance with the battery ther-
mal limits by appropriately limiting its charge and discharge
currents. On the other hand, limiting battery utilization can jeop-
ardize the CO2 reduction benefit: identifying the right trade-off
between fuel economy and preventing battery overheating is not
trivial, and a smart control strategy is needed.

When developing an EMS for a mild HEV, several research
works neglect the battery temperature evolution over time in
their vehicle modeling approach [9], [10]. Other research works
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model the evolution of battery temperature over time, but they
do not use this information as a feedback loop to the EMS of the
electrified powertrain [6]. To the best of the authors’ knowledge,
improving the fuel economy of the real-time EMS for mild
HEVs while taking into account the evolution of the battery
temperature over time is still an open research question.

In general, EMSs for HEVs can be classified between offline
and online approaches depending on the future driving condi-
tions being known a priori beforehand or not, respectively [11].
Offline EMSs are typically adopted to achieve global optimiza-
tion and set an optimal benchmark. Several online EMSs for
mild HEVs have been proposed in the literature, involving, for
example, Pontryagin’s minimum principle (PMP) [9], equivalent
consumption minimization strategy (ECMS) [12], rule-based
techniques [13], and reinforcement learning [10], [14]. Ob-
viously, only online EMSs are implementable on-board mild
HEVs since knowing the profile of the vehicle speed over time
for the entire drive cycle in advance is not possible.

In its traditional formulation, ECMS aims to minimize the
equivalent fuel consumption, which is formulated as the sum
between the actual fuel consumption and a virtual fuel consump-
tion associated with battery usage, weighted by an equivalence
factor (EF) [15]. An application of ECMS for the real-time con-
trol of a 48 V mild parallel HEV is found in [16], where the SOC
obtained from a dynamic programming algorithm is adopted as
the reference SOC for the ECMS. Calibration of the EF is a
critical process to minimize fuel economy while satisfying the
battery charge-sustaining constraint. Furthermore, the value of
the EF has a significant impact on battery temperature and aging
entailed by an ECMS HEV controller, as shown in [17].

While the EF calibration process is traditionally carried out
offline for a specific driving cycle, several variations of the
ECMS have been developed to estimate the equivalence fac-
tor online [18]. In general, online control strategies regulate
the EF to suppress excessive SOC deviation from a desired
reference value. For example, a feedback controller is used
to this end in [19], [20]. Indeed, several algorithms based on
the proportional-integral-derivative (PID) controller have been
used for the EF adaptation. For example, the authors of [21]
used linear proportional controllers to adjust the EF, while the
addition of an integral gain was shown to improve the ECMS
performance in [22].

A different approach involves the use of look-up tables, also
referred to as maps, to select the initial EF and/or continuously
adapt the EF. The main advantage of look-up tables is the
low computational complexity, which makes them particularly
appealing for online control [23]. Look-up tables also offer con-
sistent and repeatable behavior, as opposed to other techniques
such as directly obtaining the EF from a neural network. In [24],
a table that maps the initial EF as a function of initial SOC and
driving distance is populated offline using a genetic algorithm.
Then, the EF is updated online using a fuzzy control logic based
on SOC deviation from a reference trajectory and engine speed.
Relying on a similar approach, the control strategy developed
in [25] uses a similar lookup table to obtain the EF as a function
of SOC and expected driving distance, but it directly uses the

table to continuously update the value of the EF. To ensure
robustness with respect to varying driving conditions, several
maps are created with different driving cycles, and a pattern
recognition technique is used online to determine the map to be
used.

Another map-based ECMS is developed in [26] to minimize
fuel consumption without any knowledge of the future driving
mission. An offline optimization is performed to calculate the
optimal torque distribution, which is stored in tables and then
used in real-time implementation. However, the traditional look-
up table-based approach is based on historical data and achieves
poor performance when completely different driving conditions
are encountered.

Recently, some EF adaption methods based on neural net-
works (NN) have been developed to improve the NN’s ability
to generalize to unknown driving conditions. In [27], a neural
network is used to this end which takes the current power
demand, the ratio of the distance traveled to the total distance,
and SOC as inputs, achieving slightly higher fuel consumption
than the global optimal solution. The authors of [28] propose
an intelligent ECMS based on dual neural networks and a
new EF adaptation method for online control of plug-in HEVs
which allows to obtain similar fuel economy to the dynamic
programming optimal solution.

To the best of the authors’ knowledge, no ECMS has been
developed to regulate the battery temperature for mild HEV
applications.

In this work, an offline and online version of the Thermal
ECMS (Th-ECMS) are developed to minimize fuel consump-
tion, guaranteeing that battery overheating is avoided. The of-
fline version of the Th-ECMS, developed in [29], is based on
Pontriyagin’s Minimum Principle to obtain the optimal solution,
exploiting a priori knowledge of the driving cycle. The optimal
EFs values, obtained by the offline Th-ECMS algorithm over
a set of driving cycles, are stored and used to train an NN
which estimates the optimal EFs as a function of SOC, the
battery temperature, and the distance yet to travel. Afterward,
the trained NN is used to populate a look-up table, which is
used in the online Th-ECMS algorithm to obtain the EFs values
in real-time. Compared with a baseline ECMS formulation, the
proposed battery temperature-aware ECMS is demonstrated to
guarantee compliance with battery thermal limits.

The remainder of the article is structured as follows:
Section II describes the simulation model developed for the p0
mild hybrid powertrain, including the battery thermal dynamics.
Section III introduces the proposed formulation for a battery
temperature-aware ECMS and describes its offline solution
procedure based on using the Pontryagin minimum principle,
to obtain fuel-optimal trajectories for the equivalence factors.
Section IV describes the online implementation of the Th-ECMS
based on look-up tables as well as the procedure to create the
tables themselves. Finally, Section V presents results for the
offline calibration procedure using a set of drive cycles, and
the obtained look-up tables are tested on another set of drive
cycles. For the two sets, both regulatory drive cycles and real
driving cycles were used.
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Fig. 1. p0 HEV architecture.

II. VEHICLE MODEL

The p0 HEV powertrain is depicted in Fig. 1. The main goals
of the vehicle model are to characterize the evolution of the
battery’s state (SOC and temperature) and fuel consumption as a
function of the torque split between the engine and BSG, which
must be set by the EMS. This enables the formulation of an
optimal control problem to minimize fuel consumption while
enforcing constraints on the battery SOC and temperature.

First, the longitudinal vehicle dynamics model allows to com-
pute the tractive effort Fveh as a function of the vehicle’s speed
vveh and acceleration aveh using a set of road-load coefficients
f0, f1, f2 [30], [31]

Fveh = f0 + f1vveh + f2v
2
veh +mvehaveh, (1)

where mveh is the vehicle mass. The torque demand τd is then
evaluated using a backward-facing quasi-static model [32]:

τd =
Fveh(vveh, aveh)rwh

ifdigb(γ)
(2)

where rwh is the wheels’ radius, ifd and igb are the final drive
and gearbox speed ratios, and γ is the gear number.

For the scope of this work, the battery pack needs to be
characterized from the electrical and thermal standpoint. A
zero-order equivalent circuit model (ECM) was used to describe
the electrical behavior of the battery pack. Therefore, the battery
SOC dynamics, which define the SOC evolution given the power
drawn from the battery Pb and the battery’s current state, were
modeled as follows:

σ̇ = − ib
Qb

, (3)

ib =
voc −

√
v2

oc − 4ReqPb

2Req
, (4)

where ib, voc, Req and Qb are the battery current, open-circuit
voltage, equivalent resistance, and capacity. The battery current
ib is assumed positive during discharging and negative during
charging. The open-circuit voltage and equivalent resistance are
characterized as functions of both the battery state of charge and
temperature. Electrical and thermal parameters of the 48 V bat-
tery pack are taken from [33]. The battery power was evaluated
the sum of the power absorbed by the e-machine and the electric
auxiliaries.

For the thermal dynamics, the battery lumped thermal model
accounts for the heat generated due to the Joule losses and the
convective heat transfer with the surrounding environment [34],

[35], [36]:

Ṫb =
1
Cb

(
Reqi

2
b − hbAb(Tb − Tenv)

)
, (5)

where Cb is the battery’s thermal capacity. Heat transfer to
the environment is modeled as proportional to the temperature
difference between the battery (Tb) and the surrounding air (Tenv)
via the heat exchange area Ab and heat transfer coefficient hb.

The electrical power Pem,el absorbed or generated by the e-
machine can be computed as a function of its speed ωem and
torque τem:

Pem,el = ωemτem + Pem,losses(ωem, τem) (6)

where Pem,losses are the e-machine power losses modeled as a
function of ωem and τem.

The e-machine torque is directly controlled through the e-
machine torque-split factor α, which is defined as the ratio
between τem and the torque demand τd:

α =
τem

τd
; (7)

the value of α was limited between 1 and −1. During traction
(i.e. the torque demand is positive), ifα is positive the e-machine
provides traction torque to assist the engine; if α is negative, the
engine provides all the torque demand as well as an additional
torque which is absorbed by the e-machine to charge the battery.
During braking, the engine is turned off and the maximum
allowable amount of regenerative braking torque is absorbed by
the e-machine. The remaining braking torque demand (if any)
is provided by the mechanical brakes.

Controlling the value of α implicitly sets the value of the
engine torque as well. Since the torque demand must be met at
all times by the e-machine and the engine (during traction), the
engine torque τeng can be expressed as:

τeng = τd − τem. (8)

The fuel flow rate ṁf was computed from a steady-state map
as a function of the engine speed and torque. The gear number
was controlled using a simple gear shift schedule as a function
of the vehicle speed. The optimization of the gear shift schedule
is not treated in this work.

III. TH-ECMS AND OFFLINE SOLUTION

In this subsection, the Th-ECMS and its offline solution
method are introduced [29]. The offline solution method is re-
quired to obtain fuel-optimal trajectories that satisfy the battery
temperature constraint for a given driving cycle. The corre-
sponding co-state trajectories are needed to calibrate the look-up
tables for the online implementation, as described in Section IV.
The offline solution procedure itself is based on the Pontryagin
minimum principle, which leads to the formulation of a bound-
ary value problem (BVP). This BVP was solved with a single
shooting method that was specifically developed using a particle
swarm optimization algorithm, which is outlined in Fig. 2 and
described in the following section.
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Fig. 2. Indirect single shooting algorithm using PSO.

A. Optimal Control Problem Formulation

To justify our formulation of the Th-ECMS, we formulate
the EMS design as an optimal control problem. Specifically, we
formulate a finite-time constrained optimal control problem to
minimize the total fuel consumption [31], [37], [38]:

J =

∫ tf

t0

ṁf (α, t). (9)

The fuel flow rate ṁf is the running cost, J is the total cost, α
is the control variable, and t0 and tf are the initial and final time
instants of the driving mission, respectively.

Since the vehicle speed and acceleration are defined by the
driving mission, and are explicit functions of time, the torque
demand τd is an exogenous input of the optimal control prob-
lem. The state variables are the battery state of charge σ and

temperatureTb. Since the battery ECM parameters are functions
of the state variables, the current and, therefore, the SOC and
temperature dynamics are functions of the states, the torque-split
factor α, and time:

σ̇ = σ̇(σ, Tb, α, t) (10)

Ṫb = Ṫb(σ, Tb, α, t) (11)

Several global and optimal constraints need to be satisfied by our
EMS. In addition to the various control-dependent constraints
that must be formulated to enforce feasibility of the powertrains
components’ operation (e.g. enforcing the limit torques of the
engine and e-machine), state constraints are imposed to maintain
the battery SOC and temperature between upper (ub) and lower



4650 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 73, NO. 4, APRIL 2024

(lb) bounds, and to guarantee charge-sustaining operation:

σ ≤ σub, (12)

σ ≥ σlb, (13)

Tb ≤ Tb,ub, (14)

σ(tf) = σ(t0) = σ0, (15)

where σub = 0.8, σlb = 0.4, and the battery temperature upper
limit Tb,ub is assumed to be 40 ◦C [39].

B. Pontryagin’s Minimum Principle

The presented optimal control problem was solved by
applying the Pontryagin’s minimum principle. An indirect
method [40] was used to derive necessary conditions of op-
timality using the PMP; these were then transcribed into a
boundary value problem whose solution yields the optimal
control trajectory as well as the optimal state and co-state
trajectories. Compared to other approaches to EMS design such
as dynamic programming [41], indirect methods are generally
far less computationally expensive while still retaining high
accuracy. However, this does not mean that their numerical
solution is easy: BVPs of this kind require a good initial guess
of the solution in order to achieve convergence [42].

In order to impose the constraints (12), (13), and (14) in the
PMP formulation, the approach described in [40, Chapter 5.3]
is adopted, and an additional state variable η is introduced, with
the following dynamics:

η̇ = (σ − σub)
2 1(σ − σub) + (σlb − σ)2 1(σlb − σ)

+ (Tb − Tb,ub)
2 1(Tb − Tb,ub)

1 (16)

Note that, by definition, η(t) is monotonically increasing in time
and is strictly equal to zero only if the state constraints are never
violated. In a way, this variable can be seen as a quantification
of the constraints violation.

Since our goal is to minimize this violation, the initial η(t0)
and final η(tf) states are required to be equal to 0. The reason is
that if these conditions are satisfied, the constraints (12), (13),
and (14) are never violated since η(tf) is calculated as

η(tf) = η(t0) +

∫ tf

t0

η̇(t) dt. (17)

Finally, the Hamiltonian for this control system was written
as:

H(σ, Tb, α, p1, p2, p3, t) = ṁf(α, t) + p1 σ̇(σ, Tb, α, t)

+ p2 Ṫb(σ, Tb, α, t) + p3 η̇(σ, Tb, α, t). (18)

For this problem, the minimum principle states that if α(t) is the
optimal control trajectory, then there must exist three co-state
functions p1(t), p2(t) and p3(t) satisfying the adjoint equations

ṗ1 = −∂H

∂σ
, (19)

1Here, 1(·) denotes the unit step function.

ṗ2 = − ∂H

∂Tb
, (20)

ṗ3 = −∂H

∂η
= 0, (21)

and such that α ∈ U(t) minimizes the Hamiltonian, where U(t)
defines the set of admissible controls and the Hamiltonian is
defined by (18).

Furthermore, since the final temperature Tb(tf) is free, the
corresponding terminal co-state must satisfy the transversality
condition:

p2(tf) =
∂F (Tb(tf))

∂Tb
= 0, (22)

where F (Tb(tf)) is the terminal cost associated to the battery
temperature. Since the formulation of a cost term related to the
final battery temperature is not trivial2 and is beyond the scope
of this work, the term F (Tb(tf)) was set to zero.

Summarizing, the application of the minimum principle re-
sults in the formulation of a BVP composed by a system of
six differential equations (the state dynamics (3), (5), (16) and
the adjoint (19)–(21)) and six boundary conditions (the initial
states, terminal states and the transversality condition (22)).
These boundary conditions are listed below:

σ(t0) = σ0, (23)

Tb(t0) = Tenv, (24)

η(t0) = 0, (25)

σ(tf) = σ0, (26)

p2(tf) = 0, (27)

η(tf) = 0. (28)

C. Indirect Shooting Based on Particle Swarm Optimization

In order to solve this BVP, the shooting method is employed.
In indirect shooting, an initial guess is generated for all the
boundary conditions at the left end point t0. Then, the initial
value problem (IVP) composed of the differential equations
coupled to this set of initial conditions is solved by numeric
integration. In this work, a forward Euler integration scheme
is adopted, and the partial derivatives in (19)–(21) are obtained
using finite differences. The difference between the resulting
boundary conditions at tf and those imposed in the BVP is used
to update the initial guess and the process is repeated.

The same procedure can also be formulated as an optimization
problem, where the optimization variables are the initial values
of the co-states p1(t0), p2(t0), and p3(t0), and the objective
function is the difference between the corresponding σ(tf),
p2(tf) and η(tf) and those set by the boundary conditions
(26)–(28). With this formulation, a particle swarm optimization
(PSO) algorithm [43] is adopted to calibrate the initial co-states
(p1(t0), p2(t0), p3(t0)).

2For instance, this term could be formulated as a function of battery aging,
which is a particularly complex phenomenon to model
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The objective function of the PSO solver is defined as a
scalarized objective to minimize the error related to the final
boundary conditions σ(tf), p2(tf) and η(tf) obtained by solving
the BVP with the initial co-states p1(t0), p2(t0), and p3(t0):

JPSO(p1(t0), p2(t0), p3(t0)) =

|σ(tf)− σ0|
σ̄

+
|p2(tf)|

p̄2
+

η(tf)

η̄
(29)

where σ̄, p̄2 and η̄ are normalization factors, selected as 0.1%,
0.1, and 1, respectively.

The whole procedure, which is also depicted in Fig. 2, is de-
scribed in this section. First, a set of particles is initialized. Each
particle defines the values of the initial co-states. The values of
the particles are uniformly distributed within given bounds. For
each particle, the initial value problem is solved; in other terms,
a simulation is run using as initial conditions the initial states
and the initial co-states defined by the particle. In running this
simulation, the torque-split factor α is set by minimizing the
Hamiltonian (18), which also requires integrating the adjoint
(19)–(21). Then, the PSO objective function (29) is evaluated
for each particle, using the values obtained for σ(tf), p2(tf) and
η(tf) as a result of the simulation.

If there is one particle for which JPSO is within a certain
tolerance, i.e., JPSO < 1, that particle defines the values of
p1(t0), p2(t0), and p3(t0)which satisfy the necessary conditions
of optimality, and the PSO algorithm is terminated. Otherwise,
a new set of particles is generated and the process is repeated.
To generate a new set, each particle is moved toward its prior
personal best3 position f ∗ and the global best position g∗ in
the swarm. More specifically, for the i-th iteration of the PSO
algorithm and for particle p, the new values fp (also called the
particle’s position) are evaluated as [44]:

fp,i+1 = fp,i + vp,i+1, (30)

vp,i+1 = ωvp,i + c1r1 (f
∗ − fp,i) + c2r2 (g

∗ − fp,i) , (31)

where vp is the particle’s velocity, ω, c1 and c2 are parameters of
the algorithm and r1 and r2 are uniformly distributed random
vectors in the range [0, 1].

The main advantage of the PSO solver is its robustness with
respect to a poor first guess. This can be attributed to the fact that
PSO is a derivative-free algorithm, hence it is less sensible to the
strong lack of smoothness in the problem. This lack of smooth-
ness is ultimately caused by the presence of non-continuously
differentiable functions such as linear interpolants4 in the vehicle
model. It should be noted that, although the PSO algorithm
is able to reduce the objective function (29) to a very small
quantity, it is never able to reduce it to exactly zero. Among
other aspects, this is due to the many approximations in the
optimization process, such as the numerical integration error and
the approximation of the adjoint equations by finite differences.
Indeed, this reflects the fact that we are obtaining an approximate
solution to the exact optimality conditions, as is typical of all
indirect methods.

3I.e. the one with the lowest objective function value.
4For instance, the fuel consumption and the ECM parameters are computed

by linear interpolants as is typical in HEV powertrain models.

IV. ONLINE TH-ECMS

The online Th-ECMS strategy is designed to achieve a real-
time control strategy, implementable on a vehicle electronic
control unit. Therefore, the fundamental goals were to obtain
a controller that is computationally lightweight and does not
depend on future driving conditions. The only information that
is assumed to be available about the trip is the remaining distance
to be traveled, which can be easily obtained from any GPS
navigation system. In the online Th-ECMS, the two EFs (which
we rename p1,on and p2,on for the sake of clarity) are obtained
in real-time from two different look-up tables, one for each EF.
These look-up tables are calibrated using the results of the offline
solution procedure; the whole workflow is represented in Fig. 3.

The independent variables of the look-up tables are chosen
to be the state variables, SOC and battery temperature, and the
distance yet to travel. The reason for including the two state vari-
ables is readily explained by Bellman’s principle of optimality,
which implies that for a deterministic and autonomous system,
optimal decisions depend on the current value of the state only.
However, our system is not autonomous since its evolution is
strongly time-dependent through the future development of the
driving mission. Therefore, the remaining trip length is added
to the inputs of the look-up table as the simplest variable that
is informative enough to achieve charge-sustaining operation
without requiring any additional prediction algorithm. All of
this information is available in real-time on a vehicle without
requiring a significant additional computational effort, under
the assumption that the current location is known and the final
destination is set by the user before starting the driving mission.

Another reason for only considering the remaining trip length
to encode information about the driving cycle is the concern that
adding more variables would make the calibration of the look-up
tables significantly harder. Nonetheless, this could be replaced
by more informative variables that better encode the future
driving conditions, therefore leading to a better performance;
one example would be to use an estimate of the remaining
traction energy that could be computed from e.g. remaining trip
length and information about traffic and geography (urban/extra-
urban/highway, flat/hilly terrain) that can be obtained from the
navigation system.

A. Calibration of the EF Look-Up Tables

To calibrate the look-up tables for the equivalence factors, a
wide set of driving cycles is selected and the offline solution
procedure described in Section III is adopted to obtain the opti-
mal EFs trajectories. More specifically, since each simulation is
run in discrete time, the EFs values are obtained for every time
step of each driving cycle. Collectively, these values build up a
training dataset.

Afterward, a feed-forward neural network, which takes the
SOC, battery temperature, and distance yet to travel as inputs, is
trained on this training dataset to estimate the values of the two
EFs. In general, the selection of a sufficiently large and diverse
training dataset is needed to enhance the generalization ability of
an NN. Therefore, the set of driving cycles of the training dataset
needs to be comprehensive of both regulatory and real-world
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Fig. 3. Workflow of the online Th-ECMS. The calibration phase allows to obtain the EF look-up tables as functions of SOC, battery temperature and distance
yet to travel. Afterwards, the online Th-ECMS uses the calibrated look-up table in real-time to select the power split.

driving scenarios, covering a wide variety of driving conditions
in order to improve the NN ability to perform well on new driving
cycles that are not part of the training dataset. For this reason,
as will be discussed in Section V, different real-world driving
cycles were included both in our training and our validation sets.
When the training procedure is completed, the neural network
is used to populate the two look-up tables related to the two
EFs. The three parameters that the look-up tables take as input,
i.e. SOC, battery temperature and distance yet to travel, are
discretized and the optimal EFs are calculated by the NN for
each grid point.

B. Online Controller

The online controller starts whenever the driver sets a new
destination on the GPS. For each sampling time (which we set
to one second), the battery SOC, temperature, and remaining
distance are measured and fed into the look-up tables to obtain
the two EFs p1,on and p2,on. Afterwards, the controller selects

the control variable α to minimize the Hamiltonian in real-time:

H(σ, Tb, α, p1,on, p2,on, t) = ṁf(α, t) + p1,on σ̇(σ, Tb, α, t)

+ p2,on Ṫb(σ, Tb, α, t) (32)

Note that in the online framework there is no need to track the
co-state p3 that was present in the offline Th-ECMS, since p3 is
only needed to find a solution of the BVP that does not violate
the state constraints.

V. RESULTS AND DISCUSSION

The results presented in this section were obtained using the
vehicle model described in Section II. The main parameters of
the vehicle and powertrain components are reported in Table I.

A. Offline Th-ECMS

First and foremost, we assess the validity of the offline solu-
tion procedure described in Section III. The procedure is imple-
mented in MATLAB and tested on a number of driving cycles.
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TABLE I
MAIN VEHICLE SPECIFICATIONS

Fig. 4. Simulation profiles with a regular ECMS and the proposed formulation.
The ECMS formulation proposed in this digest is labeled as Th-ECMS, while
the regular implementation is denoted simply as ECMS.

Here, we report results for the WLTP (Worldwide Harmonised
Light vehicles Test Procedure) and UDDS (Urban Dynamometer
Driving Schedule) cycles. For each simulation, the parameters
p1(t0), p2(t0), and p3(t0) were calibrated using the PSO algo-
rithm as described in the previous section in order to minimize
fuel consumption while keeping the battery temperature below
40 ◦C, with an environment temperature of 20 ◦C. To minimize
the Hamiltonian, the torque-split factor α was discretized with a
uniformly spaced grid of 121 values ranging from −1 to 1. The
PSO algorithm was implemented using the MATLAB function
in [45], using default values for the parameters. The number of
particles was set to 300.

The effectiveness of the proposed implementation is shown in
Fig. 4. The Th-ECMS produces a solution hitting the constraints
with great accuracy whereas a regular ECMS5 implementation
violates the battery temperature upper bound, making a larger
use of the battery to maximize fuel economy and producing
higher currents as a consequence. Furthermore, the regular
ECMS produced a fuel economy of 6.46 l/100 km while the
Th-ECMS 6.67 l/100 km. Since both are fuel-optimal, with
the only difference being in the introduction of the battery
temperature constraint, the gap between the two can be seen
as the minimum gap that can be attained without introducing an
active cooling system while keeping the battery under 40 ◦C,
acting on the EMS design only.

5In the standard ECMS, no battery temperature constraint is imposed

TABLE II
FUEL ECONOMY OF THE PROPOSED TH-ECMS COMPARED TO THE DYNAMIC

PROGRAMMING BENCHMARK

Fig. 5. Comparison of the Th-ECMS and the solution obtained with dynamic
programming on the WLTP cycle.

As mentioned in the previous section, an approximate solution
to the necessary conditions of optimality is obtained by the
offline Th-ECMS. Moreover, the fact that these conditions are
necessary but not sufficient does not guarantee global optimality
but only local optimality. Hence, to assess the optimality of our
method, the Th-ECMS results are compared with the solution
obtained through dynamic programming (DP). While DP uses
its own approximations to obtain a solution, it is based on both
necessary and sufficient conditions of optimality and is therefore
often used as a benchmark.

By searching through all possible discretized values of state
(σ and Tb) and control (α) variables, this algorithm relies on
Bellman’s priciple of optimality to determine the optimal solu-
tion.

For our simulations, we used a dedicated MATLAB toolbox
called DynaProg [46]. The control variable α was discretized
with a uniformly spaced grid of 121 values ranging from −1
to 1 (as for the ECMS). For the purpose of the value function
update and evaluation, the state variables (the battery SOC and
temperature) were discretized with uniformly spaced grids of
801 values ranging from 0.4 to 0.8 and 212 values ranging from
20 ◦C to 41 ◦C, respectively.

As reported in Table II, the Th-ECMS comes very close to
dynamic programming in terms of fuel economy: in both the
WLTP and UDDS, the difference is below 0.6 %. The fact that
the Th-ECMS produced a slightly lower fuel consumption can be
explained by inspecting the simulation results shown in Figs. 5
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Fig. 6. Comparison of the Th-ECMS and the solution obtained with dynamic
programming on the UDDS cycle.

and 6. Although the control and state profiles match quite well
overall, there is a small but notable difference in the maximum
temperatures reached: while the Th-ECMS reaches maximum
temperatures of 40.3 ◦C and 40.2 ◦C on the UDDS and WLTP
cycles respectively, dynamic programming only reaches 39.6 ◦C
and 39.2 ◦C.

This is due to the difference in the way the two algorithms
handle state constraints. The dynamic programming algorithm
enforces the state constraint as hard constraints; moreover, the
inherent characteristics of the value function approximation
scheme tend to artificially penalize operating close6 to the
constraint boundary. On the other hand, the formulation of the
minimum principle employed for the Th-ECMS treats the state
constraints as something similar to a soft constraint, where
violations are strongly penalized by the requirement that the
additional state η(t) remains zero for all t.

B. Online Th-ECMS

After assessing the offline solution method, the online imple-
mentation of the Th-ECMS described in Section IV was tested.
To this end, a set of training and a set of validation driving cycles
were defined.

The set of training cycles was composed of five regulatory
cycles and five real-world driving cycles. The regulatory driv-
ing cycles include the Urban Dynamometer Driving Schedule
(UDDS) and the HD-UDDS variant from the US EPA type
approval procedure, which are representative of urban driving
conditions, the Rural (ARDC) and Motorway (AMDC) cycles
from the Common Artemis Driving Cycles (CADC) [47], and
the Worldwide Harmonized Light Vehicles Test Cycle (WLTC)
Class 3b cycle (used for type approval in Europe, Japan, India
and other countries), which is composed of urban, rural and
highway segments. The real-world driving cycles included in
the training set are depicted in Fig. 7.

6The meaning of close here depends on the state grids’ discretization.

Fig. 7. Speed profiles of the real driving cycles included in the training set.

TABLE III
NEURAL NETWORK HYPERPARAMETERS

This training set was used to calibrate the look-up tables, run-
ning the offline solution method for each of them and using the
corresponding co-state trajectories to train the neural network, as
depicted in Fig. 3. More specifically, the offline solution method
was run several times for each training cycle with different
values of initial battery SOC (0.5, 0.55, 0.6, 0.65, and 0.7)
and initial battery temperature (20 ◦C and 30 ◦C) to cover a
broader range of operating conditions. The hyperparameters of
the neural network used to calibrate the look-up tables are shown
in Table III. The NN was implemented using MATLAB Deep
Learning Toolbox [48].

The calibrated look-up tables map the equivalence factors as
functions of the SOC, battery temperature, and distance yet to
travel, as shown in Fig. 8. Although all three input variables
influence the equivalence factor values, some noticeable trends
can be highlighted. Since the equivalence factor p1,on affects
the SOC dynamics, higher values of p1,on are selected at higher
SOC values to encourage battery discharging, especially as the
SOC approaches the upper bound. A similar trend can be noticed
for the equivalence factor p2,on with respect to the battery
temperature: high values of Tb correspond to high values of
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Fig. 8. Calibrated p1,on and p2,on look-up tables: the equivalence factors
p1,on and p2,on are mapped as functions of SOC, battery temperature, and
distance yet to travel.

p2,on, which prevents overheating. It is also worth noting that
the higher the distance yet to travel, the higher the equivalence
factor p2,on is. This behavior can be explained by the fact that if
the vehicle needs to travel higher distances, the battery is more
exposed to a potential temperature increase due to the higher
energy demand over the remaning driving mission. Therefore,
a higher p2,on is selected to keep the battery temperature under
control.

Then, in order to assess the validity of the method in different
driving conditions, the online controller with the calibrated look-
up tables was tested with four cycles that compose the validation
set. This set is composed of driving cycles that are not part of
the training cycles set: two regulatory cycles and two real-world
cycles. The two regulatory cycles are the Urban cycle from the
Artemis cycles (AUDC) and the JC08 cycle, formerly part of the
Japanese type approval procedure, which represents driving in
congested city traffic). The two real-world cycles are referred to
as CLUST3 and CLUST4. These real driving cycles have a few
peculiarities that help broaden the range of test conditions with
respect to the regulatory driving cycles. The CLUST3 cycle is an
urban cycle which includes a long segment at low speed followed
by a short phase with steep accelerations; the CLUST4 cycle is

TABLE IV
PERFORMANCE OF THE ONLINE TH-ECMS WITH RESPECT TO THE OFFLINE

SOLUTION

Fig. 9. Comparison of the offline and online Th-ECMS solutions on the JC08
cycle.

a urban/rural cycle which again includes steep accelerations and
decelerations.

As can be seen in Table IV, the online Th-ECMS performs
reasonably well with respect to the offline solution: the degra-
dation in fuel economy remains below 2.5%, and the deviation
in the state of charge at the end of the trip is within 0.02. The
battery temperature never exceeds 40 ◦C, though it can get very
close.

As shown by the time profiles in Figs. 9 to 12, the online
controller tends to overcharge the battery on all cycles, ex-
cept for the very last portion of the AUDC. The difference
is never excessive though, and charge-sustaining behavior is
always achieved within a reasonable tolerance. Nonetheless,
this noticeable difference between the SOC profiles reflects the
sub-optimality of the online controller’s behavior and highlights
room for further improvement.

The suboptimality of the solution is also evident from the
AUDC test, where the online controller achieves a slight increase
in fuel consumption despite reaching a lower terminal SOC with
respect to the offline solution. Since the final temperature of the
battery reaches almost exactly the 40 ◦C threshold, as is the case
for the offline solution, this difference in fuel economy cannot be
attributed to reduced usage of the battery and can be attributed
instead to a less smart usage. Similar considerations can be made
for the CLUST3 cycle, where a relatively large degradation in
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Fig. 10. Comparison of the offline and online Th-ECMS solutions on the
AUDC cycle.

Fig. 11. Comparison of the offline and online Th-ECMS solutions on the
CLUST3 cycle.

fuel economy is observed even when taking into account the
small positive deviation in the final SOC.

Another interesting observation that can be drawn from these
results is that the method is quite robust in meeting the tem-
perature constraint. Indeed, even in the face of the relatively
larger deviations in the SOC trajectory that can occur in some
intermediate segments of the driving missions, the final tem-
perature always meets the constraint as it tends to converge to
the offline results towards the end of the trip. This shows that
the look-up tables are quite robust in avoiding the constraints
violation, even if they do not enable fully optimal operation in
terms of fuel economy.

To illustrate the real-time capability of the Th-ECMS algo-
rithm, the computational times for the test driving cycles are
shown in Table V. The experiments were run on a computer with
an 11th Gen Intel(R) Core(TM) i7-1165G7 processor, running

Fig. 12. Comparison of the offline and online Th-ECMS solutions on the
CLUST4 cycle.

TABLE V
COMPUTATIONAL TIMES OBTAINED IN THE NUMERICAL EXPERIMENTS

at 2 GHz, with 16 GB of RAM. The online Th-ECMS proves to
be computationally lightweight, achieving computational times
lower than 0.3 s for all the driving cycles. Since all the simula-
tions are carried out using the same discretization of the control
variable, the computational time is proportional to the cycle
length.

VI. CONCLUSION

In this article, an online energy management strategy is
proposed that minimizes fuel consumption while keeping the
battery temperature below an upper threshold. The proposed
strategy (Th-ECMS) has a particular significance for the mild
HEVs since they are typically equipped with a passive cooling
system which can only provide a limited cooling power. In this
context, a battery temperature-aware EMS becomes particularly
useful to avoid thermal runaway and reduce battery aging while
maximizing fuel economy.

In the first part of the article, a novel EMS with a constraint
on the battery temperature is formulated as an optimal control
problem and solved using Pontryagin’s minimum principle. The
offline solution method for solving the boundary value problem
that arises from the application of the minimum principle adopts
a derivative-free particle swarm optimization algorithm due to
its suitability for multi-objective optimization, robustness with
respect to a poor first guess, and low sensibility to the strong
lack of smoothness in the problem.
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In the second part of the article, the online implementation
of Th-ECMS is introduced. The Th-ECMS selects the control
variable in real-time thanks to two look-up tables that map the
equivalence factors. Following and offline calibration process,
the look-up tables can be used online since they only require
as inputs the current state of charge, battery temperature, and
the remaining trip length, which can be easily obtained from
any consumer GPS system. Therefore, the strategy is compu-
tationally lightweight and does not rely on complex prediction
algorithms to anticipate future driving conditions.

After calibrating the look-up tables on a training set of five
regulatory drive cycles and five real-world driving missions, the
online controller was tested on a validation set of four missions,
which proved the method to be robust in meeting the temperature
constraint. Nonetheless, the results also show that there is still
room for improvement in terms of fuel economy.

To this end, several approaches could be pursued. The first
approach would be to optimize the values of grid points of
the look-up tables. A second approach would be to replace the
remaining trip length as one of the look-up tables inputs with
the estimated energy required to complete the trip that should
better encode information about future driving conditions [49].
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