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MLP-Based Efficient Convolutional Neural
Network for Lane Detection

Xuedong Yao , Yandong Wang , Yanlan Wu, Guoxiong He, and Shuchang Luo

Abstract—Lane detection is an important and fundamental task
in autonomous driving. Modern convolutional neural network
(CNN) methods have achieved high performance in lane detection;
however, the intrinsic locality of convolution operations makes
these methods limited in effectively modeling the long-range de-
pendencies that are vital to capture global information of lanes. Ad-
ditionally, numerous convolution operations result in considerable
computational cost for high complexity. To overcome these difficul-
ties, we propose an efficient lane detection method by combining
CNN with a multilayer perceptron (MLP). First, an improved
bottleneck-1D layer is used to replace the standard convolutional
layer in overall network to reduce the computational cost and
parameters while applying hybrid dilated convolution (HDC) to
better capture multiscale lane information. Second, we construct
a hybrid MLP block in the latent space to capture the long-range
dependencies of lanes. The hybrid MLP projects tokenized con-
volutional features from spatial locations and channels, and then,
they are fused together to obtain global representation, in which
each output pixel is related to each input pixel. The introduction
of MLP further decreases computational complexity and makes
the proposed architecture more efficient for lane detection. Exper-
imental results on two challenging datasets (CULane, Tusimple)
demonstrate that our method can achieve a higher computational
efficiency while maintaining a decent detection performance com-
pared with other state-of-the-art methods. Furthermore, this study
indicates that integrating the global representation capacity of an
MLP with local prior information of convolution is an effective and
potential perspective in lane detection.

Index Terms—Convolutional neural network (CNN), lane
detection, long-range dependencies, multilayer perceptron (MLP).
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I. INTRODUCTION

LANE detection, as an important component in the Ad-
vanced Driver Assistance System (ADAS), has been

widely used for lane departure warning, navigation, traffic
understanding, and so on [1], [2] which can assist drivers
in safe driving. However, the thin and long shapes of lanes
with few appearance clues and complex road environments
including illumination changes and occlusions of vehicles or
pedestrians, make lane detection challenging in the past few
years.

Recently, lane detection methods based on convolutional neu-
ral networks (CNNs) have become dominant. Due to the pow-
erful representation capabilities of CNNs, they further improve
lane detection performance and far exceed traditional methods
that use simple handcrafted features such as color-based features
[3] and structural texture [4] to extract lane information in a lim-
ited scene. Lane detection is usually regarded as a semantic seg-
mentation task to predict whether each pixel of the input image
belongs to the lane marking. Generally, semantic segmentation
obtains a larger receptive field and high-level semantic informa-
tion through consecutive convolution and sampling operations
or deepening the network to strengthen representation. Never-
theless, segmentation-based methods are flawed in addressing
abovementioned challenges, especially in occlusion and extreme
light condition scenes, which require more effective global and
spatial information. To this end, several methods attempt to
reinforce the structural feature of lanes by passing or aggregating
spatial information within feature maps. [5] proposed a spatial
convolution to pass information slice by slice along four direc-
tions. This sequential message passing operation prominently
improves the lane detection performance, but it produces a high
computational cost and is time-consuming, which goes against
the demand of real-time detection. Inspired by this idea, [6]
and [7] designed a similar structure to enrich the structural
information of lanes and effectively reduce the computational
cost. To better capture the global information while increasing
the efficiency of lane detection, attention-based methods [8],
[9] and transformer-based methods [10], [11] have been intro-
duced to lane detection tasks. The attention mechanism which is
popular in many visual tasks [12], [13], [14] includes spatial and
channel attention and can be easily implemented in any network.
Spatial attention can calculate the weighted sum of feature
maps at all positions as the response at the current position to
capture global information [13]. The channel attention aims to
highlight important feature maps by calculating a weight for
each channel [15]. Compared to the attention mechanism, the
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transformer initially designed for sequence-to-sequence predic-
tion has been used as an alternative architecture in lane detection
tasks because of the innate global self-attention mechanisms.
It utilizes the multiheaded self-attention module to effectively
aggregate the global information in every layer and improve lane
representation. This architecture does not require a deeper net-
work and can improve the efficiency of the model [16]. There-
fore, other than the CNN architecture, transformer-based meth-
ods [10], [11] have gradually become popular in lane detection
tasks in recent years. Although these methods can effectively
capture global information to improve the lane detection per-
formance, they still struggle to obtain a higher computational
efficiency, where attention-based methods require extra cost
to calculate attention maps and transformer-based methods in-
troduce quadratic computational and more memory overhead
during processing high-resolution images.

To address the aforementioned problems, in this paper, we
develop an efficient lane detection method from a novel per-
spective. We combine CNN with a hybrid MLP block to build
an effective network. To increase the efficiency of lane de-
tection, we use an improved bottleneck-1D block with hybrid
dilated convolution (HDC) [17] as a key component of CNN.
This block can significantly reduce the computational cost and
parameters while effectively strengthening lane information.
Moreover, considering that CNN exhibits general limitations
in modeling explicit long-range dependency, we construct a
hybrid MLP block in latent space to replace aggressive con-
volution and pooling operations, which decreases the loss of
local details while further simplifying the architecture. MLP
is efficient while maintaining comparable performance, which
has been applied to semantic segmentation tasks [18], [19], and
it is better at modeling long-range representation but worse
at capturing the local information [20]. Hence, we combine
CNN with a hybrid MLP block in a sequential manner to effec-
tively fuse the local prior information and global representation
of lanes. Concretely, the hybrid MLP block consists of the
spatial and channel MLP and extracts lane information from
spatial locations and channels respectively, which can boost the
global representation adequately.

Our method is validated in the challenging lane detection
dataset (CULane, Tusimple). Experimental results demonstrate
the effectiveness of our method. Compared with state-of-the-art
lane detection methods, our method achieves a decent per-
formance closer to that of them but a higher computational
efficiency. The main contributions of this paper are summarized
as follows:
� We provide a novel perspective that introduces the multi-

layer perceptron (MLP) to lane detection tasks. This paper
proves the feasibility and effectiveness of MLP, which is
worthy of further exploration in future research.

� We propose an efficient architecture by combining CNN
with constructed hybrid MLP block. This architecture can
fuse local information and long-range dependency to ob-
tain stronger lane representation for lane detection while
greatly reducing the computational cost.

� We validate our method on the CULane and Tusimple
datasets to reveal the effectiveness and efficiency. Our

method achieves good results in terms of the accuracy/cost
trade-off and obtains a higher computational efficiency
with minimal performance loss.

II. RELATED WORKS

A. Lane Detection Methods

Current lane detection methods are often classified into two
classes: traditional methods and CNN-based methods. Most
traditional methods are based on handcrafted features to conduct
lane detection tasks. They mainly utilize these low-level visual
characteristics of images, such as color information, texture
structure, and gradient features. Yan et al. [21] and He et al.
[22] used color information to extract lane markings. In [23],
considering that color and edges are important features, the
author fused color and edge information to detect lane markings
and then proposed a line fitting model to compute the lane pa-
rameters. In [24], the authors used lane-mark colors to eliminate
the influence of moving vehicles and lighting conditions. In
addition, several methods applied the Hough transform [25],
particle filtering [26] and Gabor filtering [27] to lane detection
tasks. Song et al. [28] used a maximum likelihood angle to design
a self-adaptive traffic lanes model in Hough Space. Li et al. [27]
estimated vanishing points by extracting road texture features.
Then, Gabor filter edge detection and Hough transformation
were used to detect lanes with a constrained search by vanishing
points, which is insensitive to variations in road conditions with
clear texture features. In [26], the author proposed a robust
real-time lane-detection algorithm based on RANSAC, which
was combined with a particle-filtering algorithm by a proba-
bilistic grouping framework. It obtained a promising result in
different types of lanes while flawing in complex road scenes
(i.e., shadow, occlusion). Although these traditional methods
usually have a low computational cost and are fast yet simple, the
detection results are always unsatisfactory due to the complex
road environment, such as lighting conditions, occlusion and
various kinds of lane types, making these methods have poor
scalability.

CNN-based methods have been popular in lane detection with
the development of deep learning in the computer vision field.
These methods can be further divided into three categories:
segmentation-based, classification-based and parameter-based,
according to the usage of lane presentation. 1) Segmentation-
based methods, which output pixel-level predictions are now
mainstream in lane detection. Neven et al. [29] proposed treating
the lane detection task as an instance segmentation problem
and used a learned perspective transformation to parametrize
the segmented lane instances. However, it is difficult to deal
with broken and occluded lane markings because of limited
global representation. In [30], the authors proposed a simple
yet appealing network to exploit quick connections and gradient
maps for effective learning of lane line features. It achieved a
better performance on three datasets but was easily affected by
the completely or partly occluded road surface and dim lights.
To overcome lane occlusions, SCNN [5] proposed a message
passing structure to capture the global context and enrich spatial
information. However, this architecture requires considerable
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computational cost. Xiao et al. [6] proposed a recurrent slice
convolution module (RSCM) to exploit the prior structural infor-
mation of lane markings and achieved excellent computational
efficiency while keeping decent detection quality. In addition,
Liu et al. [31] designed a label-guided distillation method
(LGAD) for lane segmentation and used a teacher network to
reinforce the attention maps of the student network to capture
long-range context. Similarly, Hou et al. [32] achieved a sig-
nificant improvement without additional supervision or labeling
by using the proposed self-attention distillation (SAD) module.
Wang et al. [33] proposed a multitask method by integrating
segmentation, handcrafted features, and fitting to improve the
accuracy of location and convergence speed of networks. Ko et
al. [34] proposed a traffic line detection method based on key
points estimation and instance segmentation. 2) Some studies
[35], [36], [37] cast lane detection as a classification task.
Qin et al. [35] proposed a novel formulation with structural
loss, which regarded lane detection as row-based classification
using global features and achieved a high speed. In [36], the
author also adopted row-wise classification to perform direct
lane marker vertex prediction in an end-to-end manner without
any postprocessing steps. Son et al. [38] used adaptive threshold
and lane classification algorithm to construct a robust multi-lane
detection method for challenging road conditions. 3) Different
from the above methods, parameter-based methods consider
lane detection as a lane curve model and directly regress these
parameters by polynomial. Gansbeke et al. [39] used a deep
neural network to predict the weight map of each lane line and
proposed a differentiable least-squares fitting module to fit a
curve. In [40], the author adopted deep polynomial regression
to output polynomials representing each lane marking, which
obtained a high efficiency but ignored the global information.
LSTR [41] formulated a lane shape model based on road struc-
tures and camera poses and applied the transformer to learn
richer structures and global information. These parameter-based
methods have a fast inference speed but are sensitive to output
parameters, and it is difficult to obtain a higher performance.

B. Global Information Extraction

Global context information is important to capture lane pre-
sentation from limited visual cues, especially in completely or
partly occluded roads and extreme lighting conditions. In most
lane detection methods, there are several ideas to accomplish
this goal. First, enlarging the receptive field of feature maps is
the fundamental and universal technique, which can be obtained
by aggressive convolution and pooling operations or dilated
convolution [42]. Li et al. [43] proposed a multiclass lane
detection model based on DeepLabv3+ and achieved excel-
lent performance in real traffic scenarios. This method has a
higher computational cost and number of parameters with poor
real-time performance. Second, many methods design specific
modules to capture global information. In [44], [45], the author
used the nonlocal block for capturing long-range dependencies
by a self-attention mechanism. SCNN [5] proposed a slice-
by-slice convolution and used message passing operations to
obtain stronger spatial lane information. However, it suffers

from expensive computation. The RESA [7] designed a similar
convolution operation to make use of strong shape priors of lanes
and captured spatial relationships of pixels to gather global in-
formation in vertical and horizontal directions. Although RESA
is more efficient than the SCNN, it still has a high computational
complexity. Apart from these abovementioned methods, some
studies apply transformers to lane detection tasks. The trans-
former proposed by [46] is initially used for machine translation.
Due to the excellent global self-attention capacity, it has been
quickly applied to computer vision tasks [47], [48], [49] since
the Vision Transformer (ViT) [50] was proposed. Recently,
transformer-based lane detection methods have achieved a better
performance in lane segmentation tasks [41], [51].

In this paper, we propose an efficient method from another
perspective. We construct a hybrid MLP block in latent space to
capture long-range representation, which is efficient and keeps
a lower computational cost.

III. METHODOLOGY

This section mainly presents the proposed efficient network.
The detailed description is as follows. We first introduce the
overview of our method. Second, the Im-bottleneck-1D block is
taken into consideration. Finally, the constructed hybrid MLP,
loss function and detailed architecture of the lane detection
network are described.

A. Overview of Architecture

Similar to most lane detection networks [52], [53], our pro-
posed method is also composed of three components: the en-
coder, decoder and lane existence branch. Briefly, the encoder
is used to decrease the resolution of feature maps while cap-
turing multilevel information from top to bottom. Conversely,
the decoder is applied to restore the size and output the final
segmentation map. The lane existence branch aims to encode
convolutional features into vectors for predicting lane existence.
The overall network is displayed in Fig. 1.

We can see that given an input image with a spatial resolu-
tion of H × W, the final goal is to obtain the corresponding
pixelwise prediction map of lanes with the same size H × W
and the probabilities of lane existence. The input image is first
passed through 4 downsampling blocks followed by the hybrid
MLP block, which includes the channel and spatial MLP. Then,
the feature maps are sampled by 4 upsampling blocks, where
the convolutional features are directly used as the input
of the lane existence branch after the first upsampling block for
the next operations. The MLP is good at modeling the long-range
dependencies; hence, we place it behind convolution operations
to encode information. Each sampling block makes the feature
resolution decrease or increase 2 times. Moreover, we denote the
number of channels in every stage as C1 to C6. Considering that
the proposed network is not deep, these channels are set to 16,
64, 128, 256, 5 and 4. It is worth noting that there is only one skip
connection layer between the encoder and encoder after the third
downsampling block. The main idea behind this approach is that
it can fuse convolutional features with long-range information
from MLP more effectively, and the computational efficiency
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Fig. 1. Overview of proposed architecture for lane detection.

Fig. 2. Structures of down-sampling block (left) and up-sampling block
(right).

will be greatly improved due to the reduced number of skip
connection layers.

Additionally, the semantic information used for consecutive
lane segmentation and lane existence prediction is provided
by the encoder network. In other words, the performance of
the encoder network for feature extraction plays a significant
role in the completion of lane detection. Generally, the pooling
operation will lead to the loss of detailed information which is
not conducive to subsequent tasks. Inspired by the classical ENet
[54], we also adopt two strategies to sample feature maps in our
downsampling blocks. One is the standard convolution operation
with a stride of 2, and the other is the direct max-pooling
operation. Their outputs are concatenated together to form new
feature maps that can maintain rich detailed information well.
Fig. 2(a) shows the detailed structure of downsampling block.
Analogously, we also use the bilinear interpolation and trans-
posed convolution operation in upsampling block. The former
expands feature maps with an interpolated method that is simple

and fast but will produce much coarse information. The latter
can update learned weights like standard convolution operations
to restore more information. Therefore, their combination can
refine feature maps as much as possible during the upsampling
process. Then, a 1 × 1 convolution operation is used to further
reduce the parameters. The concrete structure of upsampling
block is drawn in Fig. 2(b). In conclusion, the downsampling
and upsampling blocks can make the proposed network more
effective.

B. Improved Bottleneck-1D Block

A standard convolutional layer is indispensable for feature ex-
traction in CNNs. Consecutive convolution operations can make
full use of local prior information, but the parameters and com-
putational complexity will increase obviously with the growing
number of convolutional layers. To constrain the number of pa-
rameters in convolution operations, many intriguing techniques
and structures have been proposed. The bottleneck structure
[55], depthwise separable convolution [56], 1D convolution and
difference convolution [57] are all representative works. In fact,
we have verified that depthwise separable convolution has fewer
parameters; however, the performance has a large drop, which
is due to the decreased feature extraction ability. To this end, we
combine the bottleneck structure with 1D convolution to propose
an improved variant named the Im-bottleneck-1D block, which
can balance the efficiency and performance to some degree.

Our Im-bottleneck-1D is similar to the Non-bottleneck-1D
layer used in ERFNet [58]. The most obvious difference be-
tween them is the number of parameters. Fig. 3 shows the
different variants of the residual block. It should be noted that
the Im-bottleneck-1D block reduces the number of channels
by 2 times in our experiment. Fig. 3(a) and (b) are the basic
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Fig. 3. Different variants of residual block. (a) Non-bottleneck. (b) Bottleneck.
(c) Non-bottleneck-1D. (d) Im-bottleneck-1D.

TABLE I
COMPARISONS ON PARAMETERS OF DIFFERENT STRUCTURES IN ONE BLOCK.

C IS THE NUMBER OF CHANNELS. THE BIAS TERM HERE IS

NOT TAKEN INTO CONSIDERATION

components of ResNet [55], and they have similar performance
and number of parameters. According to the detailed structure,
we can see that the parameters of the Non-bottleneck are 18C2

and the Bottleneck is 17C2. However, the bottleneck structure
has a low computational cost. Compared to the former two
blocks, the Non-bottleneck-1D divides a standard 3 × 3 con-
volution into 3 × 1 and 1 × 3 convolutions, and the param-
eters are directly reduced to 12C2. This structure receives a
33% reduction in parameters and can accelerate the execution
time while maintaining a balanced performance. Therefore, the
Non-bottleneck-1D block has been widely applied to many lane
detection networks. Despite this, lane detection tasks still have a
high demand on fewer parameters and computational cost. In this
paper, we expand the Non-bottleneck-1D to Im-bottleneck-1D
by introducing a bottleneck structure, as shown in Fig. 3(d).
In the Im-bottleneck-1D block, feature maps first reduce the
number ofpara channels by a 1 × 1 convolution, and then 3 × 1
and 1 × 3 convolution operations are conducted twice followed
by a 1 × 1 convolution to restore the original channels. By
using a bottleneck structure, we can obtain that parameters of
the Im-bottleneck-1D block are further reduced to 4C2, which
are 3 times smaller than those of the Non-bottleneck-1D. This
indicates that the Im-bottleneck-1D block is more efficient than
other structures while maintaining the advantages of the Non-
bottleneck-1D block. Table I lists these parameters of different
structures in one block. In a word, our proposed Im-bottleneck-
1D block may make the performance of lane extraction a little
drop but can produce as few parameters and computational costs
as possible than other structures, promoting our method to be
more efficient.

Furthermore, to mitigate the drawback of Im-bottleneck-1D
and strengthen lane information, we apply hybrid dilated con-
volution (HDC) to the Im-bottleneck-1D block. The dilated
convolution can effectively enlarge the receptive field, which
is beneficial for capturing object information without introduc-
ing parameters. Many studies [59], [60] often adopt a series

Fig. 4. Structure of Im-bottleneck-1D-HDC block.

of dilated convolutions with large dilated rates in parallel or
sequentially to extract multi-scale information. In ERFNet, for
example, the dilation rates of some Non-bottleneck-1D layers
are set to 2, 4, 8, and 16. However, when the receptive field
becomes larger, it is difficult to capture the consecutive local
information and leads to the loss of detailed features, called
the “gridding effects”. Here, we use HDC to tackle this issue.
The HDC adopts a set of dilated rates with a serrated structure
(i.e., r = [2, 3, 5]) that cannot have a common divisor greater
than 1. By the complement of different receptive fields, this
serrated structure can reduce the loss of local information. In
our method, we embed a hybrid dilated convolution with dilated
rates of [2, 3, 5] into several Im-bottleneck-1D layers to ex-
tract multiscale lane information. Generally, dilated convolution
with a small dilation rate always focuses on local information,
while the successive accumulation of a small receptive field
will be equivalent to a larger one that can capture large-scale
information. Hence, we take advantage of HDC to improve
the performance of Im-bottleneck-1D. The detailed structure of
the Im-bottleneck-1D-HDC layer is displayed in Fig. 4. In the
next experimental section, we reveal the quantitative differences
between Im-bottleneck-1D and Im-bottleneck-1D-HDC.

C. Hybrid MLP Block

Inspired by [61] that an architecture based exclusively on
MLPs is used to learn representations of images patches for
image classification, in this paper, we construct a pixel-level
hybrid MLP block in latent space to capture long-range repre-
sentations from spatial location and channel dimension of deep
feature maps.

An MLP block often takes a sequence of image patches as
input. Generally, these patches are non-overlapping and will
be projected to a hidden dimension C. Specifically, given an
input image x � RH × W × 3, the number of image patches can
be defined as N = HW/P2, where H, W and P denote the height,
width of feature maps and the size of each patch, respectively.
Then these patches are flattened and passed into a linear layer
with output dimension C, obtaining the raw tokens xp � RN × C.
In our method, due to employing an MLP block in latent space,
we assume that the feature map is h × w × c and adopt 1 × 1
patches (i.e., P = 1) extracted from the feature map instead of
from the input image. In other words, each pixel of the feature
map is treated as a patch and each output pixel is determined
by previous each input pixel, which can effectively capture
long-range representation. In different tokenized dimensions, we
finally construct the channel and spatial MLP, as shown in Fig. 5.
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Fig. 5. Architectures of channel and spatial MLP block. (a) Channel-MLP.
(b) Spatial-MLP.

We can observe that they have the same architecture: layer nor-
malization, an MLP layer and residual connection. Here, layer
normalization (LN) is preferred rather than batch normalization
(BN) because LN can make more sense to normalize along the
tokens instead of normalizing across the batch in the MLP block.
The MLP layer consists of two fully-connected layers coupled
with a GELU [62] activation layer, and the hidden dimension
of fully-connected layer is a hyperparameter. After that, a skip
connection layer is used to connect the output tokens with the
original tokens. The channel-MLP is mainly used to fuse all
channel information of each spatial location along the channel
dimension, and the input tokens are xc � R h w × c. Spatial-MLP
aims to capture global spatial information of each channel along
the spatial dimension, and input tokens are xs � R c × h w (i.e.,
xs = (xc)T). The concrete equation of channel and spatial MLP
can be written as:

Xc = xc + fc2α(fc1LN(xc)) (1)

Xs = xs + fs2α(fs1LN(xs)) (2)

where f denotes the fully-connected operation in the MLP layer,
α is the GELU activation function and LN denotes the layer
normalization. Inferred by the calculation of the MLP, the hidden
dimension of the channel MLP is irrelevant to the feature map
size, so the computational complexity of the channel MLP
is linear in spatial locations. Likewise, the hidden dimension
of spatial MLP depends on the number of patches, and the
complexity is linear in channels. Therefore, MLP blocks can
effectively reduce the computational complexity.

The two MLP blocks focus on modeling long-range rep-
resentation in spatial locations and channels. They have two
hybrid manners. One is in a parallel manner, and the other is in a
sequential manner. We denote that the input of the MLP block is
x, and the output is o. The functions SMLP and CMLP represent
the spatial and channel MLP, respectively. Therefore, parallel

Fig. 6. Combination manners. (a) Is the parallel manner and (b) is the sequen-
tial manner.

hybrid MLP can be summarized as follows (Fig. 6(a)):

o = SMLP (x) + C
T
MLP (x

T ) (3)

Similarly, the sequential hybrid MLP can be written as
(Fig. 6(b)):

o = SMLP (C
T
MLP (x

T )) (4)

o = C
T
MLP (S

T
MLP (x)) (5)

Finally, the output tokens of the hybrid MLP block are re-
shaped to feature maps. In this paper, we find that the parallel and
sequential methods have their own advantages, especially when
the location of the channel MLP is before spatial MLP or when
they are parallel. In this case, we prefer the upper sequential
manner in Fig. 6(b) over the others. In fact, our experiment
demonstrates that the upper sequential one can achieve a better
performance than the lower one and has a slight improvement
to the parallel manner. Section IV provides a quantitative com-
parison and detailed discussion.

D. Loss Function

In our method, there are two output branches in the lane
detection network: the semantic segmentation branch and the
lane existence branch as displayed in Fig. 1. Therefore, the final
optimized loss contains segmentation loss and existence loss.

Segmentation Loss: Due to the thin and long shape, lanes
account for a small ratio in the whole image, which is highly
unbalanced compared to the background. To solve this problem,
we use the weighted cross-entropy loss and this loss Lce is
formulated as:

Lce(x) = −
∑

H×W

∑

c∈C
wc yc log(pc(x)) (6)

Here x denotes the input image with a size of H × W and
C is the output number of classes. wc and pc(x) denote the
weight and predicted probability map for class c, respectively. yc
represents the pixels that belong to class c in the corresponding
ground truth label. Moreover, to further pay more attention to
the lane information, we introduce the dice loss [63] to evaluate
the similarity between predicted feature maps and labels. The
dice loss can be written as:

Ldice = 1 −
C∑

c=1

2
∑H

i=1

∑W
j=1

pc(i, j) yc(i, j)
∑H

i=1

∑W
j=1

pc(i, j) +
∑H

i=1

∑W
j=1

yc(i, j)
(7)

where p(i, j) � [0, 1] denotes the predicted probability of
each pixel that belongs to lanes and y(i, j) �{01} represents
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TABLE II
DETAILED ARCHITECTURE OF LANE SEGMENTATION BRANCH. THE R DENOTES

DILATED RATE AND FUSION PART REPRESENTS THE ALTOGETHER OF

HYBRID MLP BLOCK AND SKIP CONNECTION LAYER

the corresponding label. Thus, the complete segmentation loss
consists of two components and can be summarized as follows:

Lseg = Lce +Ldice (8)

Existence Loss: This existence loss is mainly used for the
CULane datasets because lanes have been classified by their
corresponding positions. It is a binary cross-entropy loss to
determine the existence of each lane. The existence loss Lexist

is formulated as:

Lexist = −
∑

H×W

y log(p) + (1 − y) log(1 − p) (9)

Finally, we combine all the segmentation and existence losses
to form the final objective function as follows:

Lall = αLce +βLdice + γLexist (10)

The parameters α, β and γ are used to balance the cross-
entropy loss, dice loss, and existence loss of the final objective
function.

In our experiment, these parameters are set to 1, 0.5 and 0.1.

E. Details of Architecture

The detailed architecture of the lane segmentation branch
is illustrated in Table II. We can see that the encoder has
13 Im-bottleneck-1D layers while the decoder only has 4 Im-
bottleneck-1D layers. This asymmetric architecture can make
the encoder network take full advantage of lane information

TABLE III
DETAILED ARCHITECTURE OF LANE EXISTENCE BRANCH. THE R AND P

DENOTE DILATED RATE, PADDING VALUE, RESPECTIVELY

for subsequent segmentation and classification tasks and ac-
celerate the execution time by reducing the parameters and
computational cost in the decoder network. In addition, the last
upsampling block samples feature maps by only using the trans-
posed convolution operation to output the final segmentation
map. Moreover, considering that the lane existence branch and
segmentation branch share the same encoder and fusion parts,
we show the architecture of the lane existence branch in Table III
individually and do not repeat the previous modules.

IV. EXPERIMENTS

This section demonstrates the effectiveness and efficiency
of our proposed method by conducting experiments on two
challenging datasets.

A. Setup and Evaluation

Dataset: To prove the generalization ability of our method,
we conduct experiments on two widely used lane detection
benchmark datasets: CULane and Tusimple [64].

CULane is a widely used lane detection dataset released by
Pan et al. [5]. More than 55 hours of videos are collected by
cameras on six different vehicles in urban and highway scenarios
with various lighting conditions. After processing, it contains
133235 images with a resolution of 1640 × 590, where 88880
images are used for the training set, 9675 for the validation
set and 34680 for the test set. These images consist of nine
different road scenes, including normal, crowd, curve, dazzle
night, night, no line, and arrow. The CULane dataset only focuses
on the detection of four lane markings, which are given the most
attention in real applications. Lane markings are instantiated
based on the different locations seen in Fig. 7, and whether
the lane marking exists or not is annotated as 0 or 1, in which
0 denotes inexistence, and 1 denotes existence. For example,
there are four lane markings in an image, and the annotation is
recorded as 1, 1, 1, 1, which is used as the ground truth label of
the lane existence branch.

Tusimple is a small scale but also widely used dataset in lane
detection, which is collected from camera video on highway
scenarios with good or medium weather conditions. In this
dataset, there are about 7000 one-second-long video clips of
20 frames each and the last frame of each clip is annotated. It
contains 6408 images with the resolution of 1280 × 720 in total,
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Fig. 7. Annotated samples of CULane dataset.

Fig. 8. Annotated samples of Tusimple dataset.

where 3626 images are used for training and 2782 for testing.
Fig. 8 shows some samples with annotations.

Implementation: In our experiment, we use the PyTorch deep
learning framework [65] to implement the proposed network on
a single NVIDIA RTX3090 GPU with 24 GB memory. We use
the stochastic gradient descent (SGD) [66] optimizer to train
the network with an initial learning rate of 0.002, momentum of
0.9 and weight decay of 0.0001. We train this network without
using any pretrained model. The learning rate decay rule obeys
poly and the power is 0.9. Considering the imbalance between
background and lanes, the segmentation loss of background is
multiplied by 0.4. In the CULane dataset, the training epochs
and batch size are set to 30 and 8, respectively. Finally, the total
number of iterations is 333300 and the model file is outputted
every epoch. Moreover, to better focus on lane information
and reduce the interference of insignificant information, we
discard the former 240 rows of input images and corresponding
ground truth labels, because this part mainly contains sky infor-
mation. Then, these images and labels are scaled to 976 × 208
as the input of the network. We evaluate the output model of
each epoch on the validation set and save the corresponding
training and validating losses to observe the training procedure
dynamically. Fig. 9 shows the graph of all these losses. In the
Tusimple dataset, the training epochs are 100 and batch size is
also set to 8. The training iteration number is 45300. During
training, we do not utilize any data augmentation methods and

Fig. 9. Comparisons on train loss (a) and validation loss (b).

the input images and labels are resized to 512 × 256. In this
experiment, the other operations are same as that on CULane
dataset.

Evaluation Metrics: In the CULane dataset, the lane is de-
scribed as a line with a width of 30 pixels, and then the
intersection-over-union (IoU) between the predicted results and
ground truth labels is calculated. When the IoU of the predicted
lane is larger than 0.5, these lanes are regarded as true positive
(TP). Similar to most studies in lane detection, in this experi-
ment, we also adopt the F1-measure as the evaluation metric and
define it as follows:

F1 =
2 × Precision×Recall

Precision+Recall
(11)

where the Precision and Recall are calculated as:

Precision =
TP

TP + FP
(12)

Recall =
TP

TP + FN
(13)

In Tusimple dataset, the evaluation metrics are false positive
(FP), false negative (FN) and accuracy. The accuracy is defined
as follow:

accuracy =

∑
clip Cclip∑
clip Sclip

(14)

where Cclip and Sclip are the number of correctly predicted lane
points and the number of ground truth points, respectively.

B. Comparison With State-of-the-Art Methods

In this part, we compare our method with other state-of-the-art
methods to demonstrate the effectiveness and efficiency of our
method in two lane detection datasets.

Experiment on CULane Dataset: These methods are mainly
from RSCM [6], which include the AMSC [8], SCNN [5],
SAD [32], Res18-VP [67] and Res34-Ultra [35]. In addition,
we also consider the lightweight version Res18-Ultra [35] and
Res34-RESA [7], the result of [6] and our baseline network
for comparison. The baseline network is only composed of the
Im-bottleneck-1D blocks without any other components. All
experimental results are listed in Table IV. From this table,
we can observe that our method achieves better accuracy/cost
trade-off results. Specifically, the proposed method improves
the performance significantly compared to the baseline network
with only growing a small number of the computational cost
and parameters. This also indicates that the performance of
lane detection is in a drop when merely increasing the com-
putational efficiency. Compared with two efficient methods of
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TABLE IV
COMPARISONS (%) WITH DIFFERENT STATE-OF-THE-ART LANE DETECTION METHODS ON CULANE DATASET. FOR CROSSROAD, ONLY FP ARE SHOWN.

‘–’ DENOTES THE RESULT IS NOT AVAILABLE AND THE VALUES IN BOLD REPRESENT THE BEST RESULTS

Fig. 10. Comparison charts. Y-axis denotes the F1 score. X-axis represents
the FLOPs and number of parameters.

RSCM and AMSC that respectively consider the prior structure
information and dual-attention mechanism to strengthen lane
presentation, our method outperforms them by 2.7% and 2.9%
on accuracy, and the parameters and computational complexity
are much smaller than those of AMSC and RSCM, respectively.
This is because our method abandons redundant convolution
operations and uses an efficient MLP block to model long-range
representation effectively. This strategy can better balance per-
formance and efficiency. Additionally, our method has a slight
improvement over another efficient Res18-VP method, and the
computational cost of our method is 5 times smaller than that of
it. Compared to the lightweight Res18-Ultra method, our method
is still superior in terms of segmentation results and computa-
tional cost. The performance of our method is inferior to the
remaining methods, because they design many effective feature
aggregation techniques. However, these aggregation techniques
can generate higher computational complexity and more param-
eters than those of our method. Fig. 10 displays the comparison
charts of F1 score vs. FLOPs and F1 score vs. number of
parameters. Explicitly, comparisons between different methods
demonstrate that our method has the potential to obtain a decent
performance while retaining fewer computational complexity
and parameters, which imply the advantage of our method in
the accuracy/cost trade-off. Fig. 11 shows the visualizations of
our method and baseline network.

Experiment on Tusimple Dataset: In this experiment, these
comparison methods include RSCM, PointLaneNet [68],

Fig. 11. Visual results on CULane dataset. The columns from left to right
are the input image, ground truth label, the baseline model and our method,
respectively.

LaneNet [29], SCNN, PINet [34], Res34-RESA and CLRNet
[69]. We also consider the baseline network for reference. The
experimental results are shown in Table V. From this table, we
see that our method also achieves better accuracy/cost trade-off
results on Tusimple dataset. Our method improves the perfor-
mance a lot than baseline network with only increasing a small
amount of the computational cost and the parameters. Compared
with the RSCM method, we achieve a closer performance while
the computational cost of our method is lower than it. The small
number of parameters of RSCM can be owed to the adjustment
of channels. For the PointLaneNet and PINet, the accuracy of our
method is lower than that of them, but the number of parameters
is lower 2.63 M and 1.69 M than them. Similarly, the perfor-
mance of remaining methods is obviously superior to our method
in the accuracy, FP and FN. However, both the computational
cost and the number of parameters of our method are much
lower than them. From these experimental results, we can find
that the further improvement of accuracy on Tusimple dataset is
not easy, but the computational cost and parameters of network
can be reduced sharply. This finding demonstrates the advantage
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TABLE V
COMPARISONS (%) WITH DIFFERENT STATE-OF-THE-ART LANE DETECTION METHODS ON TUSIMPLE DATASET. ‘–’ DENOTES THE RESULT IS

NOT AVAILABLE AND THE VALUES IN BOLD REPRESENT THE BEST RESULTS

TABLE VI
THE COMPARISON OF EFFECTIVENESS OF PROPOSED COMPONENTS ON CULANE DATASET. THE C_MLP AND S_MLP ARE THE

ABBREVIATION FOR CHANNEL MLP BLOCK AND SPATIAL MLP BLOCK, RESPECTIVELY

Fig. 12. Visual results on Tusimple dataset. The columns from left to right
are the input image, ground truth label, the baseline model and our method,
respectively.

of our method again that we can obtain a decent performance on
lane detection while retaining fewer computational complexity
and parameters. Fig. 12 displays the visualizations of our method
and baseline network on Tusimple dataset.

C. Ablation Study

In Section III, we have discussed the Im-bottleneck-1D and
hybrid MLP block and analyzed the characteristics of each
block. In this section, we further perform detailed ablation
studies on the CULane dataset to quantitatively prove their
advantages.

Effectiveness of Each Component: We explore the effective-
ness of each component in this part, including the HDC, spatial
MLP block, channel MLP block and all of them. The baseline
network, which is composed of stacked Im-bottleneck-1D lay-
ers, is used as the basic block. Then, each component is added
into the basic block to verify the corresponding effectiveness.
These results are shown in Table VI. We can see that the

performance of the proposed network increases progressively
with the introduction of each component. Specifically, we first
add the HDC to the baseline network, and the performance
improves by 3.3% without increasing the parameters and com-
putational cost, which proves that the HDC can strengthen
the lane information effectively. When the channel and spatial
MLP blocks are taken into consideration, the result has a small
boost compared to former components. The combination of
channel and spatial MLP blocks makes the performance improve
significantly with only a limited increase in parameters and
computational cost. This indicates that the hybrid MLP block is
effective in boosting the performance of our method. Moreover,
we also present the average inference time on performing 10
images of resolution 976 × 208. Our method can achieve 70 fps,
which shows efficient computation and meets the real-time
applications.

Furthermore, to qualitatively describe the differences in com-
ponents, we output the middle feature maps of the network
coupled with each component. The visualizations of heatmaps
are shown in Fig. 13. As we can see, Fig. 13(c) has more
complete lane information than (b). This is because HDC can
model local and large range representations to strengthen lane
information compared with ordinary convolution operations.
However, due to the lack of effective global representation,
the feature maps of (b) and (c) are full of considerable noise,
and the feature distribution is obviously different. With the
introduction of MLP blocks, the feature distribution of lanes
becomes smoother, as shown in (d) and (e), which effectively
suppresses the noisy information. Compared to the previous
components, the combination of two MLP blocks is more com-
petitive. On the one hand, it has a smooth feature distribution
with less noise as displayed in (f). On the other hand, it presents
a powerful lane representation in feature maps. These visual
results reveal that each component is beneficial for improving



12612 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 72, NO. 10, OCTOBER 2023

Fig. 13. Visualizations of heatmaps on each component. The (a–f) represent
the input image, baseline, HDC, spatial MLP block, channel MLP block and
combination of channel and spatial MLP.

TABLE VII
THE PERFORMANCE OF DIFFERENT COMBINATION MANNERS ON LANE

DETECTION. THE VALUES IN BOLD REPRESENT THE BEST RESULTS

lane representation and that all of them can produce an excellent
performance, which again demonstrates the effectiveness of our
method.

Combination Manner of the MLP Block: In this section, we
quantitatively verify the importance of the combination manner
for the lane detection task. As mentioned in Section III-C, there
are two ways to place the channel and spatial MLP: the parallel
and sequential methods. The sequential manner also includes
two sequences. The detailed performance of each manner is
listed in Table VII, where S_C and C_S denote the sequential
manner, while C+S presents a parallel one. From this table,
we can observe that the performance of the latter two hybrid
manners is superior to the former one in most road scenes, which
improves by 1.1% and 1.2% respectively. We have an intriguing
finding that better lane detection performance can be obtained
only when the placed position of the channel MLP block is prior
to the spatial MLP block or they remain in a parallel manner.
This reveals the importance of channel information and hints
that channel MLP block can effectively model the spatial rep-
resentation of different channels during the information fusion
between the channel MLP and spatial MLP, which is good for
reducing lane detection errors. For example, the false-positive
rate of a crossroad scene decreases obviously with the change
in the combination method. Comparing C+S with C_S, they
have a similar performance, but the C_S manner still has a
small advantage of 0.1%. Therefore, in our method, we use the

sequential manner that the channel MLP block is in front of the
spatial MLP block as our hybrid manner of MLP blocks. In fact,
each combination is capable of improving the performance of
lane detection, and we adopt the optimal one.

V. CONCLUSION

In this work, we present an efficient architecture based on
a hybrid MLP to effectively enhance lane representation and
improve the efficiency of lane detection. We construct an im-
proved bottleneck-1D block with an HDC layer to reduce the
computational complexity and parameters while capturing mul-
tiscale lane information and propose a hybrid MLP block to fur-
ther learn the global lane representation by modeling long-range
dependencies in channels and spatial locations. Experimental
results on the challenging CULane and Tusimple datasets have
demonstrated the effectiveness of our method. Compared with
other state-of-the-art methods, our method achieves a higher
computational efficiency with fewer parameters while main-
taining a decent detection performance, indicating the feasi-
bility of MLP. Furthermore, the combination between CNN
and MLP in our method is an intuitive structure and there
are still many potential improvements. In the future, we will
construct the multilevel MLPs and try to extend a fixed input
scale both in the training and inference stages to flexible input
scales.
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