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Abstract—Vehicular Edge Computing (VEC) enables the inte-
gration of edge computing facilities in vehicular networks (VNs),
allowing data-intensive and latency-critical applications and ser-
vices to end-users. Though VEC brings several benefits in terms
of reduced task computation time, energy consumption, backhaul
link congestion, and data security risks, VEC servers are often
resource-constrained. Therefore, the selection of proper edge nodes
and the amount of data to be offloaded becomes important for
having VEC process benefits. However, with the involvement of
high mobility vehicles and dynamically changing vehicular envi-
ronments, proper VEC node selection and data offloading can be
challenging. In this work, we consider a joint network selection
and computation offloading problem over a VEC environment for
minimizing the overall latency and energy consumption during
vehicular task processing, considering both user and infrastructure
side energy-saving mechanisms. We have modeled the problem as
a sequential decision-making problem and incorporated it in a
Markov Decision Process (MDP). Numerous vehicular scenarios
are considered based upon the users’ positions, the states of the
surrounding environment, and the available resources for creating
a better environment model for the MDP analysis. We use a value
iteration algorithm for finding an optimal policy of the MDPs over
an uncertain vehicular environment. Simulation results show that
the proposed approaches improve the network performance in
terms of latency and consumed energy.

Index Terms—Vehicular edge computing, network selection,
computation offloading, energy saving mechanisms, markov
decision process.

I. INTRODUCTION

W ITH the rapid growth of the automotive industry, fueled
by the demands from the end-users and the integration of

innovative technologies like the Internet of Things (IoT), modern
wireless communication technologies, automated vehicles with
advanced communication and computation technologies are
now part of the vehicular networks (VNs) [1]. These new ve-
hicles are capable of providing new services and applications to
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vehicular users (VUs) aiming at increasing road safety, avoiding
traffic congestion, reducing the pollution level, providing new
infotainment services, etc. However, modern applications and
services come with stringent requirements in terms of high data
processing and critical latency bounds. With limited onboard
resources, vehicles alone cannot cope with such requirements
and need support from additional platforms, e.g., cloud and edge
computing [2].

Though cloud computing facilities have enormous computing
resources, since they are located deep inside the core networks,
high transmission delays often limit their uses for latency-critical
VNs. Edge Computing (EC) technology can address the cloud
computing problems by bringing the cloud resources in the
proximity of end-users. EC has achieved a great success in
the wireless networks when serving users with new innovative
services [3]. In VNs, EC facilities can be enabled through the de-
ployment of Road Side Units (RSUs) along the road facilitating
several EC servers [4]. This approach, known as vehicular edge
computing (VEC), has the potential to serve VUs with reduced
transmission delays and energy requirements. The importance of
VEC in the VN scenarios is highlighted by several works in the
recent past, mainly for enabling latency-critical applications [5],
[6].

VEC technology provides a computation environment to VUs
for processing their tasks. VUs can transmit a portion of their
computation load to the nearby VEC servers while performing
the remaining computation locally. VEC servers perform the
processing operations on behalf of the VUs and return the re-
sults. This approach is known as partial computation offloading,
which allows VUs to complete a task processing operation in
collaboration with VEC servers to reduce the overall latency
and energy requirements during processing [4]. However, when
coping with a large number of VUs demanding computation
offloading services from VEC servers having limited computa-
tion/communication resources, energy limitations, storage ca-
pabilities, and coverage range, several new challenges arise into
VEC-enabled VNs. These challenges are mainly characterized
by a proper selection of when, where, and how much data need
to be offloaded to the VEC servers for having adequate perfor-
mance. This problem is also known as joint network selection
and computation offloading, which aims to find a proper VEC
server and the amount of data to be offloaded over dynamic
vehicular environments [4].
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In recent times, Machine Learning (ML) algorithms, espe-
cially Reinforcement Learning (RL), have gained lots of popu-
larity for solving such highly complex problems over uncertain
vehicular environments [5], [7], [8], [9], [10], [11]. The decision
of selecting a proper RSU node for computation offloading
depends upon several factors such as VUs position, speed,
nearby VUs, the available number of RSUs for offloading, etc.
The exact amount of tasks to be offloaded towards the selected
RSU can be impacted by these factors, which often change
over time. If a VU is under the coverage of multiple RSUs,
the most suitable RSU can be selected by sequentially choosing
one after another. Also, VU can make sequential decisions for
finding a proper amount of data to be offloaded towards the RSU
server. Every decision made by a VU can alter the surrounding
environment’s state, and can be characterized by some rewards
(i.e., an increase or decrease in the task processing time and
energy). Therefore, finding the proper edge node (EN) and the
corresponding data to be offloaded in the dynamic vehicular
environment can be considered as a sequential decision-making
problem, and RL-based solution methods can be used to solve
it [12].

Among several RL-based techniques, the Markov Decision
Processes (MDP) can be effectively used to solve the VEC
offloading problem [13]. The main components of the MDP
models are state space, action space, reward function, and en-
vironment dynamics [14]. In a particular instance, the MDP
agent, being into a current state, performs a particular action and
receives the observations in terms of a state change and possible
reward based upon the current state and the action performed.
Over time, the MDP agent aims to learn an optimal policy func-
tion that maps the states over optimal actions for maximizing
the reward. A proper environment dynamics, modeling the state
transition probabilities from one state to another based upon the
taken action, is required.

In recent times, with the integration of modern technolo-
gies, such as IoT, and new communication modes, including
Vehicle-to-Vehicle (V2V), Vehicle-to-Road Side Units (V2R),
Vehicle-to-Infrastructure of Cellular Networks (V2I), Vehicle-
to-Sensors (V2S), and Vehicle-to-Person (V2P), VUs can learn
several environment parameters and also share important infor-
mation [15]. VUs can learn about the nearby competing VUs and
their offloading experiences, RSU locations, and availability, etc.
This information can be utilized to create better environment
dynamics and, in the MDP-based approaches, for solving the
VEC offloading problem. With this in mind, in this work, we
propose an MDP-based model for the computation offloading
problem over the VEC environment. In particular, considering
a proper mobility model and different communication tech-
nologies, we identify several VUs scenarios. With the help of
these scenarios, we define a multidimensional MDP model,
where time-dependent transition probabilities equations are
proposed.

The scenario under consideration is a VEC-enabled VN with
a set of VUs, RSUs, and one macro base station (MBS). VUs
generate tasks, and, with limited onboard resources, they request
services from the nearby RSUs and MBS. Additionally, VUs
are characterized by high mobility with varying speeds. Each

VU is covered by multiple RSUs, while each RSU can serve
multiple VUs with its limited resources. RSUs are also supposed
to operate in different power-saving modes (i.e., standby, active,
etc.) for reducing energy consumption during operations. With
limited RSU resources and VUs mobility, finding a proper VU-
RSU pair can improve the performance of a resource-constrained
VN. At the same time, offloading an optimal amount of data to
the selected RSU can further increase the performance in terms
of energy and latency reduction.

A. Related Work

The problem of network selection and offloading parameters
definition aiming at minimizing the latency and energy costs
have been addressed in the literature mostly separately.

In [16], authors have considered a computation offloading
problem for a vehicular scenario where the aim is to minimize a
priority weighted delay performance during the task processing
operations. However, the energy performance is neglected. In
another case, in [17], authors have proposed a learning-based,
energy-efficient task offloading strategy for the vehicular case
without optimizing the delay performance. In many such cases,
authors have either minimized the latency or energy costs indi-
vidually and often neglected the cost of the edge-based servers.
With the new services and applications in VNs, having criti-
cal latency requirements along with larger computations with
higher energy costs, minimizing both latency and energy costs
together is highly important. In recent times, several researchers
have tried to optimize the latency and energy costs in mobile
vehicular networks for different settings [10], [11], [18], [19],
[20], [21]. In [10], authors have performed the joint optimiza-
tion of latency and energy costs for VEC-based systems by
finding the optimal portion of the offloading data. However, it
is assumed that the VUs select the nearest ENs for offloading
their data. In [11], authors have proposed a dynamic offloading
strategy for the vehicular scenario based upon the Imitation
Learning techniques. An energy-efficient strategy is proposed
for latency-constrained vehicular tasks. However, the authors
have only optimized the energy performance while considering
the latency as a constraint. Moreover, the authors have performed
the binary offloading operations without considering any energy-
saving mechanism on edge node sides. In [18], authors have
studied the energy-latency tradeoff for computation offloading
operations in dynamic vehicular environments. However, this
work is based on binary offloading operations where vehicular
tasks are processed either by VUs or edge servers only. In [19],
authors have studied the delay and energy performance of VEC
systems for federated learning-based applications by neglecting
the edge node side energy costs. In [20], [21], authors have
addressed the joint network selection and offloading problem,
for the minimization of latency and energy costs. However, the
edge node side energy cost is not taken into account. In [22],
authors have studied the computation offloading problem in
heterogeneous VEC scenarios, where multi-armed bandit theory
is applied, and online and off-policy learning algorithms are pro-
posed for the network selection problem. However, the authors
have performed a network selection operation by assuming a
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complete task migration toward the selected node. Such solu-
tions have a limited performance since computation offloading
and network selection can impact each other. Offloading the
optimal amount of data to the incorrect edge server can reduce
the performance of a system. Selecting a proper EN without
optimizing the amount to be offloaded can not be considered
an optimal solution. Recently, in [23], authors have proposed a
multi-task learning-based solution for solving the computation
offloading problem over a resource-limited EC scenario. The
problem is formed as a mixed-integer nonlinear programming
problem, and a multi-task learning-based feed-forward neural
network model is proposed for optimizing the offloading and
resource allocation decisions. In another case, in [24], a two-tier
edge intelligence-empowered autonomous driving framework
is proposed for assisting VUs with proper offloading decisions,
resource allocations, etc.

In the past, some works have considered joint optimization
approaches over vehicular networks for different cases, e.g., joint
computation offloading and user association [25], joint computa-
tion offloading and task scheduling over VEC [26], joint resource
allocation and computation offloading [27], and joint computa-
tion offloading and caching [28]. In some works, authors have
considered a joint network selection and computation offloading
problem over a dynamic vehicular scenario [29] limited to the
optimization of the delay performance. In [30], authors have de-
veloped an efficient partial computation offloading and adaptive
task scheduling algorithm for vehicular services. A two-sided
matching algorithm is proposed for transmission scheduling, and
convex optimization is used for finding a partial offloading ratio.
However, most of these works considered traditional heuristic
or meta-heuristic approaches and result in limited performance.
In addition to this, most of the works are mainly concerned
about the VUs energy and completely neglect the RSU energy
performance.

B. Motivation

In the current vehicular literature, several works have either
optimized the performance in terms of latency or energy costs.
In some cases authors have considered the joint minimization
of latency and energy costs, however, studies are limited to
the network selection or computation offloading processes only.
Additionally, in some cases, the energy costs only include the
vehicular side energy costs with some assumptions on the edge
node energy resources. Also, several of these works have used
the traditional energy consumption models while analyzing the
energy costs at the edge facilities. This motivates us to form
a joint network selection and computation offloading problem
with latency and energy cost minimization with an advanced
energy consumption model at the EN.

In some cases, authors have considered heuristic or meta-
heuristic approaches with limited performance over complex
vehicular scenarios. In addition to this, in some cases, authors
have considered advanced ML-based frameworks such as RL
or DRL methods with model-free solution approaches. Such
methods can suffer from a higher convergence time, computation
complexities, and unstable behaviors mainly due to the high

dynamicity of vehicular environments. This motivates us to
propose a novel multi-dimensional MDP model based on local
vehicular data with time-dependent state transition probabilities.

Therefore, in this work, we have proposed a joint network
selection and computation offloading strategy over a mobile
vehicular network for overall latency and energy minimization
of both vehicular and infrastructure nodes with additional en-
ergy saving mechanism at the edge infrastructure. An original
MDP-based RL framework with time-dependent state transition
probabilities is proposed, where local vehicular environment
parameters are used effectively.

C. Contributions

The main contributions of this work are:
� Joint network selection and computation offloading prob-

lem formulation: We define a joint network selection and
computation offloading problem for minimizing the overall
latency and energy consumption over VN as a constrained
optimization problem, where ENs can be in different
energy-saving states, i.e., standby or active, for a more
efficient energy-saving behavior.

� MDP model with time-dependent state transition proba-
bilities: The problem is modeled as a sequential decision-
making problem and incorporated into an MDP-based
model. Various elements of the MDP process including
state space, action-space, reward function, and environ-
ment dynamics with time-dependent state-transition prob-
abilities are considered.

� V2X-based on-road scenarios: Exploiting V2X communi-
cation technologies and a proper mobility model, various
on-road VUs scenarios are defined for solving the burden
of the higher dimensional MDP process without hindering
its performance.

� Value iteration method for MDP policy: A value iteration-
based approach is used for finding the optimal policy for
the MDP process. In addition, a set of benchmark methods
are considered to analyze the performance of the proposed
scheme.

The remaining parts of this paper are composed as follows.
Section II introduces the system model and defines the opti-
mization problem to be solved. In Section III, we define different
vehicular scenarios based on the nearby environment and design
the MDP elements for the considered problem. A set of time-
dependent state transition probability equations are defined. In
Section IV, a value iteration algorithm and the corresponding
elements are detailed for finding an optimal policy for the
considered MDP model. Additionally, two other benchmark
methods are proposed for comparison purposes. In Section V,
the numerical results obtained through computer simulations are
provided and analyzed. Finally, in Section VI, the conclusions
are drawn.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this work, an urban Internet of Vehicles (IoV) scenario for
intelligent transportation systems with connected and intelligent
VUs is considered, where a set of randomly distributed VUs over
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TABLE I
LIST OF IMPORTANT NOTATIONS

the road network can communicate with the edge computing
servers enclosed by RSUs and a Macro Base Station (MBS).
In recent times, such urban IoV scenarios have gained a lot
of attention from the vehicular research community [18], [19].
Table I, includes the important notations considered in the fol-
lowing parts. We refer toV = {V U1, . . . , V Um, . . . , V UM} as
the set of M VUs, and R = {RSU1, . . . , RSUn, . . . , RSUN}
as the set of N RSUs in the area.

The system is modeled in a time-discrete manner, and the
network parameters are supposed to be constant over each
time interval τ , where τi identifies the ith time interval, i.e.,
τi = {∀t|t ∈ [iτ, (i+ 1)τ ]} [10]. By focusing on the ith time
interval, themth VU is located in the position {xm(τi), ym(τi)},
while it moves at a speed �vm(τi) along the multi-lane road-path
in either direction and equipped with a processing capability
equal to cm Floating Point Operations per Second (FLOPS)
per CPU cycle, while its CPU frequency is fm. We have as-
sumed resource-limited edge computing nodes equipped with
muli-core computing hardware with restricted capacities and
limited bandwidth resources [20], [21], [31]. Each RSU can be

Fig. 1. System Architecture.

identified through a set of parameters where the nth RSU is
located at the fixed position {xR

n , y
R
n } having height hR

n , able
to provide communication with a maximum bandwidth BR

n ,
and having a multi-core CPU processor with Ln cores with cRn
FLOPS per CPU cycle, while its CPU frequency isfR

n . Similarly,
the MBS can be identified through its position {xM̄ , yM̄}, its
height hM̄ , maximum bandwidth BM̄ , supposed to be equipped
with a multi-core processor, where each core has a processing
capability equal to cM̄ FLOPS per CPU cycle, while its CPU
frequency is fM̄ . Here, we do not put any limitation over the
MBS CPU cores and assume that each VU can have access to
only one CPU core.

Thenth RSU has a limited coverage rangedn, whose value de-
pends on the communication technology and radio-propagation
environment, and it is supposed to provide VEC services to
the vehicles within the coverage area. Similarly, for the MBS,
the coverage range dM stands. Thus, VUs can offload data up
to N + 1 ENs, i.e., N RSUs (i.e., EN1, . . . , ENN ) and one
MBS (i.e., EN0). Each V Um ∈V is supposed to be active
in each time interval with a probability pa within which it
generates a computation task request ρm(τi) identified through
the tuple 〈Dρm

, Dr
ρm

,Ωρm
, Tρm

〉 corresponding to a task with
size Dρm

Byte, expected to give in output a result with sizeDr
ρm

Byte, requesting Ωρm
CPU execution cycles and a maximum

execution latency Tρm
.

In Fig. 1, a possible IoV scenario is depicted, where randomly
distributed VUs are able to offload their computation tasks to the
nearby ENs. Also, each VU is covered by multiple RSUs along
with one MBS. VUs can communicate with ENs over V2R links
and with each other through V2V links for information sharing.

VU Mobility and Sojourn Time: Due to the VUs mobility,
each offloading operation should be completed by the VU so-
journ time, corresponding to the amount of time it remains under
the coverage of the selected EN [32], for avoiding additional
latency due to, e.g., vehicle handover, service migration, ad-
ditional signaling for managing vehicles and service mobility.
RSU handover process involves transferring the management
of active communication from one RSU to another [33]. Such
handover situations can occur if VU fails to get back the of-
floaded task results before it passes through the RSU coverage.
The handovers can degrade the network-wide performance in
terms of latency.



SHINDE AND TARCHI: MDP SOLUTION FOR ENERGY-SAVING NETWORK SELECTION 12035

Individual VUs mobility parameters often depend upon the
nearby VUs decisions. One of the most often considered
mobility models for vehicular scenarios is based on the pre-
ceding car dynamics [34]. Here, we adopt a similar model for
analyzing the VUs mobility. If�vvm

(τi) andavm
(τi) represent the

speed and acceleration parameters at the ith interval for the mth
VU, the model consider that the mth VU mobility parameters
depend on the motion and dynamics of the preceding VUs, i.e.,

avm
(τi) = amax

[
1−

(
�vvm

(τi)

�vmax

)δ

−
(
s∗(�vvm

,Δ�vvm
)

svm

)2
]
∀m

where amax is the maximum acceleration value, �vmax is the
desired velocity required for the steady traffic flow, Δ�vvm

=
�vvm
− �vv,m−1 and svm

= xv,m−1 − xvm
− lo are the relative

velocity and inter-vehicular distance betweenm andm− 1 with
lo being the VUs length. δ ∈ {1, 5} is the sensitivity of driver,
and s∗ is the desired space given as:

s∗(�vvm
,Δ�vvm

) = smin + tr�vvm
+

�vvm
Δ�vvm

2
√
amaxbmax

∀m

Here, smin is the desired safe space between consecutive VUs,
tr is the minimum reaction time headway based upon the safe
distance, and bmax > 0 is the comfortable braking deceleration.
In this work, the safety distance between VUs is considered
as a design parameter similar to the [34]. However, the safety
distance between VUs can be based upon several parameters and
tradeoffs i.e., traffic flow characteristics, VUs safety demands,
communication capabilities, V2V delays, etc. Interested readers
can follow [35], [36] for more information. Therefore, at the ith
interval, the mth VU speed and position are:

�vvm
(τi) = �vvm

(τi−1) + avm
(τi−1)τ (1)

xvm
(τi) = xvm

(τi−1) + �vvm
(τi−1)τ + avm

(τi−1)τ
2 (2)

The distance in which themth VU remains under the coverage
of nth EN is Dm,n(τi) and is given by:

Dm,n(τi) =

√
d2
n − (yEN

n − ym(τi))
2 ± (

xEN
n − xm(τi)

)
(3)

where (xEN , yEN ) is the location of nth EN, i.e., either an RSU
or the MBS. The available sojourn time for the mth VU can be
written as:

T soj
m,n(τi) =

Dm,n(τi)

|�vm(τi)| ∀i, n = 0, 1, . . . , N (4)

VU-EN Assignment, Offloading Process and Resource Allo-
cation: We define a binary VU-EN assignment matrix A(τi) =
(am,n(τi)) ∈ {0, 1} with size M × (N + 1). If mth VU is
assigned to nth EN in the interval τi then am,n(τi) = 1, and∑N

n=0

∑M
m=1 am,n(τi) = M , where it is supposed that each VU

is able to offload data to only one EN. It should be noted that the
first column (n = 0) represents the assignments towards MBS,
while the remaining columns, from n equal to 1 to N , are con-
sidered for RSUs. The number of VUs requesting services from
the nth EN is given by Kn(τi) =

∑M
m=1 am,n(τi). With their

limited resources, RSUs can provide services to the VUs before
task communication and computation costs become unbearable.

We consider that Kmax is the maximum number of VUs that
can access to the services of each RSU node. However, with
rich resource sets, MBS can provide services to several VUs
without such limits.

We assume to perform partial offloading, where tasks can be
split and processed remotely while the remaining portion is pro-
cessed locally [20], [21], [32]; the offloaded portion by the mth
VU at τi is identified as αρm

(τi) ∈ {0, 1}. With multiple VUs
requesting services from the same EN, during the offloading
process, the following constraints need to be taken into account
∀i, n = 1, . . . , N :⎧⎪⎪⎨
⎪⎪⎩
Kn(τi) ≤ Kmax (5a)∑Kn(τi)

m=1 cρm
n (τi) · fρm

n (τi) ≤ (Ln · cRn · fR
n ) (5b)∑Kn(τi)

m=1 bρm
n (τi) ≤ BR

n (5c)

where cρm
n (τi) · fρm

n (τi) is the processing capacity of nth EN
assigned to the mth VUs task, bρm

n (τi) is the communication
resources assigned to the VU for communicating with the nth
EN. Eqs (5) model an upper bound on the number of users con-
nected, processing capacity, and the communication resources
of the RSUs. The constraint (5a) refers to a system constraint for
limiting the complexity of the system model. The edge infras-
tructure manager can define a strategy for the scenarios where
the number of VUs requesting the services from the same RSU
node becomes higher than Kmax. In the considered vehicular
scenarios, VUs are forced to perform the local computation of
their whole tasks in case the limit is violated.1 It is worth to be
noticed that the capacity of each link depends on the specific
communication technology and it is out of the scope of this
paper. Also, we consider that MBS has abundant resources and
is able to serve a large number of VUs without limitations.

With limited EN communication and computation resources,
proper scheduling is required when multiple users access. Here,
we use the following model for assigning EN resources to the
VUs for computation offloading:

cρm
n (τi) · fρm

n (τi) =

⎧⎨
⎩
cRn · fR

n Kn(τi) ≤ Ln

cRn ·fR
n⌈

Kn(τi)

Ln
⌉ Ln ≤ Kn(τi) ≤ Kmax

(6)

bρm
n (τi) =

BR
n

Kn(τi)

for n = 1, · · ·N
(7)

(6) and (7) show the EN resource allocation in terms of compu-
tation capacity and bandwidth to the VUs’ tasks. According to
(6), if the number of VUs requesting services from the nth EN
are less than Ln, each can have access to the single CPU core
with capacity (cRn · fR

n ). In case the number of users becomes
higher than Ln, multiple VUs share CPU core resources. Here
	x
 is the ceiling function applied over x for rounding it to the

1Note that this is just one possible approach that can be adapted by the RSU
nodes. Though it is beyond the scope of this work, these decisions can further
be optimized based on specific load-balancing techniques.
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nearest integer value higher than or equal to x. According to (7),
bandwidth resources will be equally shared among all requesting
VUs.

If the mth VU is assigned to the MBS, i.e., n = 0, it can have
access to the single CPU core, and equally shares bandwidth
resources with the other connected VUs. Thus:

cρm
n (τi) · fρm

n (τi) = cM̄ · fM̄ , bρm
n (τi) =

BM̄

Kn(τi)
(8)

In the following, we model the delay and energy requirements
of various operations involved during the partial computation
offloading enabled vehicular task processing.

Task Computation Model: The generic expression for the
time and energy spent for the ρmth task computation on any
device is given by [37]:

T ρm

c,l =
Ωρm

clfl
, Eρm

c,l = T ρm

c,l Pc,l (9)

where cl and fl are the number of FLOPS per CPU cycle and
CPU frequency, respectively, whether l identifies a VU (m), an
RSU (n) or the MBS (M̄). In (9), Pc,l is the computation power
used by the generic lth device.

Task Communication Model: Since we assume to perform a
partial computation offloading, each VU transmits a portion of
its task to the assigned EN and receive back the result. Similarly,
ENs receive tasks from VUs and send back the results. In general,
the transmission time and energy between a generic node k and
a generic node l for task ρk is given by2:

T ρk

tx,kl(τi) =
Dρk

rkl(τi)
, Eρk

tx,kl(τi) = T ρk

tx,kl(τi)Ptk (10)

where rkl(τi) is the data-rate of the link between the two nodes,
while Ptk is the transmission power of kth node. Similarly, the
reception time and energy to receive the task of size Dr

ρk
from

lth EN by the kth node are:

T ρk

rx,lk(τi) =
Dr

ρk

rkl(τi)
, Eρk

rx,lk(τi) = T ρk

rx,lk(τi)Prk (11)

where Prk is the power spent for receiving data.
The channel transmission rate between a generic node k and

l at the ith interval can be modeled as [22], [38]:

rkl(τi) = bρk

l (τi) log2

(
1 +

Ptk · hk,l(τi)

σ2 + Ikl(τi)

)
∀k, l

where Ptk is the transmission power of node k, bρk

l (τi) is the
communication bandwidth, σ2 is the noise power, and Ikl(τi)
is the interference due to any transmitting node, except k,
towards node l, where the total interference during the uplink
communication (i.e., VU to RSU) can be calculated as

Ikl(τi) =
∑

∀k′∈Kl(τi)\{k}
(Ptk′ · hk′,l(τi)).

For the downlink, instead, we assume to neglect the interference
by assuming an orthogonal frequency assignment among RSUs,
as well orthogonal RSU to VU transmissions.

2In the following we identify with l and k the indexes of any generic node.
Hence, l and k can have any index among m, n, and M̄ .

EN Operating Modes: For improving the overall energy
efficiency, we assume that ENs can be either in a stand-by or an
active state. ENs in a standby state will not be able to serve any
VU and effectively will reduce the overall energy consumption.
A switching process is assumed for switching ENs from standby
to active state with additional switching time and energy. The
amount of energy consumed for switching the nth EN from
standby to active state is [39]:

Esw,n = Psw,n · Tsw,n (12)

where, Psw,n is the consumed switching power and Tsw,n is the
switching time. The amount of time consumed by nth EN for
providing offloading services for VU m is given by3:

T ρm
en,n(τi) =

Tsw,n

αρm
(τi)

+
(
T ρm
c,n + T ρm

tx,nm(τi) + T ρm
rx,mn(τi)

)
(13)

where T ρm
c,n , T ρm

tx,nm(τi) and T ρm
rx,mn(τi) are the time required for

the task computation, transmission and reception between nth
EN and mth VU, respectively.

The amount of energy consumed will be based on the op-
erating modes. The nth EN will go into standby mode if no
service request from any VU in its coverage area is mapped to
it, i.e., a(m,n) = 0, ∀m. The total energy consumption of all
ENs operating in the standby mode is given by:

Est
en(τi) =

Nst(τi)∑
n=1

Een,n(τi) with Est
en,n(τi) = τi · Psd,n

(14)
where Nst(τi) = {n | Kn(τi) = 0, ∀n} gives the total number
of ENs operating in the standby mode. Also, Est

en,n(τi) is the
amount of energy consumed by the nth EN, where Psd,n is
the power consumed during standby mode that depends upon
the computation hardware on the nth EN. Similarly, the amount
of energy consumed by the nth EN while serving the mth VU
is given by4:

Eρm
en,n(τi)

=
τi · P0,n +

Esw,n

Kn(τi)

αρm
(τi)

+ Eρm
c,n + Eρm

tx,nm(τi) + Eρm
rx,mn(τi)

(15)

where P0,n is the power consumed for the basic circuit oper-
ations, and Esw,n is the switching energy required. It should
be noted that, as the switching operation occurs only once, if
the number of VUs requesting services (i.e., Kn(τi)) from a
particular EN increases, the switching energy per VU scales
down. Eρm

c,n ,Eρm
tx,nm(τi) and Eρm

rx,mn(τi) are the energy required
during task computation, transmission, and reception of data
between nth EN and mth VU, respectively.

Task Offloading Process: If mth VU is assigned to nth EN,
then the time and energy required to offload the portion of the

3Division byαρm (τi) is merely for equation balancing purposes whose effect
will be nullified later in (17a).

4Division byαρm (τi) is merely for equation balancing purposes whose effect
will be nullified later in (17b).
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task with offloading parameter αρm
to the selected EN and to

get back the result in the ith interval is (from (10) and (11)),

T̂ off
m,n(αρm

(τi)) = αρm
(τi)

(
T ρm
tx,mn(τi) + T ρm

rx,nm(τi)
)
(16a)

Êoff
m,n(αρm

(τi)) = αρm
(τi)

(
Eρm

tx,mn(τi) + Eρm
rx,nm(τi)

)
(16b)

Also, the amount of time and energy consumed on the nth EN
for providing services to the mth VU is given by (from (13) and
(15)):

T̂ off
n (αρm

(τi)) = αρm
(τi)

(
T ρm
en,n(τi)

)
(17a)

Êoff
n (αρm

(τi)) = αρm
(τi)

(
Eρm

en,n(τi)
)

(17b)

Thus, the total time and energy cost required for the offloading
process is given by:

T off
m,n(αρm

(τi))= T̂ off
m,n(αρm

(τi))+T̂ off
n (αρm

(τi)) (18a)

Eoff
m,n(αρm

(τi))=w1Ê
off
m,n(αρm

(τi))+(1− w1)Ê
off
n (αρm

(τi))

(18b)

where (18b) is constituted by two parts (i.e., EN and VUs energy)
that can be based upon different energy sources and can have
different utility costs. Therefore, for having a properly balanced
energy cost over the offloading process, we introduce w1 as a
weighting coefficient in the range between 0 and 1.

Local Computation: From (9), the amount of time and en-
ergy required for the local computation of the remaining task in
the ith interval is:

T loc
m (αρm

(τi)) = (1− αρm
(τi))T

ρm
c,m (19a)

Eloc
m (αρm

(τi)) = w1 (1− αρm
(τi))E

ρm
c,m (19b)

Partial offloading Computation: From (18)-(19), the delay
and the energy consumed during the task processing phases
when partial offloading is performed (in the ith interval) can
be written as:

T ρm
m,n(αρm

(τi)) = max
{
T off
m,n(αρm

(τi)), T
loc
m (αρm

(τi))
}

(20a)

Eρm
m,n(αρm

(τi)) = Eoff
m,n(αρm

(τi)) + Eloc
m (αρm

(τi)) (20b)

where the local and offloading processing are supposed to be
performed in parallel. Each vehicle should finish the offloading
process and receive the result back within the sojourn time,
hence:

T off
m,n(αρm

(τi)) ≤ T soj
m,n(τi) ∀i (21)

Problem Formulation: The main aim of this work is to
optimize the network-wide performance of the VEC-enabled
vehicular network. We aim to optimize the performance in terms
of overall latency and energy consumed during the offloading
process towards edge servers by selecting proper ENs and of-
floading amounts. The latency and energy requirements of both
sides (i.e., VUs and RSU-based edge servers) are considered
during the offloading process. The joint latency and energy

minimization problem is defined as:

P1 : min
A,A

{
N∑

n=0

M∑
m=1

[
γ1T

ρm
m,n (αρm

(τi)) + γ2E
ρm
m,n(αρm

(τi))
]

+ γ2(1− w1)E
st
en(τi)

}
∀i (22)

s.t.

C1 :

N∑
n=1

am,n(τi) = 1, ∀m ∈M (23)

C2 : Eqs. (5a), (5b) and (5c) (24)

C3 : T ρm
m,n (αρm

(τi)) ≤ Tρm
∀V, ∀i (25)

C4 : Eq. (21) (26)

C5 : Eoff
m,n(αρm

(τi)) < w1E
ρm
c,m (27)

C6 : 0 ≤ γ1, γ2, w1 ≤ 1; γ1 + γ2 = 1 (28)

where A = {αρm
}M is the computation offloading matrix, A

is the VU-EN assignment matrix defined previously, and γ1, and
γ2 are weighting coefficients for balancing latency and energy
consumption. The objective function in P1 includes the overall
latency, VU, and the RSU side energy costs including both active
and standby modes costs. C1 stands that each VU can select at
most one RSU for the computation offloading. C2 provides the
limits over the number of user requests, processing capacity,
and bandwidth resource blocks requested by VUs towards ENs,
whileC3 puts a limit on the maximum processing time as one of
the task requirements. According to C4, for avoiding handover
phenomena and related latency, each VU should complete the
offloading process before it passes through the selected RSUs
coverage. In order to have a valid offloading process, according
to C5, the weighted energy consumed on VU for processing a
complete task should be lower than the total weighted energy
required to compute a complete task locally. C6 stands that the
two weighting coefficients (γ1, γ2) should be between 0 and 1
with a sum equal to 1. Additionally, the energy coefficient w1

can take a value between 0 and 1.

III. MDP FORMATION

When solving the problem in (22), we aim to minimize the
overall latency and energy consumed by finding the combination
of proper EN and the amount of data to be offloaded by each VU
in the MBS service area. In this work, we consider the MDP-
based RL approach to solve the problem at hand. The basic ele-
ments of the MDP model include the state-space, action-space,
reward function, and environment dynamics. However, model-
ing environment dynamics (i.e., state transition probabilities of
MDP states) over a highly uncertain vehicular environment can
be a challenging task. Fig. 2, provides an overview of different
elements discussed in the following parts. In the following, we
first model several possible vehicular scenarios in which a refer-
ence VU can find itself over its course. This scenario set can be
used to form a proper MDP model aimed at reducing uncertainty
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Fig. 2. Proposed MDP Model.

over the environment. For avoiding any possible mistakes during
the network selection and computation offloading process, each
VU scenario needs to be treated separately. After that, we
present the main MDP elements (i.e., state-space, action-space,
reward function, and environment dynamics) for the considered
problem. After a detailed analysis of the state transition prob-
ability matrix, we propose generic time-dependent expressions
for finding the state transition probability values in different
scenarios based on the VUs state and the action performed.

A. VU Scenarios Defintion

Different VU scenarios are formed, based upon VUs physi-
cal locations, number of ENs available for offloading, and the
number of nearby competing VUs, aiming at creating a more
reliable MDP model with reduced uncertainty. VUs can use V2X
communication technologies for acquiring useful information
about the number of nearby competing VUs and available EN
servers. As shown in Fig. 1, we have used a grid-based ap-
proach for limiting the number of possible scenarios that depend
upon the actual VUs position. In the considered grid-based
approach, a section of the road is divided into G segments
of length lg , within which each VU is placed, considering
its location parameters. Thus, each VU can have associated a
specific section number given by gidm(τi) = {1, 2, . . . , G}. Each
VU can exploit a different number of ENs for offloading, where
Em(τi) = {ENn|Dm,n(τi) > 0, ∀n} is the set of available ENs
for themth VU to perform the offloading operation in the interval
τi. Also, we define V̄m(τi) =

∑Em(τi)
n=1 Kn(τi) as the number of

nearby competing VUs, ranging between 0 toNVmax, request-
ing offloading services from the ENs in the set Em(τi).

In the considered multi-user vehicular network, moving VUs
can impact each other’s network selection and offloading strate-
gies. Each VU should analyze the surrounding environment
by finding the competing VUs and their offloading decisions,
selected ENs, etc. Since all VUs are supposed simultaneously
generate the task requests (i.e., at each ith interval), it is im-
possible to have such information in advance. In that case, VUs
can make offloading decisions by assuming that no other VU is
requesting a service leading to a selfish approach. However, this
may lead to incorrect node selection and offloading decisions.
Another way to tackle this problem is by defining an MDP

process that provides a joint solution for all the participating
VUs. The presence of a large number of VUs can quickly lead
to unbearable complexity and computation requirement. Thus
both of these utmost approaches are not suitable for solving
the given problem and some sort of assumption is needed for
modeling the VUs surrounding environment for avoiding the
incorrect offloading strategy/additional complexity. In the fol-
lowing, we consider four strategies supposed by VUs regarding
the surrounding environment.
� Minimum distance-based VU-EN assignment: In this case,

the mth VU considers that all the V̄m(τi) VUs are offload-
ing their data to the nearest ENs based upon their physical
locations. Thus, ∀V Um′ ∈ V̄m(τi):

am′,n(τi) = 1⇐⇒ n = argmin
ENn′ ∈Em(τi)

{dm′,n′(τi)} (29)

� Maximum sojourn time-based VU-EN assignment: In this
case, the mth VU considers that all V̄m(τi) VUs are of-
floading their data to the ENs with maximum available
sojourn time. Thus, ∀V Um′ ∈ V̄m(τi):

am′,n(τi) = 1⇐⇒ n = argmax
ENn′ ∈Em(τi)

{T soj
m′,n′(τi)} (30)

It should be noted that this approach only considers the
assignment towards RSU nodes (since MBS always have
high sojourn time). If VUs are not able to find any nearby
RSU nodes, they will be assigned to the MBS.

� Probabilistic VU-EN assignments: In this approach
∀V Um′ ∈ V̄m(τi)we select theENn′ ∈ Em(τi) randomly.
The probability of m′th VU selecting n′th EN is given by:

Pr{am′,n(τi) = 1} = 1
Em(τi)

(31)

� Position-based VU-EN assignments: In this case, each
nearby competing VU is allocated to the ENs based on
the available distance before it passes through the ENs
coverage range and the distance between VU and EN. Thus
∀V Um′ ∈ V̄m(τi):

am′,n(τi)=1⇔Dm′,n(τi)

dm′,n(τi)
= max

ENn′ ∈Em(τi)

{
Dm′,n′(τi)

dm′,n′(τi)

}
.

(32)
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Based upon the above discussion for the mth VU, a vector
V̂m(τi) corresponding to the number of nearby VUs assigned to
each ENn ∈ Em(τi) is formed as:

V̂m(τi) = {V n
m(τi)}1×Em(τi)

,

with V n
m(τi) =

V̄m(τi)∑
m′=1

am′,n(τi), ∀n ∈ Em(τi) (33)

where, VU-EN assignment (i.e., am′,n(τi)) is based upon any of
the four methods presented above.

In the end, for themth VU, a scenario vector can be defined as
Vm(τi) = {gidm(τi),Em(τi), V̂m(τi)}. The number of possible
scenarios is limited by the parameters G, Emax, and NVmax.
Each scenario needs to be treated separately for finding proper
EN and offloading amounts. Every vehicular scenario may have
an independent optimal policy that needs to be determined
through proper analysis. In the end, N̄ is the set of all possible
VU scenarios.

In the next part, we define the State Space, Action Space,
Environment Dynamics or State Transition Probabilities, and
Reward Function, as basic elements of an MDP approach for
the problem at hand.

B. MDP Elements

The MDP is a stochastic process that evolves over time and
is characterized by the state space (ST), action space (AS),
reward function (R), and environment dynamics (P). The MDP
model can be defined as a tuple 〈ST,AS, R,P〉.

1) State-Space (ST): In a multi-user vehicular environment,
the available resources for the computation offloading process
change continuously over time and are a function of the of-
floading and network selection decisions taken by individual
vehicles. Therefore, we define a discrete state-space set function
of resources available for computation offloading. For each
scenario ν, the related state-space is a function of the sojourn
time, the required latency, VU resources, and the resources of
the available RSUs; thus, each state sν at time τi is defined as:

sν(τi) = f
(
αρm

(τi), T
soj
m,n(τi), Bn, c

R
n ,

fR
n ,Ln, Dρm

, Dr
ρm

,Ωρm
, Tρm

)
. (34)

We suppose to limit the multi-dimensional state space to N̄ sce-
narios, hence, ν = 1, . . . , N̄ . Moreover, we assume that the en-
vironment states observed by each VU during the joint network
selection and computation offloading process can be modeled
through proper binary functions. If the mth VU is assigned to
the nth EN and performs offloading operation with offloading
parameter αρm

, the environment can be modeled through three
proper binary functions, as:

F 1
ρm,n(τi) =

{
0 T off

m,n(αρm
(τi)) ≤ T soj

m,n(τi)

1 else
(35)

F 2
ρm,n(τi) =

{
0 T ρm

m,n (αρm
(τi)) ≤ Tρm

1 else
(36)

F 3
ρm,n(τi) =

{
0 Eoff

m,n(αρm
(τi)) < w1E

ρm
c,m

1 else
(37)

where F 1
ρm,n(τi), F

2
ρm,n(τi) and F 3

ρm,n(τi) are the binary func-
tions depending upon the sojourn time constraint (21), appli-
cation latency requirement (25) and the energy constraint (27),
respectively, and F 3

ρm,n(τi) includes both active and standby
mode energy costs of RSU nodes. Thus, at τi, the state of mth
VU in scenario ν is given by,

sm,n
ν (τi) =

{
F 1
ρm,n(τi), F

2
ρm,n(τi), F

3
ρm,n(τi)

} ∈ Sν

where, Sν = Z
3
2 is the complete state space for the scenario

ν containing all possible binary combinations of F 1
ρm,n(τi),

F 2
ρm,n(τi) and F 3

ρm,n(τi).
2) Action-Space (AS): The action space defines all the

possible actions available during the learning process. If mth
VU belongs to the scenario ν, it can explore the available
ENs (Em(τi)), by properly setting a binary vector ENν(τi) =
{0, 1}Em(τi) mapping the RSUs selection among the Em(τi)
available in the given scenario. At the same time, the offloaded
amount can be selected from a discrete set of values given by
αρm

(τi) ∈ {0,Λ, 2Λ, . . . , 1}where 0 < Λ < 1 is a step change
of offloading amount.

The generic action aν for the νth scenario at time τi can
be defined as aν(τi) = {ENν(τi), αρm

(τi)} where ENν(τi) is
a binary vector with length ν, where 1 in the nth position
corresponds to the selected EN. The complete action space for
scenario ν is given by Aν = {aν(τi)}.

Once selected, action aν(τi) can change the state of func-
tion F 1(τi), F 2(τi) and F 3(τi) with certain probability5. Such
probabilistic transitions can be defined through:

PF 1

(̄i,j̄)(aν(τi)) = Pr
{
F 1(τi+δ) = j̄ | F 1(τi) = ī, aν(τi)

}
ī, j̄ ∈ {0, 1}

(38)

where PF 1

(̄i,j̄)
(aν(τi)) is the transition probability of F 1(·) from

state ī to state j̄ at τi through the action aν(τi). Here, δ is the
time step of the MDP process. Similarly for F 2(·) and F 3(·) the
transition probability expressions are given by:

PF 2

(̄i,j̄)(aν(τi)) = Pr
{
F 2(τi+δ) = j̄ | F 2(τi) = ī, aν(τi)

}
PF 3

(̄i,j̄)(aν(τi)) = Pr
{
F 3(τi+δ) = j̄ | F 3(τi) = ī, aν(τi)

}
In general, F 1(·), F 2(·) and F 3(·) can have different proba-

bilistic transitions for any given action aν(τi). Here, we intro-
duce three transition matrices by considering all the possible
transitions of F 1(·), F 2(·), and F 3(·). For F 1(·), the transition
matrix PF 1

(aν(τi)) is given by,

PF 1
(aν(τi)) =

[
PF 1

(0,0)(aν(τi)) PF 1

(0,1)(aν(τi))

PF 1

(1,0)(aν(τi)) PF 1

(1,1)(aν(τi))

]
, ∀aν(τi)

(39)

5For the simplicity of notations hereafter we omit, (ρm/m,n) from
sm,n
ν (τi), F 1

ρm,n(τi), F
2
ρm,n(τi), and F 3

ρm,n(τi).
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with, PF 1

(0,0)(aν(τi)) + PF 1

(0,1)(aν(τi)) = 1 and PF 1

(1,0)(aν(τi)) +

PF 1

(1,1)(aν(τi)) = 1. Similarly, for F 2, the transition matrix

PF 2
(aν(τi)) is given by,

PF 2
(aν(τi)) =

[
PF 2

(0,0)(aν(τi)) PF 2

(0,1)(aν(τi))

PF 2

(1,0)(aν(τi)) PF 2

(1,1)(aν(τi))

]
, ∀aν(τi)

(40)
with, PF 2

(0,0)(aν(τi)) + PF 2

(0,1)(aν(τi)) = 1 and PF 2

(1,0)(aν(τi)) +

PF 2

(1,1)(aν(τi)) = 1. Also, for the case of F 3(·), the transition

matrix PF 3
(aν(τi)) is given by,

PF 3
(aν(τi)) =

[
PF 3

(0,0)(aν(τi)) PF 3

(0,1)(aν(τi))

PF 3

(1,0)(aν(τi)) PF 3

(1,1)(aν(τi))

]
, ∀aν(τi)

(41)
with PF 3

(0,0)(aν(τi)) + PF 3

(0,1)(aν(τi)) = 1 and PF 3

(1,0)(aν(τi)) +

PF 3

(1,1)(aν(τi)) = 1.
3) Reward Function (R(sν(τi), aν(τi)): The reward func-

tion (R(sν(τi), aν(τi)) is defined as the joint objective function
of time and energy consumed for complete task processing (22).
At the ith interval, if the mth VU is in state sν(τi), and decides
to take an action aν(τi) by selecting thenth RSU andαρm

(τi) as
an offloading amount, the instant reward received by it is given
by,

R(sν(τi), aν(τi)) =
[
γ1T

ρm
m,n (αρm

(τi)) + γ2E
ρm
m,n(αρm

(τi))
]

(42)
4) State Transition Matrix (P): For the MDP process, the

state transition matrix characterizes the environment dynamics
through the probabilistic transitions between the present states to
the next state. Thus, for scenarioν, the state transition probability
at τi is given by

Pr
{
sν(τi+δ)

∣∣sν(τi), aν(τi)}
= Pr

{{
F 1(τi+δ), F

2(τi+δ), F
3(τi+δ)

} ∣∣({
F 1(τi), F

2(τi), F
3(τi)

}
, aν(τi)

)}
(43)

where {F 1(τi), F
2(τi), F

3(τi)} is the current state of VU at τi
that takes action aν(τi).

We assume that the state transition probability expression
based on F 1(τi), F 2(τi), and F 3(τi) can be considered as
independent events, hence (43) can be rewritten as:

Pr{sν(τi+δ)
∣∣sν(τi), aν(τi)}

= Pr
{
F 1(τi+δ)

∣∣F 1(τi), aν(τi)
}

· Pr
{
F 2(τi+δ)

∣∣F 2(τi), aν(τi)
}

· Pr
{
F 3(τi+δ)

∣∣F 3(τi), aν(τi)
}

(44)

where each term is based upon (39)-(41). For exam-
ple if F 1(τi) = 0 and F 1(τi+δ) = 1, then Pr{F 1(τi+δ) |
F 1(τi), aν(τi)} = PF 1

(0,1)(aν(τi)). Detailed analysis of this prob-
ability values is given below.

In (39) the four probabilistic transitions for the binary-valued
function F 1(·) are set. As shown in (35), F 1(·) becomes 1, if
the computation offloading process fails to follow the sojourn

time constraint; on the other hand, it becomes 0, if the process
follows the constraint. Two probability values PF 1

(0,1)(aν(τi))

and PF 1

(1,0)(aν(τi)) model the behavior of F 1(·) based upon the
action taken. These transitions can depend upon several factors,
including the number of VUs assigned to the selected ENs, the
available sojourn time value, which differs for different ENs,
the offloading amount, etc. Modeling the exact nature of these
transitions can be hard; we resort to exponential distribution
functions for modeling the behavior of F 1(·).

In case the mth VU in scenario ν selects the nth EN, through
the action aν(τi) we define:

PF 1

(0,1)(aν(τi)) =

{
0 if αρm

(τi) = 0

1− exp(−λ1(τi)) else
(45)

where λ1(τi) = K11 · αρm
(τi) +K12 · V n

m(τi) +K13/T
soj
m,n

(τi) is a parameter modeling the slope of the exponential
function and is determined from the action aν(τi). According to
(45), if the selected action is characterized by αρm

(τi) = 0, the
possibility of the failure of offloading constraint becomes zero.
The value of λ1(τi) depends upon several factors. In particular,
if the action performed by the mth VU is characterized by
high αρm

(τi), if VU selects the EN having a higher number of
VUs requesting services (i.e., large V n

m(τi)), or VU-EN pair
is characterized by the low sojourn time, the value of λ1(τi)
can increase. As a result, the probability that F 1(·) changes its
state from 0 to 1 (i.e., failure of offloading constraint) becomes
high, which can be emphasized in (45). K11, K12 and K13 are
weighting coefficients assigning proper weights to each of these
parameters.
PF 1

(1,0)(aν(τi))models the case where, with the selected action
aν(τi), the VU is able to satisfy the offloading time constraint
where:

PF 1

(1,0)(aν(τi)) =

{
1 if αρm

(τi) = 0

exp(−λ2(τi)) else
(46)

where λ2(τi) = K21 · αρm
(τi) +K22 · V n

m(τi) +K23/T
soj
m,n

(τi) is a parameter modeling the slope of the exponential
function and is determined from the action aν(τi). This
corresponds to say that, if the selected action is characterized
by αρm

(τi) = 0, VUs offloading time becomes zero and, as
a result, it will satisfy the sojourn time constraint. Also from
the expression of λ2(τi) and (46), it can be seen that, when
increasing αρm

(τi) and V n
m(τi), the probability that the mth

VU respects the sojourn time constraint is reduced. The reduced
value of T soj

m,n(τi) between the VU-EN pair can also reduce
the chances that VU respects the sojourn time constraint. Here,
K21, K22 and K23 are weighting coefficients.

The second function F 2(·) models the VUs behavior with
respect to the task latency constraint, where each VU needs to
perform the task processing within the task latency requirements.
In this case, PF 2

(0,1)(aν(τi)) defines the probability that VU fails
to satisfy the task latency constraint for a selected action aν(τi)
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and is given by:

PF 2

(0,1)(aν(τi)) =

{
1 if αρm

(τi) = 0

exp(−λ3(τi)) else
(47)

where λ3(τi) = K31 · Tρm
+ 1

K32+αρm (τi)(1−αρm (τi))
+ K33

V n
m(τi)

is a parameter modeling the slope of the exponential function
and is determined from the actionaν(τi). This corresponds to say
that, with its limited resources, if a VU performs the task process-
ing by itself without offloading any data towards ENs, it always
fails to satisfy the task latency requirements. In addition, if we
have a strict task latency requirement (Tρm

), and the selected
EN has already a large number of VUs (V n

m(τi)) requesting
services, this results in increasing the failure probability of the
task latency constraint.

If any VU offloads a very small percentage of data towards
an EN, the local computation time required for processing the
remaining task can be high. On the other hand, if any VU offloads
a larger amount of data toward an EN, it is possible to have
a higher offloading time mainly because of unreliable channel
conditions, limited EN resources, and other competing VUs. The
behavior of PF 2

(0,1)(aν(τi)) concerning the offloading parameter
αρm

(τi) is modeled as a square function for accommodating
these facts. In the end, K31 and K33 define the weights assigned
to latency and competing vehicles parameters, while K32 avoid
having infinite in the second term.
PF 2

(1,0)(aν(τi)) models the VUs’ chances of satisfying the task
latency requirements and is defined as,

PF 2

(1,0)(aν(τi)) =

{
0 if αρm

(τi) = 0

1− exp(−λ4(τi)) else
(48)

where λ4(τi) = K41 · Tρm
+ 1

K42+αρm (τi)(1−αρm (τi))
+ K43

V n
m(τi)

is a parameter modeling the slope of the exponential function
and is determined from the action aν(τi). In case VU does not
offload any data, it is not able to satisfy the task latency require-
ments. On the other hand, the behavior of PF 2

(1,0)(aν(τi)) will be
based upon the offloading parameter, number of competing VUs,
and the task latency requirements. K41 and K43 are weighting
coefficients, while K42 avoid to have infinite in the second term.

The third function, F 3(·), models the VU behavior in terms
of energy constraint. If the overall offloading process energy
becomes higher than the energy required to compute the com-
plete task locally, the offloading process becomes inefficient.
PF 3

(0,1)(aν(τi)) gives the probability that the VU fails to satisfy
the energy constraint for a selected action aν(τi) and is defined
as,

PF 3

(0,1)(aν(τi)) =

{
0 if αρm

(τi) = 0

1− exp(−λ5(τi)) else
(49)

where, λ5(τi) = K51 · αρm
(τi) +K52V

n
m(τi) is a parameter

modeling the slope of the exponential function and is determined
from the action aν(τi). If the mth VU offloads a large amount
of data towards the EN with more V n

m(τi), with selected action
aν(τi), there is a high chance that the offloading process energy
becomes higher than the local computation energy. However, if

VU does not offload any data towards EN, it always follows the
energy constraint. Here,K51 andK52 are weighting coefficients.

PF 3

(1,0)(aν(τi)) models the chances that VU is satisfying the
energy constraint based upon the selected action aν(τi):

PF 3

(1,0)(aν(τi)) =

{
1 if αρm

(τi) = 0

exp(−λ6(τi)) else
(50)

where λ6(τi) = K61 · αρm
(τi) +K62V

n
m(τi) is a parameter

modeling the slope of the exponential function and is determined
from the action aν(τi). The chances that VU satisfies the energy
constraint reduce with the increasing of αρm

(τi) and V n
m(τi).

K61 and K62 are weighting coefficients.
By using (45)-(50), the transition probability matrices for

F 1(·), F 2(·), and F 3(·) can be determined. In the following
Section, we define a value iteration algorithm for solving the
MDP.

IV. MDP-BASED JOINT NETWORK SELECTION AND

COMPUTATION OFFLOADING

In the previous section, the elements of the MDP model are
presented. By solving the proposed MDP model, VUs can find a
proper EN and the offloading amount able to minimize the over-
all latency and the energy consumed during the task processing
operations. The solutions set can be defined as a policy function
πν = {πν(sν(τi + δ)), ∀δ} that maps every state sν ∈ ST to
action aν ∈ AS. Selecting different actions can result in differ-
ent policy functions, where the aim is to find an optimal policy
that corresponds to the minimum delay and energy cost during
vehicular task processing. For every policy πν , a value function
Vπν

(sν(τi)), corresponding to a state sν(τi) can be defined for
analyzing its performance. In general, Vπν

(sν(τi)) corresponds
to an expected value of a discounted sum of total reward received
by following the policy πν from state sν(τi), and can be defined
as:

Vπν
(sν(τi)) = E

{
Δ∑
δ=0

γδR (sν (τi + δ) , πν (sν(τi + δ)))

}

where γ ∈ [0, 1] is the discount factor, R(sν(τi + δ), πν

(sν(τi + δ))) is the immediate reward received for following
the policy πν at time τi + δ from the state sν(τi + δ), Δ is
the maximum number of steps considered during the MDP
evaluation, i.e., episode length, and E{·} corresponds to the
expected value. Thus, the value function analyzes the particular
policy function by assigning a numeric value to each state, and
can be utilized to compare the performance of the different
policies. In the end, the following optimization problem can
be formulated in order to be able to find the best possible policy
function associated with state sν(τi):

V (sν(τi)) = min
πν∈Πν

Vπν
(sν(τi)) (51)

where, Πν corresponds to the set of policy functions that can be
explored.

As shown by many works (e.g., [13], [40]), the problem
defined in (51), can converge into a Bellman optimality equation
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given by:

V (sν(τi)) = min
aν(τi)∈Aν(τi)

{
R(sν(τi), aν(τi))+

γ
∑

sν(τi+δ)∈ST
Pr {sν(τi+δ) | sν(τi), aν(τi)}V (sν(τi+δ))

}

(52)

Different approaches can be used to solve the problem in (52);
however, the value iteration approach is widely known for its fast
convergence and easy implementation [41]. Therefore, below
we present a value iteration approach aimed at solving the MDP
designed in the previous section for finding an optimal policy
that corresponds to the minimization of a task processing time
and energy during offloading process over VNs.

The value iteration method allows finding an optimal policy
and value function for the MDP models. The Algorithm 1
describes the steps involved during the value iteration process.
For every scenario ν, the process begins by initializing the values
of each state to∞ and iteration count (it) to 0 (Line 2). For each
state-action pair, the state value is determined by using (53) (Line
5). In the end state value and a corresponding optimal policy
(π∗ν(sν(τi))) associated with state sν is determined by using
(54) and (55) (Lines 7–8). The iterative process continues till
the change in all states values becomes less than the predefined
convergence parameter ε (Lines 10–14). In the end, the algorithm
returns the set of optimal policy functions {π∗ν} associated with
all possible scenarios in which VUs can find themselves over
the road (Line 16).

The time complexity of the traditional value iteration process
can be estimated to be equal to O(Δ|ST| · |AS|) with Δ being
the maximum number of time steps considered, |ST| state space
dimension, and |AS| representing the action space. With the
involvement of N̄ scenarios, the time complexity expression
becomesO(N̄ ·Δ|ST| · |AS|). The considered scenario-based
modeling can reduce the state and action space dimensions
significantly by limiting the number of VUs per scenario com-
pared to the one-shot approaches where all VUs are considered
altogether. Especially for the case of VNs, such an approach can
be beneficial given the importance of VUs’ local environments
in the decision-making process (i.e., nearby VUs can influence
the VUs’ decision-making compared with the other VUs that
are located far away from it). Additionally, time-dependent state
transition probabilities can reduce the overall uncertainty in the
MDP process. It should be noticed that N̄ , i.e., the considered
number of VUs scenarios, can impact the performance of the
MDP process. On one side, a smaller N̄ , corresponding to a
limited set of parameters, can impact the MDP model perfor-
mance due to additional uncertainties. On the other side, with
a bigger N̄ , the computational complexity can be higher with
improved performance.

A. Benchmark Approaches

For comparing the proposed MDP model performance, the
following benchmark methods are considered:

Algorithm 1: MDP Value Iteration.

Input: ε, γ, N̄ , Sν , Aν , P r
Output: {π∗ν}
1: for ν ∈ N̄ do
2: Initialize it = 0, V 0(sν(τi)) =∞, ∀sν(τi)
3: for sν(τi) ∈ Sν do
4: for aν(τi) ∈ Aν do
5:

V it+1(sν(τi), aν(τi))← R(sν(τi), aν(τi))

+ γ
∑

sν(τi+δ)∈Sν

Pr(sν(τi+δ) | sν(τi), aν(τi))vit(sν(τi+δ))

(53)

6: end for
7:

V it+1(sν(τi)) = min
aν(τi)

V it+1(sν(τi), aν(τi)) (54)

8:

π∗ν(sν(τi)) = argmin
aν(τi)

V it+1(sν(τi), aν(τi)) (55)

9: end for
10: if any |vit+1(sν(τi)− vit(sν(τi)| > ε then
11: it = it+ 1
12: else
13: return π∗ν = {π∗ν(sν(τi))}
14: end if
15: end for
16: return {π∗ν}

� Minimum distance VU-EN assignment based approach
(MDA): In this approach, VUs are always assigned to the
EN, which is at a minimum distance from them. Also,
VUs prefer to offload a complete task towards selected
EN. Thus, ∀m,

am,n(τi) = 1⇐⇒ n = argmin
n∈N

{dm,n(τi)} (56)

Though this approach can potentially reduce the overall
task communication delay and energy, high handovers
requirements and questionable energy performance can
reduce the offloading performance.

� Maximum sojourn time based VU-RSU assignment ap-
proach (MSA): In this method, VUs prefer to offload their
task towards RSUs having the highest sojourn time, hence:

am,n(τi) = 1⇐⇒ n = argmax
n∈N

{Dm,n(τi)} (57)

This approach can reduce the number of handover require-
ments however, the computation/communication delay and
energy performance might not be optimal.

� MDP-based network selection with static offloading policy
(MDP-NS): To show the impact of a joint network se-
lection and offloading optimization, here we consider an
MDP-based network selection decision optimization with
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TABLE II
SIMULATION PARAMETERS

static offloading process. In particular, the MDP process
(i.e., action space) is adapted to the network selection
only while considering a static offloading policy with
αρm

(τi) = 0.5, ∀i,m.
� MDP-based offloading with static network selection pol-

icy (MDP-Off): In this case, the offloading decisions are
optimized, while a static network selection is considered.
In particular, VUs are considered to select the nearest EN
while offloading with an optimal policy generated through
the MDP process of Algorithm 1.

In the following, MDP-MD, MDP-PA, MDP-SA, and MDP-
PsA stand for the MDP with minimum distance assignments,
probabilistic assignments, sojourn time based assignments and
the position-based assignments of nearby VUs, respectively.

V. NUMERICAL RESULTS

The proposed MDP model and corresponding value iteration
algorithm is evaluated over a Python-based simulator, using
ML-related libraries such as NumPy, Pandas, and Matplotlib.
The main simulation parameters are listed in Table II. In this
work, we have considered that 80 RSUs with hR

n = 3 m are
located alongside the road network in the MBS coverage area.
The number of VUs is between 200 to 1800 with pa = 0.2.
Each VU travels with a variable speed based upon the intelli-
gent mobility model, with parameters �vmax = 15m/s, smin =
2m, amax = 0.7m/s2, bmax = 1.5m/s2, tr = 2 s. The back-
ground noise power σ = −110 dBm is considered.

Also, each RSU can serve up toKmax = 12 VUs. Additionally,
the communication channel parameters are β0 = −25 dB, and
θ = 2.5. The RSU switching parameters include switching
time Tsw,n = 25 ms, and switching power Psw,n = 0.2 W.
Also, when the nth EN is operating in the standby mode, the
standby power is Psd,n = 0.42 W. The power consumed for the
basic circuit operations is P0,n = 0.5 W. The VUs scenarios
are based upon lg = 3.3 m, Emax = 4, and NVmax = 36.
Other MDP parameters include the set of weighing coefficients
given by, [K11,K12,K13,K21,K22,K23] = [0.5, 0.07, 0.4, 0.5,
0.07, 0.4], [K31,K32,K33,K41,K42,K43] = [0.08, 0.6, 0.5,

Fig. 3. Cost Function.

0.08, 0.6, 0.5], and [K51,K52,K61,K62] = [0.5, 0.07, 0.5,
0.07]. During the value iteration process γ = 0.9, ε = 0.01, Λ
= 0.1 and episode length Δ = 100 are used.

Avg. Latency and Energy Cost with Varying VUs: In Fig. 3,
we present the average cost value in terms of the total latency
and energy requirements of VUs task processing. By varying
the number of VUs, we obtain the performance of different
MDP schemes defined before and analyze their performance
by comparing the results with the benchmark methods. It can be
seen that proposed MDP schemes perform better compared with
the benchmark approaches. By analyzing the surrounding envi-
ronment, different MDP schemes are able to find proper EN and
the amount to be offloaded. In particular, with a high number of
VUs, the MDP-PsA approach having a better knowledge of the
surrounding environments in terms of various distance measures
(i.e., the distance between VU and ENs and the distance before
it passes through the EN coverage range), performs better than
the other schemes. The superiority of the MDP-PsA approach
can be visualized through the zoomed version of the plot. The
two benchmark MDP methods (MDP-Off and MDP-NS) have
worse performance compared to the joint optimization-based
approaches, mainly due to the static policies. This highlights
the importance of simultaneously selecting the proper ENs and
offloading the proper amount.

Number of RSU handover required during computation of-
floading: If VU fails to perform the offloading operation (which
includes the transmission of VUs data towards selected EN,
EN processing, and receiving back the results from EN), before
going out from the coverage of the selected EN, an additional
handover process/cost is required. In Fig. 4, we present such
handover requirements posed by a different set of VUs in
terms of the average number of VUs which fail to complete
the offloading operation within time limits. It can be verified
from this figure that the proposed MDP schemes (in particular
MDP-PsA) are performing better compared to the other bench-
mark methods in terms of a reduction in the overall handover
requirements. Thus by avoiding the number of handover require-
ments, MDP schemes can reduce the service provisioning costs
over vehicular environments. The benchmark MDP methods, in
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Fig. 4. Percentage of VUs with Handover Requirements.

Fig. 5. Percentage of VUs with service time constraint violation.

particular MDP-Off, suffer from higher handover requests due to
the imperfect offloading decisions compared to the other MDP
methods.

Number of service time constraint failures: In general, VUs
application latency requirements need to be respected during
task processing operations, failure of which can reduce the over-
all QoS. In Fig. 5, we provide the percentage of VUs that fails
to satisfy the application latency requirement constraint in (25).
The proposed MDP approaches are able to reduce such failures
effectively and can be vital for enabling latency-critical services
over VN. Similar to the previous cases, the MDP-PsA approach
outperforms the other MDP schemes and can be seen through
the zoomed version of the plot. The MDP-NS and MDP-Off
methods induce higher latency costs, and their performance
suffers with more service latency failures than the other MDP
approaches.

Task Completion Latency: To have a better understand-
ing of overall latency requirements, in Fig. 6, we present the
performance of different schemes in terms of average latency
requirements during the task processing operations. This figure
shows the overall reduction of latency cost for VUs task process-
ing operations. Through a proper understanding of the nearby
environment parameters (e.g., competing VUs, available RSUs,

Fig. 6. Avg. Latency Cost.

Fig. 7. Avg. VU Energy Cost.

mobility characteristics), the MDP schemes, in particular MDP-
PsA approach, can determine the proper EN and the offloading
amount for having better performance. Optimizing only the
network selection or offloading decisions through the MDP-NS
and MDP-Off methods cannot guarantee optimal performances
and suffers from higher latency requirements.

Average Energy Consumption: In the following Figs. 7 and
8, we present the performance of different schemes in terms
of average energy requirements. Fig. 7 presents the average
amount of energy cost over VUs, which includes the local com-
putation, data transmission, and reception costs. The benchmark
approaches do not perform any local computation, due to which
they have slightly better performance in terms of VUs energy
consumption. However, as shown in Fig. 8, both benchmark
methods add large energy costs over ENs. On the other hand,
with proper EN selection, and proper offloading decisions, all
MDP schemes are having better energy performances over EN.
Also, as shown in Fig. 3, the overall performance of the MDP
process in terms of joint latency and energy cost is better
compared with the benchmark approaches. The joint energy
performance of the MDP-Off and MDP-NS methods suffers
from imperfect decision makings and impacts the overall costs
shown in Fig. 3.
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Fig. 8. Avg. EN Energy Cost.

Fig. 9. Avg. Number of Active ENs.

Average Number of Active ENs: In Fig. 9, we have presented
the average number of active ENs for varying numbers of VUs.
In the beginning with a limited number of VU density, only
a limited number of ENs are active. With most of the ENs
being inactive, the overall energy cost can be reduced compared
with the traditional approaches with all ENs being active. As
VU density increases, the active ENs increase for satisfying all
VUs service requests. This allows reducing the total number of
service failures. With this and previous results, it can be validated
that the proposed methods are able to adapt the ENs energy
resources according to the VUs demands limiting the EN energy
costs along with the potential service failures.

VI. CONCLUSION

In this work, we considered the joint optimization of network
selection and task offloading through a proper minimization of
delay and energy for a VEC offloading system. For solving such a
complex problem over a highly uncertain vehicular environment,
we have proposed a MDP approach by analyzing different
vehicular scenarios. The proposed MDP model considers the
changing vehicular environment while making the decisions of
EN selection and offloading portion. A value iteration-based

method is used for solving the proposed MDP model by finding
the optimal policy to be followed by each VU in the different
scenarios. The simulation results show the superiority of the pro-
posed scheme over various benchmark methods. One of the most
prominent contributions is that of having considered the joint
network selection and computation offloading problem while
jointly minimizing latency and energy costs with additional
energy-saving mechanisms at the edge infrastructure. Such stud-
ies were not present in the current literature and thus can motivate
future readers to investigate it further. However, with additional
granularities and joint decision-making processes, the problem
becomes extremely complex to be solved through the traditional
approaches. For this, we have proposed a novel MDP model with
time-dependent state transition probabilities reducing the overall
instability. However, since the MDP approach could become
very complex in case of a large parameter set, in this work,
we have exploited the local vehicular communication modes in
the MDP process for improving the overall performance. This
can motivate future readers to investigate the proposed solution
methods in these directions.
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